
Special Supplement to the
Bulletin of the American Meteorological Society

Vol. 101, No. 1, January 2020

EXPLAINING EXTREME 
EVENTS OF 2018 
From a Climate Perspective

Unauthenticated | Downloaded 02/21/21 04:03 AM UTC



EXPLAINING EXTREME 
EVENTS OF 2018 FROM A  
CLIMATE PERSPECTIVE

Editors

Stephanie C. Herring, Nikolaos Christidis, Andrew Hoell,  
Martin P. Hoerling, and Peter A. Stott

BAMS Special Editors for Climate

Andrew King, Thomas Knutson,  
John Nielsen-Gammon, and Friederike Otto

Special Supplement to the 

Bulletin of the American Meteorological Society

Vol. 101, No. 1, January 2020

AmericAn meteorologicAl Society

Unauthenticated | Downloaded 02/21/21 04:03 AM UTC



Sii JANUARY 2020|

HOW TO CITE THIS DOCUMENT

Citing the complete report:

Herring, S. C., N. Christidis, A. Hoell, M. P. Hoerling, and P. A. Stott, Eds., 2020: Explaining Extreme Events of 2018 from a 
Climate Perspective. Bull. Amer. Meteor. Soc., 101 (1), S1–S128, doi:10.1175/BAMS-ExplainingExtremeEvents2018.1.

Citing a section (example):

Mahoney, K., 2020: Extreme Hail Storms and Climate Change: Foretelling the Future in Tiny, Turbulent Crystal Balls? [in 
“Explaining Extremes of 2018 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 101 (1), S17–S22, doi:10.1175/BAMS-
D-19-0233.1. 

Cover Credit: iStock.com/Alena Kravchenko—River Thames receded during a heatwave in summer 2018 in London, United 
Kingdom.

Corresponding editor:

Stephanie C. Herring, PhD
NOAA National Centers for Environmental Information
325 Broadway, E/CC23, Rm 1B-131
Boulder, CO, 80305-3328
E-mail: stephanie.herring@noaa.gov

Unauthenticated | Downloaded 02/21/21 04:03 AM UTC



SiiiJANUARY 2020AMERICAN METEOROLOGICAL SOCIETY |

1. The Extreme 2018 Northern California Fire Season . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Anthropogenic Impacts on the Exceptional Precipitation of 2018  
in the Mid-Atlantic United States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Quantifying Human-Induced Temperature Impacts on the 2018 United States  
Four Corners Hydrologic and Agro-Pastoral Drought . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

4. Extreme Hail Storms and Climate Change: Foretelling the Future in Tiny,  
Turbulent Crystal Balls? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5. The Extremely Cold Start of the Spring of 2018 in the United Kingdom . . . . . . . . . . . . . . . 23

6. The Exceptional Iberian Heatwave of Summer 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7. Analyses of the Northern European Summer Heatwave of 2018 . . . . . . . . . . . . . . . . . . . . . 35

8. Anthropogenic Influence on the 2018 Summer Warm Spell in Europe:  
The Impact of Different Spatio-Temporal Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9. On High Precipitation in Mozambique, Zimbabwe and Zambia in February 2018 . . . . . . . . 47

10. The Record Low Bering Sea Ice Extent in 2018: Context, Impacts,  
and an Assessment of the Role of Anthropogenic Climate Change . . . . . . . . . . . . . . . . . . . 53

11. The Late Spring Drought of 2018 in South China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

12. Anthropogenic Influence on 2018 Summer Persistent Heavy Rainfall  
in Central Western China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

13. Conditional Attribution of the 2018 Summer Extreme Heat over Northeast China:  
Roles of Urbanization, Global Warming, and Warming-Induced Circulation Changes  . . . . . 71

14. Effects of Anthropogenic Forcing and Natural Variability  
on the 2018 Heatwave in Northeast Asia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

15. Anthropogenic Influences on the Persistent Night-Time Heat Wave  
in Summer 2018 over Northeast China  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

16. Anthropogenic Contributions to the 2018 Extreme Flooding over the  
Upper Yellow River Basin in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

17. Attribution of the Record-Breaking Consecutive Dry Days in Winter 2017/18  
in Beijing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

18. Quantifying Human Impact on the 2018 Summer Longest Heat Wave  
in South Korea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

19. The Heavy Rain Event of July 2018 in Japan Enhanced by Historical Warming . . . . . . . . . . 109

20. Deconstructing Factors Contributing to the 2018 Fire Weather  
in Queensland, Australia  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

21. A 1-Day Extreme Rainfall Event in Tasmania: Process Evaluation  
and Long Tail Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

22. Attribution of the Warmest Spring of 2018 in Northeastern Asia  
Using Simulations of a Coupled and an Atmospheric Model . . . . . . . . . . . . . . . . . . . . . . . . 129

23. Attribution of the 2018 October–December Drought over South  
Southern Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

TABLE OF CONTENTS

Unauthenticated | Downloaded 02/21/21 04:03 AM UTC



Siv JANUARY 2020|
Unauthenticated | Downloaded 02/21/21 04:03 AM UTC



1chapter

AFFILIATIONS: Brown—Western Regional Climate Center, 
Desert Research Institute, Reno, Nevada; Leach—Bureau 
of Land Management, Redding, California; wachter and 
Gardunio—USDA Forest Service, Redding, California
CORRESPONDING AUTHOR: Timothy Brown, tim.brown@
dri.edu

DOI:10.1175/BAMS-D-19-0275.1

© 2020 American Meteorological Society
For information regarding reuse of this content and general copyright 
information, consult the AMS Copyright Policy.

The fire season of 2018 was the most extreme on 
record in Northern California in terms of the 
number of fatalities (95), over 22,000 structures 

destroyed, and over 600,000 ha burned (https://
www.fire.ca.gov/media/5511/top20_destruction.
pdf; accessed 24 November 2019). The most deadly 
and destructive fire in California history, the Camp 
Fire, occurred in Butte County in the Sierra Nevada 
foothills in early November, and caused 85 fatalities 
and destroyed nearly 19,000 structures. The largest 
fire complex in state history, the Mendocino Complex, 
which included the Ranch fire, the largest single fire 
in state history, burned nearly 186,000 ha. It occurred 
in July and August, killing one firefighter. In western 
Shasta County nearly 138,000 ha burned from July 
through September in the Carr, Hirz, and Delta Fires. 
These fires caused multiple closures of Interstate 5 and 
exhibited some of the most extreme fire behavior ever 
observed in California. The Carr Fire caused eight 
fatalities, including two firefighters and two workers 
supporting firefighting efforts, burned over 1,100 
homes in west Redding, caused the evacuation of one-
third of the city, and produced an extreme fire vortex 
with an Enhanced Fujita scale rating between 136 to 
165 mph, making it arguably the strongest tornado 
type event in state history, and one of the strongest 
documented cases in the world (Lareau et al. 2018).

Actual weather during the onset of these large fires 
was not outside of what would normally be expected 
during periods of higher fire danger that occur during 
most fire seasons, as opposed to the extreme offshore 
wind event that led to the October 2017 wine coun-
try fires (Nauslar et al. 2018). The Tubbs fire during 

that period caused 22 fatalities and the loss of 5,636 
structures, and at the time was California’s most 
destructive fire on record dating back to the early 
1900s. Instead, a series of climate and fuels condi-
tions aligned to create an exceptional and explosive 
fire environment between June to November 2018 in 
naturally fire-prone areas with a substantial wild-
land–urban interface—a zone where human devel-
opment meets and intermingles with wildland fuels.

CLIMATE AND FUELS. Climate enables fire and 
weather drives fire. The 2018 Northern California fire 
season origins began during the winter of 2016/17. 
Precipitation, which was much above normal, ex-
ceeded the 90th percentile ranking across much of 
the state at low to middle elevations. Some of the 
higher elevations in the Sierra Nevada range were 
the wettest on record. November through April is 
climatologically the wet season in northern Califor-
nia. This particular wet winter ended the statewide 
hydrologic drought from 2011–17. The significance of 
this wet season was that it led to the second consecu-
tive spring with above average fine fuel (grasses) crop 
across much of Northern California.

The 2017–18 Northern California wet season was 
drier than normal, and temperatures were generally 
above normal, with the warmest conditions from the 
Cascade–Sierra foothills through the Sacramento 
Valley and into the northern Coast Range. A lack 
of stormy weather during this period allowed above 
normal standing carry-over fine fuels from the previ-
ous wet year. April 2018 was warmer and wetter than 
normal. This was perfectly timed to produce above 
normal spring brush growth and grow a record fine 
fuel crop at elevations below 1,200 m, despite the 
overall wet season rainfall deficit (Fig. 1). This was 
the third straight spring with an above average fine 
fuel crop based on data taken at the University of 
California Sierra Foothill Research and Extension 
Center. The Brown’s Valley, California, research 
station forage production data have been reported 
continuously since the 1979/80 growing season. 
Three straight above normal growing seasons had 
not occurred in the dataset prior to the 2017/18 
growing season. Peak forage production toward the 
end of spring was 150% of normal (https://ucanr 

THE NORTHERN CALIFORNIA  
2018 EXTREME FIRE SEASON
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.shinyapps.io/SFREC_Web_Application/; accessed 
24 November 2019) and the maximum value during 
the 40-yr history. As a testament to the abundant and 
continuous fine fuel growth, firefighters during 2018 
often described arriving to a larger fire compared to 
what was normally observed during initial attack 
situations, thus making the fires harder to contain 
(Northern California Predictive Services, personal 
communication, 24 July 2019).

The summer of 2018 in Northern California had 
two notable climate anomalies—lack of rain and 
warmer than average temperatures. This led to a rapid 
curing of the annual fine fuels and drying of live fuels. 
For the most part, rain shut off in late April and did 
not return until late November. In the Sacramento 
Valley and foothills only two light rain events pro-
duced approximately 15 mm each, one in late May and 
the other in late September to early October. The lack 
of precipitation from late spring through the middle 
of November caused fuels to dry out to record levels.

The summer of 2018 was warmer than average in 
Northern California. Afternoon maximum tempera-
tures were not extraordinarily high compared to 2017. 
Rather, it was the warm morning minimum tempera-
tures that pushed the overall average temperature in 
July 2018 to record high levels. Record high lows for 
California were observed in July, continuing a positive 
trend of nighttime warming since 1895, (https://www 
.climate.gov/news-features/event-tracker/extreme 

-overnight-heat-california-and-great-basin-july-2018; 
accessed 24 November 2019). These warm tempera-
tures led to more nights of poor overnight humidity 
recovery, which has direct implications on the flam-
mability of fuel. The poor recoveries led to unusually 
long active burn periods during the overnights and set 
the stage for earlier active burning during the daytime 
hours. This created more hours of active to extreme 
fire behavior and provided less opportunity for direct 
attack by firefighters (Northern California Predictive 
Services, personal communication, 24 July 2019).

WEATHER. Long periods dominated by strong 
high pressure occurred in July, which hastened the 
summer drying of fuels. The hottest day of the year 
in the Sacramento Valley was 26 July, setting all-time 
records for the date, and was a key element in the 
conditions that rapidly brought the Carr Fire into 
Redding, California. Other large-scale fires started 
that week as well, including the Mendocino Complex. 
Interestingly, temperatures were slightly cooler than 
normal during August and September in areas where 
thick smoke from nearby wildfires persisted for un-
usually long periods. Northern California had a very 
low occurrence of lightning during the 2018 fire sea-
son. Roughly 12,000 lightning strikes were recorded 
during the fire season, compared to the long-term 
average of more than 30,000 strikes (in Northern 
California lightning accounts for the majority of fire 

Fig. 1. Photo of fine fuel grass loading taken on 12 Sep 2018 about 60 miles northwest of the Camp Fire location. 
Left of the fence line shows a continuous bed of fine fuel. The paddock to the right of the fence line has less fuel 
due to grazing. Photo: Brent Wachter, Predictive Services.
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ignitions, while in Southern California human causes 
dominate ignitions; Balch et al. 2017). Dry offshore 
wind events, which typically increase in occurrence 
after the middle of September, occurred with fuels 
at extreme and record dry levels. The Camp Fire on 
8 November was the result of an ignition occurring 
in extremely dry fuels during an enhanced strong and 
dry downslope wind pattern.

FIRE ENVIRONMENT. The precipitation deficit 
at the close of the 2017/18 rainy season combined with 
drier and warmer than normal summer conditions 
caused an expansion and intensification of short-term 
drought across northern California. The Evaporative 
Demand Drought Index (EDDI; Hobbins et al. 2016; 
McEvoy et al. 2016) clearly illustrates the intensity of 
short-term drought conditions during late July when 
significant fires started (Fig. 2a), and even more so in 
November as dry northeast/offshore wind patterns 
became more frequent and the Camp Fire broke out 
(Fig. 2b). Evaporative demand relates to the thirst of 
the atmosphere which directly corresponds to fuel 
stress (higher values equate to more stress). There 
is a close correlation between EDDI values and fire 
danger (McEvoy et al. 2019) including extreme fire 
behavior and spread rates. EDDI comprises inputs 
of temperature, humidity, wind speed, and solar 

radiation. These are also key factors in determining 
dead fuel moisture calculated in the newly updated 
National Fire Danger Rating System (https://gacc.
nifc.gov/eacc/predictive_services/fuels_fire-danger 
/documents/Overview%20of%20NFDRS2016%20
and%20Implementation%20and%20Evaluation.pdf; 
accessed 24 November 2019). Starting in late July, fire 
danger indicators in northern California such as the 
energy release component (the amount of energy at 
the head of fire’s flaming front) approached all-time 
record high values accentuating the impact of the 
anomalously warm and dry summer on fuels. In ef-
fect, fuel regimes found at all elevations (sea level to 
over 3,000 m) had a large fire potential by July.

SUMMARY. Both 2017 and 2018 were extreme fire 
years in California. While this paper has focused on 
Northern California in 2018, Southern California 
that year also saw its share of extreme fire including 
the Ferguson (two firefighter fatalities, 19 structures 
destroyed, and approximately 39,000 ha burned), 
Cranston, and Holy Fires. On the same day as the 
Camp Fire, 8 November, two large fires developed 
in Ventura and Los Angeles County, including the 
Woolsey Fire (approximately 39,000 ha burned and 
over 1,600 structures destroyed). Following the un-
usually late season December 2017 Thomas Fire in 

Fig. 2. Evaporative Demand Drought Index 2-month categories for (a) 26 Jul 2018, and (b) 8 Nov 2018. Triangles 
represent the Mendocino (lower),Carr (upper), and Camp fire locations, respectively.
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the Ventura and Santa Barbara county area, a post-
fire debris flow event occurred over the burn area on 
9 January resulting in 23 fatalities and 246 structures 
destroyed (Oakley et al. 2018).

Climate, fuels, and people are the three confluent 
factors for California’s recent destructive wildfires. 
The wildland–urban interface has been growing ex-
tensively within the state during the past few decades 
(e.g., Radeloff et al. 2018), placing people in fire-prone 
areas. Climate is an enabler of wildfire by provid-
ing seasonal moisture to grow fuels, and seasonal 
warming and drying that increases fuel flammabil-
ity. Increasing temperature trends enable longer and 
more extreme fire seasons. California’s annual tem-
peratures have been increasing substantially during 
the past four decades and are expected to continue 
warming this century (California’s Fourth Climate 
Assessment; Bedsworth et al. 2018). Abatzoglou and 
Williams (2016) have shown that California (as well 
as all of the West) has had significantly enhanced fuel 
aridity due to anthropogenic increases in temperature 
and vapor pressure deficit over the past several de-
cades. This can also be seen in the increasing number 
of days of fire weather season length based on fire 
danger indicators (e.g., Jolly et al. 2015). Nighttime 
temperature trends especially may be playing an im-
portant role in more extreme fire behavior. Research 
is currently underway to examine the specific rela-
tionship of this warming to nighttime fuel drying and 
subsequent extreme fire behavior that was observed 
during the California 2018 fire season.

An estimated 54% of California ecosystems are fire 
dependent and most of the rest are fire adaptive (Pyne 
2016). California has always had fire given its climate, 
topography, and distinctive varieties of combustible 
vegetation. Today it is a state of nearly 40 million 
people, and one in four Californians live in a “high 
risk” wildfire area (https://www.latimes.com/local/
lanow/la-me-california-braces-for-new-wildfires-
20190614-story.html; accessed 24 November 2019). 
California insured losses in 2018 from wildfire topped 
$13 billion (https://www.insurancejournal.com/news/
west/2019/05/08/525930.htm; accessed 24 November 
2019). The year 2018 now holds the record for the 
most destructive wildfire, the largest wildfire, and the 
costliest wildfire season in California state history.
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Flash flooding surged through the old district of 
Ellicott City, Maryland, on 27 May 2018, turning 
Main Street into whitewater rapids, upending 

cars, destroying businesses, and leading to one death 
(Campbell and Rentz 2018). As of May 2019, damage 
from the Ellicott City f lood had cost $12 million, 
and the city was considering flood mitigation plans 
that ranged from $63 to $175 million (Logan 2019). 
Ellicott City was just one of 12 significant heavy pre-
cipitation and flooding events that occurred between 
May and September of 2018, shattering precipita-
tion records across the region (National Weather 
Service 2019). Other notable events included 3 June, 
when eight West Virginia counties declared states of 
emergency after intense precipitation flooded bridges 
and washed out roads (Maher 2018), and 21–24 July, 
when historic rainfall across the Washington, D.C., 
Metropolitan Area and northern Baltimore County 
in Maryland resulted in more than a dozen high-
water rescues of motorists stranded by flash flooding 
(Halverson and Samenow 2018). These exceptional 
heavy rainfall events are consistent with expecta-
tions from global warming (Pendergrass 2018) and 

observed increases in extreme precipitation across 
the broader northeastern United States (Huang et al. 
2017; Hoerling et al. 2016; Frei et al. 2015).

We examine the mid-Atlantic states of Pennsyl-
vania, New Jersey, Maryland, Washington, D.C., 
Delaware, and West Virginia, which all experienced 
remarkable total and extreme (99th percentile wet 
days) precipitation in 2018 that contributed to flood-
ing. For the years 1920–2018, 2018 has the highest 
or one of the three highest January–September total 
precipitation amounts at 33% and 62% of stations 
(Fig. 1a), respectively, and the highest or one of the 
three highest May–September extreme precipitation 
amounts at 6% and 13%, respectively (Fig. 1b). Spatial-
ly averaged, 2018 has the highest total precipitation on 
record (1-in-99 year event), while extreme precipita-
tion is the fourth highest (4-in-99 year event), shown 
in Figs. 1c and 1d. Here, we assess the fraction of 2018 
total and extreme precipitation risk attributable to 
anthropogenic forcing using station observations and 
a large ensemble of climate simulations.

DATA AND METHODS. Station observations 
are from the Global Historical Climatology Network-
Daily (GHCN-D) dataset (Menne et al. 2012a,b). Our 
analysis is conducted using the 63 stations in our 
domain with daily observations that are at least 80% 
complete for 1920–2018 and 2018 (Fig. 1a). We treat 
any years less than 80% complete as missing. We 
choose 1920 as the start date of our analysis to balance 
spatial and temporal coverage of station data as well as 
to maximize overlap with climate simulations. We use 
gridded area averaging following Huang et al. (2017).

To assess the contribution of anthropogenic climate 
change to the exceptional precipitation of 2018, we 
use the historical climate simulations from version 
1 of the Community Earth System Model (CESM1) 
under the Large Ensemble Project (LENS) from the 

ANTHROPOGENIC IMPACTS ON THE EXCEPTIONAL 
PRECIPITATION OF 2018 IN THE MID-ATLANTIC UNITED STATES

JOnatHan M. Winter, Huanping Huang, ericH c. Osterberg, and Justin s. Mankin

Exceptional January–September total precipitation contributed to flooding across  

the mid-Atlantic United States from May to September 2018, and was made  

1.1 to 2.3 times more likely by anthropogenic climate change.
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National Center of Atmospheric Research (Kay et al. 
2015). LENS uses CESM1 at ~1° × 1° spatial resolution 
to create a single model large ensemble where each run 
is initialized with a small roundoff error (10–14 K) in the 
atmospheric temperature fields (Kay et al. 2015). As 
such, each ensemble member is a plausible trajectory 
of historical climate due to the model’s representation 
of forced and unforced variability, and together the 
40 ensemble members provide a much larger range 
of outcomes from internal variability than either 
observations or any one model run can provide. We 
combine historical (1920–2005) and future climate 
simulations (2006–18) forced with RCP 8.5 to create 
forty 99-yr transient simulations from 1920 to 2018.

We consider two precipitation metrics that con-
tributed to the extensive mid-Atlantic f looding of 
2018. The first is May through September extreme 
precipitation (hereafter extreme precipitation). We 

define extreme precipitation as the sum of precipita-
tion falling on the top 1% of wet days (99th percentile 
wet days) from 1 May to 30 September, because the 
flooding of interest occurred during those months. 
The second metric is January through September pre-
cipitation (hereafter total precipitation). We define to-
tal precipitation as the sum of precipitation 1 January 
to 30 September, and use it as a proxy for antecedent 
soil moisture because flooding can be exacerbated by 
high antecedent soil moisture (Collins 2019; Lapenta 
et al. 1995). To determine the 99th percentile wet day 
threshold, we use all wet days (defined as days with 
precipitation ≥ 1 mm in all 12 months) ranked from 
highest to lowest. GHCN-D thresholds are calculated 
by station from 1920–2018, and LENS thresholds 
are calculated by grid cell from 1920 to 2018. We 
determine the rank of 2018 for regionally averaged 
total and extreme precipitation from GHCN-D over 

Fig. 1. GHCN-D (a) January to September 2018 total precipitation rank and (b) May to September 2018 ex-
treme precipitation rank by station for 1920–2018. Regionally averaged time series of GHCN-D (c) January to 
September total precipitation and (d) May through September extreme precipitation. Red dots highlight 2018 
precipitation.
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the 99-yr record (Fig. 1). From each LENS historical 
ensemble member time series of total precipitation, 
we first remove the time-evolving ensemble mean, 
which represents the externally forced response com-
mon to all simulations (Maher et al. 2019), creating 
anomalies. Then, we add the climatological ensemble 
mean magnitude of total precipitation from the early 
part of the record (1920–50) to the anomalies. We 
repeat the process for extreme precipitation. This 
creates a 40-member ensemble of regional total and 
extreme precipitation for 1920–2018 in a counterfac-
tual world without late twentieth century (1951–2018) 
forcing (hereafter historical reduced forcing). Results 
are insensitive to the time period used to calculate 
climatological ensemble mean magnitudes (not 
shown). We choose to modify LENS historical data 
as our counterfactual because while CESM1 reason-
ably captures mid-Atlantic precipitation (Fig. S1), the 
LENS preindustrial data are substantially wetter than 
the LENS historical data (not shown), which is incon-
sistent with paleoclimate data (Ljungqvist et al. 2016).

Using elements of Diffenbaugh et al. (2017), we 
assess the fraction attributable risk (FAR; Allen 2003; 
Stott et al. 2016) to anthropogenic climate change by 
1) finding the magnitude of total precipitation with 
the same rank as 2018 in the GHCN-D observations 
(hereafter similar to 2018) in each of the 40 LENS his-
torical reduced forcing 99-yr time series; 2) averaging 
those 40 magnitudes to calculate a threshold defining 
LENS historical reduced forcing total precipitation 
similar to 2018; 3) using that mean to calculate the 
probability of total precipitation similar to 2018 in 
the 40 LENS historical and historical reduced forcing 
99-yr time series; and 4) calculating FAR as
 

0

1

FAR 1= −
P
P

,

where P0 is the probability of exceeding the threshold 
of precipitation similar to 2018 in the LENS histori-

cal time series conditional on the presence of natural 
and early twentieth-century anthropogenic forcings 
(historical reduced forcing), and P1 is the probability 
of exceeding the threshold of precipitation similar to 
2018 in the LENS historical time series conditional 
on the presence of natural and full twentieth-century 
anthropogenic forcings (historical), and P1/P0 is the 
risk ratio (RR). We then calculate FAR for extreme 
precipitation similar to 2018, and the combined oc-
currence of total precipitation and extreme precipi-
tation similar to 2018, using the same methodology. 
We calculate uncertainty around FAR and RR by 
bootstrapping (Efron and Tibshirani 1986) the 40 en-
semble members from the LENS historical data 1,000 
times, repeating the analysis above, and determining 
95% confidence intervals (CI) using the bootstrap 
standard error estimate of Paciorek et al. (2018).

RESULTS. LENS reasonably simulates regionally av-
eraged GHCN-D total precipitation [see Fig. S1a in the 
online supplemental material; p = 0.29, Kolmogorov-
Smirnov (K-S) test], but not extreme precipitation 
(Fig. S1b; p < 0.001, K-S test). Figure 2 shows the prob-
ability and cumulative probability of total precipita-
tion and extreme precipitation similar to 2018 from 
the LENS historical and historical reduced forcing 
simulations. These figures indicate that the historical 
simulations have larger total and extreme precipita-
tion than the historical reduced forcing simulations.

Table 1 shows the fraction of risk attributable to 
anthropogenic climate change for total and extreme 
precipitation similar to 2018. The 1-in-99 year total 
precipitation and 4-in-99 year extreme precipitation 
mean magnitudes from the historical reduced forc-
ing data are 1070.1 mm and 52.7 mm, respectively. 
In LENS, the late-twentieth-century anthropogenic 
forcing is responsible for 35% of 1-in-99 year January 
to September total precipitation occurrences, and a 
1.5 times increase in the likelihood of total precipita-

Precipitation condition HIST-RF (P0) HIST (P1) RR (95% CI) FAR (95% CI)

Total Jan–Sep 0.68% 1.04% 1.53 (1.09, 2.25) 0.35 (0.17, 0.59)

Extreme May–Sep 3.69% 4.14% 1.12 (1.05, 1.21) 0.11 (0.05, 0.18)

Total Jan–Sep and extreme May–Sep 0.15% 0.23% 1.53 (0.85, 4.65) 0.35 (−0.15, 0.82)

Table 1. LENS historical reduced forcing (HIST-RF) and historical (HIST) probability of mid-Atlantic 
total and extreme precipitation similar to 2018, and the resulting risk ratio (RR) and fraction attribut-
able risk (FAR).
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tion similar to 2018. In addition, 11% of 4-in-99 year 
May to September extreme precipitation occurrences 
are attributable to the LENS late-twentieth-century 
anthropogenic forcing. We find no statistically sig-
nificant influence of late-twentieth-century anthro-
pogenic forcing on combined 1-in-99 year January to 
September total precipitation and 4-in-99 year May 
to September extreme precipitation occurrences. 
Extreme precipitation FAR should be interpreted 
with caution given the limitations of LENS historical 
simulations in accurately representing extreme pre-
cipitation when compared to GHCN-D observations 
(Fig. S1b). We evaluated the sensitivity of our findings 
to methodology, and find qualitatively similar, but 
larger, responses to anthropogenic forcing (see the 
online supplemental material).

CONCLUSIONS. The mid-Atlantic region was 
impacted by damaging floods throughout the warm 
season of 2018 (National Weather Service 2019). 
These floods were associated with the highest total 
precipitation from January to September and the 
fourth highest extreme precipitation from May 
to September for 1920–2018. Contrasting LENS 
historical and LENS historical reduced forcing, we 
find that anthropogenic climate change increased 
the probability of total precipitation associated with 
the exceptional flooding of 2018 by 1.1 to 2.3 times. 
Incorporating additional large ensembles, especially 
from models that better reproduce observed extreme 
precipitation in the mid-Atlantic, as well as partition-
ing greenhouse gas and aerosol anthropogenic forc-
ings, would strengthen this attribution.

Fig. 2. LENS historical (HIST) and historical reduced forcing (HIST-RF) (a) 1-in-99 year January to September 
total precipitation probability, (b) 1-in-99 year January to September total precipitation cumulative probability, 
(c) 4-in-99 year May to September extreme precipitation probability, and (d) 4-in-99 year May to September 
extreme precipitation cumulative probability.
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In water year (WY) 2018 (October 2017 to Sep-
tember 2018), temperatures in the Four Corners 
region of the western United States (Fig. 1a) were 

the warmest on record. These high temperatures 
occurred during a severe meteorological drought 
(West Wide Drought Tracker; Abatzoglou et al. 2017). 
According to the U.S. Drought Monitor (USDM), 
nearly 95% of the region was in severe drought in 
February 2018, and 56% of the region was in ex-
ceptional drought in September 2018. The Navajo 
Nation issued a drought declaration, finding that 
“drought conditions…created a critical shortage of 
water and range feed for livestock” (Navajo Nation 
2018). Widespread agricultural and ranching losses 
contributed to an estimated three billion U.S. dollars 
in losses (NOAA NCEI 2019). The drought was char-
acterized by significant hydrologic (limited surface 
water) and agropastoral (poor soil and vegetation 
conditions) impacts; thus, this study examines the 
influence of elevated temperature on hydrologic and 
agropastoral drought.

Past studies indicate that above-normal tempera-
tures have exacerbated droughts in the Southwest 
(McCabe et al. 2017; Weiss et al. 2009; Udall and 
Overpeck 2017; Woodhouse et al. 2016) by reducing 
snowpack and driving earlier snowmelt (Shukla et al. 
2015; AghaKouchak et al. 2014; Cook et al. 2015) and 
increasing saturation vapor pressure (SVP), thereby 
increasing the vapor pressure deficit (VPD) (Seager 
et al. 2015). Increased VPD can lead to drying of the 
land surface, potentially stressing rangelands in late 
spring and summer months. Thus, above-normal 
temperatures co-occurring with meteorological 
drought may increase the risk of severe hydrologic 
and agropastoral drought (National Academies of 
Sciences, Engineering, and Medicine 2016, p. 98; 
Diffenbaugh et al. 2015; Williams et al. 2015; Shukla 
et al. 2015; Trenberth et al. 2014).

Given high probabilities that the twenty-first cen-
tury will bring continued warming and the relatively 
uncertain influence of human-induced (HI) warming 
on precipitation in the Four Corners (Garfin et al. 
2013), it is important to explore how temperature 
alone may contribute to enhancing hydrologic and 
agropastoral droughts. In this study, we estimate the 
potential temperature increase due to HI warming 
and subsequently examine the impacts of elevated 
temperature (i) on VPD using a statistical model, 
(ii) on agropastoral drought using a statistical model 
relating VPD and the Normalized Difference Vegeta-
tion Index (NDVI), and (iii) on hydrologic drought 
using a hydrologic model.

DATA AND METHODS. The study region 
(34°–39°N, 112°–105°W) encompasses the spatial 
extent of exceptional drought in WY2018 as defined 
by the USDM (Fig. 1a). Observationally based gridded 
monthly means of daily minimum and maximum 

QUANTIFYING HUMAN-INDUCED TEMPERATURE  
IMPACTS ON THE 2018 UNITED STATES FOUR CORNERS 

HYDROLOGIC AND AGRO-PASTORAL DROUGHT
Emily Williams, chris Funk, shraddhanand shukla, and daniEl mcEvoy

Human-induced (HI) warming increased Four Corners’ vapor pressure deficits and reduced  

the Normalized Difference Vegetation Index by ~18%–30%. Without HI warming,  

March snow water equivalent would have been ~20% higher.
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temperature (Tmin, Tmax), minimum and maximum 
vapor pressure deficit (VPDmin, VPDmax), and pre-
cipitation data from 1895 to 2018 for the region were 
obtained from the PRISM Climate Group (www.
prism.oregonstate.edu/; 4 km × 4 km resolution) 
and, alongside snow water equivalent (SWE) mea-
surements from SNOTEL (Fig. ES2), were examined 
to place the WY2018 drought in historical context.

To attribute the role of HI forcing on the tempera-
ture anomaly, factual and counterfactual estimates of 
Tmin and Tmax were derived. To derive factual Tmin/max 
estimates, representative concentration pathway 
8.5 (RCP8.5) simulations from two large ensembles 
(LENS) were chosen: the Canadian Earth System 
Model version 2 (CanESM2) (Kirchmeier-Young et al. 
2017) (50-member ensemble, 1950–2100) and the 
Community Earth System Model version 1 (CESM1) 
(Kay et al. 2015) (40-member large ensemble; 1920–
2100). We selected the two models with the largest 
ensembles to account for the internal variability in 
the climate system. Counterfactual estimates were 
based on pre-industrial (PI) CMIP5 simulations for 
the same models, obtained from the Climate Ex-
plorer (https://climexp.knmi.nl/). A bias correction 
(described in online supplemental material) was used 
to align the CESM1 PI (CMIP5) simulations (Taylor 
et al. 2012) with the 40 CESM1 LENS simulations 
(Kay et al. 2015). As WY2018 experienced a weak 
La Niña, only model simulations with similar Niño-
3.4 SST anomalies (with ±0.4°C buffer) were used. HI 
influence on temperature was determined by com-
paring monthly Tmin and Tmax averages from RCP8.5 

simulations for 2013–23 (sample sizes: NCESM1 = 1439; 
NCanESM2 = 2012) with those from the PI simulations 
(NCESM1 = 760; NCanESM2 = 1103).

To estimate counterfactual VPD (minimum and 
maximum), we calculated counterfactual SVP (SVPcf) 
and combined these values with actual vapor pres-
sure (AVP) to calculate VPDcf. Since we focus on 
temperature dependencies in this set of experiments, 
and since 1895–2018 AVP shows no significant linear 
trend, we assume that human-induced warming did 
not change AVP. Actual SVP was first calculated 
using PRISM temperatures, then AVP was calcu-
lated using actual SVP and VPD. Then, the warm-
ing anomaly (from the counterfactual temperature 
experiment) was subtracted from PRISM temperature 
and used to calculate SVPcf , based on the equation for 
VPD from Daly et al. (2015). Finally, SVPcf and actual 
AVP were used to derive VPDcf.

To estimate the effects of VPD on the NDVI 
(Normalized Difference Vegetation Index; a measure 
of greenness and vegetative stress), counterfactual 
NDVI was derived using counterfactual SVP and 
observed precipitation. NDVI observations were 
obtained from MODIS Terra 16-day (Spruce et al. 
2016). Seasonal 2000–18 June–August mean SVP 
and precipitation were regressed onto the spatially 
aggregated magnitude of change from April to August 
NDVI (DNDVI). Various SVP, AVP, and precipitation 
lags and combinations were tested to find the optimal 
regression (i.e., the best predicting months and vari-
ables). June–August SVP and precipitation proved to 
be the best for April–August DNDVI (the “greenup” 

Fig. 1. Context for the WY2018 drought. (a) Study region bounding box, encompassing large portions of New 
Mexico, Arizona, Utah, and Colorado, overlaid on USDM 9 Oct 2018 drought extent. (b) Scatterplot demonstrat-
ing observed annual precipitation and mean Tmin and Tmax for each water year. Blue and red lines show Tmin and 
Tmax regression lines, respectively. (c) Human-induced temperature increases for WY2018 spatially averaged over 
the study region. Each boxplot displays the distribution of spatially averaged differences between the seasonal 
RCP8.5 and PI simulations over the 2013–23 time period. The lower and upper extent of the boxes depict the 25th 
and 75th percentiles of the distribution of differences. The center bar represents the median and the whiskers 
represent the less extreme of the maximum/minimum value or the 3rd/1st quartile + 1.5 * (interquartile range).
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phase) (DNDVI = 0.17 + −0.00558 × SVP + 0.00073 
× precip; R2 = 0.766). These regression coefficients 
were then used with SVPcf and actual precipitation 
means to calculate DNDVIcf.

Finally, the effect of elevated temperature on hydro-
logic drought (specifically SWE and runoff) was esti-
mated by using the variable infiltration capacity (VIC) 
hydrologic model (Liang et al. 1994) which has been 
used in similar attribution studies (such as Shukla 
et al. 2015; Xiao et al. 2018). The VIC is a physically 
based hydrologic model that uses atmospheric forcings 
including precipitation, temperature, and wind speed 
to compute SWE, soil moisture (SM), evapotranspira-
tion (ET), and runoff. The VIC was run using PRISM 
precipitation, Tmin and Tmax data, and climatological 
wind speed [as in Livneh et al. (2013)] (upscaled from 
4 km × 4 km to 6 km × 6 km). After a long-term 
spinup period, the VIC was run first to simulate the 
water budget given the observed WY2018 conditions, 
and then twice using counterfactual WY2018 tem-
peratures obtained by adjusting the observed WY2018 
temperatures using the difference between factual and 
counterfactual temperatures derived from CESM and 
CanESM while keeping precipitation the same.

RESULTS. WY2018 precipitation was the low-
est on record (~220 mm) averaged over the study 
area. There is no significant correlation between 
precipitation and annual Tmin (cor = −0.03; p value 
= 0.73); however, a significant negative correlation 
exists between precipitation and annual Tmax (cor = 
−0.60; p value = 0.16e-12) (Fig. 1b). WY2018 Tmax and 
Tmin values were both among the warmest on record 
(Fig. 1b). Estimates of the human-induced tempera-
ture increases from the counterfactual experiment 
indicate substantial warming (Fig. 1c). The mean 
annual difference in temperature between RCP8.5 
and PI ensemble runs is ~ +2°C for CanESM2 (+2.0°C 
Tmax, +2.0°C Tmin) and ~1.3°C for CESM1 (+1.3°C Tmax, 
+1.4°C Tmin) for the 2013–23 decade. PRISM suggests 
a temperature increase of ~1.9°C (Tmax) and ~0.9°C 
(Tmin) from 1895–1929 to 2013–18.

Figure 2a shows the climatological (1895–1980) 
VPD (black line), actual WY2018 VPD (red line), 
and “alternative” WY2018 VPD (blue line, CESM1-
adjusted; green line, CanESM2-adjusted) estimated 
using the counterfactual Tmin and Tmax. In June–
August, actual VPDmax (VPDmin) was on average 
6.6 hPa (3.1 hPa) greater than the climatology. 
Counterfactual estimates (blue and green lines in 
Fig. 2a) suggest that the HI-induced temperature 
anomalies could account for 3.7–4.9 hPa (VPDmax) 
and 0.7–2.2 hPa (VPDmin), or 59%–80% (VPDmax) 

and 26%–74% (VPDmin), of the difference between 
the climatological VPD and 2018 actual June–August 
VPD. Average 2000–18 DNDVI (greenup) was 
0.088—the region experienced severe drought during 
the first decade. April–August modeled 2018 DNDVI 
(representing greenup) was 0.067; under counterfac-
tual temperature conditions, DNDVI was estimated 
to have been 0.080–0.088 based on CESM1- and 
CanESM2-estimated VPDcf, respectively (Fig. 2b).

VIC estimates of SWE (for elevations > 2,000 
m) and runoff are summarized in Figs. 2c and 2d. 
Evapotranspiration results are shown in the supple-
mental material. Climatologically, peak SWE months 
are February–April, whereas peak runoff months are 
May–June. The simulated 2018 March SWE peak (an-
nual WY runoff) was ~71% (~57%) less than the clima-
tological average. Comparing VIC simulations—those 
driven with adjusted temperature forcings versus those 
driven with WY 2018 actual temperature—reveals 
that March SWE would have been ~24% (CanESM) or 
~19% (CESM) higher than WY 2018 observation-based 
SWE. Likewise, annual WY runoff would have been 
~1.3% (CanESM) or ~1.43% (CESM) higher than WY 
2018 observed temperature-based simulated annual 
runoff. These results indicate that human-induced 
temperature increases had a measurable impact on 
SWE, but little discernable impacts on runoff; the 
SWE effects, however, were secondary to the influence 
of record-low precipitation during WY 2018 (Fig. 1b).

DISCUSSION AND CONCLUSIONS. WY2018 
was exceptionally warm and dry (Figs. 1a,b), and an 
assessment of the CESM1 and CanESM2 simulations 
suggested that HI warming increased air temperatures 
by ~1.3° to ~2°C, respectively (Fig. 1c). Relatively small 
changes in temperature can result in large changes in 
VPD; thus, if AVP remains constant, human-induced 
warming, alone, could explain ~60%–80% of the ob-
served WY2018 VPDmax anomalies (Fig. 2a). WY2018 
experienced low NDVI values as reflected in the poor 
rangeland conditions reported by the USDM for much 
of New Mexico, Utah, and Arizona during the same 
period. HI increases in SVP values likely contributed 
to reduced August NDVI; the magnitude of greenup 
was smaller in actual 2018 NDVI compared to the 
counterfactuals (Fig. 2b). VIC simulations suggest 
that without the HI warming March SWE would have 
been ~24% (CanESM) or ~19% (CESM) higher and 
annual WY runoff would have been ~1.3% (CanESM) 
or ~1.43% (CESM) higher (Figs. 2c,d).

This study did not assess the potential effect of 
positive land–atmosphere feedbacks under drought 
conditions, in which HI temperature anomalies can 
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yield even greater observed anomalies as energy is 
released as sensible heat instead of latent heat (as 
suggested by the negative correlation between pre-
cipitation and annual average Tmax). Therefore, our 
estimates of climate change–induced temperature 
increase on hydrology (particularly SWE) and VPD 
(and its inf luence on NDVI) may be conservative 
estimates. Future research will expand this analysis 
to cover the full time series (1900–present), allowing 
us to assess potential temperature impacts under less 
extreme precipitation deficits.
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HAILSTORMS: WHAT WE DO(N’T) 
KNOW. Hail forms in thunderstorms when 
strong vertical air motions allow frozen par-

ticles to grow by the accretion of supercooled liquid 
water. When hailstones grow large enough such that 
they are no longer supported by surrounding rising 
air motions, they begin to fall. Smaller ice particles 
melt more quickly and at levels nearer to the melting 
level than larger ones; warmer and moister sub-cloud 
air accelerates the melting process. Anticipating 
the potential for hail on any given day—much less 
anticipating possible changes to the frequency and 
intensity of hail in the more distant future—thus 
requires understanding the interplay between the 
environmental support for hail-generating convective 
storms, key microphysical and dynamical charac-

teristics of the storm updraft region over which hail 
growth occurs, and the depth and temperature of the 
lower atmosphere where melting occurs. In short, this 
is a tall order!

Severe convective storms (SCSs) are the parent 
weather phenomenon responsible for producing most 
damaging hail. SCSs are relatively small and short-
lived, and as a result, their impacts (e.g., strong winds, 
large hail, tornadoes) are very localized and not 
comprehensively captured by conventional meteo-
rological observations. While research and available 
model data continue to actively expand in this area 
[e.g., see recent workshop summaries by Martius et al. 
(2018) and NCAR (2018)], these challenges of scale 
and limited observations render the consensus state 
of knowledge regarding future projected changes in 
hail largely unchanged from the IPCC Special Report 
on Extremes (Seneviratne et al. 2012): “confidence 
is still low for hail projections particularly due to a 
lack of hail-specific modelling studies, and a lack of 
agreement among the few available studies” (p. 148). 
Yet for stakeholders affected by potential changes in 
hail risk, what can be done given this apparent lack 
of actionable scientific guidance? Here we brief ly 
examine the state of the science, areas of emergent 
scientific consensus, and how—even in the face of 
significant uncertainty—research can best serve 
end-user needs.

EXTREME HAIL STORMS AND CLIMATE CHANGE:  
FORETELLING THE FUTURE IN TINY,  

TURBULENT CRYSTAL BALLS?
Kelly Mahoney

In 2018, hailstorms accounted for three of the fourteen 2018 U.S. billion dollar disasters: a 6 June 

2018 storm in Texas, and two Colorado hailstorms (18–19 June and 6–7 August). What is the role of 

climate change in changing hail risk? Can current research methods address the space and time scales 

required to adequately assess hail risk? Can the available data distinguish between changes in storm 

frequency, changes in storm reporting practices, and changes in economic risk and our built environ-

ment? The billion dollar hailstorms of 2018 have highlighted the limited capabilities of the scientific 

community to predict how climate change will impact hail storm risks, while raising concern about the 

vulnerability of society to these storms. Like any weather disaster, 2018’s hailstorms provide an oppor-

tunity to re-evaluate methods for anticipating similar future weather extremes.

S17JANUARY 2020AMERICAN METEOROLOGICAL SOCIETY |
Unauthenticated | Downloaded 02/21/21 04:03 AM UTC



STATE OF THE RESEARCH: HOW DO WE 
CURRENTLY CONSIDER HAIL AND CLI-
MATE CHANGE? Historical hail trends and observ-
ing challenges. Vast data heterogeneities of observed 
hail means that detection of past hail trends is also 
exceedingly difficult. For example, observations of 
U.S. hail do indicate significant increases over the lat-
ter half of the twentieth century, but these are widely 
understood to be artifacts of increased reporting 
frequency rather than actual meteorological trends 
(e.g., National Academies of Sciences, Engineering, 
and Medicine 2016; Allen and Tippett 2015; Fig. 1). 
Studies considering the effects of observed warming 
on hail have largely relied upon the linkage of proxy 
atmospheric indicators and (usually sparse) hail ob-
servations, and are thus fundamentally inhibited by 
1) the inadequate historical record of past hailstorms, 
2) the coarseness of the datasets employed (usually 
global data and climate model simulations), and 3) 
the questionable connection between large-scale 
environmental parameters and small-scale weather 
extremes. Thus, despite a small sample of specific 
regions demonstrating robust observed changes [e.g., 
downward trends in both hail days and hailstorm 
frequency in China (e.g., Xie et al. 2008; Li et al. 
2016) and increasing hail intensity (with decreasing 
hail frequency) in SW France (Dessens et al. 2015)], 
the conclusions that can be drawn from these types 
of studies are limited (e.g., Allen 2018).

Climate model projections: Assessing hailstorm ingredients. 
Global and regional climate models (GCMs and RCMs) 
are generally run at resolutions far too coarse to real-
istically simulate SCSs, much less SCS impacts. While 
climate model projections generally indicate increasing 
SCS likelihood as a result of increasing thermodynamic 
instability (e.g., Diffenbaugh et al. 2013; Hoogewind 
et al. 2017), details pertaining to changes in seasonality, 
regionality, and SCS impacts are less certain.

A common approach to understanding how 
SCSs may change in the future is to use GCM and 
RCM projections to evaluate how SCS-favorable 
environmental parameters change in future climate 
projections, thereby focusing on SCS “ingredients” 
as proxies for SCS impacts such as hail (e.g., Brooks 
et al. 2003; Trapp et al. 2007; Diffenbaugh et al. 2013; 
Tippett et al. 2015; Allen 2018). As noted above, stud-
ies of this nature are also inherently inhibited by both 
the coarseness of the datasets employed and the often 
tenuous connection between environmental proxies 
and weather impacts. These studies are also incapable 
of describing storm-scale criticalities including pos-
sible changes in convective mode (i.e., a shift away 

from severe-hail-generating rotating supercells), the 
relationship between in-cloud hail generation versus 
surface-impacting hail, and the fundamental real-
ity that specific SCS hazards (large hail, damaging 
winds, and tornadoes) do not favor the same envi-
ronmental conditions (Brooks 2013).

Some climate model signal consistency has 
emerged, however: for example, European Coordi-
nated Regional Climate Downscaling Experiment 
(EURO-CORDEX) models find an expected future 
increase in hail frequency for parts of Europe (e.g., 
Martius et al. 2018; Rädler et al. 2019). Similarly, 
Brimelow et al. (2017) used an offline single-column 
hail growth model to ingest environmental profiles 
from 50-km RCM output, also finding fewer days 
with smaller hail over the some regions of the United 
States, with increases in spring and summer large 
hail over the northern plains. While using GCM/
RCM output as proxies or as input into offline models 
reduces computational limitations, the general ap-
proach does not actually simulate storms; this, and 
other limitations of the environmental approach, 
have thus pushed the research community to seek 
additional approaches to refine and complement the 
guidance that can be gleaned from larger-scale data.

High-resolution, convection-permitting simulations. 
Leveraging computing power increases, high-resolution 
convection-permitting (CP) model simulations allow 
a more direct representation of SCSs likely to produce 
hail. Some CP simulations have adapted the pseudo–
global warming approach, where present-day hail 
events are simulated in high resolution in both current 
and future atmospheric environments (e.g., Mahoney 
et al. 2012). Such studies generally support the notion 
of increased likelihood of large hail and decreased 
likelihood of small hail and, at such high resolution, 
also offer insight into a physical process-based rationale 
to explain aggregate hail changes. Another recent CP 
modeling approach applied to hail specifically uses a 
“continual restart approach” to downscale GCM pro-
jections over the continental United States (CONUS) 
in 30-yr historical and future time slices, and finds 
broad increases in the frequency of large hail during 
all four seasons and mixed signals in small–medium 
hail (Trapp et al. 2019). These results and others (e.g., 
NCAR 2018)—while computationally limited in the 
number of climate projections or events that can be 
evaluated—also share some consensus that the season-
ality of hail risk is likely subject to change, with several 
studies indicating a lengthening at both the beginning 
and end of the convective season, and also possibly 
exhibiting more interannual variability in the future.
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Fig. 1. Despite a number of recent hail records and 
high-impact hail events, such as (a) 2019 Colorado 
new record hailstone size and (b) multiple high-
impact 2018 and 2019 hail storms, detecting past hail 
trends is challenged by inconsistent observations. 
(c) The 1998–2017 time series of the fraction of hail 
reports ≥0.75 in (1.9 cm). Adapted from Allen and 
Tippett (2015, their Fig. 3a).

a)

b)

c)

NOAA National Weather Service

NOAA
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Near-term opportunities and challenges. Although high-
resolution simulations offer increasing insight by 
explicitly simulating hail-producing storms in future 
climate states, it is important to underscore that even 
at these relatively high resolutions, these studies still 
only resolve the parent SCS and not the details of hail 
production or hail size spectra. Additional caveats 
exist: for example, even very recent, state-of-the-art 
high-resolution CP studies such as that of Trapp 
et al. (2019) often rely on a hail diagnostic to connect 
model-produced hydrometeor concentration output 
with heuristically generated hail diameter assign-
ments. The enduring requirement for microphysical 
parameterization to approximate hail formation and 
maintenance processes further clouds the connection 
between model-approximated hail and surface dam-
age potential. Furthermore, effects including the role 
of atmospheric aerosols, the storm-scale interplay 
between theoretically increasing updraft strength 
and potentially decreased buoyancy due to additional 
hydrometeor weight, and hydrologic sensitivities as 
previously frozen precipitation instead melts and falls 
as rain all point to a daunting chain of uncertain—yet 
critical—small-scale physical system dependencies 
and interactions.

It is impossible to choose a single “best” method 
given the basic computational trade-offs in 1) many 
coarse-scale GCM projections (which cannot simu-
late physically realistic SCSs) and 2) singular, or lim-
ited-member, high-resolution downscaled projections 
(which lack fundamental uncertainty and robustness 
indicators). But perhaps recognizing outright the 
impracticality of a perfect blend can ultimately yield 
greater insight into the future of hail via a holistic, 
thoughtful curation of complementary research ap-
proaches including observational, theoretical, and 
model-based study methods (e.g., Shepherd 2016).

ACTIONABLE ATTRIBUTION SCIENCE. 
Despite the considerable uncertainties surrounding 
the future of hail risk, key industries and stakeholders 
must still act—ideally on the best information that 
our collective weather and climate research commu-
nities can provide. Decision-making under the condi-
tions of deep uncertainty (“DMDU”; e.g., Marchau 
et al. 2019) is a concept well-known in certain stake-
holder communities (e.g., water supply planning) 
and accepts that traditional, deterministic science 
approaches are unlikely to provide usable stakeholder 
answers in isolation. “Storytelling” frameworks (e.g., 
Hazeleger et al. 2015; Shepherd 2016) in particular 
focus on “multiple futures” or “scenarios” (e.g., Star 
et al. 2016) and thus complement and add physical 
insight to traditional climate projections.

Considering approaches beyond those rooted 
purely in the physical sciences, Owen (2019) details 
the actuarial industry’s extensive experience in man-
aging uncertainty. Insured events are evaluated in risk 
models according to 1) the probability the event will 
occur, 2) the timing of the event, and 3) the distribu-
tion of the severity of the expense of the event. Of 
course, the addition of economic or other supporting 
data does not reduce the original uncertainties in the 
physical system; Owen (2019) further highlights the 
large cost sensitivity in these models: even “small 
deviations from estimations of future costs have 
considerable financial consequences” (p. S6).

Just as a priori economic valuation data may use-
fully bound potential economic losses from hail, it is 
key to recognize also that hail disaster planning also 
requires assessment of vulnerability (i.e., exposure). 
Figure 2 borrows an “expanding target” schematic 
from Ashley et al.’s (2014) study on tornado risk, 
illustrating the concept that as populations grow 
and spread, hazards to lives and property increase. 

Fig. 2. Adapted from Ashley et al. (2014), a conceptual model of the “expanding bull’s-eye effect” for a hy-
pothetical metropolitan region characterized by increasing development spreading from an urban core over 
time. A sample hail swath is overlaid to show how expanding development creates larger areas of potential 
impacts from hazards.
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Combining physical science methods with vulner-
ability and economic assessment may enable scientists 
and risk experts to provide a more informed menu of 
future hail risk scenarios.

SUMMARY. Assessing potential changes in hail 
frequency, intensity, and hailstone size distribution in 
a warmer climate is complex. While research to date 
provides some indication of more intense hailstorms 
in a warming climate alongside enhanced melting of 
small hailstones, considerable uncertainty and vari-
ability qualifies these findings. As computing power 
increases, attribution studies of SCSs may become 
increasingly feasible, but for hail itself, explicit simula-
tion in global or regional model attribution studies is 
unlikely to be practicable in the near future. Integrated, 
curated, complementary research approaches suited 
to specific decision-making applications are likely re-
quired to optimally address this challenging question.
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Red warnings, the U.K. Met Office’s most severe 
and rare alerts, signaled the arrival of an antici-
pated deadly cold spell in the country in early 

March 2018.1 Extremely cold conditions developed 
as a persistent easterly circulation, associated with 
a sudden stratospheric warming (Karpechko et al. 
2018), steered a massive Arctic airmass toward the 
British Isles at the end of February 2018, where it 
collided with winter storm Emma in the first days of 
March. The combination of the storm with the frigid 
Siberian weather system, dubbed “the Beast from the 
East,” led to freezing temperatures, blizzards, and 
heavy snow in excess of 50 cm on high ground. U.K. 
media widely reported on the substantial impacts 
of the extreme weather, including loss of life, busi-
ness and travel disruptions, cancellation of hospital 
operations, food shortages, and several thousand car 
accidents with insurance costs of over £10 million.2 
Daily mean temperature time series from the Central 
England Temperature (CET) instrumental record 
(Parker et al. 1992) show a prominent dip at the start 

of spring (Fig. 1a), making the first day of March 
markedly colder than all days in the preceding win-
ter season. Sub-zero temperatures (in °C) were also 
observed later in the month during a less intense 
cold snap nicknamed the “Mini Beast from the East.” 
Despite these extremely cold days, the month of 
March as a whole was not extreme, but had a mean 
temperature within the middle tercile of the post-1659 
distribution based on the CET data. On the other 
hand, observational time series of the coldest day in 
March since 1772 have their fourth coldest value in 
2018 (Fig. 1b). This study concentrates mainly on such 
low daily temperatures and defines extremely cold 
events as instances when the coldest day in March 
has a temperature lower than the one observed in 
2018. Although heavy snowfall was another inter-
esting aspect of the 2018 cold wave, the lack of long 
and reliable observations hinders a snowfall analysis, 
although this aspect will also be briefly considered 
using modeled data only. It should be noted that the 
time series shown in Fig. 1b have a positive long-
term trend of 0.07°C decade−1, suggesting that cold 
events are becoming rarer. Synoptic conditions over 
Europe in March 2018 are illustrated in Fig. 1c. The 
500-hPa geopotential height (Z500) field from the 
NCEP–NCAR reanalysis (Kalnay et al. 1996) displays 
a large-scale cyclonic circulation southwest of the 
United Kingdom, transporting cold air from eastern 
Europe across the northern parts of the continent. 
Moreover, CRUTEM4 observations (Jones et al. 2012) 
reveal large cold anomalies over Russia where the cold 
air originated. This state of the atmosphere combined 
with the development of storm Emma and the influ-
ence of anthropogenic climate change are factors that 
made the event unique. Here, while the focus remains 
on the role of climate change, the contribution of the 
easterly circulation to cold events will also be assessed 
with modeled data, to help establish a link between 
circulation and extremes and compare it with the 

THE EXTREMELY COLD START OF THE SPRING OF 2018  
IN THE UNITED KINGDOM

nikolaos Christidis and Peter a. stott

1 See https://www.metoffice.gov.uk/climate/uk/interesting 
/february2018-snow.

2 See https://www.theguardian.com/uk-news/2018/mar/01 
/beast-from-east-storm-emma-uk-worst-weather-years.

Observational and model analyses suggest a 6- and 12-fold increase in the likelihood  

of extremely cold days in March in central England, as in year 2018,  

without anthropogenic climate change.
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anthropogenic impact. The attribution study follows 
the popular risk-based approach (Stott et al. 2016), 
whereby the likelihood of extreme events is estimated 
in the present-day climate and in a hypothetical 
“natural” world without any human influence on the 
climate. The risk ratio measuring the anthropogenic 
effect is subsequently computed as the ratio of the two 
likelihood estimates. Two analyses are carried out, 
one with the CET observational data and one using 
simulations with 18 models that contributed data to 
the phase 5 of the Coupled Model Intercomparison 
Project (CMIP5; see the supplemental material).

OBSERVATIONAL ANALYSIS. Empirical event 
attribution assessments can be derived from observa-
tional data (van Oldenborgh 2007). The main assump-

tion of this methodology is that the non-stationarity 
in long records is primarily driven by anthropogenic 
influence and needs to be accounted for, such as by 
allowing the position parameter of an extreme dis-
tribution to vary with the global mean temperature 
(Kew et al. 2019). CET temperature anomalies of the 
coldest day in March since 1900 are used here. The an-
thropogenic component is represented independently 
by the mean of 39 CMIP5 simulations of the histori-
cal climate extended to future years with the RCP4.5 
scenario (orange line in Fig. 1b). The anthropogenic 
component is then removed from the observations 
and the remaining time series represent the natural 
climate. The accuracy of this approximation depends 
on how well the CMIP5 models simulate the forced 
response. A Kolmogorov–Smirnov test indicates 

Fig. 1. (a) Time series of the observed daily mean temperature in central England. (b) Time series of the cold-
est day in March in central England from observations. Temperatures are expressed as anomalies relative to 
the 1901–30 mean. The 2018 anomaly is marked by the red dotted line. The orange line represents the forced 
response derived from CMIP5 simulations. (c) NCEP–NCAR Z500 anomalies (contours) and CRUTEM4 monthly 
mean temperature anomalies (colored grid boxes) in March 2018. Anomalies are relative to the period 1961–90. 
(d) Normalized distributions of the return time of extremely cold events estimated from CET observations 
for the present-day (red histogram) and natural (blue histogram) climate. The best estimate (50th percentile) 
is marked by the vertical lines.
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that the distribution of the coldest day in March in 
our representation of the natural climate is not sig-
nificantly different (p value: 0.3) from the one based 
on a multimodel ensemble of CMIP5 simulations 
without anthropogenic forcings (see Table ES1 in 
the supplemental material). 
To get a representation of the 
present-day climate, the nat-
ural time series are adjusted 
to the mean anthropogenic 
response in period 2008–28. 
The GEV distribution is then 
applied to the two time series 
data and the likelihoods of 
cold events with anomalies 
below the one in 2018 (−5°C) 
are estimated for the present 
day and the natural world, 
while a Monte Carlo boot-
strap procedure (Christidis 
et al. 2013) is employed to 
estimate the uncertainties. 
Distributions of the return 
time (inverse probability) of 
cold events are illustrated in 
Fig. 1d. Human influence is 
estimated to increase the re-
turn time from 77 (37–478)3 
years to 432 (109 to >103) 
years. The probability of cold 
events without the effect of 
human inf luence increases 
by 5.84 (best estimate). How-
ever, as the observational 
sample is relatively small to 
provide the estimate the low 
present-day probability of 
cold extremes, the associated 
uncertainty in the risk ratio 
is large (Fig. 2a).

CMIP5 ANALYSIS. En-
sembles of 39 and 49 simula-
tions with and without the 
effect of human inf luence 
generated by the 18 CMIP5 
models (see the supplemen-
tal material) are used next 

to estimate the change in the risk of cold events. 
Temperature anomalies of the coldest day in March 
in central England (0°–3°E, 51°–54°N) are computed 
for each simulated year. Common model evaluation 
assessments against the observations (Christidis 

Fig. 2. (a) Risk ratio estimates measuring the change in the likelihood of 
cold extremes without anthropogenic forcings estimated with observations 
(left) and CMIP5 models (middle). The change in the likelihood under east-
erly circulation is shown on the right. The best estimates are represented 
by crosses and the 5%–95% range by whiskers. Also shown are normalized 
distributions of (b) the coldest day in March and (c) the total snow amount in 
central England constructed with CMIP5 data for the present climate (solid 
line; colored distribution), the early twentieth century (dashed line), and the 
end of the twenty-first century (dotted line). The 2018 event is marked in (b) 
and a 1-in-50-yr event in the natural climate is marked in (c). Anomalies are 
relative to 1901–30.

3 The 5%–95% uncertainty range 
in return time estimates is re-
ported in parentheses.
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et al. 2013; Vautard et al. 2019) show that the models 
represent well the observed variability and long-term 
trend in the coldest day in March. More specifically a 
trend analysis, power spectra, and a quantile–quantile 
(Q-Q) plot are employed and provide strong evidence 
that the simulated trends, variability, and distribu-
tion of the coldest day in March are consistent with 
the CET observations (supplemental material). The 
likelihood of cold extremes in the natural world is 
estimated from all the simulated years provided by the 
ensemble without the effect of anthropogenic forcings. 
The present-day likelihood is estimated from simula-
tions with all forcings, which are processed the same 
way as the CET data in the observational analysis. In 
this approach, the estimate of the forced response is 
removed from each simulation and the remaining 
time series are adjusted to the 2008–28 mean response. 
As before, probability estimates are calculated with 
the generalized extreme value (GEV) distribution 
and uncertainties with the Monte Carlo bootstrap-
ping procedure (resampling with replacement 1000 
times). Cold extremes are found to be 12.33 times 
more likely without human influence (Fig. 2a) and 
human influence is estimated to increase the return 
time from 108 (92–133) years to 1307 (1039–2815) 
years. Compared to the observational analysis, the 
CMIP5 methodology yields smaller uncertainties in 
the estimated probabilities and risk ratio, as it relies 
on larger samples. Temporal changes in the distribu-
tion of the coldest day in March are illustrated in Fig. 
2b. Using data from simulations with all forcings, 
the distributions are constructed for three different 
periods: the early twentieth century (1900–20), the 
present climate (2008–28), and the end of the twenty-
first century (2080–2100). As the climate warms, the 
2018 anomaly moves farther into the cold tail and 
becomes extremely unlikely by the end of the century. 
To test the effect of the persistent easterly circulation 
on cold extremes, simulated data of the present-day 
climate were sub-sampled (Christidis et al. 2018) to 
represent years when the circulation in March matches 
the one in 2018 (Fig. 1c) and years when it does not. 
Correlations with the Z500 pattern in March 2018 
above 0.6 indicate a similar easterly circulation. In 
total, there are 289 events with high-correlation pat-
terns and 2363 events with low-correlation patterns. 
The persistence of the circulation pattern following a 
sudden stratospheric warming justifies the use of the 
monthly mean Z500 pattern, instead of the circula-
tion pattern during the actual coldest days, as in the 
work by Cattiaux et al. (2010). Therefore, the attribu-
tion question asked here is what is the change in the 
likelihood of cold events in months with persistent 

flow from the European continent over the United 
Kingdom. By computing the likelihood of cold events 
in months with high and low correlation patterns, it is 
estimated that the presence of this circulation pattern 
increases the chance of cold extremes by a factor of 
11.80 (Fig. 2a), although the uncertainty range is larger 
than the one estimated for the anthropogenic effect, 
because the sample size is reduced by sub-sampling. 
Finally, modeled distributions of the total snow (Fig. 
2c) are found to shift to smaller amounts as the climate 
warms and tend to form a second peak at lower val-
ues, as snow-free years increase. The models suggest 
that snow events that occurred once every 50 years 
in the natural climate have almost zero probability 
by the end of the century. An accelerated decrease 
in snow over Europe in recent decades has been seen 
in observations (Fontrodona Bach et al. 2018), while 
differences between changes in mean and extreme 
snowfall have also been suggested (O’Gorman 2014).

CONCLUSIONS. Extremely cold daily tem-
peratures in England, as in March 2018, are found 
to have become less frequent. The observational 
analysis gives a smaller present-day probability of 
cold extremes than the CMIP5 models, but as it relies 
on a smaller data sample, the probability estimate is 
more uncertain. Although changes in the circulation 
are expected to be less influenced by anthropogenic 
forcings than changes in the thermodynamic state 
(Trenberth et al. 2015), stratospheric warming events, 
like the one that triggered the 2018 cold wave, have 
been suggested to become more common in a warmer 
world (Kang and Tziperman 2017). However, U.K. 
seasons are still projected to become warmer during 
the course of the century (Murphy et al. 2018).
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The summer of 2018 was exceptionally warm in 
Europe, with outstanding temperatures over 
widespread non-contiguous areas, including 

Scandinavia, central Europe, Iberia, and the Brit-
ish Isles (e.g., WMO 2019). Different from other 
extraordinary summers, extreme temperatures did 
not occur during the same weeks everywhere, hit-
ting the British Isles in June, Scandinavia and central 
Europe in July, and southwestern Europe in August. 
Together, they yielded the warmest European sum-
mer of the last 519 years, above the record-breaking 
summers of 2003 and 2010, albeit by a small margin, 
as inferred from instrumental and proxy data (Fig. 
1a). Although northern and central Europe captured 
the attention of the media, Spain and Portugal ex-
perienced the warmest August after that of 2003 

(AEMET 2019; IPMA 2019). Temperature anoma-
lies were more pronounced during daytime over 
southwestern Iberia, and Portugal saw its warmest 
month in maximum temperature (TX) since 1931. 
Heat peaked during 1–7 August 2018, when an ex-
ceptional heatwave caused four (two) out of the five 
warmest days of the twenty-first century in Portugal 
(Spain), with country-mean daily TX reaching 41.6°C 
(36.4°C). We use observational and reanalysis data 
for 1950–2018 to quantify recent changes in the 
intensity of this kind of events.

METHODS. We describe the exceptionality (Fig. 1) 
and changing risk (Fig. 2) of the 2018 Iberian heat-
wave by using daily TX from E-OBS at 0.25° × 0.25° 
for 1950–2018 (Cornes et al. 2018) and historical 
series from the European Climate Assessment and 
Dataset (ECA&D) (Klein Tank et al. 2002) and the 
Instituto Português do Mar e da Atmosfera (IPMA). 
The atmospheric circulation is described with daily 
geopotential height at 500 hPa (Z500) and 2.5° × 
2.5° from the NCEP–NCAR reanalysis (Kalnay et al. 
1996). We use the analog method, which infers the 
probability distribution of a target field from the 
atmospheric circulation during the event (Stott et 
al. 2016, and references therein). Flow analog days 
are defined from their root-mean-square differ-
ences (RMSD) with the actual Z500 anomaly field 
over 20°W–10°E, 32.5°–50°N. We reconstructed 
the Iberian (10°W–3.5°E, 36°–43.5°N) mean TX 
by randomly picking one of the 20 best analogs for 
each heatwave day (1–7 August). This process was 
repeated 5,000 times with circulation analogs of the 
present (1984–2017) and past (1950–83) subperiods 
separately, building flow-conditioned distributions 
of Iberian TX for two different “worlds.” Their com-
parison provides the overall changes in heatwave 
intensity, including those due to non-anthropogenic 
factors [see Sánchez-Benítez et al. (2018) for details].

THE EXCEPTIONAL IBERIAN HEATWAVE  
OF SUMMER 2018

d. Barriopedro, p. m. SouSa, r. m. Trigo, r. garcía-Herrera, and a. m. ramoS

August 2018 saw the warmest Iberian heatwave since that of 2003. Recent climate change  

has exacerbated this event making it at least »1°C warmer than similar events since 1950–83.
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RESULTS. Figure 1b shows the highest TX of the 
18 July–18 August 2018 period, which is close to the 
warmest 31-day interval of the year over Iberia. TX 
climbed to 46.8° and 46.6°C in weather stations of 
Portugal and Spain (both on 4 August), close to their 
national records. Although the highest TX occurred 
in southern and western Iberia (≫40% of the Portu-
guese stations broke their all-time records), unprec-
edented temperatures were also reported in central 
Iberia (e.g., 40.8°C, Madrid), the Mediterranean coast 
(e.g., 39.8°C, near Barcelona), and the Balearic Islands 
(e.g., 37.0°C, Ibiza). Likewise, minimum temperatures 

were exceptionally high, with more than 25% of the 
Portuguese stations setting absolute records and 
some Spanish locations reporting the warmest nights 
of the last century (e.g., 25.9°C, Madrid). Tropical 
nights affected 50% of Portugal and extended to the 
Mediterranean coast (e.g., >25°C, Barcelona) during 
seven consecutive days.

The first week of August saw the warmest anoma-
lies (Fig. 2a, shading), as illustrated by the time series 
of Lisbon (Fig. 1c), where TX surpassed 40°C for 
three days, breaking its previous record twice by a 
large margin (≫2°C of exceedance). The atmospheric 

Fig. 1. (a) European summer land temperature anomaly (°C; wrt 1981–2010) over 25°W–40°E, 35°–70°N for 
1500–2018 (lines) and its 1500–2000 frequency distribution (bars) using GISS (Hansen et al. 2010) for 1901–2018 
and a multi-proxy reconstruction (Luterbacher et al. 2004). (b) Warmest daily TX for 18 Jul–18 Aug 2018 (shad-
ing) and selected stations (dots), with anomalies in parentheses (°C; wrt 1981–2010). Daily series of (c) Lisbon 
TX (°C) and (d) maximum electricity demand for Iberia (GW h–1), with red (blue) denoting periods above (be-
low) average (1981–2010 and week-equivalent days of 2013–17, respectively). (e) HWMI (dimensionless) for 1–7 
Aug 2018 and percentage of Iberia exceeding a given value (inset plot, with the 1981–2000 5th–95th percentile 
range in shading). Black dots indicate record-breaking values (wrt all 7-day intervals of 18 Jul–18 Aug) and gray 
dots indicate major fires.
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circulation displayed an outstanding subtropical 
ridge, with above-normal pressures extending to 
central Europe (Fig. 2a, contours). Enhanced stabil-
ity and stagnant conditions worsened air quality, 
being aggravated by a Saharan dust episode (Sousa 
et al. 2019). Despite the wet and mild spring, two out 
of the three major Spanish fires of 2018 deflagrated 
during the heatwave, causing ≫4.500 ha of burned 
area and thousands of evacuated people. During 15 
days (3–17 August), the largest European fire of 2018 
devastated 27,000 ha in southern Portugal, surpass-
ing the already unusual total area burned in Sweden 

(21,000 ha) or the United Kingdom (18,000 ha) all 
year round (San-Miguel-Ayanz et al. 2019). Accord-
ing to the media, daily mortality nearly doubled in 
Portugal (≫500 fatalities above the seasonal mean for 
2–7 August) and some Spanish regions registered the 
highest number of deaths by heatstroke since official 
records started in 2004. Health-related impacts were 
partially minimized by an outsized use of air condi-
tioning, which caused a 10% rise in Iberian energy 
consumption (Fig. 1d) and blackouts in Lisbon sub-
urbs. Above-normal energy consumption extended 
beyond the heatwave, likely due to the concentration 

Fig. 2. (a) Z500 (m; contours) and TX anomaly (°C; shading) for 1–7 Aug 2018. Dots denote TX exceedance over 
previous records for that calendar period; (b) Flow-conditioned distributions of Iberian TX anomaly (°C; wrt 
1981–2010; right y axis) for 1–7 Aug 2018 in past (1950–83; blue) and present (1984–2017; red) climates. Gray 
boxplots show their RMSD (left y axis); (c) Frequency series of good flow analogs (percentage of days) from 
raw (black) and detrended (gray) Z500 data. Dashed line indicates statistically significant trend (p < 0.05); (d) 
Past (blue) and present (red) flow-conditioned probabilities (%; left y axis) of Iberian TX anomaly above given 
thresholds (°C; x axis). The gray line represents the estimated FAR (dimensionless; right y axis) and the green 
line indicates the contribution of dynamical changes. Shading shows the 5th–95th percentile range from 1,000 
random subsamples.
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of population in major touristic destinations, where 
the heat persisted the most. According to the Heat-
wave Magnitude Intensity (HWMI) index [Russo 
et al. 2015; also see the online supplemental material 
(SM)], more than half of Iberia experienced extreme 
HWMI values (unprecedented in the southern half 
of Portugal and some Mediterranean areas; Fig. 1e), 
resulting in the most intense Iberian heatwave on 
7-day time scales since 1950 after the 2003 episode 
(Table ES1).

Figure 2b shows the distribution of Iberian TX 
averaged for the heatwave period, as inferred from 
flow analogs of the past (blue boxplot) and present 
(red) climate. Present-day analogs explain almost 60% 
of the observed Iberian TX, the remaining being at-
tributed to non-dynamical processes (e.g., feedbacks) 
and limited sampling. The comparison reveals that 
similar atmospheric conditions trigger warmer Ibe-
rian TX (≫1°C) now than in the recent past (i.e., the 
observed circulation would have caused a less severe 
heatwave in the past). This agrees with a warming 
and poleward trend of 2018-like Saharan intrusions, 
as reconstructed from flow analogs (see Fig. ES1 in 
the SM). Figure 2d quantifies how recent trends have 
changed the intensity of these Iberian heatwaves, 
by counting the fraction of replicated analogs with 
7-day mean Iberian TX above a certain threshold in 
each subperiod. The flow-conditioned probability of 
experiencing Iberian heatwaves with TX anomalies 
above ≫2.5°C has doubled in just 35 years, equivalent 
to a fraction of attributable risk (FAR) of ≫0.5 (see the 
SM). Under the atmospheric circulation conditions of 
the 2018 heatwave, the chances of exceeding 3°C have 
risen by more than five times (FAR of 0.8).

CONCLUSIONS AND DISCUSSION. As the 
atmospheric circulation is constrained, the reported 
FAR should be attributed to thermodynamical chang-
es (warming trend). However, flow analogs of the 2018 
event show significant differences between the two 
subperiods, displaying smaller RMSD in the present 
than in the past (gray boxplots, Fig. 2b). Figure 2c 
(black line) confirms a significant (p < 0.05) upward 
trend in the 1950–2018 frequency series of “good” 
flow analogs, defined as those days with RMSD be-
low the 5th percentile of the event distribution. This 
trend may reflect dynamical (e.g., Z500 gradients) 
changes or thermodynamical effects (e.g., thermal 
Z500 rise). To address this, we repeated the analysis 
by removing the regional monthly mean trends of 
Z500 and TX. The resulting thermodynamically 
adjusted (TA) distributions for the two subperiods 
become much closer and the trend in the number of 

good flow analogs is no longer significant at p < 0.05 
(gray line, Fig. 2c). Their difference has been added to 
the past distribution to estimate the contribution of 
dynamical changes (green line, Fig. 2d). Dynamical 
changes cannot explain the changing risk of Iberian 
TX anomalies. Therefore, regional warming is largely 
responsible for the FAR, particularly in the higher 
TX thresholds. Further studies are encouraged to 
pin down the key drivers and their contributing 
roles to the reported changes (e.g., land–atmosphere 
feedbacks).
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A heatwave struck northern Europe in the summer  
 of 2018. Daily temperature anomalies reached  
 +14 K in Scandinavia, the Netherlands, and 

Belgium, which are record-breaking temperatures. 
This heatwave was exacerbated by a drought caused 
by a persisting circulation anomaly (Kornhuber et al. 
2019; Toreti et al. 2019; World Weather Attribution 
2018). The heatwave and drought favored unprec-
edented forest fires in Scandinavia (NASA Earth 
Observatory 2018).

This paper aims at characterizing this heatwave 
event and determining its probability in present and 
future climate conditions. This paper presents how the 
2018 heatwave can be analyzed in terms of temperature 

and atmospheric circulation patterns, and highlights 
the robustness of the signal to statistical hypotheses.

DEFINING THE EVENT. Defining the spatiotem-
poral scale of the event is inspired by the procedure of 
Cattiaux and Ribes (2018), which consists in selecting 
the space–time window for which the temperature 
has been the most extreme (i.e., its probability p is the 
smallest in present-day conditions). We use E-OBS 
(Haylock et al. 2008) daily mean temperatures over 
1950–2018 and consider each N-day time window 
between 1 May and 31 October, and each n-country 
connected spatial domain. Overall, we find that the 
probability p is minimum for the 19-day window 
between 15 July and 2 August and the two-country 
domain covering Finland and Sweden. However, this 
minimum is not sharp and adding the Baltic coun-
tries, Denmark, and Norway to the spatial domain 
does not significantly change p. Since a larger domain 
is more robust for the latter analyses, we define the 
spatial scale as the 5°–30°E, 55°–70°N area (Fig. 1a). 
This corresponds to the “Scandinavian cluster” type 
of heatwave identified by Stefanon et al. (2012). Over 
this space–time window, the average temperature 
anomaly relative to the 1981–2010 climatology is 
+5.4 K (Fig. 1b), and each single day during this time 
period in 2018 is more than +3 K above the clima-
tological mean seasonal cycle (see Fig. ES1a in the 
online supplemental material). The atmospheric cir-
culation is characterized by prolonged high pressure 
conditions (Fig. 1c) over Scandinavia. This motivates 
the conditional attribution analysis with respect to 
the atmospheric circulation, because such circula-
tion patterns generally enhance major heatwaves in 
the midlatitudes (Quesada et al. 2012; Mueller and 
Seneviratne 2012), as was observed in summers 2003 
(Schär et al. 2004) or 2010 (Barriopedro et al. 2011).

ANALYSES OF THE NORTHERN EUROPEAN  
SUMMER HEATWAVE OF 2018

P. Yiou, J. caTTiaux, d. FaraNda, N. KadYgrov, a. Jézéquel, P. Naveau, a. ribes,  
Y. robiN, s. Thao, g. J. vaN oldeNborgh, aNd M. vrac

A heatwave struck Northern Europe in summer 2018. The probability of this event  

increased with human-induced climate change primarily due to thermodynamic changes.
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UNCONDITIONAL ATTRIBUTION. The 
unconditional attribution compares the probability 
p1 of observing the event (exceeding a temperature 
threshold) in the present day or in a climate influ-
enced by human activities (a factual world), and the 
probability p0 of the event in past conditions or in a 
climate without human influence (a counterfactual 
world). We focus on the probability ratio (PR) p1/p0. 
The results from two different statistical approaches 
are presented here.

First, we determined p1 and p0 from annual 
maximum 19-day averaged temperature over the 
region in E-OBS data by fitting the period 1950–2017 
to a generalized extreme value (GEV) distribution. 
The location parameter µ is a linear function of a 
proxy for global warming, for which we take the 4-yr 
smoothed global mean surface temperature [as in 
(Kew et al. 2019)]. This procedure excludes the ob-
served extreme in 2018, as GEV parameter estimates 
are sensitive to the last value of a time series. The fit 
was extrapolated to the global temperature of 1900 as 

a proxy of the preindustrial climate. The procedure 
was applied to a few ensembles of transient climate 
model experiments (EC-Earth2.3 T159 coupled 
1860–2018; RACMO 2.2 11-km downscaling this 
EC-Earth ensemble 1950–2018; HadGEM3-A N219 
prescribed SST 1960–2015; calibrated Euro-CORDEX 
ensemble 11-km 1971–2018; see Fig. 2a). These have 
realistic variability of 19-day heat extremes: the fitted 
scale and shape parameters are compatible with the fit 
to observations. Uncertainty ranges for each dataset 
were obtained from bootstrapping. Model spread 
was also added to the model estimates to obtain c 2/
dof = 1. We plot the probability ratios and associated 
uncertainties in Fig. 2a. This diagnostic shows that 
PR values are significantly larger than 1, with a large 
range of variations (PR synthesis between models and 
observations between 5 and 2,000), indicating that 
such a heatwave is between 5 and 2,000 times more 
likely in the factual simulations.

A second unconditional attribution was performed 
on the E-OBS dataset and a CMIP5 (Taylor et al. 2012) 

Fig. 1. Geographical and temporal features of the event from reanalyses and observations. (a) Map of temperature 
anomalies in E-OBS between 15 Jul 2018 and 2 Aug 2018, with respect to a 1981–2010 climatology. The rectangle 
indicates the zone to be analyzed (e.g., Scandinavia). (b) Time series of spatial [rectangle in (a)] and temporal 
(15 Jul to 2 Aug) average temperature (E-OBS) from 1950 to 2018, with reference 1981–2010 climatology. (c) 
Anomalies of Z500 in NCEP over the North Atlantic between 15 Jul 2018 and 2 Aug 2018, with respect to the 
1981–2010 climatology. The rectangle indicates the zone for the computation of analogs.

b)
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simulation ensemble using the method of (Ribes et al. 
2019). The distribution of mean temperature over 
the considered space–time domain is assumed to 
follow a Gaussian distribution, and to covary with a 
variable representing climate change. This covariate 
is the summer mean continental temperature over 
the box −10° to 30°E, 35° to 70°N. The probability 
of the event can be estimated continuously in time. 
This calculation is made for each CMIP5 model and 
summarized into a multimodel synthesis. Then, 
changes in the covariate and the temperature distri-
bution are constrained by E-OBS observations [see 
Ribes et al. (2019) for details]. Figure ES2a shows the 
probability ratio from 1850 to 2100, under the high-
emission RCP8.5 scenario (van Vuuren et al. 2011), 

according to the multimodel synthesis constrained by 
observations. The effect of human activities on the 
probability of such event cannot be detected before 
the end of twentieth century as the probability ratio 
is not significantly different from 1. After the year 
2000, the probability ratio is significantly higher than 
1 and suggests that human activities have increased 
the probability ratio of such events. In 2018, the prob-
ability of such events has increased by a factor of 39 
(95% confidence interval: 3 to 3,400; see Fig. ES2a) 
due to human activities.

CONDITIONAL ATTRIBUTION. We deter-
mine the temperature distribution conditional to 
atmospheric patterns that are similar to 2018 changes 

Fig. 2. (a) Probability ratios (PR) 
from observations (E-OBS) in 
blue, and climate model simu-
lations (EC-EARTH, RACMO, 
HadGEM3, Euro-CORDEX 
ensemble) in pink, all models 
in red, and observation–model 
synthesis in purple. The black 
vertical lines indicate the value 
of the best fit. The white boxes 
represent the model spread 
that is added to the pink boxes, 
representing a conservative 
uncertainty due to natural 
variability to obtain c2/dof = 1. 
(b) Conditional temperature 
simulations in CMIP5 and in E-
OBS for different periods. The 
boxplots represent the temper-
ature distributions, conditioned 
to the atmospheric circulation 
observed during event that are 
simulated through the analog 
procedure for different periods. 
For the CMIP5 models, the 
temperatures are simulated 
independently for each model 
and the boxplots represent 
the distribution of all the tem-
peratures simulated for the 
CMIP5 models altogether. The 
circle points on the boxplots 
represent the simulated tem-
peratures that are 1.5 times the 
interquartile range above the 
upper quartile and bellow the 
lower quartile. The red line de-
notes the value of the observed 
mean temperature between 15 
Jul and 2 Aug 2018.

b)

a)
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with time. Following the procedure of Jézéquel et al. 
(2018b), we computed analogs of geopotential height 
at 500 mb (Z500) over a zone covering Scandinavia 
(rectangle in Fig. 1c), which optimizes the tempera-
ture/circulation correspondence. The analogs are 
computed from Z500 in two subperiods (1950–84 
and 1985–2018) of the NCEP reanalysis (Kistler et al. 
2001). The Z500 data are detrended with a smoothing 
spline before computing analogs, in order to avoid a 
bias due to the temperature increase. Ten days (out 
of 19) yield good analogs (distance < 30th quantile 
and spatial correlation > 70th quantile). Mean analog 
temperatures are simulated by random selections 
of analog days from each subperiod, following the 
procedure of Jézéquel et al. (2018b). The change of 
temperature probability distributions describes the 
thermodynamic changes on a summer that is similar 
to 2018. A total of 10,000 stochastic samples are gen-
erated, with analogs selected in the two subperiods. 
The changes are significant according to a two-sided 
Kolmogorov–Smirnov test (p value < 10–15).

Although the simulated values do not reach the 
2018 record, we find a significant increase of the 
temperature distribution between the two subpe-
riods (Fig. 2b). This ?1-K increase is comparable to 
the average increase of temperature between the two 
subperiods. When analogs are selected in RCP8.5 
CMIP5 simulations, we find that similar atmospheric 
patterns lead to summer temperatures that are con-
sistent with the 2018 record values. This means that 
temperature anomalies of a similar heatwave (same 
domain, duration, and atmospheric circulation) 
would reach or exceed 5 K by the end of the twenty-
first century (Fig. 2b).

CHANGES IN ATMOSPHERIC CIRCULA-
TION. We diagnosed atmospheric circulation 
trends by analyzing the distance values of the best 
analogs (Jézéquel et al. 2018a), the local dimension, 
and persistence (Faranda et al. 2017). This was done 
by comparing the observed Z500 anomaly sequence 
(in NCEP), and other observed sequences in NCEP 
or simulated in the RCP4.5 and RCP8.5 scenarios.

First, we computed the distribution of Z500 
distances to the hottest day of the heatwave (17 July 
2018) in NCEP and the RCP4.5 and RCP8.5 sce-
nario simulations. We then counted the number of 
analogs whose distance is below the 5th quantile of 
all distances, for each summer. The distance distri-
bution informs on the likelihood to have a similar 
atmospheric pattern as the observed one (Jézéquel et 
al. 2018a). We find no significant trend in the num-
ber of good analogs in NCEP reanalysis or scenario 

simulations (Fig. ES2c): some CMIP5 simulations do 
identify marginally significant trends, but there is no 
consensus among models, as was found for the 2003 
heatwave (Jézéquel et al. 2018a).

Second, we computed the local dimension of the 
observed Z500 sequence in CMIP5 RCP4.5 and 
RCP8.5 simulations. This assumes that the observed 
state belongs to the climate variability described by 
climate models, which is validated by the fact that 
the distribution of analog distances for each model is 
similar to the NCEP reanalysis distances (Rodrigues 
et al. 2018). The local dimension informs on the 
number of degrees of freedom of trajectories around 
a given state and hence on its predictability (Faranda 
et al. 2017). We find no significant trend in the local 
dimension of summer 2018 Z500 in CMIP5 RCP4.5 
and RCP8.5 simulations.

Third, the extremal index informs on the persis-
tence of a given state (i.e., the time it takes to leave its 
neighborhood in phase space) (Faranda et al. 2017). 
As for the local dimension, the local persistence of 
summer 2018 Z500 was evaluated on CMIP5 RCP 
simulations. We find a small but significant decrease 
of the persistence of these weather patterns (Fig. 
ES2d).

CONCLUSIONS. This paper refines the prelimi-
nary analyses of the World Weather Attribution for 
that event (World Weather Attribution 2018). Our 
analyses demonstrate the thermodynamic contribu-
tion of human-induced climate change to describe 
the probability and intensity of the summer 2018 
event in Scandinavia. The bulk values and uncertain-
ties of the probability ratios are significantly larger 
than 1 in two statistical approaches with different 
underlying technical assumptions. Hence we find 
a strong and robust contribution of human activi-
ties to 2018 heatwave in northern Europe from the 
unconditional attribution analysis. This is further 
supported by an analysis of record probabilities (see 
our online supplemental material S2b; Naveau et al. 
2018). The wide range of probability ratios from the 
model ensemble calls for a calibration of the model 
outputs (Bellprat et al. 2019), which is outside the 
scope of this short paper. Therefore those probability 
ratios should be used in a qualitative manner, rather 
than quantitative.

The atmospheric conditions enhance the tempera-
ture signal (+2 K; Fig. 2b), but the conditional attri-
bution simulations cannot reach the observed record 
values, possibly because some physical processes are 
not taken into account (soil moisture feedbacks and 
ocean variability).
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Those results emphasize the necessity of system-
atic analyses of European heatwaves (Stefanon et al. 
2012), for which the properties of the atmospheric 
circulation do not change uniformly in scenario 
simulations (Jézéquel et al. 2018a). This also high-
lights uncertainties in the changes of atmospheric 
circulation.
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T he summer of 2018 was extremely warm in parts  
 of Europe, particularly Scandinavia, the Iberian  
 Peninsula, and central Europe, with a range of 

all-time temperature records set across the continent 
(Johnston 2018; NESDIS 2018). Impacts were felt 
across Europe, with wildfires burning in Sweden 
(Krikken et al. 2019; Watts 2018), heatstroke deaths in 
Spain (Publico 2018), and widespread drought (Harris 
2018). During the summer, the World Weather Attri-

bution (WWA) initiative released an analysis of the 
heat spell (World Weather Attribution 2018) based on 
observations/forecasts and models in specific loca-
tions (Dublin, Ireland; De Bilt, Netherlands; Copen-
hagen, Denmark; Oslo, Norway; Linkoping, Sweden; 
Sodankyla, Finland; Jokionen, Finland), which con-
cluded that the increase in likelihood due to human-
induced climate change was at least 2 to 5 times. 
In December, the U.K. Met Office (UKMO) stated 
that they found the 2018 U.K. summer temperatures 
were made 30 times more likely (Press Office 2018; 
McCarthy et al. 2019). These two estimates appear to 
quantitatively disagree; however, we show they can be 
reconciled by investigating the effects of using differ-
ent spatial domains and temporal scales in the event 
definition. We also demonstrate that prescribed SST 
model simulations can underrepresent the variability 
of temperature extremes, especially near the coast, 
with implications for any derived attribution results.

EVENT DEFINITION. We consider various 
temperature-based event definitions to demonstrate 
the impact of this choice in attribution assessments, 
and assess to what extent human influence affected 
the seasonal and peak magnitudes of the 2018 summer 
heat event on a range of spatial scales. The statistic 
we use is the annual maximum of the 1-, 10-, and 90-
day running mean of daily mean 2-m temperature 
(hereafter TM1x, TM10x, and TM90x respectively). 
We analyze three spatial scales: model grid box, 
regional, and European. For regional and European 
event definitions, the spatial mean is calculated before 
the running mean. Regional extents are taken from 
Christensen and Christensen (2007), and European 
extent is the E-OBS (Cornes et al. 2018) domain (land 
points within 25°–71.5°N, 25°W–45°E). The WWA 

ANTHROPOGENIC INFLUENCE  
ON THE 2018 SUMMER WARM SPELL IN EUROPE:  

THE IMPACT OF DIFFERENT SPATIO-TEMPORAL SCALES
nichoLaS J. Leach, Sihan Li, Sarah Sparrow, geert Jan van oLdenborgh,  

FraSer c. Lott, antJe weiSheimer, and myLeS r. aLLen

We demonstrate that, in attribution studies, events defined over longer time scales generally  

produce higher probability ratios due to lower interannual variability, reconciling seemingly  

inconsistent attribution results of Europe’s 2018 summer heatwaves in reported studies.
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used the annual maxima of 3-day mean daily maxi-
mum temperatures at specific grid points for its con-
nection to local health effects (D’Ippoliti et al. 2010), 
whereas the UKMO used the JJA mean temperature 
over the entire United Kingdom in order to answer 
the question of how anthropogenic forcings have af-
fected the likelihood of U.K. summer seasons as warm 
as 2018. The same justifications can be used here, 
although we add that different heat event time scales 
are important to different groups of people, and as 
such using several temporal definitions may increase 
interest in heat event attribution studies. However, we 
recognize that other definitions than those used here 
may be more relevant to some impacts observed (such 
as defining the event in the context of the atmospheric 
flow pattern and drought that accompanied the heat), 
and other lines of reasoning for selecting one particu-
lar event definition exist (Cattiaux and Ribes 2018).

MODEL SIMULATIONS AND VALIDA-
TION. Three sets of simulations from the UKMO 
Hadley Centre HadGEM3-A global atmospheric 
model (Christidis et al. 2013; Ciavarella et al. 2018) 
are used. These are a historical ensemble (1960–2013; 
Historical) and factual (ACT) and counterfactual 
(a “natural” world without anthropogenic forcings; 
NAT) ensembles of 2018. We compare results from 
this factual-counterfactual analysis with those from 
a trend-based analysis of Historical, ensembles 
from EURO-CORDEX (Vautard et al. 2013; Jacob 
et al. 2014; Vrac and Vaittinada Ayar) (1971–2018) 
and RACMO (Aalbers et al. 2018; Lenderink et al. 
2014) (1950–2018), and observations from E-OBS 
(1950–2018). A full model description is provided 
in the online supplemental information. Initially, 
we performed our analysis with the weather@home 
HadRM3P European-25 km setup (Massey et al. 2015) 
but found that this model overestimates the variabil-
ity over all Europe for daily through seasonal-scale 
event statistics, and so it was omitted.

METHODOLOGY. We calculate the return period 
(RP) for the 2018 event in a distribution fit to E-OBS 
using the generalized extreme value (GEV) distribu-
tion to model TM1x and TM10x, and the generalized 
logistic distribution to empirically model TM90x 
throughout. Since the distribution of temperature 
extremes changes as the climate does, to account for 
the non-stationarity of the time series we first remove 
the trend attributable to low-pass-filtered globally-
averaged mean surface temperature (GMST, from 
Berkeley Earth; Rohde et al. 2013) in an ordinary-
least squares regression (the regression coefficient 

or trend is shown in the supplemental material in 
Fig. ES1; Diffenbaugh et al. 2017). We then find the 
temperature threshold corresponding to the RP in 
a distribution fit to the model’s climatology. In the 
factual/counterfactual analysis, we do this by fitting 
parameters to a detrended (against GMST; trends 
shown in Figs. ES2c7–9) climatological ensemble 
of Historical plus 15 randomly sampled members 
of ACT. We finally calculate the probability (P) of 
exceeding this climatological temperature threshold 
in distributions fit to the ACT and NAT ensembles 
and calculate the probability ratio, PR = PACT /PNAT, 
representing the increased likelihood of the 2018 
event in the factual compared to the counterfactual 
world. Using estimated event probabilities rather than 
observed magnitudes constitutes a quantile bias cor-
rection (Jeon et al. 2016), minimizing model biases in 
the mean and variability of the temperatures analyzed. 
A description of uncertainty calculation and the 
trend-based analysis discussed below is included in 
the supplemental material.

RESULTS. Extreme daily heat events, measured by 
TM1x, are distributed heterogeneously throughout 
Europe (Fig. ES1i). This is paralleled in the factual/
counterfactual PRs seen in Fig. 1a, with large propor-
tions of the Iberian Peninsula, the Netherlands, and 
Scandinavia experiencing events that were highly 
unlikely in a climate without anthropogenic influ-
ence. A similar result is found on the regional scale 
(Fig. 1d) with Scandinavia and the Iberian Peninsula 
respectively experiencing 1-in-150 [26–26,000]1 and 
1-in-30 [9–550] year events in the current climate 
that were highly unlikely in the natural climate 
simulated in NAT. The remaining regions record 
maximum daily temperatures likely to be repeated 
within 4 years. Considering the whole of Europe, the 
likelihood of the 2018 maximum of daily European 
mean temperature occurring without climate change 
is zero. This result is consistent with Uhe et al. (2016) 
and Angélil et al. (2018), who showed that increasing 
spatial scale tends to increase the probability ratio.

Extreme 10-day heat events, TM10x, were also 
widespread in Europe, with the most extreme occur-
ring in Scandinavia (Fig. ES1j). Regionally, the PRs 
become more uniform (Fig. 1d), although Scandina-
via and the Iberian Peninsula still have very high best-
estimate PRs of 185 [17–infinite] and 110 [18–56,000] 
respectively. The best-estimate PR for the average of 
Europe is still formally infinite.

1 Numbers in brackets [ ] represent a 90% confidence interval.
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The PR map for season-long heat events measured 
by TM90x is more uniform throughout Europe 
(Fig. 1c). Scandinavia, the British Isles, France, and 
central and eastern Europe, all of which experienced 
on the order of 1-in-10 year events (Fig. ES1l), and 
the corresponding best-estimate PRs are between 
10 and 100 for all regions (Fig. 1d), including those 
with lower return periods. The PR for the European 
average is 1,000 [500–2,000].

Trend-based analysis [Figs. ES1m–p (observa-
tions) and Fig. ES2b (models)] yields similar results, 
although we note that for HadGEM-3A this results 
in generally higher PRs, due to the linear trend with 
GMST in the climatology being greater than the 
difference between the two ensembles used in the 
factual/counterfactual analysis. Observational and 
model analysis contradict in some grid boxes in 
northern Scandinavia for TM1x and TM10x, since the 
observed best-estimate trend against GMST is nega-
tive, reducing the event probability for the present-
day compared to the preindustrial climate, therefore 

yielding PRs of less than 1. Comparing the regional 
factual/counterfactual model with observational 
analysis (Fig. 1d vs Fig. ES1p) shows that the large 
observational uncertainties overlap with the model 
results: the difference could be due to natural vari-
ability affecting the small observational sample size. 
However, we are cautious of drawing any conclusions 
regarding the change in likelihood of extreme heat 
events as defined here for these locations.

The PR increases with the event statistic time scale 
for the majority of grid points and regions (shown in 
Fig. 1). Figure 2 illustrates the cause using the Brit-
ish Isles region: as the time scale increases, the event 
statistic distribution variance decreases, while the 
mean shift between the factual and counterfactual 
distributions remains constant. Figure ES1t shows 
that the similarity in trends with GMST between the 
three time scales is also true for the observations. The 
decrease in variance usually results in higher PRs, 
given a particular event return time, for the longer 
time scales. There are exceptions due to the bounded 
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Fig. 1. Probability ratios for the 2018 summer heat-event derived from HadGEM3-A factual/counterfactual 
simulations. (a)–(c) Maps of increased likelihood in the real world at gridbox scale for the three event time 
scales analyzed respectively. Note that the upper limit on the color scale is 1,000 and grid boxes with an infinite 
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upper tail of a GEV distribution with a negative shape 
parameter, resulting in the very high PRs for TM1x 
in Scandinavia, the Iberian Peninsula, and the Neth-
erlands. The solid and dotted black lines compare 
the temperature thresholds when using event return 
periods to anomaly magnitudes in E-OBS. This ex-
plains why the TM90x PR is much higher than the 
other time scales for the British Isles: in addition to 
the decreased variance, the seasonal-scale heat event 
was more unusual than the other time scales, with a 
longer return period (10.6 [5.7–21] years) than TM10x 
(2.6 [1.8–3.9] years) and TM1x (3.6 [2.5–6.2] years). 
These factors together result in PRs of 3.6 [2.9–4.8] 
for TM1x and 43 [27–84] for TM90x. We suggest 
that the change in variance between the time scales 
used largely reconciles the differences between the 

“2 to 5” and “30” times increases in likelihood found 
by the WWA and UKMO reports, with other meth-
odological factors playing a minor role as we have 
demonstrated for the British Isles.Although higher 
return periods for TM90x do impact the PRs found, 
this effect is generally less significant than changes 
in variability between the time scales.

Figure 2 also demonstrates a relevant deficiency 
in the model: the model distributions are narrower 
than the observed distributions, meaning the model 
has lower variability than the real world. This reduced 
variance has a significant impact on attribution re-
sults (Bellprat et al. 2019) and means that the PRs for 
the British Isles presented here, especially for TM90x, 
are likely to be overestimated. Underrepresented 
variability often occurs in prescribed SST models 

Fig. 2. (a)–(c) Probability density functions of the three temporal scales of event statistic for the British Isles, 
showing HadGEM3-A ACT (factual) and NAT (counterfactual) simulations, and observations from E-OBS; all 
as anomalies above the model or observed 1961:1990 mean climatology. Thick black lines show the 2018 event 
defined probabilistically as the HadGEM3-A Historical temperature threshold corresponding to the E-OBS 
return period; dotted black lines show the event defined in terms of the magnitude observed directly from 
E-OBS. (d) Periodograms of JJA daily mean temperature in the British Isles (seasonality and mean removed) 
calculated as the mean of intraseasonal periodograms for all available years. The HadGEM3-A power spectrum 
is calculated from the Historical ensemble.

2 0 2 4 6

Temperature relative to 1961:1990 climatological mean (°C)

a

HadGEM3-A

E-Obs

TM1x

probabilistic

absolute

factual

counterfactual

E-OBS

2 0 2 4 6

Temperature relative to 1961:1990 climatological mean (°C)

b

HadGEM3-A

E-Obs

TM10x

2 0 2 4 6

Temperature relative to 1961:1990 climatological mean (°C)

c

HadGEM3-A

E-Obs

TM90x

2 5 10 20 50

Period (days)

10

4

10

5

10

6

S
p
e
c
t
r
a
l
 
d
e
n
s
i
t
y
 
(
°
C

2

/
H
z
)

d

Intraseasonal power spectrum (JJA)

HadGEM3-A ensemble

HadGEM3-A mean

EURO-CORDEX ensemble

RACMO ensemble

E-OBS

S44 JANUARY 2020|
Unauthenticated | Downloaded 02/21/21 04:03 AM UTC



(Fischer et al. 2018) and is visible in HadGEM-3A for 
many coastal locations over Europe (Figs. ES2a7–9). 
Figure 2d shows the power spectrum of JJA summer 
temperatures over the British Isles, indicating that 
HadGEM3-A has similar spectral characteristics to 
E-OBS, but underrepresents the intraseasonal 2-m 
temperature variability at almost all frequencies, 
which will likely result in overestimated PRs. Power 
spectra for other model ensembles are shown for com-
parison, demonstrating that the fully bias-corrected 
EURO-CORDEX ensemble has the same variability 
characteristics and magnitude as the observations.

DISCUSSION. Our analysis highlights a key prop-
erty of extreme weather attribution: the variance of 
the event definition used, both in terms of the statistic 
itself and its representation within any models used. 
The use of longer temporal event scales in general 
increases both the spatial uniformity and magni-
tude of the probability ratios found, consistent with 
Kirchmeier-Young et al. (2019), due to a decrease in 
variance compared to shorter scales. The difference 
in temporal scale between two reports concerning 
the 2018 summer heat is sufficient to explain the 
large discrepancy in attribution result between them. 
We find that several European regions experienced 
season-long heat events with a present-day return 
period greater than 10 years. The present-day likeli-
hood of such events occurring is approximately 10 
to 100 times greater than a “natural” climate. The 
attribution results also show that the extreme daily 
temperatures experienced in parts of Scandinavia, the 
Netherlands, and the Iberian Peninsula would have 
been highly unlikely without anthropogenic warm-
ing. The prescribed SST model experiments used here 
tend to underestimate the variability of temperature 
extremes near the coast, which may lead to the attri-
bution results overstating the increase in likelihood of 
such extremes due to anthropogenic climate change 
(Bellprat et al. 2019). We aim to properly quantify the 
impact of the underrepresented variability in further 
work. Although here we have used an unconditional 
temperature definition for consistency with the stud-
ies we try to reconcile, we plan to further investigate 
the effect of including both the atmospheric f low 
context and other impact-related variables such as 
precipitation in the event definition, and address is-
sues models might have with realistically simulating 
the physical drivers of heatwaves.
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Precipitation in southern Africa displays a notable 
zonal gradient (south of about 15°S there is a 
dominant contrast between dry west and wet 

east) and is characterized by a pronounced annual 
cycle as well as high interannual variability (e.g., 
Lindesay 1988; Nicholson and Kim 1997; Nicholson 
et al. 2018). During austral summer the complex 
large-scale monthly precipitation pattern in southeast 
Africa is strongly guided by the Hadley circulation 
(Cook 2005) and movement of the associated main 
tropical cloud and rainband (Schneider et al. 2014; 
Nicholson 2018), also referred to as the south Indian 
Ocean convergence zone (Cook 2000; Hart et al. 2010; 

Barimalala et al. 2018). The main rainband of stron-
gest tropical precipitation reaches the southernmost 
climatological position across parts of Madagascar, 
Mozambique, Malawi, Zimbabwe, and Zambia in 
February (see Figs. ES2 and ES3 in the online supple-
mental material; Tyson and Preston-Whyte 2002; 
Reason 2017).

In February 2018, the main tropical rainband 
moved much farther south and led to anomalous 
high rainfall over central and southern Mozambique, 
Zimbabwe, and southern Zambia (Figs. 1a–f and 
Figs. ES1a–c), which resulted in significant socio-
economic impacts in the region (e.g., f looding was 
reported in parts of Lusaka, Zambia, and f loods 
in Manica province, Mozambique, triggered the 
country’s emergency response). This study addresses 
whether and to what extent anthropogenic climate 
change has altered the likelihood of this large-scale 
high precipitation event in February 2018 to occur by 
applying a multi-method event attribution approach 
(National Academies of Sciences, Engineering, and 
Medicine 2016; Otto 2017).

EVENT DEFINITION AND OBSERVA-
TIONAL RESULTS. First, to establish the spatial 
extent of the high precipitation event of interest, we 
use multiple high-resolution gridded satellite-era 
products. Figures 1a–c (and Figs. ES1a–c) show Feb-
ruary 2018 total precipitation in such three analyses 
commonly used for monitoring of droughts and 
f loods. Furthermore, Figs. 1d–f show the strong 
positive precipitation anomalies in February 2018, 
with variable spatial extents in different datasets in 
subtropical southern Africa (south of 15°S). To get 
a detailed spatial definition of this large-scale event 
to envelop the large anomalies in monthly precipita-
tion (above 150 mm), we define the region “MZZ” as 

ON HIGH PRECIPITATION IN MOZAMBIQUE,  
ZIMBABWE, AND ZAMBIA IN FEBRUARY 2018

neven S. Fučkar, Friederike e. L. OttO, FLaviO Lehner, izidine PintO,  
emma hOward, Sarah SParrOw, Sihan Li, and david waLLOm

This multi-method study of high precipitation over parts of Mozambique, Zimbabwe, and parts  

of Zambia in February 2018 indicates decreased likelihood of such events due to climate change,  

but with substantial uncertainty based on the used observations and models.
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encompassing provinces where significant positive 
anomalies are present in at least two of the satellite-
era analyses shown in Figs. 1d–f: Gaza, Inhambane, 
Manica, and Sofala provinces in Mozambique; all of 

Zimbabwe; and Southern and Lusaka provinces in 
Zambia (red contour in Figs. 1d–f), covering about 
0.78 M km2.

We utilize three long-term gridded in situ datasets 

Fig. 1. The top panels show February 2018 total precipitation in the southern Africa from (a) UCSB CHIRPS 
v2.0 (0.05° resolution, available from 1981; Funk et al. 2015), (b) UR TAMSAT (4-km resolution, available from 
1987; Maidment et al. 2014), and (c) NASA TRMM 3B43 (0.25° resolution, available from 1998; Huffman et al. 
2010). The second-row panels show the associated February 2018 precipitation anomaly (with respect to the 
1998–2018 climatology) from (d) CHIRPS v2, (e) TAMSAT v3, and (f) TRMM 3B43, and outline the MZZ region 
(red contours). (g)–(i) CRU TS v4.03 (0.5° resolution), GPCC v2018 (0.5°/1° resolution), and NOAA PREC/L 
(0.5°/1° resolution) February total precipitation averaged over the MZZ region as a function of NASA GISS 
global mean surface temperature (GMST: Hansen et al. 2010), respectively, and Gaussian or GPD (using the 
highest 20% values) scale fits. The red lines show fit mean µ, µ+σ, and µ+2σ as function of GMST (4-yr running 
mean). (j)–(l) The return time plots of February MZZ precipitation with Gaussian, GPD (using the top 20%), 
and Gaussian scale fits (current/2018 climate in red vs 1901 climate in blue) in CRU TS v4.03 (Harris et al. 2014), 
GPCC v2018 (Schneider et al. 2018), and NOAA PREC/L (Chen et al. 2002), respectively (green lines show the 
2018 event level in different long-term precipitation datasets). The red and blue lines show the mean and 95% 
confidence interval (CI; based on 1000-member bootstrap) for Gaussian or GPD scale fits.
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to determine the return time of the February 2018 
total precipitation averaged over the MZZ region. 
February 2018 MZZ precipitation in the Climatic 
Research Unit (CRU) TS v4.03 (177 mm), the Global 
Precipitation Climatology Centre (GPCC) v2018 
(230 mm), and NOAA’s Precipitation Reconstruc-
tion over Land (PREC/L) (173 mm) appears to be 
less intense than in three used satellite-era datasets 
[Fig. ES1: 333 mm in the Climate Hazards Infrared 
Precipitation with Stations (CHIRPS2), 284 mm in 
Tropical Applications of Meteorology using Satel-
lite and Ground‐Based Observations (TAMSAT3), 
and 287 mm in the Tropical Rainfall Measuring 
Mission (TRMM) 3B43] since it has the 35th rank 
(out of 118 years), the 15th rank (out of 119 years), 
and the 21st rank (out of 72 years), respectively. The 
generalized Pareto distribution (GPD; Coles 2001) is 
a well-established choice for statistical modeling of 
extreme occurrences over high thresholds (Davison 
and Smith 1990). We utilize the GPD as a limiting 
high-tail distribution of precipitation and in the 
widest range it is commonly fit in the top 20% of 
distribution. However, February 2018 MZZ precipi-
tation levels in CRU TS and NOAA PREC/L are just 
barely in the top 30%, and at these observed levels a 
more suitable fit is the Gaussian distribution. Hence, 
to get the return period of this event in CRU TS and 
NOAA PREC/L (GPCC) we fit a Gaussian distribu-
tion (a GPD to the top 20% values) whose parameters 
scale with a 4-yr smoothed NASA GISS global mean 
surface temperature (GMST) [for scale fit methodol-
ogy see, e.g., Philip et al. (2018), Otto et al. (2018a), 
and the supplement]. Only NOAA PREC/L shows a 
statistically significant negative linear trend (95% 
confidence level) of −3.6 mm (0.1°C of GMST)−1 with 
p = 0.007 (Figs. 1g–i), while it has a temporal trend of 
−5.2 mm decade−1 with p = 0.012. The mean return 
time of the event in CRU TS, GPCC, and NOAA 
PREC/L is 5, 20, and 9 years, respectively (Figs. 1j–l), 
so for the event definition we use a combined (and 
rounded) return time of 10 years (i.e., having 10% 
chance of occurring in a year). The 2018 versus 1901 
probability (or risk) ratio in CRU TS and NOAA 
PREC/L based on a Gaussian scale fit with GMST is 
0.63 [95% confidence interval (CI): 0.18, 1.45] and 0.27 
(95% CI: 0.08, 0.71), respectively, while in GPCC based 
on a GPD scale fit with GMST is 0.40 (95% CI: 0.02, 
48.68), where the 95% confidence interval is estimated 
from 1000-member nonparametric bootstrap. This 
probability ratio (PR) is the ratio between the occur-
rence probability (reciprocal return time) of the event 
under 2018 conditions (i.e., today’s climate) divided 
by the occurrence probability under 1901 conditions 

(i.e., a historical climate approximately close to pre-
industrial conditions).

MODELING RESULTS. We use large (≥10 mem-
bers) and very large (>100 members) ensemble simu-
lations with comprehensive (i.e., general circulation) 
climate models to assess whether and to what extent 
anthropogenic climate change modified the likeli-
hood of this event following established methodology 
(e.g., Philip et al. 2018; van der Wiel et al. 2017; van 
Oldenborgh et al. 2017). To verify that we are using a 
suitable model for event attribution we assess whether 
it can reproduce key statistical aspects of the observed 
distribution; to that end we focus on the coefficient of 
variation σ/µ (the standard deviation over the mean) 
from long-term in situ observations. The value of σ/µ 
in CRU TS, GPCC, and NOAA PREC/L is 0.41 (95% 
CI: 0.34, 0.49), 0.44 (95% CI: 0.35, 0.53), and 0.35 (95% 
CI: 0.27, 0.45), respectively, so we require of models 
to have the mean coefficient of variation between 
0.27 and 0.53 (Fig. ES4). We use as event definition 
the return period of 10 years in today’s climate for a 
February total precipitation averaged over the MZZ 
region instead of a specific precipitation level to ad-
just for mean biases across climate models (e.g., Otto 
et al. 2018b). In other words, for each model the 10-yr 
return time corresponds to a slightly different total 
precipitation level.

First, we use weather@home2 (w@h2)—the region-
al atmosphere–land model HadRM3P with a southern 
African domain (50-km resolution) nested in the 
global atmosphere–land model HadAM3P (CMIP3 
generation)—through the distributed computing 
system climateprediction.net (Guillod et al. 2017). In 
this study, we utilize 658 members of actual (factual/
historic) February 2018 HadRM3P simulations (using 
observed SST, sea ice, greenhouse gases, and aerosol 
forcings), and 658 members of natural (counterfactual) 
February 2018 simulations that uses pre-industrial 
SSTs and sea ice (Schaller et al. 2016) as well as green-
house gases and aerosols. The σ/µ value in both actual 
and natural HadRM3P ensemble simulations is 0.39. 
Direct comparison of these two ensembles, without 
using a scale fit with GMST, yields a PR of 1.21 (95% 
CI: 0.80, 1.83) for the event of interest with the return 
period of 10 years in 2018 actual climate (Fig. 2a, where 
the 95% CI is estimated by a 1000-member bootstrap).

Then we turn our attention to six fully coupled 
climate models (CMIP5 and CMIP6 generations), 
all with adequate σ/µ, and analyze their historical 
ensemble simulations (see the supplement for model 
details and Fig. ES4). We fit a GPD that scales with 
4-yr smoothed GMST to the top 20% of February 
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MZZ precipitation to obtain the following 2018 versus 
1901 probability ratios for the adjusted precipitation 
levels that match the return time of 10 years in 2018 
(Figs. 2b–g):

1) 16 ensemble members of EC-Earth2.3 (σ/µ = 
0.32): PR = 0.94 (95% CI: 0.27, 2.05).

2) 30 ensemble members of CSIRO-Mk3.6 (σ/µ 
= 0.50): PR = 0.78 (95% CI: 0.51, 1.27).

3) 10 ensemble members of MIROC6 (σ/µ = 
0.38): PR = 0.74 (95% CI: 0.41, 4.58).

4) 40 ensemble members of CESM1-CAM5 (σ/µ 
= 0.41): PR = 0.68 (95% CI: 0.36, 1.01).

5) 20 ensemble members of GFDL-CM3 (σ/µ = 
0.36): PR = 0.66 (95% CI: 0.21, 1.07).

6) 10 ensemble members of CNRM-CM6.1 (σ/µ 
= 0.48): PR = 0.51 (95% CI: 0.26, 1.48).

SYNTHESIS AND CONCLUSIONS. We per-
formed a multi-method event attribution using three 
satellite-based and three long-term station-based 
monthly precipitation analyses along with seven 

Fig. 2. (a) The return time plot of actual (658 runs) and natural (1749 runs) HadRM3P (weather@home2) simula-
tions for this high total precipitation event in February 2018 averaged over the MZZ region (with 10-yr return 
time). The red and blue shadings show the 95% CI (based on 1000-member bootstrap). (b)–(g) The return 
time plots of 16-member EC-Earth2.3 1901–2018, 30-member CSIRO-Mk3.6 1901–2018, 10-member MIROC6 
1901–2014, 40-member CESM1-CAM5 1920–2018, 20-member GFDL-CM3 1920–2018, and CNRM-CM6.1 
1901–2014 simulations, respectively (a GPD scale fit used the highest 20% of February values to estimate the 
probability ratios). The red and blue lines show the mean and 95% CI (based on 1000-member bootstrap) for 
GPD scale fits. (h) Synthesis (purple bar) of the results of our multi-method approach as the probability ratio 
with 95% uncertainty interval based on the unweighted average (geometric means) of three used long-term 
observations (lime bars) and seven available climate models (orange bars).
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climate models to examine the change in likelihood 
of the February 2018 high precipitation averaged over 
the MZZ region in southern Africa due to anthropo-
genic forcings. The overall PR result is illustrated by 
the purple “synthesis” bar in Fig. 2h, which shows the 
unweighted average (based on geometric means) of 
0.63 (95% CI: 0.22, 2.11). The mean PR—indicating 
that such a high precipitation event has most likely 
become 37% less probable—is consistent with the 
expected poleward expansion of the Hadley cells and 
drying over southern Africa due to the global climate 
change (e.g., Ma et al. 2018; Munday and Washing-
ton 2019); however, the 95% CI of PR is substantial. 
More specifically, the PR could be ≥1 and thus en-
compasses the possibility of no significant change or 
even an increase in the probability of this event. In 
this attribution study, we do not aim to discriminate 
between the daily processes leading to such a large-
scale monthly event. While extreme precipitation 
in the MMZ region is sometimes associated with 
intense tropical cyclones from the Indian Ocean, 
such as Idai in March 2019 and Eline in February 
2000, this was not the case in February 2018, as no 
tropical cyclones made landfall that month [Météo 
France Regional Specialized Meteorological Center 
(MFR/RSMC) La Reunion]. Based on CHRIPS2 
daily data February 2018 high total precipitation 
arose from 12 heavy large-scale daily rainfall events 
over the MZZ region. Furthermore, an analysis of 
tropical low tracks (Howard et al. 2019) in the ERA5 
(Hersbach et al. 2018) and MERRA-2 (Gelaro et al. 
2017) reanalyses shows that about 55% of this high 
daily precipitation occurred in association with an 
eastward migration of continental tropical lows into 
Mozambique during 8–13 February 2018 and 16–22 
February 2018.
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During the 2017/18 Northern Hemisphere cold 
season, sea ice extent in the Bering Sea was less 
than any winter in the observed or reconstructed 

past. The eastern and northern Bering Sea covers 
a shallow and expansive continental shelf that has 
historically exhibited 40%–100% ice cover at its an-
nual winter maximum. This sea ice provides many 
important ocean climate and ecosystem services. 
For example, winter ice insulates warmer ocean 
waters from extreme cold in the atmosphere. During 
spring, algae growth on the undersurface of sea ice 
initiates the annual onset of biological productiv-

ity (Szymanski and Gradinger 2016). The seasonal 
ice cover is critical to the regional climate, marine 
ecosystems, societal expectations, and econom-
ics through maintenance of a thermal barrier that 
separates two distinct temperature-adapted marine 
ecosystems in the northern and southern portions of 
the Bering Sea shelf (Schumacher et al. 1983; Mueter 
and Litzow 2008). We utilized remote sensing derived 
ice extent products for ice context; governmental and 
academic investigations, media, and public reports for 
impacts; and the Community Earth System Model’s 
Large Ensemble Project (CESM-LENS) for assessment 
of the relative likelihoods of current low ice extent.

OBSERVATIONS AND HISTORICAL CON-
TEXT. Sea ice cover. Mean Bering Sea ice extent (SIE) 
for January through April for the 40-yr satellite-
derived passive microwave record in the National 
Snow and Ice Data Center’s Sea Ice Index version 3 
(Fetterer et al. 2017) shows that 2018 was the lowest of 
record (Fig. 1a), with the greatest anomalies compared 
to a 1981–2010 baseline north and west of St. Matthew 
Island (Fig. 1b). Analysis of late winter Bering Sea ice 
extent 1956–80 (Pease et al. 1982) and reconstructed 
monthly Arctic-wide ice extent since 1850 (Walsh 
et al. 2017) also supports the unprecedented nature 
of the 2018 ice extent. The maximum daily Bering 
Sea SIE was reached in early February and was the 
lowest on record (~411,500 km2), only 47% of the 
1979–2016 mean seasonal maximum extent. The SIE 
then dropped ~215,000 km2 (Perovich et al. 2018).

Ocean. Bering Sea sea surface temperatures (SSTs) 
and upper ocean heat content overall were both above 
the 1981–2010 mean during late summer and autumn 
2017 (Timmermans et al. 2017) and this persisted 

THE RECORD LOW BERING SEA ICE EXTENT IN 2018: 
CONTEXT, IMPACTS, AND AN ASSESSMENT  

OF THE ROLE OF ANTHROPOGENIC CLIMATE CHANGE
richard L. Thoman Jr., uma s. BhaTT, PeTer a. Bieniek, Brian r. BreTTschneider, michaeL BruBaker,  
seTh L. danieLson, Zachary LaBe, rick Lader, WaLTer n. meier, Gay sheffieLd, and John e. WaLsh

Record low Bering Sea sea ice in 2018 had profound regional impacts. According to climate  

models, human-caused warming was an overwhelmingly likely contributor,  

and such low levels will likely be typical by the 2040s.
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into early 2018 (Fig. 1c). Chukchi Sea SSTs were also 
above normal and delayed freeze-up north of Bering 
Strait, which possibly triggered atmosphere–ocean 
feedbacks that contributed to this winter’s southerly 
airflow (Tachibana et al. 2019).

Atmosphere. The winter of 2017/18 was persistently 
stormy over the Bering Sea. The mean sea level pres-
sure anomaly fields for both autumn (September–
November) and winter (December–February) were 
characterized by negative anomalies over Chukotka 
and positive departures (>5 hPa) south of the 
Aleutians. The departures from normal air tempera-
ture (at 925 hPa) were positive throughout autumn 
and winter, with the largest positive anomalies in the 
January to March season, when the western Bering 
Sea was more than 5°C above normal (Overland et al. 
2018a) and the eastern Bering Sea had the highest 
mean January–April 2-m air temperature of record 

(Fig. 1c). Stabeno and Bell (2019) highlight the par-
ticular importance of episodic but recurring southerly 
winds during this winter that advected relatively 
warm air over the Bering Sea and the relationship to 
the extremely low ice extent.

IMPACTS OF LOW ICE. Impacts of record low 
sea ice extent in the Bering Sea beyond the climate 
system were widespread and profound, and included 
unprecedented weather events, marine wildlife die-
offs, and sightings of animals outside of their normal 
range, such as the ecosystem impacts discussed in 
Duffy-Anderson et al. (2019). The Local Environ-
mental Observer (LEO) Network (https://www 
.leonetwork.org/bering-sea-ice-2018) received more 
than 50 reports of notable events in western Alaska 
through August 2018. Persistently warm weather 
contributed to poor ice conditions resulting in a fatal 
accident on the Kuskokwim River ice road (Alaska 

Fig. 1. (a) Annual time series of mean January–April Bering Sea ice extent since 1979 from the Sea Ice Index 
(Fetterer et al. 2017) (b) Mean January–April 2018 sea ice concentration anomalies calculated from a 1981–2010 
climate baseline from NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 3 
(Meier et al. 2017). (c) Time series of normalized January–April upper 30-m Bering Sea heat content calculated 
from a 1981–2010 climate baseline from Global Ocean Data Assimilation System (Behringer 2007) and 2-m 
mean air temperature from ERA-Interim reanalysis. (d) Selected impacts of the low ice extent.
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Dispatch News 2018). In the Bering Strait, retreating 
and fractured sea ice during a late February storm 
allowed a coastal sea ice–laden flooding event that 
caused a power outage and infrastructure damage at 
Little Diomede, Alaska (Walsh 2018). Historically in 
February, stable landfast ice at Little Diomede Island 
provided an ice airstrip for primary transportation. 
In the Bering Strait region, the limited duration, 
poor quality, and unseasonable retreat of the sea ice 
was coincident with the loss or impairment of mari-
time subsistence activities for coastal communities. 
Ecologically, changes in the northern Bering Sea ma-
rine ecosystem included the first documented mass 
strandings of ice-associated seals in the Bering Strait 
region (Sheffield 2018), redistribution of thermally 
sensitive fish species, and a multi-species seabird die-
off attributed to starvation (Siddon and Zador 2018).

ATTRIBUTION. To evaluate the role of anthropo-
genic climate change in the 2018 Bering Sea ice ex-
treme anomaly, we employed monthly gridded sea ice 
concentration data from the CESM Large Ensemble 
(CESM-LENS). CESM-LENS features fully coupled 
simulations with 40 ensemble members reflecting his-
torical (1850/1920–2005) and projected (2005–2100; 
RCP8.5) climate forcing and a pre-industrial control 
simulation (1,800 yr) reflecting climate forcing from 
1850 (Kay et al. 2015). Arctic sea ice extent (Jahn 
et al. 2016) and sea ice thickness (Labe et al. 2018) 
in the CESM-LENS have been shown to be realistic 
when compared to satellite observations post-1978. 
The Bering Sea region grid points were masked and 
monthly SIE was derived by summing the area of the 
grid cells with concentrations greater than or equal to 
15% annually for the January to April period. There is 
a weak (not statistically significant) negative trend in 
the observed January to April mean SEI (though a sig-
nificant trend is found in other aspects of Bering Sea 
ice extent; see Fig. ES1 in the online supplemental ma-
terial), although some sub-intervals (e.g., 1979–2012) 
show an increasing trend. This is expected since the 
subdecadal-scale variability of Bering SIE is known 
to be driven by internal atmospheric variability (e.g., 
Pease et al. 1982; Overland et al. 2018b). The CESM-
LENS ensembles averages display declining trends 
over 1980–2018 that are mostly (35 of 40 members) 
greater in magnitude than the observed trend (and 
one member exceeds the 1979–2012 observed trend) 
while similar 39-yr subsets of the pre-industrial 
simulation have mixed increasing and decreasing 
trends (see Fig. ES2). The variances of the model 
ensembles are generally higher than the observa-
tions although the standard deviation decreases by 

about 50% between 2010 and 2080. The Bering SIE 
observations from 1980 to 2018 (Fetterer et al. 2017) 
were quantile-mapped to fit the CESM-LENS distri-
bution (Fig. 2a). The SIE for each ensemble member 
during this period was sorted by increasing value and 
each quantile was then averaged over all ensemble 
members and matched to the corresponding quantile 
from the observations. The resulting distribution (see 
blue line in Fig. 2a) gives an model-adjusted observed 
2018 SIE minimum of 406,332 km2, which is used to 
assess the role of anthropogenic climate change. This 
is done by calculating the fraction of attributable risk 
(FAR; Stott et al. 2004; National Academies of Sci-
ences, Engineering, and Medicine 2016) where FAR 
= 1 − Probpre-Industrial/Probpresent, and the probability is 
the likelihood of exceeding (i.e., being lower than) 
the 2018 SIE. Figure 2b shows the pre-industrial 
simulation of the January–April ice extent, together 
with the adjusted (blue) and unadjusted (red) values 
for 2018. There were two exceedances during the 
1,800-yr pre-industrial simulation and a total of 117 
from the 40 CESM-LENS ensemble members from 
the 2003–33 “present” climate, resulting in a FAR of 
0.99. Individual LENS members ranged from 0 to 7 
occurrences from 2003 to 2033. However, if the pres-
ent climate were defined as the 1980–2018 historical 
period, there would have been only 29 exceedances of 
2018 in the 40 ensemble members, making the FAR 
correspondingly smaller (0.94). Finally, Fig. 2c shows 
the probability, over all 40 CESM-LENS simulations, 
that the 2018 minimum will be exceeded in each de-
cade. The probability is essentially zero through the 
1990s, after which it increases to 0.06 in the 2010s, 
0.14 in the 2020s, 0.29 in the 2030s, 0.52 in the 2040s, 
and 0.94 by the 2060s. Thus CESM-LENS indicates 
that 2018 extreme ice extent in the Bering Sea may 
become the mean extent by the 2040s and essentially 
an upper bound (with only a 6% probability of greater 
extent) by the 2060s.

CONCLUSIONS. The 2018 January through April 
sea ice extent in the Bering Sea was far lower than any 
previous winter in the reconstructed or observed past 
(since 1850). This had ramifications for the weather 
and climate system, economic impacts, and long-last-
ing ecosystem impacts. Ocean warmth, late ice devel-
opment, and frequent atmospheric storminess were 
important factors. Using CESM-LENS, we find that 
the observed 2018 January through April mean sea 
ice extent to be extremely rare in the pre-industrial 
control simulation (2 out of 1,800) but becomes much 
more frequent in the current era. The FAR exceeds 
0.9 using either the current era (2003–33) or recent 
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past (1980–2018) simulations and that with ongoing 
Earth system warming the 2018 extent and could 
potentially be typical by the 2040s and represent an 
upper bound within 50 years.
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L ate spring (April–May) is normally the end of 
 the dry season in South China, but 2018 was 
 an exception. An extreme drought condition 

developed over South China (22°–29°N, 105°–120°E; 
box in Figs. 1a–c) during the late spring in 2018, af-
fecting the provinces of Guangdong, Fujian, Jiangxi, 
Guizhou, and part of Hunan. South China received 
only about 40% of the 1951–2018 mean precipita-
tion over Guangdong and Fujian provinces (Fig. 1a). 
The surface temperature reached 2.8°C above 
normal (1951–2018 mean) at a maximum (Fig. 1b), 
with record-breaking hot days in May reported in 
Guangdong, Jiangxi, and Fujian provinces. More 
than half stations over South China experienced a 
record-breaking drought seen from the anomalies in 
precipitation and the difference between precipitation 
and reference evapotranspiration (Pr-ET) (Figs. 1a,c). 
The 2018 late spring was ranked as the third year 
with extreme deficit rainfall (−2.6 mm day−1 less), the 
warmest year (2.0°C warmer) for 1951–2018 (Fig. 1d), 

and the second driest year on record (−2.8 mm day−1 
less) measured by Pr-ET. It reported that this drought 
has resulted in shrinking reservoirs and water short-
ages (www.gdsw.gov.cn/zwgk_tjxx.html; http://slt.
fujian.gov.cn/xxgk/tjxx/swxb/). The acreage and yield 
for early rice, which is mainly planted in South China, 
was reduced respectively by 350 thousand hectares 
and 1.28 million tons relative to 2017 (National 
Bureau of Statistics of China; www.stats.gov.cn/tjsj/
zxfb/201808/t20180824_1618794.html).

Observations show that South China has experi-
enced a drying trend in late spring since the 1950s 
(Xin et al. 2006; Qiu et al. 2009; Li et al. 2018). The 
internal variation, such as the interdecadal changes 
of North Atlantic Oscillation (Xin et al. 2006) and an 
increase in protracted El Niño events accompanied by 
a reduction in La Niña episodes (Qiu et al. 2009), and 
anthropogenic aerosol forcing (Kim et al. 2007) were 
documented to be contributing to this drying trend. So 
far it is still unclear whether the attribution of anthro-
pogenic forcing is detectable in the extreme late spring 
drought events over South China. This study will 
investigate the cause of the 2018 late spring drought 
in South China, and will assess the contribution of 
anthropogenic climate change on the likelihood of 
the 2018 late spring drought over South China by both 
examining drought indices and associated circulation.

DATA AND METHODS. The observational and 
reanalysis datasets used in this study are 1) monthly 
surface air temperature and precipitation observa-
tions at 839 stations for 1951–2018 provided by the 
National Meteorological Information Center at the 
China Meteorological Administration (the station 
data are further area-weighted interpolated to a 0.5° 
grid cell) and 2) monthly circulation data from the 
Japanese 55-Year Reanalysis for 1959–2018 (JRA-55; 

THE LATE SPRING DROUGHT  
OF 2018 IN SOUTH CHINA

Lixia Zhang, tianjun Zhou, xiaoLong Chen,  
PeiLi Wu, nikoLaos Christidis, and Fraser C. Lott

HadGEM3-A indicates that anthropogenic forcing has increased the likelihood  

of the 2018 late spring drought in South China approximately 17 times,  

and such events do not occur in CAM5 without human influence.
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Ebita et al. 2011). Reference evapotranspiration is cal-
culated from surface temperature using the Hamon 
formulation (Haith and Shoemaker 1987).

We use outputs of two ensembles of simulations for 
the actual climate with all external forcing (“Factual”) 
and for a hypotheticals natural climate without the ef-

Fig. 1. The anomalies of (a) precipitation (%), (b) surface air temperature (°C), and (c) the difference between 
precipitation and reference evapotranspiration (Pr-ET; mm day−1) in April–May 2018 relative to 1951–2018. The 
dots are the percentile ranks of April–May anomalies in 2018 at each station. Shadings are the anomalies based 
on the gridded data from the station observations. (d) Observed April–May mean surface air temperature (blue; 
°C), precipitation (black; mm day−1), and Pr-ET (red; mm day−1) anomalies regional averaged over South China 
[red box in (a)–(c)], where the dots denote the year 2018. (e) Return periods and 95% confidence intervals for 
April–May mean Pr-ET averaged over South China, where the red line denotes the year 2018. (f) April–May 
mean sea level pressure (shading; Pa) and 850-hPa winds (vector; m s–1) anomalies in 2018 relative to 1959–2018.
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fect of human influence (“Counterfactual”) from two 
atmospheric general circulation models (Stone et al. 
2019). One is HadGEM3-A-N216 from the Met Office 
HadGEM3-A-based operational event attribution 
system on a 0.83° × 0.56° grid (Christidis et al. 2013; 
Ciavarella et al. 2018). The other one is CAM5 from 
CLIVAR C20C+ Detection and Attribution project 
on a 1° × 1° grid (Angélil et al. 2017). 15 (50) members 
of historical simulations for 1960–2013 (1959–2017) 
and 525 (200) members for 2018 April–May were con-
ducted for each experiment in HadGEM3-A (CAM5).

Two drought indices are used in this study, namely 
April–May mean Pr-ET and precipitation (Pr) aver-
aged over the land grids in South China (22°–29°N, 
105°–120°E), considering that precipitation deficit 
is the primary cause for agricultural failures and 
hydrological water shortages, and Pr-ET measures 
the balance between moisture supply and demand in 
the atmosphere. A circulation index is defined as the 
850-hPa zonal winds (U850) averaged over 5°–20°N, 
90°–120°E, a key region to define the South China 
Sea summer monsoon onset (Wang et al. 2004). 
Generalized extreme value (GEV) distribution is 
used to fit the April–May mean Pr, Pr-ET, and U850 
distribution to estimate the return periods of drought 
events.

For the detection and attribution study, the fol-
lowing steps are carried out to make simulations and 
observations comparable. 1) We first extract the Pr, 
Pr-ET, and U850 indices in each experiment. This 
yields 525 (200) samples for year 2018 and 810 (2950) 
for the “historical” experiment from HadGEM3-A-
N216 (CAM5). 2) Then we construct GEV distribu-
tions using all indices from the samples from this 
historical experiment, and derive the thresholds for 
the drought events in HadGEM3-A-N216 and CAM5, 
which have the same return periods as the year 2018 
in observation. 3) Finally, the GEV probabilities of all 
simulated drought indices for year 2018 are derived 
from the Factual and Counterfactual experiments, 
and the risk ratio of such an event is calculated to 
see whether the anthropogenic forcing is detectable. 
The uncertainty of risk ratio is estimated via boot-
strapping 1,000 times with showing the 5th–95th 
percentile ranges. We resample all model years with 
replacement and calculate the risk ratio for each 
bootstrap realization.

RESULTS. The return period of the 2018 late spring 
drought in observation is about once-in-66 years 
(Fig. 1e) and once-in-47 years based on Pr-ET and Pr, 
respectively. The dry condition in 2018 late spring was 
associated with an anomalous high sea level pressure 

(SLP) covering the Bay of Bengal and Southeast Asia, 
accompanied with easterly anomalies to its south 
f lank (Fig. 1f). It prohibited the transition of low-
level winds over the Bay of Bengal from easterlies to 
westerlies during April–May, thus delayed the onset 
of South China Sea summer monsoon (SCSSM) and 
the South China rainy season. Studies showed that 
the pre-rainy season onset began on 7 May 2018, 31 
days later than the normal (www.cma.gov.cn/root7/
auto13139/201903/t20190319_517664.html; Liu and 
Zhu 2019; Wang et al. 2016). A prominent feature of 
the low-level circulation anomalies is the anticyclonic 
circulation anomalies over the north Indian Ocean, 
demonstrating a weakened Walker circulation in 
late spring. At middle and high levels, the western 
North Pacific subtropical high was enhanced and 
westerly jet stream was weaker than the normal (Liu 
and Zhu 2019). These large-scale circulation anoma-
lies are consistent with previous studies finding that 
a weakened Walker circulation is unfavorable for 
the airflow from the Indian Ocean into the SCS and 
easterly retreat of western North Pacific subtropical 
high, inducing a late SCSSM onset and South China 
late spring rainfall deficit (Feng and Hu 2014; Luo 
et al. 2016; Zhou and Chan 2007; Qiu et al. 2009). The 
U850 in 2018 April–May was only −1.7 m s−1, which 
is about −1.8 m s−1 less than 1959–2017 mean, with a 
return period about 70 years.

ATTRIBUTION OF THE ANTHROPO-
GENIC FORCING ON 2018 LATE-SPRING 
DROUGHT. Models reasonably represent the varia-
tion of South China drought for the period 1960–2013. 
It shows that the two models well simulate the ranges 
of observed anomalies both from yearly variation (see 
Figs. ES1a,b in the online supplemental material) and 
the dry tail as seen in the observation (Figs. ES1c,d), 
particularly for HadGEM3-A-N216. The correlation 
coefficient of Pr-ET between the ensemble mean for 
the Factual run of HadGEM3-A-N216 and observa-
tion is 0.29 for 1960–2013, statistically at 95% confi-
dence level (Figs. ES1a,b). The climate mean distribu-
tion of 850-hPa winds in April–May can also be well 
simulated by models (Figs. ES3a,b). The thresholds 
at 2.4 (1.3) mm day−1 in Pr-ET and 4.7 (3.6) mm day−1 

in Pr with the same return periods of observation 
are derived from HadGEM3-A-N216 (CAM5) for 
attribution, respectively. The difference between the 
two models indicates great uncertainty arising from 
model structure and the importance of multimodel 
comparison for attribution study.

An overall mean shift of Pr-ET toward a drier 
condition in Factual relative to Counterfactual is 
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simulated both by HadGEM3-A-N216 and CAM5 
for year 2018 (Figs. 2a,b), demonstrating increases 
in the probability of such drought events over South 
China with anthropogenic forcing. The likelihood 
of such drought events defined by Pr-ET is around 
9.9% (P1) (8.2%–11.5%) from the 525 samples of 
2018 in the Factual experiment but only 0.6% (P0) 
(0.05%–0.9%) in the Counterfactual experiment of 
HadGEM3-A-N216. The risk ratio (P1/P0) is approxi-
mately 17 (10–165), suggesting that human influences 
have increased the risk of such a drought event by 17 
(10–165) times in year 2018 in HadGEM3-A-N216. 
The increase in the risk of such droughts event in 
2018 is mainly caused by a higher probability of 
extreme precipitation deficit with human impact, 
which is 12.2% (5.3%–12.0%) in Factual but only 
1.5% (0.6%–2.1%) in Counterfactual, with a risk ratio 
around 8.0 (5–19) (Fig. 2b). U850 also shows a shift 
toward an extreme weak tail (Fig. 2c). The events with 
U850 such as observed in 2018 never occur from the 
525 members of HadGEM-N-216 either in the Fac-
tual or Counterfactual experiment. By lowering the 
threshold of U850 from one-in-70 years (−2.1 m s–1) 
to one-in-20 years (−1.0 m s–1), the likelihood of such 
events is about 0.1% in the 2018 Factual experiment, 
whereas it still never occurs in the 2018 Counter-
factual experiment. CAM5 also supports the results 
from HadGEM3-A-N215, while the events similar to 
2018 never occur in the Counterfactual world. Thus, 
risk ratio cannot be obtained from CAM5.

The width for GEV distributions of the three 
indices in Factual is comparable with that in Coun-
terfactual, but with a shift in mean states toward a 
weaker magnitude. It demonstrates that the mean 
state of circulation in Factual is weaker than that in 
Counterfactual, which increases the likelihood of 
extreme weak U850 events and thus extreme drought 
in South China. Therefore, the 850-hPa wind dif-
ference between 2018 Factual and Counterfactual 
is examined (Figs. 2d,h). Their differences show the 
similar anomalies as observed in 2018, with anoma-
lous lower-level divergence over the Maritime Conti-
nent, suggesting that anthropogenic forcing plays an 
importance role in the weakened Walker circulation 
in 2018 late spring. Thus, anomalous easterly winds 
are seen over (5°–20°N, 90°–120°E), increasing the 
likelihood of extreme weak U850 in the Factual ex-
periment (Figs. 2c,g).

Under anthropogenic forcing, an El Niño–like SST 
warming pattern over the tropical Pacific Ocean un-
der global warming and east–west SST gradients over 
the tropical Indo-Pacific Ocean are seen in 2018 late 
spring. Those SST anomaly patterns could both con-

tribute to a weakened Walker circulation (Figs. 2d,h, 
Held and Soden 2006; Tokinaga et al. 2012). Con-
sequently, the anomalous easterly winds are shown 
over the north Indian Ocean under anthropogenic 
forcing in the two models, increasing the likelihood 
of extreme late onset of the East Asian summer 
monsoon. In comparison, the circulation difference 
between Factual and Counterfactual is much stronger 
in HadGEM3-A-N216 relative to CAM5.

We further investigated the results from the full 
historical simulations to verify the robustness of the 
attributable results. The shifts toward the extreme 
weak tail of Pr-ET, Pr, and U850 under anthropogenic 
forcing can also be detected (Fig. ES2). In historical 
simulation, the risk ratio of the 2018 drought event 
estimated by Pr-ET is about 8 (2–42) and 75 (36–1389) 
in HadGEM3-A-N216 and CAM5, respectively, and 
4 (2–14) and 58 (33–432) estimated by Pr. Similar to 
Fig. 2d, there is a weaker Walker circulation with east-
erly winds anomalies to the south of Bay of Bengal in 
the Factual experiment relative to the Counterfactual 
experiment associated with the same non-uniform 
distribution of SST warming under anthropogenic 
forcing (Figs. ES3c,d). A parallel analysis using the 
CAM5 simulations is similar to those based on the 
HadGEM3-A-N216, supporting that our findings 
have less model dependence.

CONCLUSIONS. An exceptional rainfall deficit 
combined with record-breaking warm temperatures 
ranked 2018 late spring as the second driest year 
since 1951. The extremely late onset of the SCSSM 
in 2018 played a major role, characterized by east-
erly anomalies to the south of the Bay of Bengal. We 
find that anthropogenic forcings have increased the 
likelihood of the observed 2018 late spring drought 
in South China by 17 times in HadGEM3-A-N216, 
and such events similar to 2018 would never occur 
in the CAM5 Counterfactual experiment. A weak-
ening of the Walker circulation in late spring under 
anthropogenic forcing increases the likelihood of 
extreme weak westerly winds and then the occurrence 
of extremely late onset of SCSSM, and subsequently 
extreme drought over South China. The increase in 
drought risk of South China poses serious challenges 
for decision makers and the society as whole for water 
resource management and economic development.
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Fig. 2. GEV distributions of the April–May mean (a) Pr-ET and (b) precipitation (mm day−1) averaged 
over South China with (Factual; red) and without (Counterfactual; blue) anthropogenic climate changes 
constructed for 2018 with HadGEM3-A. (c) As in (a) and (b), but for the 850-hPa zonal wind averaged 
over the red box in Fig. 1f. The gray lines denote the thresholds of drought events as observed in year 
2018 except in (c), which shows the U850 with a 20-yr return period. (d) Difference in April–May mean 
850-hPa winds and sea surface temperature (SST) between the 525 members mean of the Factual and 
Counterfactual experiments for the year 2018. To show the impact of non-uniform distribution in SST 
warming with anthropogenic forcing on circulation changes, we first get the SST difference between 
Factual and Counterfactual and then remove its area-average mean over 40°S–40°N. (e)–(h) As in 
(a)–(d), but for the results from CAM5.
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ANTHROPOGENIC INFLUENCE ON 2018  
SUMMER PERSISTENT HEAVY RAINFALL  

IN CENTRAL WESTERN CHINA
Wenxia Zhang, Wei Li, Lianhua Zhu, YuanYuan Ma, LinYun Yang, Fraser C. Lott,  

Chunxiang Li, siYan Dong, siMon F. B. tett, BuWen Dong, anD Ying sun

During mid-June to mid-July 2018, parts of 
Sichuan, Gansu, and Shaanxi provinces in China 
were affected by a persistent heavy rainfall event. 

Accumulated rainfall during the four-week period 18 
June to 15 July was 38% above the 1961–2010 clima-
tology. This was very close to the record (44% set in 
2016) for maximum summertime four-week rainfall 
since 1961 (Figs. 1a,b). During this persistent rainfall 
event, the maximum 1-day rainfall was the fifth most 
extreme in the wet season on record. This persistent 
intense rainfall event caused floods, landslides, and 
house collapses, affecting 2.9 million people and 
resulting in a reported direct economic loss of over 
8.9 billion Yuan (1.3 billion U.S. dollars; National 

Disaster Reduction Commission; https://reliefweb.
int/disaster/tc-2018-000110-chn).

Central western China is located to the east of 
the Tibetan Plateau and in the marginal East Asian 
monsoon region. Summer heavy rainfall here is 
mainly caused by large-scale circulation anomalies 
involving the western North Pacific subtropical high 
(WNPSH) and southwest monsoon trough, as well as 
mesoscale and synoptic-scale weather systems such 
as Tibetan plateau vortices (Zhou and Yu 2005; Dong 
et al. 2007; Ueno et al. 2011; Xiang et al. 2013; Chen 
and Xu 2016). Anthropogenic influences have been 
found on extreme rainfall events in parts of China, 
particularly to increase the intensity of short-term 

Anthropogenic forcing has reduced the probability of summer persistent heavy rainfall  

in central western China similar to 2018 by ~47%, but increased that of daily extremes  

by ~1.5 times, based on HadGEM3-GA6 ensembles.
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storms (Burke et al. 2016). Furthermore, understand-
ing how anthropogenic forcings affect the duration 
and intensity of heavy rainfall events is important 
(e.g., Burke and Stott 2017). This study examines how 
human activities have affected persistent heavy and 

daily extreme rainfalls in 2018 summer over central 
western China.

DATA AND METHODS. The 2018 rainfall event 
was largely confined to 30°–38°N, 100°–110°E (black 

Fig. 1. (a) Observed rainfall anomalies accumulated during 18 Jun to 15 Jul 2018 relative to the 1961–2010 clima-
tology over the same period (%). The black box denotes central western China (30°–38°N, 100°–110°E). (b) Time 
series of accumulated rainfall during 18 Jun to 15 Jul (bar) and Rx28day for June to August (red line) for the black 
box in (a), in percentage anomalies relative to 1961–2010. (c) GEV fit (red line) of observed Rx28day with 95% 
confidence intervals. The crosses are estimated from the empirical distributions of the observed Rx28day with 
the purple square denoting the 2018 event. Also shown are the regression of (d) column integrated moisture 
convergence (shading; mm day−1) and 850-hPa horizontal winds (vector; m s-1), (e) total column water vapor 
(mm), and (f) sea level pressure (Pa) onto standardized rainfall anomalies over central western China during 
18 Jun to 15 Jul for 1961–2018.
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box in Fig. 1a). Gridded daily rainfall observations 
(0.5° × 0.5°) for 1961–2018 are from the China Meteo-
rological Administration, using ~2400 stations over 
China with rigorous quality control (Shen et al. 2010). 
Daily circulation fields are from the NCEP–NCAR 
Reanalysis 1 (2.5° × 2.5°; Kalnay et al. 1996).

We use the latest Met Office HadGEM3-GA6-
based attribution system at N216 resolution (here-
after simply HadGEM3-A; ~60 km at midlatitudes; 
Ciavarella et al. 2018). This attribution system com-
prises a pair of multidecadal ensembles, one with both 
natural and anthropogenic forcings (Historical) and 
the other with time-varying natural forcings and all 
anthropogenic forcings fixed at 1850 levels (Histori-
calNat) and are described in the online supplemental 
material. The 2018 ensembles (termed HistoricalExt 
and HistoricalNatExt) are used in the attribution 
analysis.

We investigate the duration and intensity of heavy 
rainfall. The persistent heavy rainfall event is defined 
as the maximum accumulated rainfall over two to 
four weeks from June to August (hereafter Rx14day, 
Rx21day, and Rx28day), to avoid selection biases in 
the duration of events and test the robustness of the 
results. These three indices in 2018 summer were ob-
served to be the second highest on record since 1961. 
The daily extremes are represented by the maximum 
1-day and 3-day rainfalls (Rx1day, Rx3day), which, in 
summer 2018, were the fifth and third most extreme 
on record. Here Rx1day is defined as the summer 
maximum of regional average daily rainfall, consid-
ering that the occurrence of the Rx1day total in 2018 
was associated with and occurred during the persis-
tent rainfall. We mainly show results for Rx28day and 
Rx1day for conciseness.

As the model overestimates rainfall amount over 
this region compared to observations by 13% for the 
1961–2010 climatology (see Figs. S1a,b in the online 
supplemental material), indices are normalized. We 
employ two methods of normalization. 1) RxNday 
(N = 1, 3, 14, 21, 28) is expressed as a percentage 
anomaly relative to the 1961–2010 climatology of 
RxNday. The Rx28day (Rx1day) in summer 2018 is 
38% (27%) above the corresponding 1961–2010 clima-
tology. 2) Daily rainfall is divided by the 1961–2010 
June to August mean rainfall and then RxNday is 
computed (expressed in %). Thus, the intensity of 
Rx28day (Rx1day) in 2018 is 1.9 (5.5) times of the 
summer daily rainfall climatology. The two methods 
of normalization effectively correct the wet bias in the 
simulated rainfall indices (Figs. S2a–c). We show the 
results based on the first method of normalization 
in Figs. 2a–g. The two methods yield quantitatively 

consistent results (Figs. S2d–f), confirming the ro-
bustness of our results.

As the normalization only corrects the model 
climatologies of rainfall indices, we further evaluate 
the simulated heavy rainfall variability against ob-
servations using a Kolmogorov–Smirnoff (K-S) test. 
We fit the generalized extreme value (GEV) distribu-
tion to the rainfall indices and use it to estimate the 
occurrence probability and return periods for both 
observations and simulations. To estimate the chang-
ing likelihood due to anthropogenic forcing, the risk 
ratio (RR = PALL/PNAT) is calculated using the GEV fit, 
which compares the occurrence probability between 
the HistoricalExt under all forcings (PALL) and His-
toricalNatExt under natural forcings only (PNAT). The 
risk ratio uncertainty is estimated via bootstrapping 
1000 times, by resampling all ensemble members 
with replacement, and we show, as bracketed ranges 
after the value, the 5–95th percentiles of the empirical 
distribution throughout.

RESULTS. The observed Rx28day in summer 2018 
(38% above climatology) corresponds to a 1-in-60-yr 
event in the observed records, based on the GEV fits 
(Fig. 1c). This type of anomalous rainfall, associated 
with enhanced moisture convergence, is primarily 
driven by enhanced low-level southerly winds car-
rying warm moist air from the western Pacific. This 
in turn is associated with the intensification and 
westward extension of WNPSH, and anomalous 
atmospheric moisture availability (Figs. 1d,f).

It is crucial for the model to realistically repro-
duce the large-scale circulations responsible for 
rainfall events. Here we evaluate the simulated 
summer mean rainfall and circulation interannual 
variability, which gives a background relevant to 
persistent heavy rainfalls. For interannual variations, 
HadGEM3-A captures the large-scale circulation 
anomalies responsible for the anomalous rainfall in 
the target region well. In both model and observa-
tions, heavy rainfall is associated with low-level 
anticyclonic anomalies from eastern China to the 
western Pacific, favoring southwesterly moisture 
transport to this region (Figs. S1c,d). Burke and Stott 
(2017) report that HadGEM3-A can reproduce the 
main features of the East Asian summer monsoon 
(EASM), although the simulated mean WNPSH 
and EASM circulation is weaker and shifted east 
compared with observations (Figs. S1a,b; Rodríguez 
et al. 2017). Thus, the model generally reproduces 
the physical processes related to seasonal rainfall 
anomalies, which are relevant to persistent heavy 
rainfalls examined in this study.
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The distributions of nor-
malized heavy rainfall in the 
model and observations can-
not be distinguished using 
the K-S test (p value > 0.05; 
Figs. 2a,b). We then compare 
the distributions of heavy 
rainfall in the HistoricalExt 
and HistoricalNatExt ensem-
bles for 2018. For Rx28day, 
there is a shift toward weak-
er events if anthropogenic 
forcing is included, indicat-
ing a reduced probability 
of persistent heavy rainfalls 
(Figs. 2c,e). PNAT for Rx28day 
> 38% above climatology is 
0.070 (0.055–0.083), which 
reduces to 0.037 (0.028–
0.046) for PALL. This gives a 
risk ratio of 0.53 (0.37–0.77; 
Fig. 2g), implying that the 
likelihood of the persistent 
heavy rainfall with a magni-
tude similar to 2018 summer 
in central western China is 
reduced by approximately 
47% due to anthropogenic 
forcing by the best estimate.

For daily extremes, how-
ever, the distribution shifts 
toward intense events in 
HistoricalExt compared to 
HistoricalNatExt (Fig. 2d). 
Hence, anthropogenic forc-
ing has increased the prob-
ability of Rx1day like that 
in summer 2018 from 0.075 
(0.060–0.088) for PNAT to 
0.111 (0.091–0.128) for PALL, 
along with shortened return 
periods (Fig. 2f). This gives a 
risk ratio of 1.48 (1.14–1.93; 
Fig. 2g).

Thus, anthropogenic forc-
ing has reduced the prob-
ability of persistent heavy 
rainfalls, but increased that of 
daily extremes. The risk ratio 
remains above one for Rx1day 
and decreases consistently as 
the duration of heavy rainfall 
increases (Fig. 2g).

Fig. 2. (a),(b) Distributions of normalized Rx28day and Rx1day for observa-
tions (black) and Historical all-forcing simulations (red) for 1961–2013. The 
thin red lines denote individual members. The p values for the K-S test are 
shown at top right. (c),(d) GEV fits and (e),(f) return periods of normalized 
Rx28day and Rx1day for HistoricalExt (red) and HistoricalNatExt (blue) 2018 
simulations. The dashed black lines denote the observed event in 2018. (g) 
The best estimates (blue lines) and 90% confidence intervals (gray shadings) 
of risk ratio for different rainfall indices. Also shown are multi-member mean 
differences of JJA mean rainfall and (h) 850-hPa winds, (i) near-surface air 
temperature, and (j) specific humidity between HistoricalExt and Historical-
NatExt ensembles. Dots indicate 10% significance level for the shaded fields.
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Then why has anthropogenic forcing caused op-
posite changes in the probabilities of persistent heavy 
and daily extremes? Largely fueled by moisture con-
vergence, the intensification of daily extreme rainfall 
is related to atmospheric moistening as temperature 
rises under anthropogenic forcing (Figs. 2i,j; Allen 
and Ingram 2002; Trenberth et al. 2003).

The weakened persistent heavy rainfalls under 
anthropogenic forcing are consistent with the signifi-
cantly reduced EASM rainfall, due to the weakened 
EASM circulation (Fig. 2h). Thus, the weakened back-
ground mean circulations in response to anthropo-
genic forcing are unfavorable for summer persistent 
heavy rainfalls in central western China.

Further disentangling the contributions from 
greenhouse gases (GHG) and other anthropogenic 
forcings, specifically aerosols, would improve un-
derstanding of the attribution outcome (e.g., Rimi 
et al. 2019; Kumari et al. 2019). Despite the lack of 
separate forcing experiments from HadGEM3-A, we 
suspect that the weakening of the EASM and persis-
tent heavy rainfalls due to anthropogenic forcings 
is largely induced by aerosols. These overwhelm the 
GHG-induced intensification of EASM and heavy 
rainfalls, based on physical understandings estab-
lished in many previous studies using the CMIP5 
ensemble (Song et al. 2014; Li et al. 2015; Zhang and 
Li 2016) and single models (Burke and Stott 2017; 
Tian et al. 2018).

However, with the future reductions in aerosols 
and continued increases in GHG, the probabilities 
of both daily and persistent heavy rainfalls in central 
western China would robustly increase, along with 
a wetter EASM, according to the CMIP5 ensemble 
(Table S1 and Figs. S2g–i; future projections directly 
comparable to the HadGEM3-A attribution runs are 
not available). This is consistent with previous studies 
indicating a general intensification in EASM circula-
tion (Christensen et al. 2013; Wang et al. 2014) and 
persistent extreme rainfalls in East Asia (Chevuturi 
et al. 2018) under future warming. As such, the at-
tribution outcome for the present day is not a simple 
analog for the future climate and the adverse impact 
of GHG-induced warming on f looding risks may 
exacerbate in the future.

We repeat our analysis with the northern bound-
ary of the region modified from 38° to 40°N and 
find similar risk ratios. However, the model’s ability 
to capture the persistent heavy rainfall variability 
decreases. This is possibly because the larger region 
additionally includes different climate regimes (cf. 
dashed and solid boxes in Fig. S1a), adding complexity 
to the rainfall variations. It implies the importance 

of selecting regions based on physical considerations 
(e.g., climate regimes) when testing the spatial scales.

CONCLUSIONS. We show that anthropogenic 
forcing has opposing contributions to the probabili-
ties of persistent and daily heavy rainfalls in the cur-
rent climate. Anthropogenic forcing has reduced the 
probability of 2018 summer persistent heavy rainfall 
in central western China by ~47%, but increased that 
of daily extremes by ~1.5 times. This result is robust 
against different choices of events and methods of 
normalization. While it is a caveat of the study that 
the attribution results are based on a single-model 
ensemble, the model’s ability to generally reproduce 
the large-scale circulation anomalies related to sea-
sonal rainfall anomalies enhances the confidence in 
the results.

However, the attribution result for the present day 
is not analogous to what may be experienced in future 
with reduced aerosols, making decision-making for 
f loods in this region more challenging. The cur-
rent state-of-the-art climate models actually project 
increasing probabilities of both daily and persistent 
heavy rainfalls in this region. Further disentangling 
the contributions of GHG and anthropogenic aerosols 
on the risks of heavy rainfall, as well as quantification 
of future risks, needs to be explored more.
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T he averaged near-surface air temperature (Ta) of  
 July–August 2018 over Northeast China is  
 ~1.73°C above the 1971–2000 mean, the highest 

since 1961. One-third of the stations in the region 
broke the historical record (Figs. 1a,b), which posed 
a great threat to local ecosystems and human health 
because this region has seldom experienced such 
extreme heats in previous decades (Chen et al. 2019).

In addition to influences from global warming, 
summer hot days over Northeast China are typically 
accompanied by local anticyclonic anomalies (Chen 
et al. 2019; Wu et al. 2011), which provide favorable 
conditions for increased solar radiation-induced 
diabatic heating due to reduced cloud cover and 
subsidence-induced adiabatic heating (Chen and Lu 
2015; He et al. 2018). Therefore, relative contributions 
from atmospheric circulation anomaly and global 

warming to the probability of such extreme summer 
heats are first investigated.

More importantly, we further quantify contribu-
tions of warming-induced circulation changes to 
such summer heats. Global warming may induce 
atmospheric circulation changes, which in turn can 
influence the intensity and frequency of heat waves 
(Horton et al. 2015; Zhou et al. 2019). However, few 
studies have quantified this effect, likely due to weak 
signal of climate change compared with large natural 
variability in atmospheric circulation. Thanks to the 
acceptable performance of CMIP5-simulated circula-
tions at monthly time scales (see Figs. ES1 and ES2 in 
the online supplemental material), we make such an 
attempt to estimate the contribution from warming-
induced circulation changes to the 2018 summer heat. 
Besides, the urban heat island effect makes Ta over 
urban areas higher than that of rural regions (Zhou 
et al. 2019), which could intensify summer heat. The 
contribution from urbanization to the 2018 summer 
heat is also examined in this study.

Therefore, this study tries to answer three ques-
tions: 1) What does the extreme summer heat of 
2018 over Northeast China look like in a historical 
context? 2) How much does an anticyclone contribute 
to the 2018 summer heat? 3) What are relative roles of 
urbanization, global warming, and warming-induced 
circulation changes in forming the 2018 summer heat?

DATA AND METHODS. Daily Ta from 1961 to 
2018 at ~690 meteorological stations over Northeast 
China (Fig. 1a) were collected (http://data.cma.cn/). 
The Ta dataset has undergone quality control tests in-
cluding outlier and duplicates identification, and spa-
tial and temporal consistency checks (Zhou et al. 2018).

CONDITIONAL ATTRIBUTION OF THE 2018 SUMMER  
EXTREME HEAT OVER NORTHEAST CHINA:  

ROLES OF URBANIZATION, GLOBAL WARMING, AND 
WARMING-INDUCED CIRCULATION CHANGES

Chunlüe Zhou, deliang Chen, KaiCun Wang, aiguo dai, and dan Qi

The probability of the record-breaking summer heat of 2018 over Northeast China  

was increased by a combination of human-caused climate change influences  

on thermodynamics and circulation, and urbanization.
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Based on Ren et al. (2015) and Zhou et al. (2019), 
30 rural stations (stars in Fig. 1a) were identified in 
comparison with urban stations for quantifying the 

effect of urbanization (Sun et al. 2016). The latest 
stable night lights in 2013 from the Defense Meteo-
rological Satellite Program (http://ngdc.noaa.gov/eog/

Fig. 1. (a) Spatial pattern of the observed July–August temperature (Ta) anomalies in 2018 over Northeast China. 
Stations having record-breaking July–August (daily) temperatures in 2018 summer since 1961 are marked with 
black edges (dots). Urban and rural stations are plotted as color-filled circles and pentagrams. (b) Time series 
of Z500 anomalies (in black) over the study region, and Ta over urban (in red), rural regions (in cyan) and their 
difference (in light black), relative to the period 1971–2000. Squares represents broken records in 2018. (c) 
Circulation regime in July–August 2018 (in red/blue contours). Correlations between the detrended region-
averaged Ta and gridded Z500 are shown as color-filled circles (p < 0.01). (d) CMIP5-multi-ensemble-mean 
Z500 anomalies under high-correlation regimes from 40 ALL simulations. (e) Scatterplots of Ta with Z500 and 
global-mean Ta. Correlations were calculated before and after detrending (coefficients and significance levels 
in square brackets). (f) GDP fit (in solid) of Ta.
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dmsp) were further used to show urban (light index 
>15) and rural regions (≤15). The July–August 2018 
circulation anomaly regime (Fig. 1c) was depicted by 
the 2.5° × 2.5°500-hPa geopotential height (Z500) 
from NCEP-R1 (https://www.esrl.noaa.gov/) (Kalnay 
et al. 1996).

CMIP5 model outputs (http://cmip-pcmdi.llnl.gov/
cmip5/) (Taylor et al. 2012) were used to quantify hu-
man influences on the probability of the 2018 sum-
mer heat. We first tested probability distributions of 
July–August Ta and Z500 anomalies from the CMIP5 
historical all-forcings (ALL) simulations against ob-
servations via a Kolmogorov–Smirnov test (p > 0.05). 
Second, we assessed and selected the ALL simulations 
with a significant positive temporal correlation (p < 
0.05) between the detrended July–August Ta and Z500 
anomalies. As a result, 40 out of 54 simulations from 
11 models were selected for this study, with the ALL 
runs extended through 2018 using the RCP4.5 runs 
(58 × 40 samples) and the corresponding natural-
forcings-only runs (NAT) ending in 2012 (52 × 40 
samples; Table ES1). Detailed time series can be seen 
in Fig. ES1.

To separate contributions from global warming 
and warming-induced circulation changes to the 
probability of the 2018 summer heat, following Chris-
tidis and Stott (2015), we defined years with CMIP5-
based circulation regimes in individual model runs 
similar to the observed in July–August 2018 (i.e., a 
deep anticyclone within black rectangle in Fig. 1c) 
as high correlation years (pattern correlation ≥ 0.5; 
CMIP5 multimodel mean Z500 anomalies in Fig. 1d; 
more details in Fig. ES2), and defined neutral years 
with pattern correlations of −0.1 to 0.1. We realized 
that global warming in ALL runs will increase Z500 
over most of globe including Northeast China, and 
such a background change in Z500 may not necessar-
ily intensity the anomalous anticyclonic circulation 
over Northeast China, which requires further inves-
tigation. Therefore, the Z500 anomalies gradient was 
adopted to provide a better measure of the change in 
the circulation strength in this study.

To be consistent, observation and model data were 
converted into anomalies relative to the 1971–2000 
mean; first regridded onto thirty 2.5° × 2.5° grids and 
then area-averaged over the study region (110°–130°E, 
35°–50°N; Fig. 1a). Several statistical techniques were 
exploited:

1) Following Schaller et al. (2016), generalized 
Pareto distribution (GPD) with a properly selected 
threshold was used to fit the July–August Ta and 
Z500 anomalies.

2) The probabi lity ratio [PR1 = P(Ta-urban|urban) 
/P(Ta-urban|rural)] was first calculated to quantify 
the urbanization effect on the likelihood of the 
2018 summer heat (defined as ≥1.73°C averaged 
in urban regions over Northeast China). Here, 
P(Ta-urban|urban) and P(Ta-urban|rural) represent the prob-
abilities of Ta anomalies exceeding 1.73°C in 
urban and rural scenarios.

3) After excluding the urban heat island effect, an-
other PR2 = P(Ta-rural|ALL-highZ500)/P(Ta-rural|ALL-neutralZ500)  
was calculated to estimate the role of an anti-
cyclone existence in the probability of the 2018 
summer heat. Here, P(Ta-rura l|ALL-high Z500) and 
P(Ta-rural|ALL-neutralZ500) represent the probabilities 
of Ta anomalies to exceed 1.64°C (averaged in 
rural regions) under the high and neutral Z500 
regimes in the ALL runs. PR3 = P(Ta-rural|ALL-highZ500) 
/P(Ta-rural|NAT-highZ500)] was used to quantify the in-
fluence of global warming (i.e., human-induced 
thermodynamical contribution). To further 
quantitively estimate the role of anthropogenic 
warming-induced circulation changes (i.e., 
human-induced dynamical contribution), we 
applied Bayesian statistics (Gelman et al. 2013; 
Yiou 2017) to modify PR as PR4 = [P(ALL-highZ500) 
/P(NAT-highZ500)]·[P(highZ500|NAT-Ta-rural)/P(highZ500|ALL-Ta-rural)]. 
Here, P(Ta-rural|NAT-highZ500) represents the probability 
of Ta anomaly to exceed 1.64°C under the high 
Z500 regime in NAT runs; and P(highZ500|ALL-Ta-rural) 
and P(highZ500|NAT-Ta-rural) represent the probabilities 
of circulation anomaly regimes similar to the 
2018 observed regime when such extreme sum-
mer heats (≥1.64°C) occur in ALL and NAT runs. 
95% confidence intervals (CI) were estimated with 
a 1000-member bootstrap (with replacement) .

RESULTS. Role of the anticyclone. In 2018 summer, 
the 5,880-m contour of the western Pacific sub-
tropical high moved northwestward and brought the 
record-breaking anticyclone anomaly over Northeast 
China (black square in Fig. 1b) , leading to the record-
breaking summer heat of 2018 over both urban and 
rural areas (Figs. 1a,b). New daily Ta records were 
registered at stations near the center of the anomalous 
anticyclone (black dots in Fig. 1a). Figure 1c shows 
strong correlations between the detrended July–Au-
gust Ta and Z500 anomalies (associated with local 
anticyclones) with correlation coefficient (r) of 0.71 
(p = 0.00) in the study region (Fig. 1e).

The likelihoods of the 2018 summer heat in high-
correlation years (with the pattern shown in Fig. 1d) 
and neutral years in ALL runs are 11% (20 out of 224 
samples) and 2% (8 out of 437 samples), respectively 
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(Fig. 2a). In other words, an anomalous anticyclone 
could increase the PR to 6 (95% CI: 4–9; Fig. 2d).

Influence of urbanization. The record-breaking July–
August Ta anomalies of 2018 occurred not only in the 
urban areas (averaged 1.73°C; black-edged circles in 
Fig. 1a), but also at rural stations (averaged 1.64°C; 
black-edged pentagrams in Fig. 1a). A Student’s t test 
of temperature differences in 2018 between the 2.5° 
× 2.5° urban and rural grids shows a significance 
level of 0.07. The metropolitan area has vast built-up 
surfaces and frequent human activities, leading to 
higher temperatures than at rural stations (Fig. 1b). 
A GPD fit of the observed July–August Ta anomalies 
suggests that the 2018 extreme summer heat is a 1-in-
60-year event (95% CI: 30–500) for the urban regions 
and a 1-in-80-year event (95% CI: 40–105) for the rural 
regions (Fig. 1f).

Compared with the probabilities of Ta anomaly 
exceeding 1.73°C in urban and rural scenarios (based 
on PR1; Fig. 1f), urbanization increases the PR to 1.17 
(95% CI: 1–102) (Fig. 2e); that is, ~17% increase in the 
likelihood.

Influences of global warming and warming-induced circu-
lation changes. July–August Ta anomalies over North-
east China significantly correlate with July–August 
global-mean temperature (r = 0.56, p = 0.00) (Fig. 1e), 
implying a strong footprint of global warming on the 
2018 summer heat over Northeast China.

Compared with the probabilities of Ta anomaly 
exceeding 1.64°C under similar circulation regimes in 
ALL and NAT runs (based on PR3; Fig. 2a), we found 
that global warming has increases the probability by 
~78% (95% CI: 53%–128%; Fig. 2f).

Global warming has been argued to have caused 
atmospheric circulation changes that have altered 
regional extreme events in different ways (Horton 
et al. 2015; Schär et al. 2004; Zhou and Wang 2016), 
increasing attribution challenge of human-induced 
dynamical and thermodynamical contributions to 
odds of the event.

The probabilities of CMIP5-simulated circulation 
regimes similar to the 2018 observed regime over 
Northeast China (i.e., with pattern correlations be-
ing 0.5 or more) are almost equivalent in ALL and 
NAT runs (Fig. 2b), but the intensity of the circula-

Fig. 2. (a) Probability density of July–August temperature anomalies (Ta) under high (in solid) and neutral (in 
dash) regimes in 40 all-forcings (ALL; in red) and natural-forcing-only (NAT; in green) simulations. The thick 
black line is the observed Ta of July–August 2018 over rural regions. (b) Probability density of pattern correla-
tion coefficients (r) between CMIP5-based Z500 regimes and the 2018 observed regime in ALL/NAT runs. (c) 
Probability density of Z500 anomaly gradients with r > 0.5. Dashed lines are their mean. (d) Probability ratio 
(PR) of the 2018 summer heat due to the occurrence of anticyclone. (e) PR due to urbanization. (f) PR due to 
human influences from human-induced dynamical (frequency and intensity) and thermodynamical changes.
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tion anomalies in high-correlation years increases 
by ~11% in ALL runs relative to NAT runs (mean 
of 2.29 vs 2.07 m per degree of latitude described by 
the Z500 anomaly gradient in Fig. 2c). These results 
imply that global warming has altered the Z500 field 
by strengthening the anomalous anticyclone over 
Northeast China, which in turn may have enhanced 
the severity of the 2018 summer heat.

Compared with the probabilities of Ta anomaly 
exceeding 1.64°C and circulation regimes similar 
to the 2018 observed regime in ALL and NAT runs 
(based on PR4), we found that an increased likelihood 
by ~27% (95% CI: 12%–59%) is attributable to the 
warming-induced circulation intensity change over 
Northeast China, while the warming-induced circula-
tion frequency change has no significant impact on 
the likelihood (Fig. 2f).

CONCLUSIONS AND DISCUSSION. Our 
analyses based on surface observations and reanalysis 
fields indicate the record-breaking temperature and 
circulation anomalies in 2018 summer over Northeast 
China. Return period of the 2018 summer heat is 1-in-
60 years for the urban areas and 1-in-80 years for the 
rural areas. CMIP5-based analyses suggest that the 
existence of an anomalous anticyclone over Northeast 
China increases the odds of the 2018 summer heat to 
6.16 times that without such an anticyclone.

Based on the GPD fits, we found that urbanization 
over the metropolitan areas might have increased 
the likelihood of the 2018 summer heat by ~17%. 
After excluding the urbanization effect, CMIP5-
based PR analyses suggest that anthropogenic global 
warming may have increased the probability of the 
2018 summer heat over Northeast China by ~78%. 
Global warming has strengthened the anticyclonic 
circulation by ~11%, which may have increased the 
likelihood (by ~27%) of the 2018 summer heat over 
Northeast China.

In summary, an anomalous anticyclonic circula-
tion over Northeast China was the main cause of the 
2018 summer heat. Global warming and warming-
induced circulation intensity change have increased 
the odds, and urbanization has further exacerbated 
the 2018 summer heat over Northeast China.

The non-stationarity of the time series would 
consistently increase the attribution uncertainties 
for all the factors (Figs. 2d,e), but it does not change 
our main conclusions.
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In the summer (July–August) of 2018 a record-
breaking heatwave (HW) spread across Northeast 
Asia (NEA; 34°–40°N, 120°–143°E; Figs. 1a–c). 

Maximum 2-m air temperature (Tmax) anomalies over 
NEA in that summer were about +1.5°C, more than 
1.5 standard deviations above the average using the 
three reanalysis datasets (Fig. 1d). It was the second 
highest anomaly since 1980. The subtropical high 
(Tibetan high) in the middle (upper) troposphere 
moved northwestward (northeastward) with a posi-
tive anomaly over NEA (see Figs. ES1a,b in the online 
supplemental material). An equivalent barotropic 
structure (Figs. ES1a,b,f) characterized by large-scale 

subsidence emerged, providing a favorable condition 
for extreme hot days in NEA (JMA 2018).

Several processes might have contributed to the 
2018 HW (Enomoto 2004; Zhu et al. 2011; Lee and 
Lee 2016). Anthropogenic warming has contributed 
to increasing HW frequency and intensity in recent 
decades (Song et al. 2015; Sippel et al. 2016; Oliver 
et al. 2018). Natural variability can also contribute to 
HWs over Asia. Anomalous cyclonic circulation over 
the Indo-Pacific warm pool region inducing more 
active convection (Fig. ES1e) and diabatic heating 
could induce high temperature anomalies near NEA 
through exciting a Rossby wave train (Chen and Lu 
2014; Lee and Lee 2016). This teleconnection may re-
sult from tropical sea surface temperature anomalies 
(SSTAs) associated with El Niño–Southern Oscillation 
(ENSO). Previous studies (e.g., Zhu et al. 2007; Wu et 
al. 2010; Lee and Lee 2016) identified a negative rela-
tionship between NEA summer temperature and the 
Niño-3.4 index (area-averaged SSTA over 5°S–5°N, 
170°–120°W). The Arctic Oscillation (AO) can also 
influence circulation anomalies over NEA via a strong 
circumpolar vortex (Fig. ES1f), shifting the location 
of the subtropical jet farther north (Fig. ES1c; Lee and 
Lee 2016). Matsumura and Horinouchi (2016) found 
that a negative Pacific decadal oscillation (PDO) phase 
with a warmer surface condition near NEA (Fig. ES1e) 
could lead to a positive geopotential height anomaly, 
which could also be related to NEA HWs. In this study, 
we address the impacts of anthropogenic forcing and 
natural variability (i.e., ENSO, PDO, and AO) on the 
occurrence of the 2018 NEA HW and quantify future 
projections of NEA HWs using a large ensemble of 
simulations from a global coupled model developed at 
the Geophysical Fluid Dynamics Laboratory (GFDL).

DATA AND METHODS. Daily Tmax is taken 
from three state-of-the-art reanalysis datasets: ERA-

EFFECTS OF ANTHROPOGENIC FORCING  
AND NATURAL VARIABILITY ON THE 2018 HEATWAVE  

IN NORTHEAST ASIA
Yitian Qian, HiroYuki MurakaMi, pang-cHi Hsu, and saraH B. kapnick

The Northeast Asian 2018 heatwave is an unlikely event without anthropogenic forcing;  

only two have occurred over the last 40 years. By 2050 they will become 1-in-4-yr events.
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Fig. 1. Daily Tmax 2018 summer (July–August) anomaly (shading) in (a) ERA-Interim, (b) MERRA2, and (c) JRA55. 
Black dots (blue pluses) indicate that extreme (modest) HW events occurred for more than 10 days. Interannual 
variability averaged over NEA (34°–40°N, 120°–143°E; green box in (a)–(c) for (d) daily maximum air tempera-
ture anomaly (K), (e) extreme HWD anomaly (days), and (f) modest HWD anomaly (days). Black lines denote 
individual ensemble members of AllForc (35 total). Blue lines denote the average of three reanalysis datasets 
(ERA-Interim, MERRA2, and JRA-55). Shadings represent the range from minimum to maximum among the 
three reanalysis datasets (blue) and 35 ensemble members of AllForc (gray). Blue dashed lines represent ±1.5 
standard deviations (σ) of the ensemble mean of the three reanalysis datasets during 1980–2018.
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Interim (Dee et al. 2011), MERRA2 (Gelaro et al. 
2017), and JRA-55 (Kobayashi et al. 2015). Large-scale 
atmospheric variables are derived from ERA-Interim. 
Sea surface temperature (SST) is obtained from 
HadISST1 (Rayner et al. 2003) and precipitation is 
obtained from the Global Precipitation Climatology 
Project (Adler et al. 2003). All datasets are regridded 
to 1.5° × 1.5°. Observed natural indices (Niño-3.4, 
PDO, and AO) were downloaded from their official 
websites (NOAA/ESRL 2019; NOAA 2019; NOAA/
CPC 2019). All natural indices are averaged in sum-
mer (July–August) and normalized to 1980–2018.

We conduct a suite of simulations using the 
50-km-mesh GFDL Forecast-oriented Low Ocean 
Resolution model (FLOR; Vecchi et al. 2014). We 
examine two types of multidecadal simulations. One 
of them is a 35-member multidecadal simulation 
experiments (AllForc), in which the CMIP5 (phase 5 
of the Coupled Model Intercomparison Project) his-
torical natural, anthropogenic, and aerosol forcings 
up to 2005 are prescribed; future projected levels are 
based on the CMIP5 RCP4.5 scenario for 2006–50. 
AllForc is compared with a 30-member 1941 forcing 
experiments (1941Forc), in which anthropogenic 
radiative forcing is fixed at the year 1941 value for 
years 1941–2050; natural forcing varies from year to 
year in this experiment (Murakami et al. 2015, 2017; 
Zhang et al. 2017).

We define three HW-related variables in this 
study. First, we define the Tmax anomaly (TAnom). 
Observed and simulated TAnom is defined as the 
Tmax anomaly relative to the summer climatology 
over 1980–2018. Next we define two different heat 
wave day (HWD) events: modest and extreme. For 
modest HWD events, the 75th percentile of daily Tmax 
for each calendar day during 1 July–31 August with 
a 15-day window (e.g., 23 June–7 July on 1 July) over 
1980–2018 is selected. Thus, 585 samples (15 days × 
39 years) for observations and 20,475 samples (15 days 
× 39 years × 35 members) for AllForc were used. We 
define a modest HWD event when a daily Tmax exceeds 
the 75th percentile for at least seven consecutive days. 
An extreme HWD event is calculated in the same way, 
but when Tmax exceeds the 90th percentile for at least 
three consecutive days. HWDs are the total number 
of days that meet each HW criteria in a summer. Note 
that the simulated Tmax is calibrated by an inflation 
method to reduce model bias before computing HW-
related variables (Johnson and Bowler 2009; see the 
supplemental information).

Most of the grids over the NEA region experi-
enced both modest (blue pluses) and extreme (black 
dots) HWDs for more than 10 days in summer 2018 

(Figs. 1a–c). To obtain NEA area-averaged results, 
the three HW-related variables were first computed 
on individual grids, and then the area average was 
taken over the NEA domain. The anomalies of area-
averaged extreme and modest HWDs in 2018 were 
11.1 and 12.2, respectively; this is comparable to the 
year with the most HWDs since 1980: 10.2 and 12.7 
days in 1994 (Figs. 1e,f).

To assess the simulation ability of FLOR, the three 
HW-related variables in AllForc are compared with 
observations. AllForc can capture the amplitude of 
observed variability of the three HW-related variables 
well (Figs. 1d–f). Note that the observations are within 
the range of the ensemble spreads for all but for a few 
years, justifying our use of the FLOR model for our 
analysis.

To evaluate the fraction of attributable HW risk to 
anthropogenic forcing (FARAllForc; Jaeger et al. 2008), 
FARAllForc is defined as FARAllForc = 1 − (P1941Forc/PAllForc), 
where PAllForc (P1941Forc) is the occurrence probability of 
extreme HW years in AllForc (1941Forc). The occur-
rence probability of an extreme HW year like 2018 
[P(x)] in AllForc (PAllForc) and 1941Forc (P1941Forc) is
 

where VAR is a HW-related variable, and P(x) repre-
sents the probability of a year with VAR value being 
no less than x. Because the observed 2018 HW falls 
into a 95th percentile or higher extreme year dur-
ing 1980–2018, we choose x at the 95th percentile 
of all the VAR values from AllForc ensemble dur-
ing 1980–2018 [i.e., from 1,365 (35 members × 39 
years) sampling years]. The same x value is applied 
to the AllForc and 1941Forc ensembles to compute 
PAllForc and P1941Forc over each time period: 1941–79, 
1980–2018, and 2019–50. A FARAllForc value close to 
1 (ranging from −∞ to 1) implies that the extreme 
HW year is virtually impossible without an increase 
in anthropogenic forcing.

RESULTS. The probability density functions for 
HW-related variables in AllForc have similar distri-
butions with those of the observations, indicating 
reasonable simulations of the HW-related variables 
by FLOR (Figs. 2a–c). The three FARAllForc values are 
in the range of 0.75–0.82, indicating that the potential 
risk of extreme HW years increases with enhanced 
anthropogenic forcing.

Figures 2d–f compare PAllForc (light gray bars) 
with P1941Forc (dark gray bars) for each of the present 
decades (1980–2018), past decades (1941–79), and 
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future decades (2019–50). Compared with the rare 
occurrence of 0.05 (1.5 times per 30 years) of PAllForc 
during the present decades, P1941Forc is nearly zero, 
suggesting significant increase of probability due to 
anthropogenic forcing. Moreover, PAllForc in future 
decades is projected to increase substantially: up to 
0.24–0.28 (7–8 times per 30 years). This implies that 
an extreme NEA HW year like 2018 would occur 
about once every four years in the next three decades.

Potential inf luences of natural variability (e.g., 
ENSO, PDO, and AO) are also detected by comparing 
conditional PAllForc for which PAllForc is separately com-
puted during different phases of natural variability 
[colored markers in Figs. 2d–f; detailed methods are 
given in Murakami et al. (2015)]. The potential effects 
of natural variability on PAllForc are measured by the 
lengths of the colored lines. The increased conditional 
PAllForc during both the positive phase of the AO and 

Fig. 2. Probability distribution frequencies of (a) TAnom, (b) extreme HWDs, and (c) modest HWDs based on 
the three reanalysis datasets (black lines), 1941Forc (sky blue bars), and AllForc (pink bars) during 1980–2018. 
The thick dark blue lines represent the 95th percentile values in AllForc. FARAllForc values are shown. Also 
shown are PAllForc (light gray bars) and P1941Forc (dark gray bars) for (d) TAnom, (e) extreme HWDs, and (f) mod-
est HWDs during the past decades (1941–79), present decades (1980–2018), and future decades (2019–50). 
The solid (hollow) circles and triangles represent conditional probability of PAllForc during positive (negative) 
and neutral phases of the ENSO (blue markers), PDO (green markers), and AO (deep pink markers) of pres-
ent and future decades.
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the negative phases of the ENSO and PDO over the 
present decades indicates that the positive AO (+2σ) 
and negative PDO (−0.4σ) increase the probability 
of a HW event. However, the modest El Niño condi-
tion (+0.2σ) (Fig. ES2) reduces the likelihood of a 
HW event. Overall, the effect of natural variability 
on the occurrence of 2018 HW is not negligible, but 
appears smaller than that of anthropogenic forcing. 
However, it is uncertain if FLOR perfectly reproduces 
the observed relationship between natural variability 
and HW. This uncertainty reduces our confidence 
in making clear statements of changes in the influ-
ence of natural variability on regional HWs without 
further research.

CONCLUSIONS. A suite of large ensemble simu-
lations using FLOR allows us to explore the probabil-
ity of NEA HW events over the period of 1941–2050. 
We find that anthropogenic climate change increases 
the probability of the NEA 2018 HW event. Natural 
variability conditions (negative PDO and positive AO) 
may have also made the event more likely. Anthro-
pogenic forcing will make extreme HWs (like that in 
2018) 5 times more likely in future decades.
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In the summer of 2018, Northeast China was af-
fected by an unprecedentedly long and intense heat 
wave. The China Meteorological Administration 

issued 33 days of consecutive “high temperature-
alert” warnings from 14 July to 15 August in 2018. 
Record-breaking hot minimum temperatures 
were observed in a large area of Northeast China 
(34°–55°N, 105°–135°E) with a stable spatial pat-
tern on time scales of 20–40 days (Fig. 1a; see also 
Fig. ES1 in the online supplemental material). 
Further, minimum temperatures were more ex-
treme, with a much larger record-breaking area than 
maximum temperatures (Fig. ES1). On 30 July, the 
number of heat-related hospitalization admissions 
broke the historical record in Shenyang, a large 
city in Northeast China (http://news.lnd.com.cn 
/system/2018/08/01/000008645.shtml). The aqua-
culture industry in Liaoning Province suffered from 
economic loss of 6.87 billion renminbi (RMB) (www 
.zhonghongwang.com/show-256-103674-1.html). 

Thus, this unprecedented persistent and extreme heat 
wave event led to severe impacts, including increased 
human morbidity and mortality, reduced agriculture 
productivity, and increased strain on power systems 
and water supplies.

Anthropogenic warming has been shown to drive 
recent record-breaking heat and summer extremes 
in different regions of the world (Hansen et al. 2012; 
Lewis and Karoly 2013). Previous heat event attribu-
tion studies in China usually considered seasonal 
mean and maximum temperature covering a fixed 
period (e.g., Sun et al. 2016a; Ma et al. 2017), with few 
studies focusing on consecutive minimum tempera-
tures when there is the strongest signal in summer. 
Daily minimum temperature allows people and eco-
systems to recover from thermal stresses experienced 
during the previous day (Schwartz 2005) and is a 
strong predictor for human morbidity and mortality 
(Laaidi et al. 2012; Madrigano et al. 2015; Murage 
et al. 2017). Previous studies show that anthropo-
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genic influences, including anthropogenic emission 
of greenhouse gases and urbanization leading to the 
expansion of urban heat islands, has contributed to 
higher summer minimum temperatures in Eastern 
China (Sun et al. 2016b; Wang et al. 2017). Hence, this 
study aims to investigate whether anthropogenic in-
fluences have increased the frequency of the monthly 
time scale heat waves like the summer 2018 event over 
Northeast China.

DATA AND METHODS. Observations. We used 
observed daily minimum temperatures at about 2,400 
meteorological stations over China for the period 
1961–2018. These were quality-controlled and ho-
mogenized by National Meteorological Information 

Center of China (Ren et al. 2012). We also used daily 
atmospheric circulation field data from ERA-Interim 
(Dee et al. 2011), including geopotential height, hori-
zontal wind, and specific humidity.

Model. Simulations from the atmosphere model 
HadGEM3-A-N216 at a horizontal resolution of 0.56° 
× 0.83° were used in this study (Christidis et al. 2013; 
Ciavarella et al. 2018). Three ensembles were used:

• An 15-member ensemble of simulations for period 
1960–2013, in which the model is forced by ob-
served sea surface temperatures (SST) and sea ice 
concentrations (SIC) from HadISST (Rayner et al. 
2003), and a comprehensive package of historical 

anthropogenic atmospher-
ic forcing (Historical).

• A 525-member ensemble 
of simulations for 2018 
on ly  (cou nter fac t ua l 
world), driven with pre-
industrial atmospheric 
forcing and the anthro-
pogenic contribution re-
moved from SST and SIC 
(HistoricalNatExt; see the 
online line supplemental 
information for details).

• A second 525-member 
ensemble of simulations 
(factual world), driven as 
for “Historical” but for 
2018 only (HistoricalExt).

Event definition. An index of 
30-day moving average of 
daily minimum temperature 
anomalies (TNx30) over 
the study area was defined. 
First, to remove the seasonal 
cycle at each station, daily 
minimum temperature (Tmin) 
anomalies relative to the 
daily 1961–2013 climatol-
ogy were computed in each 
calendar day. We then grid-
ded these anomalies to the 
0.56° × 0.83° model resolu-
tion by averaging all station 
anomalies in each grid box. 
The gridded Tmin anomalies 
were then area averaged over 
Northeast China (34°–55°N, 

Fig. 1. Observed characteristics of the heat wave in Northeast China during 
12 Jul–10 Aug 2018, with maximum consecutive 30-day Tmin anomalies in 
summer 2018 (TNx30). (a) Spatial pattern of TNx30 (shading; unit: °C) rela-
tive to 1961–2013. Locations with record-breaking and second highest values 
since 1961 are shown with black and blue dots, respectively. (b) Time series 
of TNx30 anomalies over Northeast China (black rectangle shown in Fig. 1a) 
from 1961 to 2018. (c) Circulation field from ERA-Interim with specific hu-
midity anomalies (shading; unit: g kg−1) and 850-hPa moisture flux anomalies 
(vectors). The light black contours denote the 500-hPa geopotential height 
anomalies. The 12 Jul–10 Aug 2018 mean geopotential height (blue lines) and 
climatology (red lines) are also shown.
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105°–135°E), and finally used to calculate the hottest 
30-day running mean Tmin in summer (June–August) 
for each year. For model datasets, the same process 
was followed except rather than gridding the simula-
tions, grid points were used only if they were land and 
there were observations in the grid box. The anomaly 
of the index TNx30 in summer was used in this study 
and the value of 2018 event (2.15°C) was chosen as 
the threshold.

To estimate probabilities, generalized extreme 
value (GEV) distributions were fitted to both simu-
lated and observed data. A two-sided Kolmogorov–
Smirnoff (K-S) test was then applied to test if the 
distributions of the observations and historical simu-
lations from 1961 to 2013 are from the same popula-
tion. To estimate the anthropogenic contribution to 
the heat wave event like 2018 summer in Northeast 
China, the risk ratio (National Academies of Sci-
ences, Engineering, and Medicine 2016) defined as 
P(HistoricalExt)/P(HistoricalNatExt) was calculated, 
where P(HistoricalExt) and P(HistoricalNatExt) are 
the probability of the event in factual and counter-
factual world, respectively. We bootstrapped with 
replacement 1,000 times to generate PDFs, and then 
computed 1,000 risk ratios and then used that to 
compute uncertainties in risk ratios.

RESULTS. Observed events and model performance. 
In summer 2018, the regional average of TNx30 over 
Northeast China was 3 standard deviations of inter-
annual variability above the 1961–2013 climatology 
and the highest on record since at least 1961 (Fig. 1b). 
This heat wave was accompanied by positive geopo-
tential height anomalies over Northeast Asia, induced 
by the unprecedented northward shift of the western 
Pacific subtropical high (Fig. 1c; Liu et al. 2019). At 
low levels (850 hPa), anomalous northwestward 
moisture transportation from the warm Bohai Sea 
resulted in increased specific humidity (Fig. 1c) and 
consequently contributed to significant nighttime 
warming.

Model performance was evaluated using the 
ensemble mean of the historical ensemble, which 
reasonably reproduced the time series of TNx30 
anomalies, with a correlation coefficient of 0.70 
(Fig. 2a). This means that forcing, SST, and SIC 
variations explain about half of the observed vari-
ance in TNx30. The distributions of observed and 
simulated TNx30 for summers during 1961–2013 are 
also statistically indistinguishable based on the K-S 
test (p = 0.80; Fig. 2b). Such good performance of the 
HadGEM3-A-N216 simulations provides the basis for 
further attribution analysis.

Anthropogenic impact on the risk of heat waves. There 
is a shift of the PDF to warm anomalies from Histori-
calNatExt to HistoricalExt (Fig. 2c), indicating that 
anthropogenic influences have increased the prob-
ability of heat wave events. Since the magnitude of 
this event lies at the far warm-end tail of PDF, events 
like 2018 are very rare in the counterfactual world. 
Only one member in 525-member HistoricalNatExt 
ensemble exceeds the 2018 threshold. By contrast, the 
estimated probability is 0.02 in factual world. These 
indicate that the 2018-like night-time heat event is 
extremely rare without anthropogenic warming. The 
estimated return period of heat wave events hotter 
than 2018 is about one-in-60-years with anthropo-
genic warming, with 5th–95th percentile uncertainty 
ranges of 43–116 years (Fig. 2d). A second threshold 
was also selected, defined as the second-most extreme 
year (2017, with an anomaly of 1.55°C). For this 
threshold, the heatwave is 57 times more frequent in 
the factual world (P(HistoricalExt) = 0.17) than the 
counterfactual world [P(HistoricalNatExt) = 0.003], 
which confirms the role of anthropogenic warming 
in these heat events. In terms of return period, for a 
one-in-10-year event, the magnitude of TNx30 in 2018 
is estimated to be 1.7°C (1.7°–1.8°; 5th–95th) in the 
factual world, and 0.8°C (0.8°–0.9°; 5th–95th) in the 
counterfactual world (Fig. 2d). For a one-in-50-year 
event, the estimated magnitude of a heat event is 2.1° 
(2.0°–2.2°) and 1.2°C (1.1°–1.3°) in the counterfactual 
and factual worlds (Fig. 2d). The change in return 
level (0.9°C) between counterfactual and factual 
simulations is generally consistent with mean warm-
ing, as the shift in mean state between with (0.95°C) 
and without (−0.04°C) anthropogenic influence was 
0.99°C (Fig. 2c). Besides, the uncertainty range of 
return periods increases with the rarity of events. 
We repeat our analyses by using different durations 
of either a 20-day or 40-day moving average and 
find similar risk ratio, suggesting the robustness of 
the results.

CONCLUSIONS AND DISCUSSION. North-
east China experienced a record-breaking nighttime 
heat wave in 2018 summer. This kind of 30-day night-
time heatwave was a one-in-500-year (or less) event 
in the counterfactual world. Forced by anthropogenic 
forcing and the observed 2018 SSTs, it became a one-
in-60-year event.

This unprecedentedly long-lasting nighttime heat 
wave was also related to the northwestward shift of 
west Pacific subtropical high and the anomalous 
moisture transportation from the warm ocean. Addi-
tionally, the configuration of anomalous anticyclone 
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at 500 hPa over Northeast Asia during this heat event 
was reproduced with the six hottest simulations in 
study region (Fig. ES2), confirming the role of abnor-
mal high pressure system in this heat wave event. As 
increased occurrence of anticyclonic circulations in 
the midlatitudes has made a substantial contribution 
(one-third to one-half) to the increased summer-
time temperature extremes over portions of Eurasia 
since 1979 (Horton et al. 2015), which leaves further 
questions as to whether anthropogenic warming has 
contributed to the heat waves like that in summer 
2018 through affecting the background circulation. 
This study used an atmospheric model conditioned 
on the observed SSTs. Results are inevitably affected 
by uncertainty in the representation on the SSTs in 
the counterfactual world, especially for severe events 

with return periods greater than 50 years (e.g., Spar-
row et al. 2018), and more work is necessary to better 
understand this uncertainty.
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The Upper Yellow River basin (UYRB), located 
over northwestern China and featuring a semiarid 
climate, experienced extreme flooding during the 

summer and autumn of 2018, with June–September 
rainfall ranked the highest since 1961 (CMA 2019). 
The extreme f looding affected about 1.4 million 
people and led to 30 deaths and disappearances. Many 
reservoirs exceeded their historical water levels to 
mitigate the floods, but the monthly mean stream-
flow during rainy season (June–September) over the 
UYRB still exceeded its historical value since 1987 
when a large reservoir started to operate.

In the Anthropocene, water resources manage-
ment such as reservoir operation changes stream-
flow characteristics significantly (Yuan et al. 2017). 

For instance, Yuan et al. (2018a) found that water 
resources management contributes up to 27% of the 
long-term changes in streamflow and its extremes 
over the middle reaches of the Yellow River. However, 
contributions from different anthropogenic factors 
(e.g., anthropogenic climate change, local human 
interventions) to the occurrence of a single extreme 
hydrological event (e.g., 2018 extreme flooding) re-
main unclear, especially for regions where both land 
and water are managed intensively (e.g., the UYRB).

Here we investigate the anthropogenic contribu-
tions to the 2018 extreme summer f looding over 
the UYRB in the context of anthropogenic climate 
change, regional water resources management, and 
land cover change, by using observed and naturalized 
streamflow data together with a high-resolution land 
surface model driven by different climate forcings.

DATA AND METHODS. Streamflow data. Daily 
streamflow observation during 1987–2018 at Lanzhou 
station, a large hydrological station over the UYRB 
(orange pentagram in Fig. 1a), was provided by the 
Yellow River Conservancy Commission (YRCC) to 
analyze the extreme flooding. Monthly naturalized 
streamflow during 1987–2010 was also provided by 
YRCC, which was estimated by adding human con-
sumed water (including agricultural, industrial, and 
civil uses) back to the observation (Fu et al. 2004; 
Yuan et al. 2017). The naturalized streamflow was 
used to evaluate performance of the land surface 
model.

Meteorological observation data. Monthly geopoten-
tial height and vertical integrated water vapor flux 
during 1979–2018 from the ERA-Interim reanaly-
sis (Dee et al. 2011) were used to show circulation 
anomalies during the f looding seasons. The me-
teorological forcings for high-resolution land surface 

ANTHROPOGENIC CONTRIBUTIONS TO THE 2018  
EXTREME FLOODING OVER THE UPPER  

YELLOW RIVER BASIN IN CHINA
Peng Ji, Xing Yuan, Yang Jiao, CHunqing Wang, SHuai Han, and CHunXiang SHi

Anthropogenic climate change, reservoir operation, and land cover change have decreased  

the risk of 2018 extreme summer flooding by 34%, 45%, and 11% respectively.
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modeling were generated as 
follows: 1) the 0.5° × 0.5° 
CRUNCEP dataset (Viovy 
2011) during 1951–2016 was 
f irst regridded to 10-km 
resolution; 2) daily precipi-
tation and temperature data 
were replaced by gridded 
observational dataset dur-
ing 1951–2018, which was 
interpolated from more than 
2,470 China Meteorologi-
cal Administration (CMA) 
stations in China (Wang et 
al. 2016; Wu et al. 2017); 3) 
other forcings including dai-
ly specific humidity, surface 
shortwave radiation, wind 
speed, and surface pressure 
were extended to 2018 by 
using the 0.0625° × 0.0625° 
CMA Land Data Assimila-
tion System dataset (CLDAS; 
Meng et al. 2017), where 
the CLDAS dataset was ad-
justed to CRUNCEP clima-
tology during the overlap 
period of 2008–16 through 
quantile-mapping; and 4) 
the 0.1° China Meteorologi-
cal Forcing Dataset during 
1979–2014, which performs 
well in shortwave radiation 
(He and Yang 2011), was used 
to correct the systematic bias 
of CRUNCEP radiation at 
monthly time scale.

CMIP5 model data. Daily pre-
cipitation and temperature 
from 13 models from phase 5 
of the Coupled Model Inter-
comparison Project (CMIP5) 
(see Table ES1 in the online 
supplemental material for the 
model list) during 1951–2005 
under both historical (ALL) 
and natural (NAT) scenarios 
were also interpolated to 
10-km resolution. The 10-
km resolution is chosen to 
reasonably represent land 
surface information such as 

Fig. 1. (a) The Upper Yellow River basin (UYRB). (b) Percentage anomaly of 
precipitation (PAP) during June–September of 2018 compared with the 1961–
2018 climatology. (c) June–September mean geopotential height anomaly at 
500 hPa (shading), and integrated water vapor flux (WVF) anomaly (vectors) 
in 2018. Green and black lines show the 5,880-gpm contours for 2018 and 
1979–2018 climatology, respectively. (d) Divergence of WVF over UYRB. (e) 
Time series of June–September mean precipitation averaged over the UYRB, 
and western Pacific subtropical high ridge position index. (f) Observed and 
LUCC_CSSPv2-simulated daily streamflow. (g) Observed 2018 daily precipi-
tation and streamflow as compared with their climatology. Shaded areas are 
95% confidence intervals. Red and blue bars represent daily precipitation cases 
that are smaller and larger than its climatology respectively.
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topography and soil texture, which are important for 
streamflow modeling. All models well capture the 
temperature and precipitation distribution, with spa-
tial correlation coefficients during rainy season rang-
ing from 0.56 to 0.93. However, the spatial mean biases 
of annual temperature and precipitation range from 
−0.7° to −3.7°C and 114 to 720 mm respectively (Figs. 
ES1a,b), which may cause large biases in streamflow 
simulations. Thus we reduced the biases by applying 
a cumulative distribution function (CDF) matching 
method (Wood et al. 2002) at monthly time scale (see 
the supplemental material for detailed information).

Experimental design. The land surface model, Con-
junctive Surface-Subsurface Process model version 
2 (CSSPv2; Yuan et al. 2018b), which well captures 
hydrological variations over the UYRB (Yuan et 
al. 2018b), was used for streamflow simulation in 
this study. Monthly Leaf Area Index (LAI) values 
during 1982–2018 estimated from the Global Inven-
tory Modeling and Mapping Studies (GIMMS) and 
MODIS Normalized Difference Vegetation Index 
(NDVI; Yuan et al. 2018b) were used to represent 
land cover change.

Differences between observed and naturalized 
streamflow are attributed to human water inter-
vention (mainly from reservoir operation over the 
UYRB). Due to the lack of data, the CSSPv2 model 
was first driven by modified CRUNCEP data with 
interannual LAI variations (LUCC_CSSPv2) to pro-
vide daily naturalized streamflow. Evaluation results 
(see the online supplement for detailed information) 
show that LUCC_CSSPv2 well simulates naturalized 
streamflow with high Nash–Sutcliffe efficiency (up 
to 0.87) and low relative bias (−3% to −2%). Second, 
CSSPv2 was driven by the modified CRUNCEP data-
set with LAI fixed in 1982 (FIXED_CSSPv2). The dif-
ference between LUCC_CSSPv2 and FIXED_CSSPv2 
is the impact of land cover change. Third, the CSSPv2 
model was forced by bias-corrected CMIP5 model 
outputs under ALL (ALL/FIXED_CSSPv2) and NAT 
(NAT/FIXED_CSSPv2) scenarios without land cover 
change, to distinguish the anthropogenic climate 
change impacts. Although ALL simulations implicitly 
include land use/cover change (LUCC) information 
to some extent, most of them cannot capture the 
interannual variations of land cover at regional scale 
due to the deficiencies in the vegetation dynamics 
models (Bao et al. 2014). Therefore, here we ignore 
the LUCC effect in these CMIP-driven experiments.

Definition of extreme streamflow and attribution meth-
ods. In this study, the annual maximum daily stream-

flow is defined as high flow, whose distribution was 
estimated by the generalized extreme value (GEV) 
distribution. The probability of high flow exceeding 
a value of 3,500 m3 s−1 is defined as the probability 
of extreme flooding like that of 2018. The risk ratio 
(Fischer and Knutti 2015) is then calculated as RRi = 
Pi ∕PNAT, where i represents different scenarios and 
PNAT is the probability of extreme flooding without 
any anthropogenic effects. Due to the errors in CMIP5 
simulations, the distribution of ALL/FIXED_CSSPv2 
is not necessarily identical to FIXED_CSSPv2. Thus 
PNAT is not equal to PNAT/FIXED_CSSPv2. However, as-
suming that the ALL/FIXED_CSSPv2 and NAT/
FIXED_CSSPv2 can provide a reliable estimation of 
anthropogenic climate change effect through their 
intercomparison, PNAT can be estimated through the 
assumption of

  
 

.
 

How much impact an anthropogenic factor would 
have on the likelihood of extreme f looding event 
can be directly calculated by comparing risk ratios 
in different experiments (see the supplemental 
material for detailed information). We repeated the 
above calculation of risk ratio and return period 
by doing bootstrapping 10,000 times. During each 
bootstrap, high flow data under different scenarios 
were resampled with replacement to get a set of new 
data with the same length as the original (Paciorek 
et al. 2018). Median value was used as mean value to 
avoid outliers (e.g., infinite), while 2.5% and 97.5% 
percentiles were used to estimate uncertainties at 
95% confidence level.

RESULTS. Large positive anomalies of June–Sep-
tember precipitation over northwestern China in 2018 
(Fig. 1b) are related to the anomalous position of the 
western Pacific subtropical high (WPSH). Repre-
sented by geopotential height contour at 5,880 gpm, 
the WPSH in 2018 (green line in Fig. 1c) shifts to the 
north compared with its climatology position during 
1979–2018 (black line in Fig. 1c). The northernmost 
WPSH, revealed by WPSH Ridge Position Index (RPI) 
(Fig. 1e), correlates well with UYRB rainfall because 
the northward WPSH brings sufficient water vapor 
from northwestern Pacific and South China Sea to 
the northwestern China through the southeastern 
wind anomaly, causing a convergence of water va-
por in UYRB (Fig. 1d) and thus providing favorable 
conditions for precipitation. Under this background, 
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precipitation is larger than its climatology for most 
days during June–September in 2018, with five days 
showing extreme rainfall events (>99% percentile) 
(Fig. 1g). Land surface becomes saturated due to this 
seasonal-scale positive precipitation anomaly, which 
then reduces infiltration capacity and increases both 
surface and subsurface runoff. As a result, daily 
streamflow starts to increase in June, significantly 
exceeds its climatology during July–September, and 
reaches its maximum when the accumulated precipi-
tation reaches its maximum in late September. Natu-
ralized streamflow (LUCC_CSSPv2) shows that the 
high flow could be 6,622 m3 s−1, with a return period 
of 242 yr (95% CI: >82 yr) (Fig. 1f). However, due to 
reservoir operation over the UYRB, the observed 
value is only 3,500 m3 s−1, with a return period of 50 
yr (95% CI: 27–130 yr).

Figures 2a and 2b show probability distribution 
functions (PDFs) of high flow with or without LUCC 
or reservoir operation effects, together with their 
95% confidence intervals. The significant leftward 

shifting of the PDFs suggests that both land cover 
change and reservoir regulation decrease extreme 
high f low occurrence. As compared with natural 
climate change conditions, anthropogenic climate 
change also decreases probability of extreme high 
flow (Fig. 2c).

Table 1 shows return period and risk ratio of the 
2018 extreme f looding under different scenarios. 
Without any anthropogenic influence (NAT scenario), 
this extreme event occurs frequently with a 5-yr (95% 
CI: 3–10 yr) return period. When anthropogenic cli-
mate change, land cover change, and reservoir opera-
tion are gradually considered, the risk ratio decreases 
to 0.66 (95% CI: 0.56–0.82), 0.55 (95% CI: 0.44–0.68), 
and 0.1 (95% CI: 0.04–0.17) respectively. The risk ratio 
decreases significantly by 0.34 (95% CI: 0.18–0.44) 
from NAT to FIXED_CSSPv2, by 0.11 (95% CI: 
0.08–0.21) from FIXED_CSSPv2 to LUCC_CSSPv2, 
and by 0.45 (95% CI: 0.34–0.57) from LUCC_CSSPv2 
to YRCC observed streamflow scenarios.

Different from reservoir operation, which reduces 
the probability of f looding 
by controlling the surface 
runoff, increased vegetation 
cover (p < 0.01) over the 
UYRB (Fig. ES2a) caused 
by conservation programs 
(Cuo et al. 2013) increases 
evapotranspiration during 
June–September (Fig. ES2b) 
and reduces soil moisture 
and thus subsurface runoff 
(Fig. ES2c). Anthropogenic 
climate change reduces sur-
face runoff (Fig. ES2e) by 
significantly reducing the 
seasonal precipitation (Fig. 
2d) instead of the extreme 
precipitation (Fig. 2e). The 
negative effect of anthro-
pogenic climate change on 
seasonal precipitation oc-
curs because the descending 
branch of Hadley circula-
tion over the edges (30° 
to 40°N) enhances in a 
warming climate (Su et al. 
2014), which inhibits pre-
cipitation generation. More-
over, anthropogenic climate 
change increases evapo-
transpiration (Fig. ES2d), 
thus reducing soil moisture 

Fig. 2. (a) Probability distribution functions (PDFs) of observed high flow 
(green). (b) PDFs of CSSPv2-simulated high flows with (LUCC_CSSPv2) or 
without (FIXED_CSSPv2) land cover changes. (c) PDFs of simulated high flow 
forced by CMIP5 ALL (ALL/FIXED_CSSPv2) and NAT (NAT/FIXED_CSSPv2) 
climate output (see Methods section for details). Black lines in (a)–(c) rep-
resent the high flow threshold value of 2018. (d) PDFs of June–September 
mean precipitation under ALL and NAT scenarios, with the black line show-
ing extreme rainfall in 2018. (e) PDFs of extreme daily precipitation (>99% 
percentile) under ALL and NAT scenarios. All the shading areas represent 
95% confidence intervals.
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as well as subsurface runoff 
(Fig. ES2e).

CONCLUSIONS AND 
DISCUSSION. Anthro-
pogenic contributions to the 
2018 extreme flooding event 
were analyzed by consider-
ing large-scale anthropo-
genic climate change and 
local human interventions. 
The probability for the oc-
currence of the event decreases by 90% due to those 
anthropogenic factors, with anthropogenic climate 
change, land cover change, and reservoir regulation 
contributing by 34%, 11%, and 45% respectively.

As risk ratios are all relative to the NAT condi-
tion in this study, this makes it easy to compare 
different risk ratio under different scenarios. For 
example, by comparing the risk ratio of YRCC ob-
served streamflow and LUCC_CSSPv2, reservoir 
operation decreases the risk of extreme flooding in 
the LUCC_CSSPv2 scenario by 82%. However, as the 
probability of extreme flooding in LUCC_CSSPv2 
is only 55% of that in NAT scenario, the value will 
be 45% (0.82 × 0.55) again when we use the extreme 
flooding probability in NAT scenario as a reference.

The attribution results proposed in this study 
have uncertainties. For example, the land cover 
change cannot be interpreted solely as local hu-
man intervention as other factors including climate 
change and CO2 fertilization also have contributions. 
However, as climate models have large uncertainty 
in simulating vegetation dynamics (Bao et al. 2014), 
it is still a great challenge to attribute land cover 
changes under different scenarios. Biases in land 
surface model may cause uncertainties in human 
water intervention attributions. However, consider-
ing the low bias of CSSPv2 in reproducing natural 
conditions (−3% to −2%), the model uncertainty 
should be limited and it does not influence the re-
sults significantly.

Our results highlight the importance of local-
scale human inf luences in hydrological attribu-
tions, as anthropogenic contributions may be un-
derestimated by 60% (56% relative to 90%) without 
considering them. More efforts should be made to 
incorporate local-scale human activities in current 
global climate models (GCMs), as most GCMs do not 
have representation of water management or vegeta-
tion dynamics due to coarse resolution, imperfect 
parameterizations, etc. (Fisher et al. 2018; Trenberth 
and Asrar 2014).
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During the winter of 2017/18, Beijing endured the 
longest consecutive dry day spell (CDD) (145 
days; 23 October 2017–16 March 2018) since 

recordings began in 1951 (see Fig. 1b). There was no 
effective precipitation during this period, and there 
was no snow in the winter (November–February) for 
Beijing for the first time. As a result, the total precipita-
tion was 86.3% below the observed average over North 
China Plain during 1960–2017 (see Fig. 1a), causing 
a severe drought and increasing the risk of wildfires.

Starting in November 2017, El Niño–Southern 
Oscillation (ENSO) entered the La Niña phase and 
lasted until late April 2018. Coupled with a negative 
Arctic Oscillation (AO), the Siberian high pressure 
area and the East Asian trough were both intensified 
and propagated cold surges toward North China. The 
stronger cold surges, associated with a subtropical 
high pressure system in the western Pacific, hindered 
the wet and warm air from the low-latitude sea mov-
ing northward to meet the cold air from Siberia. 
Such atmospheric circulation conditions cause less 
precipitation in the Beijing area, which is consistent 
with existing studies demonstrating the effects of 
ENSO and AO on the winter climate over East Asia 

(Chen et al. 2013; Gong et al. 2001; Wang et al. 2000; 
Yuan et al. 2014).

However, few studies have focused on the impact 
of ENSO and AO on winter precipitation in Beijing 
or the North China plain, likely due to the large ob-
servational uncertainty in precipitation totals. Here, 
we select CDD as our target to reduce the impact of 
observation errors in the amount of precipitation. 
Furthermore, this study identifies that the likeli-
hood changes of such an extreme CDD event can be 
attributed to natural variability (ENSO and AO) and 
anthropogenic forcings (global warming) in different 
model simulation experiments.

DATASET AND METHOD. We used the latest 
observation of daily precipitation data for the period 
of 1960–2018, which were collected from more than 
2400 meteorological stations over China, and 19 
stations were located in Beijing (see Fig. ES1a in the 
online supplemental material). The reanalysis dataset 
from JRA-55 was used to examine large-scale atmo-
spheric circulation and water vapor fluxes to better 
capture the variability of precipitation in East Asia 
(Chen et al. 2014). We set 1 mm day–1 as the minimum 
threshold for effective precipitation to calculate the 
CDD (Jiang et al. 2015).

The HadGEM3-A-based attribution system 
(hereafter simply called HadGEM3A) is often used 
for the probabilistic attribution of extreme climate 
events (Lott et al. 2013; Qian et al. 2018; Zhou et al. 
2018). Compared to CMIP5 models, HadGEM3A is an 
atmosphere-only model with the observed sea surface 
temperature and sea ice data as model input and pro-
vides more realistic boundary conditions for model 
simulation (Ciavarella et al. 2018). This attribution 
system has a higher horizontal resolution (~60-km 
midlatitudes) and adopts a nonhydrostatic dynami-
cal core, which may offer an advantage relative to 
CMIP5 models at the regional scale (Christidis et al. 

The record long dry period over Beijing during winter 2017/18 was made more likely  

by a combination of La Niña, a weak Arctic polar vortex, and long-term anthropogenic warming.
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2013). Two sets of 15 stochastic physics experiments 
spanned from 1960 to 2013 with the all-forcings 
(ALL) and natural-forcings only (NAT) conditions in 
HadGEM3A (Hewitt et al. 2011), and all simulations 

under ALL conditions have a similar distribution as 
that observed for CDD (see Fig. ES1d).

In addition, there are 11 CMIP5 models providing 
39 simulations for daily precipitation under the ALL 

Fig. 1. (a) The anomalies of total precipitation ATP = −( ) P P Pi  are calculated by the total precipitation (Pi) dur-
ing November 2017–February 2018 (NDJF; defined as winter) and multiyear mean total precipitation P( )  in 
winters during 1960–2017 over China. (b) The annual variability curve of the CDD of Beijing based on station 
observations shown in Fig. ES1a. (c) The Niña-3.4 index during and the annual longest CDD in Beijing was sig-
nificantly correlated at the 95% confidence level (R = −0.29). (d) The AO index and the annual longest CDD in 
Beijing were significantly correlated at the 95% confidence level (R = −0.31). (e) The anomalies of total water 
vapor fluxes AWR = −( ) W W Wi  calculated by the total water vapor fluxes (Wi) in winters during four strongest 
El Niño years and multiyear mean total water vapor fluxes W( )  in winters during 1960–2017 over China. (f) As 
in (e), but Wi denotes the total water vapor fluxes during four strongest La Niña years. The contour lines in (e) 
and (f) are the average geopotential height for 500 hPa in the winters during 1979–2016 and in the winter of 
2017/18, respectively. The red pentagrams represent the corresponding point of 2018 and red lines represent 
the contour of 5,200-m geopotential height for 500 hPa, which indicates the shape of the polar vortex.
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and NAT conditions (Taylor et al. 2012). According 
to their performance in replicating the variability of 
CDD, 19 simulations from 9 models were selected 
to determine the effects of anthropogenic climate 
change and atmospheric circulation anomalies on the 
CDD in Beijing (see Fig. ES1c). All simulation outputs 
from the models were interpolated onto a 1° × 1° grid 
by bilinear interpolation. Jiang et al. (2015) found that 
the simulated precipitation in most CMIP5 models 
significantly underestimated the CDD over China 
due to increased drizzle but decreased heavy rain. 
Therefore, we used a quantile-matching algorithm 
to adjust the daily precipitation series in CMIP5 
models before the attribution process. The detailed 
description of the adjusting procedure was given by 
Wang et al. (2010).

The Niño-3.4 index, an indicator of the ENSO, uses 
a 5-month running mean of the average equatorial sea 
surface temperature (SST) anomaly across the Pacific 
(5°N–5°S, 170°–120°W), and El Niño (La Niña) events 
are defined when the Niño-3.4 index exceeds 0.4°C 
(below −0.4°C) for a period of 6 months or more. The 
AO index is calculated by projecting the AO loading 
pattern to the daily anomaly 850-hPa geopotential 
height field over 20°–90°N. The observed SST and 
geopotential height field are provided by the ERSSTv5 
and JRA-55 reanalysis datasets, respectively. Both 
the SST and geopotential height for the models are 
obtained from simulations except for the SST for 
HadGEM3A, which is given by the HadISST1 dataset 
(Rayner et al. 2003).

In this study, the main statistical techniques used 
to assess the likelihood and attribution of the extreme 
CDD in Beijing are as follows:

1) We used the Kolmogorov–Smirnov test to select 
the model simulations whose distribution of CDD 
is consistent with the observed distribution (King 
et al. 2015). Then, a generalized extreme value 
(GEV) distribution was used to fit the distribu-
tion of the CCD in observation and the selected 
simulations (Coles et al. 2001). The return periods 
for the record-breaking CDD were calculated as 
follows:

 
 RP =

−
1

1 f x( )  , (1)

where RP denotes the return period when CDD 
equals x and f(x) is the cumulative probability density 
function of the GEV distribution.

2) Based on the Niño-3.4 index and the AO index, 
the simulated time series of CDD are divided into 
years characterized by El Niño, La Niña, positive 
AO, and negative AO. Through GEV fitting, we 
can calculate the return periods and occurrence 
probability of the extreme CDD in 2017/18 with 
different scenarios.

3) To quantify the anthropogenic inf luence on 
the risk of extreme CDD events, the fraction of 
attributable risk (FAR) and the corresponding 
probability ratios (PR) were used to estimate the 
effect of anthropogenic influence and ENSO and 
AO (Allen 2003; Fischer and Knutti 2015):

 FAR = 1 – P0/P1 and PR = P1/P0. (2)

To quantify the anthropogenic influence on the 
odds of extreme CDD events, P0 denotes the probability 
of exceeding the 2018 CDD in the natural-forcing sce-
narios and P1 denotes the equivalent for the all-forcings 
scenarios. To estimate the contribution of ENSO (AO) 
anomalies on the extreme CDD events, we calculated 
the FAR and PR with P1 from the La Niña/El Niño 
(positive/negative AO) all-forcings simulations and P0 
from the ENSO-neutral (multiyear mean) all-forcings 
simulations. A Monte Carlo bootstrap procedure was 
performed 1,000 times to estimate the uncertainty of 
FAR and PR by resampling (Johnson 2001).

RESULTS. The CDD in 2017/18 (145 days) was the 
longest since records began in 1951 and was 31 days 
longer than the previous record (114 days in 1971) and 
2.6 times longer than the average (55.7 days) during 
1971–2000 (Fig. 1b). The return period of CDD in 
2017/18 was approximately 60 years (see Fig. ES1b). In 
the long term, the CDD of Beijing had a slight increas-
ing trend by 3.2 days decade–1 during 1960–2018 but 
was not significant (p > 0.1). In addition, four of the 
five years during which the CDD was longer than 100 
days occurred in the past 10 years (see Fig. 1b). Existing 
studies have also observed more dry days in the winter 
over the North China Plain with global warming (Liu 
et al. 2005; Sun and Ao 2013; Zhou and Wang 2017).

As shown in Fig. 1c, the ENSO index in winter has 
a significant negative correlation (−0.29, p < 0.05) 
with the CDD in Beijing (see Fig. 1c). Therefore, the 
La Niña event, which began in August 2017 and lasted 
until April 2018, may play an important role in the 
occurrence of the extreme CDD in 2017/18. In the 
winter, the water fluxes in La Niña years are remark-
ably low over the North China Plain (see Figs. 1e,f). 
La Niña events often have a significant effect on East 
Asia as the western Pacific subtropical high acts to 
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prevent moisture transport to North China resulting 
in dry conditions in winter over Beijing (Wang et al. 
2000; Wang and Chen 2010).

In winter 2017/18, the AO was in an extremely 
negative phase and had a negative relationship with 
the CDD of Beijing (R = −0.31, p < 0.05). As shown 
in Fig. 1f, the polar vortex broke into two vortices in 
winter 2017/18 and is not shown as a single vortex as 
usual (see Fig. 1e). A negative AO is often concur-
rent with a weak Arctic polar vortex and a strong 
Siberian high and East Asian trough, which brings 
anomalously northerly winds and more cold and dry 
air from the polar regions to China (Gong et al. 2001; 
Thompson and Wallace 1998).

We compared the likelihood of occurrence of the 
record-breaking CDD in 2017/18 in HadGEM3A 
attribution system. Comparing the risk of CDD 

between the all-forcings and natural-forcings only 
simulations, we found that anthropogenic influences 
increased the likelihood by 1.29 times and explained 
22.3% ± 10.8% (±95% confidence interval) attribut-
able risk for the record-breaking CDD events like 
those experienced during winter 2017/18 in Beijing 
(see Figs. 2a,d). Comparing the all-forcings simula-
tions in La Niña years with ENSO-neutral years, for 
this record-breaking CDD, the influence of La Niña 
increased the likelihood by 1.43 times and explained 
30.0% ± 61.4% attributable risk (see Figs. 2b,d). The 
extreme CDD values, such as those experienced dur-
ing winter 2017/18 in Beijing, negative AO increased 
the likelihood by 2.51 times and explained 60.1% ± 
11.3% attributable risk (see Figs. 2c,d).

According to the different CMIP5 experiments, 
anthropogenic influences increased the likelihood 

Fig. 2. (a) Return periods for the annual longest CDD during 1950–2005 from HadGEM3A simulations under 
ALL and NAT forcings, and the black dashed line denotes the observed CDD in 2017/18. (b) As in (a), but during 
El Niño or La Niña years (see text for definitions). (c) As in (b), but during the AO positive phase (P) or nega-
tive phase (N). (d) The fraction of attributable risk (FAR) and corresponding probability ratios (PR) calculated 
using different scenario combinations for P0 and P1 as shown in Eq. (2). The estimation of probability ratios 
was calculated using a bootstrapping approach (resampling the distributions 1,000 times with replacement); 
the bars show the interquartile range (5th–95th percentiles); the asterisks indicate the best estimates for the 
fraction of attribution risk.
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by 2.09 times for the record-breaking CDD in Bei-
jing, explaining approximately 52.1% ± 43.7% of 
the attributable risk (see Figs. ES2a,d). La Niña and 
negative AO increased the likelihood of extreme CDD 
by 4.59 and 6.45 times and explained 78.2% ± 95.1% 
and 84.5% ± 14.1% attributable risk, respectively (see 
Figs. ES2b–d). Therefore, based on both HadGEM3-A 
and CMIP5 models, atmosphere circulation anoma-
lies played a more important role in occurrence of 
this extreme CDD event in winter 2017/18 in Beijing, 
while the impact of anthropogenic effects was rela-
tively small.

In addition, the combined effects of ENSO and AO 
on the winter climate in East Asia exhibited nonlinear 
characteristics. As shown in Table 1, the mean CDD 
when La Niña and negative AO are combined is much 
larger than that in other cases, which agrees well with 
the finding that La Niña coupled with negative AO is 
more favorable than other combinations for a weak 
Arctic polar vortex and an intensified cold surge 
over East Asia (Chen et al. 2013). However, identify-
ing the combined effects among different factors on 
CDD in Beijing is difficult due to the limited model 
sample size.

CONCLUSIONS. Both the observation and 
the results of attribution analyses indicated that a 
specific atmospheric circulation pattern (La Niña 
event coupled with negative AO) led to the extreme 
CDD during the winter of 2017/18 in Beijing, and 
anthropogenic inf luences significantly increased 
the likelihood of such an event. The simulation 
experiments in HadGEM3A (CMIP5) showed an-
thropogenic effects increased the likelihood for this 
extreme CDD by 1.29 (2.09) times and explained 
22.3% (52.1%) attributable risk; the La Niña event and 
negative AO increased the likelihood of this extreme 
CDD by 1.43 (4.59) times and 2.51 (6.45) times and 

explained 30.0% (78.2%) and 60.1% (84.5%) attribut-
able risk, respectively, based on the simulations of 
HadGEM3A (CMIP5).

With more realistic boundary conditions (using 
observed SST and sea ice), HadGEM3A has a similar 
probability distribution to the observations while 
CMIP5 exhibits a stronger attribution result. But 
this is not enough to support the attribution result 
from HadGEM3A being more credible than that 
from CMIP5 (Fischer et al. 2018). However, both 
attribution results from HadGEM3A and CMIP5 
indicate that the contribution of atmospheric cir-
culation anomalies to the extreme drought event in 
Beijing was higher than anthropogenic influences, 
which is consistent with the observation (see Table 1). 
Additionally, there are also contributions from local 
climate factors, such as the urban dry island effect 
in Beijing (Wang and Gong 2010), which need to be 
further analyzed based on mesoscale weather/climate 
models and high-resolution observation data.
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ENSO AO CDD (days) UTC (°C) BMT (°C) SN

El Niño
Positive 51.5 ± 12.9 0.39 ± 0.20 -0.13 ± 1.15 12

Negative 55.6 ± 14.6 0.24 ± 0.45 -0.71 ± 0.96 5

La Niña
Positive 65.1 ± 24.8 0.16 ± 0.31 -0.09 ± 0.79 11

Negative 94.1 ± 34.7 0.26 ± 0.33 -0.92 ± 1.03 7

Neutral
Positive 37.0 ± 11.8 0.11 ± 0.26 -0.01 ± 0.98 13

Negative 54.3 ± 22.0 0.15 ± 0.25 -0.15 ± 0.97 11

Table 1. Statistics (mean and standard deviation) of CDD in Beijing in the winter from 1960 to 2018, which 
are classified by different phases of ENSO and AO. Each winter is one sample, and the sample number (SN) 
for each type is also listed. The global mean temperatures (UTC) and Beijing mean temperature (BMT) in 
the winter in this table refer to anomalies relative to the periods of 1961–90.
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During summer 2018, South Korea experienced 
the strongest and longest heat wave since 1973 
(the beginning of the observations from 45 sta-

tions). The July–August (JA) mean daily maximum 
temperature (Tmax) was on average 2.6°C warmer 
than 1987–2010 climatology over South Korea, set-
ting its second highest record after 1994 (Figs. 1a,c). 
A simple analysis based on a long-term CRU TS data 
suggests that the return time of 2018 Tmax is about 
26 years, much shorter than about 386 years in 1912 
(Fig. ES1), although a large uncertainty related to 
data homogeneity and urbanization effect should 
be noted (Park et al. 2017). Unusually hot weather 
led to record-breaking temperatures over many 
stations with temperature > 40°C at some stations 
for the first time. More importantly, the 2018 heat 
wave had the longest duration on record with 31.5 
hot days (total number of days with daily maximum 
temperature > 33°C) surpassing the previous record 
of 29.7 days in 1994, and exerted considerable impacts 
on society and the economy (reported in the Korea 

Herald1,2), including 48 heat-related deaths (KCDC 
2018). The heat wave also induced crop destruction 
in North Korea.3 When using a heat wave duration 
index (HWDx) defined as maximum consecutive hot 
days during summer, the 2018 record is extremely 
high at 18.1 days (Figs. 1b,d). There is a strong cor-
relation between JA mean Tmax and HWDx (r = 0.74; 
Figs. 1c,d), indicating a close relation between mean 
warming and heat wave duration. This long-lasting 
heat wave is characterized by a persistent anomalous 
high pressure system in the upper troposphere over 
Korea (Fig. 1f), which seems to be partly induced by 
the strong tropical convection over northwestern 
India and the South China Sea (Fig. 1e), through the 
well-known teleconnection mechanism (Fig. 1g; Lee 
and Lee 2016; Kim et al. 2019; Yeo et al. 2019).

This study aims at quantifying human contribu-
tion to the 2018 summer longest duration of heat 
wave in South Korea. The long duration of heat wave 
is known to be critically important for health (e.g., 
Anderson and Bell 2011; D’Ippoliti et al. 2010). To 
address this question for small spatial scale, we uti-
lize high-resolution large-ensemble regional climate 
model (RCM) (weather@home East Asia; 50 km) and 
global climate model (GCM) (HadGEM3-A-N216; 
60 km at midlatitudes) simulations, each performed 
with and without anthropogenic forcings (Table 
ES1). Comparing two models will help assess the 
confidence of the resulting attribution statement even 
though both models are from the Hadley model fam-

QUANTIFYING HUMAN IMPACT ON THE 2018  
SUMMER LONGEST HEAT WAVE IN SOUTH KOREA

Seung-Ki Min, Yeon-Hee KiM, Sang-Min Lee, SaraH Sparrow,  
SiHan Li, FraSer C. Lott, and peter a. Stott

High-resolution large-ensemble simulations indicate that human activities  

have at least quadrupled the probability of occurrence of the extremely  

long-lasting heat waves over South Korea as observed in 2018 summer.

1 http://www.koreaherald.com/view.
php?ud=20180808000476&ACE_SEARCH=1

2 http://www.koreaherald.com/view.
php?ud=20180821000128&ACE_SEARCH=1

3 https://www.theguardian.com/world/2018/aug/09/south-
korean-heatwave-causes-record-deaths
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ily. Using the risk ratio, we compare the probabilities 
of occurrence of the extremely long duration of heat 
wave between the real and counterfactual (without 
human influences) worlds. Further, the influences of 
tropical convections on the longer-lasting heat wave is 
examined. In this regard, RCM and GCM are found 
to reasonably capture the observed teleconnection 
pattern (cf. Figs. 1h and 1i with Fig. 1g, pattern cor-
relation > 0.6).

DATA AND METHODS.  Daily maximum 
temperatures (Tmax) from 45 South Korean weather 

stations are used as observations for 1973–2018. To 
match the spatial scale between point observations 
and gridded model outputs, we interpolate daily 
station observations onto the HadGEM3-A-N216 
grid boxes of 0.86° (longitude) × 0.56° (latitude) 
by taking simple averages of station values within 
each grid box, assuming a high spatial correlation in 
daily temperature extremes (Donat et al. 2013). The 
observed HWDx is calculated using the gridded Tmax 
data to obtain South Korean area averaged HWDx. To 
consider model biases in climatology and variability 
in Tmax, we apply a different Tmax threshold for each 

Fig. 1. Distribution of (a) 2018 JA mean daily maximum temperature (Tmax) anomalies and (b) 2018 JA maximum 
heat wave duration (HWDx), defined as the maximum consecutive hot days (Tmax ≥ 33°C) over South Korea. Also 
shown are observed time series of South Korean mean (c) Tmax anomalies and (d) HWDx over 1973–2018, and 
simulated ranges of 2018 Tmax anomalies and HWDx from w@h and HadGEM3-A-N216 experiments (box-and-
whisker plots); and anomaly distribution of (e) 2018 JA mean OLR (NOAA interpolated data) and (f) 200-hPa 
geopotential height (NCEP1 reanalysis). Two boxes in (e) indicate the two convection zones of the northwestern 
India (70°–80°E, 20°–35°N) and South China Sea (110°–130°E, 10°–25°N), selected based on previous studies 
(Kim et al. 2019; Lee and Lee 2016). Finally, anomaly composites are shown of 200-hPa geopotential height for 
strong convection years during 1987–2010 (OLR stronger than 0.5 standard deviation) over both convection 
zones from (g) observations (NCEP1 reanalysis), (h) w@h, and (i) HadGEM3-A-N216 simulations. All anomalies 
are with respect to 1987–2010 mean.
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model (33.21°C for weather@home and 30.51°C for 
HadGEM3-A-N216), which corresponds to the same 
quantile as in the observed threshold (33°C). Using 
this method, models are found to have similar HWDx 
means as the observed around 4 days. The analysis 
domain for South Korea is 34°–38°N and 125°–130°E 
(land only).

Large-ensemble RCM data from weather@home 
(abbreviated herein as w@h) East Asia are used in 
which the HadRM3P RCM is simulated at a 50-km 
resolution over the East Asia region (domain extent 
shown in Fig. 1h) driven by the HadAM3P atmo-
spheric GCM (Massey et al. 2015; Guillod et al. 2017). 
The real world simulations (ALL; 2,300 members) for 
2018 were carried out by prescribing the observed 
sea surface temperature (SST) and sea ice coverage 
and also by implementing the observed greenhouse 
gas and aerosol forcings. The counterfactual world 
simulations (NAT; 3,700 members) for 2018 were 
performed by using adjusted observed SST and sea ice 
conditions with anthropogenic changes removed and 
setting other external forcings as preindustrial levels 
(see Table ES1 in the online supplemental material; 
Schaller et al. 2016). HadGEM3-A provides large-
ensemble (525 members for ALL and NAT each) GCM 
data, which have a high resolution of 0.83° × 0.56° 
(referred to as HadGEM3-A-N216; Ciavarella et al. 
2018). The boundary conditions and external forc-
ings for ALL and NAT simulations are very similar 
to the w@h experiment (Table ES1). One difference 
is that HadGEM3-A-N216 uses single estimate of the 
anthropogenic SST changes (delta-SST) while w@h 
uses 13 different estimates (Table ES2), and its influ-
ence on the attribution results is examined. We also 
use baseline simulations from RCM and GCM for 
1987–2010 (data period of w@h runs), which provides 
a reference climatology for both ALL and NAT runs 
(Sparrow et al. 2018). Observed anomalies are also 
based on the 1987–2010 means. When evaluating 
models using the baseline runs, RCM can capture 
the observed interannual variabilities for both Tmax 
and HWDx but GCM tends to underestimate the 
Tmax variability. The latter seems to be associated with 
the lower probability of occurrence of heat waves in 
the GCM, and consequently our results should be 
interpreted with caution (see below).

The risk ratio (RR) is analyzed between ALL and 
NAT simulations to assess the human impact on the 
probability of occurrence of extreme events, which is 
calculated as the ratio of the probability of exceeding 
observed events in ALL (PALL) and NAT simulations 
(PNAT), i.e., RR = PALL/PNAT (e.g., Easterling et al. 2016). 
RR is also calculated using 1994 observations to assess 

robustness. We use the “likelihood ratio method” 
(Paciorek et al. 2018) to estimate the 5%–95% confi-
dence intervals of RR, which can provide a confidence 
interval (at least a lower bound) even when the esti-
mate of the RR is infinity.

RESULTS. Figure 2 shows the return period distri-
butions of the JA mean Tmax anomalies and HWDx for 
ALL and NAT simulations from w@h and HadGEM3-
A-N216. Return periods are significantly shortened 
for Tmax anomalies with human influences for both 
models (Figs. 2a,b). The probability of Tmax anomalies 
higher than the observed 2018 value is 19.8% in ALL 
(PALL) and it is reduced to 4.2% in NAT simulations 
(PNAT) for w@h (Fig. ES2a). This makes RR as large 
as 4.7 (5%–95% range of 4.1–5.5), indicating that an-
thropogenic influences increase the risk of extremely 
warm summer by 4 to 5 times, well consistent with 
previous studies based on different models (Min et 
al. 2014; Kim et al. 2018). The large PALL indicates a 
possible influence of the observed 2018 SST condi-
tion in w@h model, which may occur in this type of 
single-year atmosphere-only experiment (Risser et al. 
2017). A simple comparison with the 2017 experiment 
results suggests that the observed 2018 SST condition 
may contribute to a larger warming over northern 
East Asia including the Korea peninsula through 
intensified tropical convections (Fig. ES3). However, 
RR is unlikely to be affected much [RR = 5.15 (3.9–6.9) 
based on 2017 runs] because of similar SST impact on 
NAT results (Fig. ES3). HadGEM3-A-N216 has longer 
return periods due to lower values of PALL and PNAT 
for Tmax as 3.6% and 0.19%, respectively (Fig. ES2b). 
This gives a larger RR of 19.0 (4.9–184), which might 
be in part due to the smaller sample size (cf. Sparrow 
et al. 2018). When using a stronger threshold (1994 
Tmax anomalies), results remain similar with RR = 6.5 
(5.1–8.4) for w@h and PNAT = 0% for HadGEM3-A-
N216 (Table ES1).

HWDx results display shortened return periods 
of the long-lasting heat waves under anthropogenic 
influences (Figs. 2c,d). The return periods are gener-
ally longer than Tmax for both models. PALL and PNAT 
are very low as 1.0% and 0.11% from w@h, respectively 
(Fig. ES2c). The corresponding RR is 9.7 (4.3–26.1), 
indicating that the risk of 2018-like extremely long-
lasting heat wave has increased by about 10 times due 
to human impacts. In HadGEM3-A-N216, extreme 
heat wave events longer than the observed 2018 
values are extremely rare even with human-induced 
warming (PALL = 0.76%) and no events are present 
without human influences (PNAT = 0%; Fig. ES2d). 
Although the probability might be this low due to 
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the small sample size and the smaller variability of 
HadGEM3-A-N216 as mentioned above, the consis-
tent shift of the probability distribution indicates the 
increased risk of extreme events due to anthropogenic 
warming. When using the 1994 observed value (13.8 
days, second highest record) as another observed 
threshold, results support this conclusion, providing 
a large RR of 5.8 (2.6–15.6) with PALL = 4.4% and PNAT 
= 0.8% (Table ES1). For w@h, the RR remains large 
as 4.1 (3.9–5.5).

To examine the influence of boundary SST condi-
tions estimated for NAT (see above), we have divided 

the w@h ensembles into 13 groups based on the delta-
SSTs provided by GCMs (see Table ES2) and repeated 
our RR analysis. Results show a large spread in RRs 
across the delta-SST estimates (Fig. ES4), which is 
found to be significantly related to the different aero-
sol sensitivity of GCMs that provide the delta-SSTs, 
reaffirming previous studies (Kim et al. 2018; Min 
et al. 2019). In spite of the large spread, RRs remain 
larger than unity in all cases, which supports that the 
probability of occurrence of 2018-like summer heat 
wave intensity and maximum duration has increased 
due to the human activities.

Fig. 2. Return periods of (a),(b) the JA mean Tmax anomalies and (c),(d) HWDx for ALL (green) and NAT (blue) 
simulations from w@h and HadGEM3-A-N216 (HG3). Kernel density distributions in Fig. ES2 are used to esti-
mate return periods. The purple and red horizontal lines indicate the observed 2018 and 1994 values, respec-
tively. Minor ticks on the x axis indicate 2, 5, 20, 50, 200, 500, etc. Results from subsampled ensemble members 
are displayed with stronger (OLR below the 30th percentile; ALLsc and NATsc) and weaker convection (OLR 
above the 70th percentile; ALLwc and NATwc) over two convection zones (see Fig. 1e). For HadGEM3-A-N216, 
precipitation is used instead of OLR. Refer to Table ES1 for corresponding RR values.
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To explore the extent to which the stronger tropi-
cal convection has contributed to the 2018 extreme 
heat wave, we have compared the Tmax and HWDx 
distributions constructed from samples with stronger 
tropical convection with those with weaker tropical 
convection. The samples with stronger (weaker) 
convection were selected when OLR anomalies over 
two convection zones (black boxes in Fig. 1e) are 
below the 30th percentile (above the 70th percentile). 
For HadGEM3-A-N216, precipitation was used to 
construct the distributions because OLR data are 
not available. Results show that when the tropical 
convection is stronger, the return times of extreme 
events decrease for both Tmax and HWDx, and vice 
versa (Fig. 2). Accordingly, PALL increases from 19.8% 
to 25.9% and PNAT increases from 4.2% to 7.8% for Tmax 
from w@h. For HWDx, PALL increases from 1.0% to 
1.7% from w@h and 0.76% to 2.1% from HadGEM3-
A-N216 (Fig. ES2). However, the resulting RRs remain 
overall similar, larger than 3 (Table ES1), indicat-
ing consistent human influences on the increased 
intensity and the extended duration of heat wave, 
irrespective of the influence of tropical convection. 
Nevertheless, disproportionate responses in RRs to 
convection strengths between ALL and NAT imply 
that the SST warming pattern prescribed can be im-
portant (Risser et al. 2017).

CONCLUDING REMARKS. High-resolution 
large-ensemble simulations from an atmospheric 
RCM (w@h) and an atmospheric GCM (HadGEM3-
A-N216) consistently show increases in the likelihood 
of a 2018-like extreme heat wave intensity and maxi-
mum duration by at least 4 times, when including 
anthropogenic forcing (mainly due to greenhouse 
gas increases). Further, comparisons of sub-sampled 
model simulations suggest that strong tropical con-
vection activity over two regions (northwestern India 
and South China Sea) seems to have contributed to 
the increased probability of the heat wave intensity 
and duration by up to a factor of 2. However, human 
influences on heat waves, as quantified by RR values, 
remain overall unaffected by the strength of tropical 
convection, suggesting that the local thermodynamic 
factor would be more important than the non-local 
factors including large-scale teleconnection changes.
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Extremely heavy precipitation occurred from 
central to western Japan in July 2018, which was 
named the “heavy rain event of July 2018” by 

the Japan Meteorological Agency (JMA). The JMA 
has approximately 1,300 in situ stations. The 48- and 
72-h total precipitation records were broken at 125 
and 123 in situ stations, respectively, from 28 June to 
8 July (the dates are different in the individual in situ 
stations). The 10-day total precipitation accumulated 
at all Japanese in situ stations was the highest for any 
10-day periods starting on the 1st, 11th, and 21st of 
the month since 1982 (Fig. 1a) (Shimpo et al. 2019; 
TCC JMA 2018). During the heavy rainfall event, 
there were 221 fatalities, and more than 6,000 build-
ings were destroyed by floods and landslides (Cabinet 
Office, Government of Japan 2018). The continuous 
lower-level moisture transport maintained the active 
stationary weather front for a couple of days and the 
passage of the upper-level trough enhanced the heavy 
precipitation at the end of this heavy rainfall event 
(Shimpo et al. 2019; TCC JMA 2018). Mesoscale line-
shaped precipitation systems appeared locally and 
strengthened the heavy precipitation in some areas 
of western Japan (Tsuguti et al. 2019).

In recent years, the surface air temperature during 
the summer has been increasing rapidly in Japan. The 
moisture that the atmosphere may hold has increased 
by approximately 7% K−1 as dictated by the Clausius–
Clapeyron relationship. The observed specific humid-
ity at 850 hPa in July shows a rapid increase around 
Japan from 1981 to 2018 (Shimpo et al. 2019; TCC 
JMA 2018). It is possible that recent warming and 
moistening due to global warming contributed to the 
heavy rain event of July 2018.

Event attribution (EA) is useful for the attribution 
of specific extreme events, such as heat waves and 
drought, to global warming due to anthropogenic 
forcing (e.g., Stott et al. 2004; Shiogama et al. 2013, 
2014; Imada et al. 2014). EA uses large ensemble his-
torical and non-warming simulations performed by 
general circulation models (GCMs) and probabilisti-
cally attributed the extreme event to global warming. 
For the latest extreme event in Japan, Imada et al. 
(2019) revealed that the July 2018 heat wave event in 
Japan would have been virtually impossible without 
anthropogenic global warming. Kim et al. (2019, 
personal communication) revealed that the combina-
tion of extreme events in Japan, such as the serious 
f lood and heatwave events that occurred in 2018, 
could be heavily influenced by global warming, even 
though the intermodel variability is large. However, 
it is difficult to adapt the EA to heavy precipitation 
events. Imada et al. (2013) attributed the heavy pre-
cipitation event occurring in southwestern Japan in 
2012 to global warming using the atmospheric GCM 
(AGCM) with approximately 150-km horizontal reso-
lution, while they could not simulate the local-scale 
heavy precipitation. Higher-resolution simulations, 
such as 5-km grid spacings, are needed to directly 
reproduce such heavy precipitation influenced by the 
complex orography in Japan.

The storyline approach (Shepherd et al. 2018) 
is the other approach to evaluating the impact of 

THE HEAVY RAIN EVENT OF JULY 2018  
IN JAPAN ENHANCED BY HISTORICAL WARMING

HIroaKI Kawase, yuKIKo Imada, HIrosHIge tsugutI, tosHIyuKI NaKaegawa,  
NaoKo seINo, aKIHIKo murata, aNd Izuru taKayabu

The unprecedented precipitation total in Japan during the heavy rain event of July 2018  

was increased by approximately 7% due to recent rapid warming around Japan.
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global warming on extreme events. In the storyline 
approach, specific extreme events are simulated by the 
high-resolution regional climate model with realistic 
boundary conditions based on the reanalysis data. 
Then, the impact of global warming is quantitatively 
evaluated by the counterfactual simulations without 
the historical warming component estimated by the 
reanalysis data or global climate simulations. The sto-
ryline approach is useful for extreme events caused by 
mesoscale systems such as stationary weather fronts 
and tropical cyclones (e.g., Takayabu et al. 2015). For 
the heavy rain event of July 2018 in Japan, we applied 
the storyline approach using a regional climate model 
and evaluated the impact of recent warming and 
moistening on precipitation amounts.

METHODS. We reproduced the heavy rain event 
of July 2018 using the Non-Hydrostatic Regional 
Climate Model (NHRCM) (Sasaki et al. 2008). The 
boundary conditions were obtained from the Japanese 
55-Year Reanalysis (JRA-55) (Kobayashi et al. 2015) 
whose horizontal resolution is 1.25°. The horizontal 
grid spacings of NHRCM were 20, 5, and 2 km in the 
outer, middle, and inner domains (hereafter referred 

to as NHRCM20, NHRCM05, and NHRCM02), 
respectively (Fig. 1b). Both the cumulus convective 
parameterization scheme (Kain and Fritsch 1993) 
and a cloud microphysics scheme (Ikawa et al. 1991) 
were used in NHRCM20 and NHRCM05. Only the 
cloud microphysics scheme was used in NHRCM02, 
which is a so-called convection-permitting model. 
The convection-permitting model can simulate local-
scale heavy precipitation influenced by the complex 
orography and mesoscale convective systems (Prein 
et al. 2015). The initial date of NHRCM20 was 20 June 
2019. NHRCM05 runs started on five different initial 
dates, from 22 to 26 June, for conducting simplified 
ensemble experiments. The initial date of NHRCM02 
was 27 June in all ensemble experiments. These hind-
cast experiments are hereafter called CTL2018 runs. 
The radar/rain gauge-analyzed precipitation amount 
produced by JMA was used to validate the precipita-
tion simulated by NHRCM02.

We calculated four kinds of linear trends of 
regional-mean air temperature at each pressure 
level and sea surface temperature (SST) during the 
summer [an average of June–August (JJA)] and each 
month (June, July, and August separately) from 1980 

Fig. 1. (a) Frequency distribution of overall total precipitation at 966 selected in situ stations throughout Japan 
for 10-day periods (TCC JMA 2018). (b) Model domains and topography. Outer, middle, and inner areas represent 
domains of NHRCM20, NHRCM05, and NHRCM02, respectively. (c) Radar/rain gauge-analyzed precipitation 
from 0000 JST 28 Jul to 2300 JST 8 Aug 2019. (d) As in (c), but showing total precipitation simulated by NHRCM02.
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to 2018, when the temperature rise was accelerated 
around Japan. The regional-mean JJA temperature 
at 1,000 hPa showed a rapid increase with a large 
interannual variability (Fig. 2a). The warming trend 
was largest in July (1.11 K per 39 years at 1,000 hPa) 
and smallest in June (0.75 K), whereas the trend in 
August (1.04 K) was similar to that in JJA (0.96 K). 
Note that the temperature trend in reanalysis data 
includes a natural decadal variability in addition to 
human-induced global warming. We performed a 
similar hindcast simulation using the JRA-55 without 
these four recent warming trends, which are hereafter 
called the DeTRND2018_JJA, DeTRND2018_JUN, 
DeTRND2018_JUL, and DeTRND2018_AUG runs, 
respectively. Each experiment had five ensemble runs 
using the different initial dates of NHRCM05.

RESULTS. The ensemble mean of five CTL2018 
runs well reproduces the horizontal distribution of 
total precipitation during the heavy rain event of July 
2018 (Figs. 1c,d). Time sequences of regional mean 
precipitation show that NHRCM02 simulates the 
timing of heavy precipitation periods on 29–30 June, 
3–4 July, and 5–7 July (Fig. 2c). The total precipitation 
amount is, however, underestimated over land. The 
observed and simulated regional mean total precipita-
tion over land are 357.0 and 269.2 mm, respectively, 
in 129°–142°E and 30°–37.5°N. The underestimation 
of precipitation over the coastal areas along the Sea 
of Japan corresponds to the bias in the location of the 
stationary weather front simulated by NHRCM02.

Figure 2b shows the difference in the total pre-
cipitation over land between the ensemble mean of 
the CTL2018 runs and the ensemble mean of the 
DeTRND2018 runs. The majority of areas show that 
the precipitation amount is larger in CTL2018 than 
that in DeTRND2018, suggesting that the recent 
warming might strengthen the heavy precipitation. 
We compared the time sequences of the accumu-
lated precipitation amounts between CTL2018 and 
DeTRND2018 during the heavy precipitation period 
(Fig. 2c). The difference in the ensemble mean pre-
cipitation amounts became larger after 5 July. At the 
end of the heavy precipitation event, the difference 
in accumulated precipitation between CTL2018 and 
ensemble-mean DeTRND2018 runs was 17.0 mm, 
which is equivalent to 6.7% relative to DeTRND2018. 
To consider the uncertainty in the detrending 
method, the discrepancies among the DeTRND2018 
ensemble runs (thin blue lines), which result from 
the four temperature trends eliminated from JRA-55, 
are also estimated. The percentages of differences in 
precipitation amounts are +7.4%, +6.5%, +2.7%, and 

+10.7% relative to DeTRND2018_JJA, DeTRND2018_
JUN, DeTRND2018_JUL, and DeTRND2018_AUG, 
respectively. The variation using five different initial 
dates is much smaller than that using four differ-
ent temperature trends (Fig. 2d). The difference 
of precipitation in DeTRND2018_JUL is smallest 
among four experiments, while the difference of air 
temperature at 1,000 hPa is the largest among them. 
These results indicate that the changes in precipita-
tion due to warming do not necessarily correspond 
to the low-level temperature changes.

Changes in SST influence the low-level moisture 
because most water vapor is derived from the ocean 
around Japan. In addition, the atmospheric moist 
stability is modulated by changes in the vertical 
profiles of equivalent potential temperatures and 
saturated equivalent potential temperatures. Our 
experiments indicate that changes in the moist 
stability (i.e., θe1000– θ*e 600 in the table in Fig. 2) 
contribute to changes in precipitation amounts. De-
TRND2018_AUG (DeTRND2018_JUN) shows the 
largest (smallest) changes in stability and results in 
the largest (smallest) increase in precipitation. Hibino 
et al. (2018) pointed out that, in the future climate, 
the effect of moistening due to global warming on 
extreme precipitation in Japan could be cancelled out 
by the suppression of convection due to the enhance-
ment of thermal stability. 

According to the JRA-55 reanalysis data, the 
increases in air temperature at 1,000 hPa are 0.96, 
0.75, 1.11, and 1.04 K in JJA, June, July, and August, 
respectively. If we assume 7% increase for every degree 
according to the Clausius–Clapeyron relation, the per-
centages are 6.7%, 5.3%, 7.8%, and 7.3%, respectively. 
Approximately 6.7% increase in precipitation is in the 
expected range. However, our results indicated that 
the changes in heavy precipitation are also influenced 
by the changes in atmospheric moist stability, which 
can be additional uncertainty sources in changes in 
heavy precipitation due to global warming. Therefore, 
evaluations of not only atmospheric warming but also 
changes in atmospheric moist stability due to global 
warming are necessary to quantitatively assess the im-
pact of global warming on long-lasting heavy precipita-
tion events, such as the heavy rain event of July 2018.

Additional experiments are conducted assuming 
a warmer climate than the current climate and using 
five initial dates. Here, the JJA temperature trends 
are extrapolated by the past temperature trend for 
same term (39 yr) and added into 2018. Mean total 
precipitation increases by 6.1% relative to CTL2018 
in the warmer condition (see Fig. ES1 in the online 
supplemental material).
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Fig. 2. (a) Interannual variation of regional-mean air temperature at 1,000 hPa at 120°–145°E, 30°–40°N in JJA. A 
red line represents a linear trend from 1980 to 2018. (b) Difference of total precipitation between the ensemble 
means of CTL2018 and DeTRND2018. Blue (orange) colors indicate that the precipitation amount in CTL2018 
is larger (smaller) than that in DeTRDN2018. (c) Time sequence of regional-mean overland precipitation in 
central and western Japan. Black and blue lines represent regional-mean accumulated precipitation simulated 
by the CTL2018 and DeTRND2018 runs, respectively. Bold lines represent the corresponding ensemble means. 
Shadings and bars show the regional-mean hourly precipitation: the observation (green), CTL2018 (gray), 
and DeTRND2018 (blue). (d) Mean total precipitation and standard deviations simulated by each experiment. 
(table) Differences of several indices between CTL2018 and DeTRND2018. T1000, θe1000 and θ *e 600 represent 
temperature at 1,000 hPa, equivalent potential temperature at 1,000 hPa, and saturated equivalent potential 
temperature at 600 hPa, respectively.
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CONCLUSIONS. The contribution of histori-
cal global warming on the heavy rain event of July 
2018 in Japan was quantitatively evaluated by using 
NHRCM02 forced by the JRA-55 reanalysis data. The 
NHRCM02 well simulated the horizontal distribution 
and timing of heavy rainfall over western and east-
ern Japan. Sensitivity experiments, in which linear 
trends of summer-mean and each monthly-mean 
temperature from 1980 to 2018 are eliminated from 
the boundary conditions, showed the increases in 
total precipitation due to recent warming. Total pre-
cipitation in the CTL2018 runs is approximately 6.7% 
(+2.7% to +10.7%) larger than that in the ensemble-
mean DeTRND2018 runs. These changes in precipita-
tion are induced by not only changes in atmospheric 
temperature, which relates to Clausius–Clapeyron 
relationship, but also changes in the SST and atmo-
spheric moist stability. Either way, our results indicate 
that historical warming definitely contributed to the 
increase in total precipitation of the heavy rain event 
of July 2018 in Japan. This study employs a storyline 
approach to control for the specific weather phe-
nomena associated with this extreme event. Future 
work is required to assess the change in frequency of 
background synoptic conditions causing the heavy 
rain event of July 2018 in Japan.
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EVENT DESCRIPTION AND STUDY AP-
PROACH. Significant wildfires occurred across 
various regions in 2018. The 2018 bushfire season 
was declared early in many Australian jurisdictions. 
By 30 November 2018, 130 bushfires in Queensland, 
northern Australia, had caused significant damage 
and burned nearly 3/4 million hectares (see Aus-
tralian Bureau of Meteorology 2018). Bushfires on 
the scale of the 24 to 29 November event (hereafter 
simply called “the fires”) occurring in this coastal 
Queensland location (see Fig. 1) were unprecedented.

The McArthur Forest Fire Danger Index (FFDI) is 
used to assess dangerous bushfire weather conditions 
in Australia (Noble et al. 1980). The FFDI increased 
considerably in the last week of November and was 
the highest on record (from 1950) in some areas. 
During 24–29 November, daily FFDI values were 

“extreme” (FFDI ≥ 75) for large parts of Queensland 
and “catastrophic” (FFDI ≥ 100) in some locations. 
The FFDI includes a measure of fuel moisture content 
calculated from antecedent rainfall and temperature, 
daily temperature, relative humidity (RH), and wind 
speed (V). The 99th percentile FFDI (number of days 
> 99th percentile) is discussed here as indicative of 
the extreme end of the fire risk spectrum based on 
these weather conditions.

The 2018 fire occurred during a period of syn-
optic- and large-scale extremes. This is typical of a 
compound extreme event (Zscheischler et al. 2018) 
and makes definition and analysis of the event as a 
single variable limited. Prior research cautions that 
direct attribution of the FFDI to specific forcings 
(e.g., anthropogenic greenhouse gases) is complicated 
by the index’s integration of multiple dependent 
variables (Black 2017). Model bias correction of one 
variable (e.g., temperature) requires its relationship 
with others (e.g., humidity) to be preserved. While 
explicit examination of the FFDI may be possible with 
multivariate bias correction (e.g., Cannon 2018), we 
adopt an alternative approach and instead examine 
FFDI components separately. As individual variables 
have different weightings in the FFDI calculation 
and are affected by climate change differently (Black 
2017), it is valuable to examine each separately in 
order to determine the factors contributing to the 
extreme fire and heatwave period. We deconstruct 
the observed key synoptic features during Novem-
ber and the conditioning heatwave event (defined as 
24 to 29 November 2018, hereafter “the event”) and 
large-scale 2018 conditions [antecedent conditions 
in spring (September–November) and in November 
only, and large-scale modes of variability). Using 
two climate model attribution [CMIP5 (Taylor et al. 
2012) and weather@home (Black et al. 2016)] frame-
works, we examine whether aspects of these observed 

DECONSTRUCTING FACTORS CONTRIBUTING  
TO THE 2018 FIRE WEATHER IN QUEENSLAND, AUSTRALIA

soPhie c. Lewis, sTePhanie a. P. BLake, BLair Trewin, MiTcheLL T. BLack,  
andrew J. dowdy, sarah e. Perkins-kirkPaTrick, andrew d. king, and Jason J. sharPLes

Factors including the circulation pattern and antecedent conditions contributed to 2018  

northeast Australian fires. High background temperatures also played a role  

for which model evidence suggests an anthropogenic influence.
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conditions were made more 
likely due to anthropogenic 
forcings.

OBSERVED LARGE-
S C A L E  FA C T O R S . 
We focus on the state of 
Queensland and the region 
of highest observed fire dan-
ger (hereafter “fire region”), 
which encompasses the ma-
jor areas burnt.

Temperature. Observed dai-
ly maximum temperatures 
(Tmax) were anomalously high 
during November (Fig. 1b). 
High Tmax and daily mini-
mum temperature (Tmin) were 
persistent throughout the 
event particularly for Tmin 
(see Fig. ES1 in the online 
supplement). Over this pe-
riod, Queensland area-av-
eraged minimum tempera-
tures are above the observed 
95th percentile, and records 
were broken in many loca-
tions (Australian Bureau Of 
Meteorology 2018). Above-
average temperatures also 
occurred in both regions 
over spring and November.

Precipitation. Seasonal rain-
fall was below average over 
the antecedent spring pe-
riod (Fig. 1c), which likely 
favored drier soil moisture 
conditions and increased 
Tmax values (Kirono et al. 
2017). While rainfall oc-
curred across the state in 
the days prior to the event 
(Fig. ES1c), the heatwave 
event itself lacked significant 
rainfall. In the major fire-
affected regions, August to 
October is the driest period 
of the year, and November 
marks the transition between 
the dry and wet seasons; for 
example, Mackay (northern 

Fig. 1. Summary of key observed meteorological and climatological condi-
tions in Queensland state, northeastern Australia, during the November 
2018 fire event. (a) FFDI anomaly (number of days for November 2018 > 99th 
percentile from 1950–2017 compared to long-term November average from 
1950). (b) November 2018 average of daily Tmax anomalies (°C) (relative to 
long-term average from 1911). (c) Precipitation anomalies for SON (%) rela-
tive to mean). (d) Wind speed (m s-1) and (e) direction, and (f) MSLP anoma-
lies (hPa) for the event (24–29 Nov, relative to long-term November mean 
from 1979). Queensland state is shown, with area of interest for fire shown 
by dashed box, and the area of anomalously low MSLP in the Tasman Sea.
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point of fire region) averages 83 mm for the August–
October period and 88 mm for November.

Large-scale context. The state of large-scale ocean–
atmosphere modes of variability during 2018 are 
summarized in Table 1. Most notably, strong positive 
southern annular mode (SAM) and Indian Ocean 
dipole (IOD) conditions were observed; however, both 
these modes are typically associated with rainfall 
variations over southern Australia, with minimal 
impact in the north (Risbey et al. 2009; Ummenhofer 
et al. 2009; Hendon et al. 2016). El Niño–Southern 
Oscillation (ENSO) conditions were largely neutral. 
We note that subseasonal drivers, particularly the 
Madden–Julian Oscillation (MJO), were also influen-
tial during the fire event, with MJO-associated tropi-
cal cloud and rainfall bands likely contributing to the 
observed anomalous westward wind flow (Australian 
Bureau of Meteorology 2018).

OBSERVED SYNOPTIC-SCALE FACTORS. 
Wind speed and direction. During the event, anoma-
lous westerly winds (at 10 m) were observed (Fig. 1d). 
While wind speed was below the long-term November 
average for most of Queensland (except in coastal 
southern Queensland), the westerly direction was 
anomalous for this time of year, which usually experi-
ences landward flow, with westerly winds reported at 
some tropical coastal sites where they are historically 
extremely rare in November (Australian Bureau of 
Meteorology 2018). Anomalous wind features are 
hence both a risk factor and a key driver of tempera-
ture and humidity extremes.

MSLP. Composited daily mean sea level pressure 
(MSLP) during the 5-day event shows a key low 
pressure system over southeastern Australia and the 
Tasman Sea (Fig. 1e), which was noted as a driver of 
the anomalous southwest to westerly wind flow over 
Queensland (Australian Bureau Of Meteorology 
2018). We use the region of observed anomalously 
low MSLP in the Tasman Sea (36°–42°S, 152°–162°E) 
to examine synoptic factors in model simulations.

Humidity. Relative humidity (at 2 m) observed during 
the event was significantly below average, particularly 
for the coastal regions of Queensland (not shown).

MODELED LARGE-SCALE CONTRIBUT-
ING FACTORS. Background climatic conditions 
observed in 2018 are first examined using CMIP5 
monthly and seasonal model data, with risk ratios 
(RRs) associated with anthropogenic forcings calcu-
lated for exceeding 2018 observed anomalies for each 
variable (see section 2 in the online supplemental 
material). RRs are a quantification of the change in 
the probability of an extreme that can be attributed 
to anthropogenic forcings (e.g., an RR value of 2 in-
dicates a doubling of attributable risk).

Temperature. Notable differences in the distribution 
of temperatures in the fire region occur in CMIP5 
experiments with different forcings (Fig. 2a), with 
a substantial warm shift in temperatures in RCP8.5 
simulations compared to historicalNat scenarios. The 
shift in probabilities is particularly the case for warm 
tail temperatures anomalies, consistent with previous 

Variable (QLD) 2018 anomaly
Maximum/minimum 

anomaly Ranking

FFDI days > 99th 
percentile (NOV)

4 4 (2018) 1st since 1950

Temperature (EVENT) 3.9°C 3.9°C (2018) 1st since 1950

Temperature (NOV) 1.65°C 2.8°C (2014) 4th since 1950

Precipitation (EVENT) –1.9 mm day−1 –2.1 mm day−1 (2006) 7th since 1950

Precipitation (SON) –0.2 mm day−1 –0.7 mm day−1 (2002) 31st since 1950

Index 2018 Maximum Anomaly Ranking

ENSO (ANN) 0.66 2.3 (2015) 13th since 1950

SAM (ANN) 2.4 2.4 (2018) 1st since 1950

IOD (ANN) 0.9 1.3 (1997) 2nd since 1950

Table 1. Summary of observed 2018 meteorological and climatological conditions for Queensland and 
large-scale indices. For the FFDI, the count of FFDI days above the 99th percentile is given for the fire 
region for November, as are temperature and precipitation values for the fire region for 5-day periods 
and the annual average large-scale index values. Maximum (or minimum) observed anomalies and 
ranking of 2018 anomalies (relative to 1961–90) are indicated.
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studies quantitatively attrib-
uting observed Australian 
temperature extremes to 
anthropogenic forcings (e.g., 
Black et al. 2015; Lewis and 
Karoly 2013; Perkins and 
Gibson 2015). The RR for 
exceeding observed 2018 No-
vember temperature anoma-
lies is 4.5.

Precipi tat ion.  The distri-
but ions of area-average 
Queensland September–
November (SON) rainfall 
differ between the CMIP5 
historicalNat and RCP8.5 
simulations at the dry end 
of the distribution (Fig. 2b; 
see also Fig. ES2b). This in-
dicates that conditions drier 
than average are simulated 
to occur somewhat less often 
under anthropogenically 
forced runs (years 2005–36) 
compared to natural runs. 
The RR for rainfall deficits 
lower than observed condi-
tions in spring 2018 is 1.5. We 
note that observed regional 
rainfa l l trends are weak 
and rainfall projections are 
model dependent (Kirtman 
et al. 2013), and attribution 
of events may be spatiotem-
poral scale or definition de-
pendent (Angélil et al. 2017).

MODELED SYNOPTIC-
SCALE CONTRIBUT-
ING FACTORS. We next 
explore synoptic-scale fac-
tors in a large single-model 
ensemble of atmosphere-only 
simulations [weather@home; 
see Black et al. (2016) and sec-
tion 3 of our online supple-
mental material). The fires 
were characterized by a dis-
tinct synoptic evolution over 
the 5-day period beginning 
24 November and notably 
low MSLP in the Tasman Sea.

Fig. 2. Summary of modeled conditions in Queensland. Plot shows com-
parison of CMIP5 historicalNat (blue), historical (black), and RCP8.5 (red) 
experiments for (a) daily fire region area-averaged November temperature 
(°C) probability distributions and (b) Queensland (QLD) area-average SON 
precipitation (mm day−1) cumulative distributions for anomalies relative to 
each model’s 1961–90 climatology, with 2018 observed anomalies noted by a 
vertical dashed line. For the weather@home ensemble, plots shows (c) anoma-
lies (ALL − NAT) of 5-day running mean MSLP(hPa) with stipples showing 
anomalies larger than the standard deviation of daily November values. PDFs 
are given for weather@home (d) daily November MSLP conditions in Tas-
man region for ALL (red) and NAT (blue), (e) daily fire region area-averaged 
November temperature (°C), and QLD area-average (f) precipitation (mm 
day−1) and (g) relative humidity (%). For weather@home plots, dashed lines 
show distributions of variables during times only when 5-day running mean 
MSLP in the Tasman Sea box is below the 10th percentile of all days.
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MSLP. We compare the occurrence of low area-average 
MSLP anomalies in the Tasman region (Fig. 1e) be-
tween the experiments conducted with present-day 
atmospheric composition (ALL) and preindustrial 
atmospheric composition and composite surface field 
modified by removing different anthropogenic 
response pattern estimates (NAT). There are no 
significant changes in 5-day mean November daily 
MSLP patterns in these scenarios (Fig. 2c) and the 
daily area-average Tasman Sea MSLP distributions 
are indistinguishable between experiments (Fig. 2d).

Temperature. There is a clear warm shift in November 
daily temperatures in both the fire region (Fig. 2e) 
and QLD (Fig. ES2a) in the ALL forcing simulations. 
There is an additional contribution to warm simulat-
ed temperatures from prevailing low MSLP patterns. 
When daily temperature anomalies in the fire region 
are compared for all simulated with those where area-
average Tasman region MSLP anomalies are below 
the 10th percentile value of all values (MSLPLOW), 
a further warm shift in temperatures occurs.

Precipitation. For daily area-average Queensland, low 
precipitation values in November are most likely in 
the NAT simulations and particularly days sorted by 

MSLPLOW. While CMIP5 analysis indicated ante-
cedent rainfall deficits were more likely under green-
house gas forcings, low daily rainfall in Queensland 
does not have a discernible anthropogenic influence 
(Fig. 2f), although we note that persistent low daily 
rainfall or consecutive dry day indices were not ex-
amined.

Humidity. There was little notable difference simulated 
between daily November conditions in the ALL and 
NAT scenarios for humidity (Fig. 2g), although low 
daily humidity values in Queensland are more likely 
for MSLPLOW.

SUMMARY. We have provided a qualitative ex-
amination of the extreme fire and heatwave event 
of November 2018 in Queensland by deconstructing 
various contributing factors. As the FFDI measure 
combines multiple, interdependent variables, we 
explored components separately in observations 
and climate models (summarized in Table 2). The 
fires (and conditioning heatwave) were a complex 
compound extreme event with multiple contribut-
ing factors occurring on a range of spatiotemporal 
scales. The high 2018 November temperatures and 
low antecedent spring rainfall in Queensland were 

Variable

(i) 2018 anomaly 
(relative to 

climatology)

(ii) Contribution to 
FFDI  

(lower or higher 
FFDI)

(iii) Lower/higher/
same with low 
Tasman MSLP

(iv) Lower/
higher/same with 

anthropogenic 
GHG

FIRE temperature 
(NOV) H H H H (RR = 4.5)

FIRE temperature 
(EVENT) H H H H

QLD precipitation 
(SON) L H N/A L (RR = 1.5)

QLD precipitation 
(NOV) L H L L

QLD humidity 
(EVENT) L H L S

Tasman MSLP 
(EVENT) L H S

QLD/FIRE 
WINDS (EVENT)

L (and westerly 
direction) H N/A N/A

Table 2. Summary of (i) observed 2018 meteorological and climatological conditions, (ii) assessment of 
their influence (higher/lower) on the extreme observed FFDI during November and the event, (iii) as-
sessment of whether these were conditions were lower, higher, or the same in weather@home simula-
tions during low Tasman Sea MSLP occurrences, and (iv) assessment of whether observed conditions 
are altered by simulated anthropogenic forcings influences (higher/lower or same probability with and 
without anthropogenic forcings, or N/A for not assessed) in CMIP5 [where the risk ratio (RR) is provid-
ed] and weather@home (where qualitative assessment is made).

S119JANUARY 2020AMERICAN METEOROLOGICAL SOCIETY |
Unauthenticated | Downloaded 02/21/21 04:03 AM UTC



key contributors to the elevated fire risk, in addition 
to the evolution of synoptic conditions that resulted 
in low humidity and anomalous westerly winds.

Sustained low rainfall and extreme high tempera-
tures were notable antecedent conditions prior to the 
event, and these large-scale factors, in particular, are 
thought to result in increased availability of larger fuel 
elements, which can lead to increases in fire intensity 
and energy release from a fire (Sharples et al. 2016). 
Both CMIP5 and weather@home model datasets 
indicate that anthropogenic forcings in model simu-
lations increase the likelihood of higher Queensland 
and fire region temperatures. CMIP5 models also 
provide some evidence of increased likelihood of 
dry spring conditions with enhanced anthropogenic 
greenhouse gases. The large-scale ocean–atmosphere 
modes of climate variability that were anomalously 
positive in 2018 (IOD and SAM) do not typically 
inf luence northern Australian climates, although 
negative SAM is strongly correlated with high FFDI 
in southern Australia.

As with all short-duration extremes, the evolution 
of synoptic conditions was critical to the fire event. 
These conditions included a significantly late start 
to the wet season, a sustained low pressure system 
to the south of the state, and unusual westerly wind 
flow. These conditions occurred in conjunction with 
a severe and persistent heatwave (high minimum 
and maximum temperatures) and very low humid-
ity, leading to FFDI measures of “extreme” or “cata-
strophic” over much of Queensland. This synoptic 
pattern was not shown to be more likely in ALL forc-
ings simulations of weather@home as diagnosed by 
low MSLP conditions in the Tasman Sea. MSLPLOW 
days in weather@home were associated with warmer 
temperatures and low humidity in Queensland.

FUTURE CLIMATE RISKS. Although complex 
events are challenging to understand, attempts to 
evaluate possible changes in future fire danger in 
eastern Australia are critical for adaption. While we 
have not provided a quantitative extreme event attri-
bution assessment of this event, ours is one of many 
results that points to increasing fire danger risks in 
eastern Australia. In Australia, an overall increase 
in the FFDI has been observed in many regions, 
particularly for southern and eastern Australia in 
recent decades (Dowdy 2018), with future projections 
clearly showing an increase in the FFDI throughout 
Australia based on a comprehensive set of modeling 
approaches (Dowdy et al. 2019).

Previous notable heatwave events in the region in 
1995, 1994, and 1969 were also associated with strong 

low pressure systems to the south and westerly wind 
flow, but were not accompanied by compound bush-
fires in northern or central Queensland (Australian 
Bureau of Meteorology 2018). The 2018 conditioning 
heatwave event was more severe and persistent than 
previous analogs, with no event of this scale previ-
ously occurring at such northerly coastal locations. 
Events that are unprecedented in a given region, such 
as the 2018 event, reveal that firefighting prepara-
tion and training cannot rely on previous events as 
guidance for the most dangerous conditions they can 
expect in the current and future climate in which 
large-scale fires occur more regularly. This demon-
strates that providing information to regions with 
developing future risk of extreme or catastrophic 
FFDI measures, or with enhanced risk outside the 
historical fire season, is of critical importance.

Future exhaustive examinations of fire events 
should additionally consider the evolution of syn-
optic conditions during the event, the accumulated 
antecedent rainfall and soil moisture deficits, the 
weighting of these variables in indices such as the 
FFDI, and the ability of models to simulate each vari-
able for the region and season in question. Under this 
comprehensive framework, quantitative attribution 
statements may provide insight.
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O n 10 May 2018, Hobart, Tasmania, experienced  
 an extreme rainfall event, which caused flash  
 flooding, infrastructure damage, and major dis-

ruption across the capital city, leading to $100 million 
in insurance claims (Cooper 2019). Gauged records 
indicate that 130 mm of rain fell during the event, 
which ranks as the second highest autumn rainfall 
day over the ~120-yr record, with the largest oc-
curring in 1960. The frequency and magnitude of 
daily autumn wet extremes show interannual to 
multidecadal variability over the gauged record and 
no clear linear trend (Fig. 1a). Future projections, 
however, indicate that in a warmer world these types 
of events are likely to increase in both frequency 
and magnitude across Tasmania (White et al. 2013). 
Given its extreme magnitude, we thus ask whether 
an anthropogenic contribution is already apparent 
in the autumn 2018 event.

Anthropogenic attribution assessments typi-
cally rely on general circulation models (GCMs) 
to characterize the expected signal. Daily rainfall 
extremes present a novel challenge for event attribu-

tion in GCMs because the rainfall process is at least 
partly parameterized. To have confidence in the use 
of GCMs for attribution studies, it is important to 
assess not only their ability to simulate the statistics 
of extreme events (e.g., magnitude and frequency) but 
also the associated atmospheric circulation (Grose 
et al. 2012; Otto 2016; Sillmann et al. 2017; Tozer 
et al. 2020). This provides confidence that a model 
is producing rainfall extremes for the right reasons 
(Eyring et al. 2019).

In our approach to this event attribution study we 
include an evaluation of our selected model’s ability to 
simulate 1-day wet extremes in Hobart and their as-
sociated synoptic- and large-scale circulation. We uti-
lize the atmosphere-only HadAM3P model from the 
weather@home project (Massey et al. 2015; Guillod 
et al. 2017). Weather@home provides simulations of 
both an “actual” and “natural” world (effectively, with 
and without anthropogenic climate change), which 
allows us to estimate changes in climate extremes in 
the current climate relative to a climate unaltered by 
anthropogenic influence (Massey et al. 2015; Schaller 
et al. 2016; Black et al. 2016).

DATA AND METHODS. We use 450 simulations 
of autumn 2018 from the actual (ACT) and natural 
(NAT) weather@home experiments (equivalent to 
40,500 days each). The ACT simulations are produced 
under 2018 sea surface temperatures (SSTs), sea ice 
concentrations, and atmospheric forcings. NAT uses 
preindustrial forcings and an SST field that has the es-
timated anthropogenic SST change pattern removed. 
This change pattern is derived from estimates from 
multiple GCMs contributing to CMIP5 (Schaller et al. 
2016). We extract rainfall for the model grid box en-
compassing Hobart. Geopotential height anomalies at 

A 1-DAY EXTREME RAINFALL EVENT  
IN TASMANIA: PROCESS EVALUATION  

AND LONG TAIL ATTRIBUTION
carly r. Tozer, JaMes s. risbey, Michael r. Grose, didier p. Monselesan, douGal T. squire,  

aManda s. black, douG richardson, sarah n. sparrow, sihan li, and david walloM

Attribution of an extreme magnitude 1-day rainfall event in Hobart is inhibited by small sample  

size. For moderate magnitude Hobart daily rainfall extremes, models suggest that the associated  

extratropical lows will deliver more rainfall with weaker pressure anomalies in a warmer world.
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500 hPa (z500), calculated relative to the mean of all 
NAT or ACT autumn 2018 simulations, respectively, 
are used to represent the atmospheric circulation.

For observed rainfall we use a gridded rainfall 
product from the Australian Water Availability Proj-
ect (AWAP). AWAP provides interpolated gauged data 
at a grid resolution of 0.05° longitude × 0.05° latitude 
(Raupach et al. 2006; Jones et al. 2009) from 1900 to 
present. To allow a fair comparison with the lower-
resolution model, we spatially averaged all AWAP grid 
boxes within the relevant HadAM3P grid box (1.875° 
longitude × 1.25° latitude, inset Fig. 1b). We also refer 
to point data recorded in Hobart (Australian Bureau 
of Meteorology gauge 094029). The Japanese 55-Year 
Reanalysis (JRA: Kobayashi et al. 2015) is used as our 
observed reference for atmospheric circulation and is 
available from 1958 to the present.

Figure 1a presents the highest daily rainfall record-
ed in each autumn across the 1900–2018 period. The 
magnitudes of the highest autumn rainfall days in 
1909, 1960, and 2018 far exceed those in other years. 
There is clearly a small sample of these “extreme” 
extremes, which makes attribution challenging. For 
the purposes of analysis we include “extreme” ex-
tremes (including the autumn 2018 event) as part of a 
broader range of 1-day extreme wet events (National 
Academies of Sciences, Engineering, and Medicine 
2016; Bellprat et al. 2019). We identify 1-day extreme 
wet events in Hobart (in the AWAP, gauge, and model 
datasets) as any day greater than the 99th percentile 
daily rainfall, where the 99th percentile value is cal-
culated per calendar day, to account for the seasonal 
cycle. Daily rainfall series are noisy, so to provide 
a reasonable sample size from which to calculate 
the 99th percentile values, we use a moving 15-day 
window centered on the day in question (Perkins 
and Alexander 2013). For example, for calendar 
day 8 May, we include days from 1 May to 15 May 
across the 1900–2018 period in the analysis pool 
(i.e. close to 2,000 days). For the gauged record the 
threshold percentile values range from ~18–27 mm 
across autumn days. For the AWAP extreme events 
the threshold values range from ~16–31 mm and for 
modeled extremes this range is ~10–22 mm.

To evaluate the model simulations we compare the 
distributions of wet events identified in the model 
(ACT) with the AWAP and gauged data distributions 
(Fig. 1b). We then average the z500 anomalies associ-
ated with each wet event to form a composite of the 
circulation associated with wet events in Hobart in 
both the observations (in this case AWAP and JRA) 
and model (ACT) simulations. This approach is based 
on the methodology presented in Tozer et al. (2020).

For the event attribution component we assess 
both the rainfall and circulation associated with wet 
extremes in the ACT and NAT simulations. Specifi-
cally,

1) We identify 1-day wet events in NAT and ACT, 
with both cases referenced to the NAT percentile 
values. The NAT thresholds provide a baseline 
to determine any changes in the extreme rainfall 
distribution from the “natural” to the “actual” 
world.

2) We extract z500 anomalies for the model grid box 
approximately encompassing the highest nega-
tive z500 anomaly associated with wet events (as 
identified in the composite analysis). We assess 
the z500 anomaly distribution for NAT and ACT 
wet events to determine if there are changes in the 
intensity of z500 associated with wet events in a 
warming world.

RESULTS AND DISCUSSION. Model evalua-
tion. We compare the magnitude of autumn 1-day 
wet events in the gauged, AWAP and model (ACT) 
data in Fig. 1b. For the gauged data, it is clear that (a) 
there is a large range of magnitudes that exceed the 
99th percentile threshold; and (b) the extreme event 
distribution has a long tail (i.e., few high-magnitude 
extremes). Most events range between 20 and 50 mm 
(median of 29 mm) and occur at a frequency of almost 
one event per year. The autumn 2018 event sits far in 
the tail of the distribution. The AWAP wet events have 
a slightly higher median of 31 mm but have reduced 
extreme magnitudes relative to the gauged data (e.g., 
the autumn 2018 event sits in the 70–80-mm range), 
a result of the spatial averaging (discussed above), 
and because it is a gridded product (Tozer et al. 2012; 
King et al. 2013). The modeled wet events have further 
reduced magnitude with a median value of 21 mm.

Both AWAP and the model have a slightly lower 
frequency of wet events relative to gauged. Common 
across all datasets is the long tail of the wet event 
magnitude distribution, highlighting that there are 
very few “extreme” extremes in both observations 
and large model simulations.

As seen in Fig. 1c, Hobart 1-day wet events are 
typically associated with an intense low pressure 
system (Fox-Hughes and White 2015), which is cut 
off from the westerly flow by a blocking high in the 
Tasman Sea (Pook et al. 2010). These synoptic struc-
tures are associated with a large-scale wave train in 
the polar jet (Tozer et al. 2018). Figure 1d indicates 
that the model successfully captures these synoptic 
and large-scale processes, which builds confidence in 
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Fig. 1. Model evaluation. (a) Maximum daily rainfall in each autumn in Hobart (Ellerslie Rd., gauge no. 
094029). Blue bars indicate that the rainfall event is classed as a wet event as per the shifting window 
method described in section 2. Years without any daily wet extreme events are indicated in gray. The 
number of wet events occurring in each year is shown with black dots (e.g., 3 dots means 3 wet events oc-
curred that year). Linear trend analysis found no significant trend in the magnitude of the maximum daily 
autumn rainfall (p value = 0.25) or the number of extreme daily wet events (p value = 0.41) over the gauged 
record. (b) Histogram of gauged (blue bars), AWAP (gray bars) and modeled (ACT; red bars) wet events. 
Diamonds indicate where the autumn 2018 event sits in the gauged and AWAP distributions. Gauged and 
AWAP analyses performed over the 1900–2018 period. 450 autumn 2018 ACT simulations were used for 
the model analysis, with ACT wet events identified relative to ACT percentiles. Inset shows the location 
of Hobart (green dot) and relevant model grid box (red square). (c) Composite of JRA z500 anomalies for 
AWAP derived wet events in Hobart region. Solid (dashed) contours indicate positive (negative) geopo-
tential height anomalies with contours every 15 m. (d) As in (c), but using modeled ACT (red contours).
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its representation of real-world wet extremes for the 
following attribution assessment.

Event attribution. The NAT and ACT wet event magni-
tude histograms have similar shapes (Fig. 2a), with a 
Kolmogorov–Smirnoff (KS) test suggesting that there 
is no significant difference between the histograms at 
the 5% level (p value of 0.18). As in the observations, 
the NAT and ACT extreme event distributions have 
a long tail. Also of interest is that while the overall 
number of wet extremes in NAT and ACT are similar, 
there is a higher number of events in the 30–50-mm 
range in ACT. Figure 2c presents the return period of 
daily rainfall in NAT and ACT. Again it is clear that 
there are very few days with rainfall >50 mm in both 
simulations. The confidence intervals for NAT and 
ACT for these high-magnitude rainfall days are both 
large and overlapping. These results show that even in 
a large number of model simulations, these “extreme” 
extremes are very rare in Hobart. We cannot draw 
statistically robust conclusions about the anthropo-
genic influence on the autumn 2018 event from only 
a handful of events of that size. Some comment may 
be made about events in the 30–50-mm range (“mid-
range” extremes) given their larger sample size. Figure 
2c clearly shows that return periods for rain days in 
this range are lower in ACT relative to NAT (i.e., rain 
days of this magnitude are more frequent in ACT). For 
example, a 35-mm rainfall day in ACT has a return pe-
riod of ~8.5 yr relative to ~13 yr in NAT (Fig. 2c inset).

We now assess variability in the intensity of the 
low pressure systems associated with Hobart wet 
events (Fig. 2d). There is a clear displacement of 
probability mass toward lower magnitude (i.e., less 
negative) z500 anomalies for ACT events in Fig. 2c 
relative to NAT. This suggests that wet events in ACT 
can occur in association with a weaker cutoff low 
intensity, which is also evident in the composite ACT 
and NAT circulations (Fig. 2b). A KS test indicates 
that the shift in the distributions is significant at the 
5% level (p value of 0.02).

We further explore this observation in Fig. 2e. 
Here we focus on the z500 anomaly range in which 
the majority of the wet extremes occur (i.e., 0 to 
−200 m; Fig. 2d) and plot the distribution of wet 
extreme magnitude for z500 anomalies in bins 
spanning 10 m each. Figure 2e reveals a tendency for 
wet extreme magnitudes in ACT to be greater than 
NAT for the same z500 anomaly, particularly in the 
−160- to −90-m z500 anomaly range. These results 
thus indicate that wet extremes in ACT occur in as-
sociation with reduced (i.e., less negative) pressure 
anomalies relative to NAT or, alternately, for the same 

size pressure anomaly there is a tendency for higher 
magnitude wet events in ACT relative to NAT. These 
results lend support to the idea that extratropical 
baroclinic eddies (e.g., cutoff lows) may be weaker 
in a warmer climate (e.g., as represented here by the 
ACT world), but more efficient in that the increased 
moisture in the atmosphere makes for more intense 
rainfall extremes (Held 1993; Schneider et al. 2010).

CONCLUSIONS. We have examined whether 
the autumn 2018 extreme 1-day rainfall event in 
Hobart had an apparent anthropogenic contribu-
tion. We first undertook a process evaluation of the 
HadAM3P model and found that although modeled 
wet events tend to have lower magnitudes compared 
to observed, the associated atmospheric circulation 
is well captured in the model, which gives confidence 
in its use in this attribution study.

Based on the assessment of ACT and NAT 
simulations from the weather@home project, we 
draw no clear conclusions (either way) about the 
anthropogenic inf luence on very extreme rainfall 
days (like the autumn 2018 event), given the very 
small sample size of events of this magnitude. There 
are, however, indications in the model simulations 
that moderate magnitude 1-day wet extremes in 
Hobart in a warmer world (represented here by the 
ACT simulations) are associated with higher rainfall 
magnitudes for the same or weaker (i.e., less negative) 
circulation anomalies. To provide further confidence 
that extratropical lows are becoming more efficient 
in delivering extreme rainfall events both in Hobart 
and more generally, additional models, seasons and 
study regions should be tested.
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In the spring of 2018, anomalously high tempera-
tures were observed in northeastern Asia (includ-
ing Northern China, Mongolia, and southern 

Russia; the box bounded by 90°–120°E, 35°–55°N 
in Fig. 1). The mean, maximum, and minimum 
temperatures were the highest on record since 1961 
when China started to have reliable observations. 
Accompanied by these high temperatures were 
precipitation deficits, resulting in severe drought in 
the northern and northeastern parts of China. Some 
crops, such as corn, could not be sown as scheduled. 
More than 50 million hectares of crops were affected 
(CMA 2019; NCC 2019). This high temperature event 
also inf luenced surrounding regions including 
Mongolia and southern Russia. For example, spring 
temperature in Mongolia was the highest on record 
(NOAA NCEI 2019).

Previous studies have investigated human influ-
ence on high summer and spring temperature events 
in Asia and some parts of China (Takahashi et al. 
2016; Min et al. 2015; Sun et al. 2014, 2016; Song et al. 

2015). They consistently show that anthropogenic 
forcing has increased the occurrence probability of 
these events. Some studies (e.g., Min et al. 2015; Sun 
et al. 2014) examine changes in event probability con-
ditional on the observed external forcing using cou-
pled model (CMIP-type) simulations. Other studies 
(e.g., Takahashi et al. 2016) analyze changes in event 
probability conditional on both the observed external 
forcing as well as state of atmospheric–oceanic cir-
culation based on simulations of atmospheric models 
(AMIP-type). Here, we examine event probabilities 
based on both types of conditioning, involving simu-
lations by a coupled model and an atmospheric model.

DATA AND METHODS. The observational data 
used in this study are monthly mean temperature 
anomalies of HadCRUT4, which is a gridded data 
product with resolution of 5° × 5° (available at https://
www.metoffice.gov.uk/hadobs/hadcrut4/). The tem-
perature anomalies (relative to 1961–90 average) for 
the grid boxes within the northeastern Asia during 
spring [March–May (MAM)] are averaged to obtain 
the regional mean temperature anomalies.

We use ensemble simulations from a coupled 
model and an atmospheric model. The coupled 
model is the Canadian Earth System Model version 2 
(CanESM2; Arora et al. 2011). The CanESM2 simula-
tions are 50-member ensemble runs on a T63 trian-
gular truncation (about 2.81° resolution), driven by 
combined historical anthropogenic and natural forc-
ings (ALL) and by historical natural forcing (NAT) 
for the period 1950–2004. From 2005 until 2020, the 
ALL simulations are forced with the RCP8.5 while 
the NAT simulations are forced with natural forcing 
by repeating the solar forcing during the last period 
cycle alone, without any volcano eruptions (Fyfe et al. 
2017). The atmospheric model is HadGEM3-A-N216 

ATTRIBUTION OF THE WARMEST SPRING OF 2018  
IN NORTHEASTERN ASIA USING SIMULATIONS  

OF A COUPLED AND AN ATMOSPHERIC MODEL
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Anthropogenic forcing has increased the occurrence probability  

of the warmest spring in northeastern Asia. Similar increases  

in probability are obtained from two different model setups.
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with a horizontal resolution of 0.56° × 0.83° (Chris-
tidis et al. 2013; Ciavarella et al. 2018). The simula-
tions conducted with this model consist of two sets 
of experiments: 1) The historical simulation is forced 
with ALL and the observed sea surface temperatures 
(SST) and sea ice concentrations (SIC) from HadISST 
(Rayner et al. 2003). 2) Historical NAT simulations 
forced by preindustrial forcing and the observed SST 
and SIC with anthropogenic contribution removed 
(Christidis et al. 2013). For the period of 1961–2013, 
there are 15 simulations for ALL and NAT experi-
ments. While for 2018, a 525-member ensemble for 

ALL and NAT experiments is 
used to investigate anthropo-
genic influence as simulated 
by HadGEM3.

The analyses include the 
following steps: 1) For obser-
vations and model simula-
tions, all the regional mean 
temperatures are calculated 
as anomalies relative to the 
1961–90 average in north-
eastern Asia. We compare 
the observed spring mean 
temperature anomaly in 2018 
(denoted as TAOBS) with model 
simulations. 2) CanESM2 
has a high climate sensitiv-
ity (with a transient climate 
response 3°C; IPCC 2013) 
and its simulated global mean 
near-surface temperature 
(GMST) warms rapidly since 
mid-twentieth century. The 
CanESM2 simulated GMST 
for 2007–16 has increased by 
1.45°C above preindustrial 
level, which is much warmer 
than the observed ~1°C in-
crease of GMST in the cli-
mate of 2018. This too rapid 
increase in GMST could affect 
the attribution results and 
needs to be adjusted. As global 
temperature response scale 
well with external forcing 
and as regional temperature 
increase also scales well with 
the global value, we consider 
a 10-year period (1995–2004) 
in model simulations whose 
multi-run ensemble mean 

temperature is about 1°C warmer than the pre-
industrial level, which is consistent with the human-
induced warming in the climate around 2018 (Allen 
et al. 2018). This GMST-based adjustment is reason-
able but there is also a caveat that the aerosols effects 
in different period could be different. The occurrence 
probability of the 2018-like temperature simulated by 
CanESM2 PALL-CanESM is determined by computing the 
probability for temperature anomalies above TAOBS 
during 1995–2004. The occurrence probabiliity in 
the natural world (PNAT-CanESM) is determined simi-
larly based on the NAT 50-run simulations. 3) For 

Fig. 1. Top panel: A map of spring mean temperature anomalies in 2018 
(relative to 1961–90 average) based on HadCRUT4 data. The box shows the 
area under investigation for observation, CanESM2 and HadGEM3. Lower 
panel: Time series of spring temperature anomalies (relative to 1961–90 
average) based on HadCRUT4.
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HadGEM3 simulations, we used the 525 runs for the 
year 2018 under the world with or without human 
influence. This is because the transient simulation 
has only 15 runs. The occurrence probabilities, 
denoted as PALL-HadGEM and PNAT-HadGEM for 2018-like 
spring, are estimated by computing the probability 
for temperature anomalies above TAOBS in the ALL 
and NAT simulations, respectively. 4) In all cases, 
the normal distribution is used when estimating 
the probability because regional mean temperature 
should follow a normal distribution according to the 
central limit theorem, although the histogram does 
show some degree of skewness (Fig. 2e). The risk ratio 
RR for the event probability in ALL and NAT worlds is 
calculated by PALL/PNAT. The confidence interval in the 
risk ratio is estimated using 1000 bootstrap samples 
with replacement. For example, when estimating the 
confidence interval for the case of CanESM2 simula-
tion, we draw 50 samples of 10-yr data from 50 ALL 
runs and 50 NAT runs, separately, with replacement. 
We then estimate PALL and PNAT and compute an RR 
based on these samples. This procedure is repeated 
for 1,000 times. The 5th and the 95th percentiles are 
used to represent the 90% confidence interval.

RESULTS. Figure 1 shows spring temperature 
anomalies in 2018 in Asia and time series for 
1961–2018 in the studied region. There were positive 
temperature anomalies centered in northern China 
and Mongolia, with the largest anomaly value around 
4.8°C. The regional mean temperature anomaly 
in 2018 is the highest on record at 2.9°C above the 
1961–90 average and exceeds 2.7 times the observed 
standard deviation computed from 1961–2017. The 
500-hPa geopotential height (not shown) illustrate 
that an anomalous high pressure ridge was control-
ling northeastern Asia during the spring. The subsid-
ence airflow related to this sets important circulation 
background for the high temperature event.

It is difficult to evaluate the fitness of climate mod-
el simulations for the purpose of this study because 
of the relatively small scale at which it is difficult to 
quantify natural variability and climate response 
from the observations. The limited availability of 
observational data adds more complexity to this 
problem. Nevertheless, we compared some statistics 
in the observations and simulations to provide some 
sense about model’s performance. Figure 2 shows 
observed and simulated time series along with their 
histograms. In general, both models broadly repro-
duce the observed changes and the model spreads 
also cover the range of the observations (Figs. 2a,b). 
Over 1961–2013, the observed spring mean tempera-

ture has increased by 0.034°C yr−1 (90% confidence 
interval: 0.020 to 0.049). The median trend of the 
CanESM2 simulation is 0.031°C yr−1 (model spread: 
0.018 to 0.044; Fig. 2a). The corresponding values of 
the HadGEM3 simulations are 0.017°C yr−1 (model 
spread 0.002 to 0.026; Fig. 2b). The HadGEM3 en-
semble shows less warming than the observations. 
It warms less than that simulated by CanESM2 as 
expected, since CanESM2 has high climate sensi-
tivity. The standard deviations for observation and 
simulations are also roughly comparable though 
variability in HadGEM3 simulation seems to be high 
(Figs. 2c,d). When a linear trend is not removed from 
the series, the standard deviation in the observation is 
0.98°C, and the median value of standard deviation is 
1.11°C (spread: 0.93 to 1.25) in CanESM2 simulation 
and 1.23°C (spread: 1.04 to 1.37) in the HadGEM3 
simulations, respectively. It seems that variability in 
HadGEM3 simulation is larger than that in the obser-
vation, which can result in larger risk ratio estimate 
for the same amount of warming. When the trend is 
removed from the series, the above values become 
0.83°C for observations, 0.98°C (spread: 0.79 to 1.17) 
for the CanESM2 simulation and 1.18°C (spread: 1.03 
to 1.34) for the HadGEM3 simulation. Overall, the 
model simulations may not be perfect but should be 
reliable enough for the purpose of this study.

The histograms of the model simulations under 
ALL forcing clearly shift to warmer temperatures 
when compared with that under NAT forcing, sug-
gesting an increase of probability of extreme high 
temperatures due to human influence (Figs. 2e,f). In 
CanESM2 simulations, the probability of 2018-like 
temperature is 2.02% (90% CI: 1.44% to 2.65%) under 
ALL forcing and it is 0.11% (90% CI: 0.09% to 0.14%) 
under NAT forcing. This gives a risk ratio of 18.4 (90% 
CI: 11.9 to 25.7). In the HadGEM3 simulations for 
2018, the probability of 2018-like temperature is 6.67% 
(90% CI: 5.55% to 8.12%) under ALL forcing and it is 
0.38% (90% CI: 0.25% to 0.58%) under NAT forcing, 
resulting in a risk ratio of 17.5 (90% CI: 11.2 to 28.5).

CONCLUSIONS AND DISCUSSION. We 
have examined human influence on the probabil-
ity of occurrence of 2018-like spring temperature 
in northeastern Asia. We used simulations from a 
coupled model and an atmospheric model. Taking 
into account caveats in the observations and simula-
tions, including problems in observational data and 
differences in model simulated trends and variability 
when compared with those in the observations, the 
balance of evidence clearly indicates that human in-
fluence has increased the probability of temperature 
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extremes substantially, with the probability of 2018-
like extreme temperatures increasing by as much as 
18 times.

The risk ratio that is conditional on the histori-
cal forcing as simulated by CanESM2 is of similar 
magnitude to that conditional on the anthropogenic 
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forcing and the historical SST pattern as simulated 
by HadGEM3-A; this similarity is not necessarily 
a proof that the two are the same in the real world 
because there are uncertainties from multiple sourc-
es. We note that the CanESM2 has a high climate 
sensitivity but the effect on the estimation of risk 
ratio has already been accounted for. HadGEM3-A 
has a smaller long-term trend than the observations 
but this is not necessarily an indication of under-
estimation by the model. The external forcing and 
natural variability may have both contributed to the 
trend since the observed trend is more comparable 
to simulations by a high sensitivity model. More 
careful analyses are required to better quantify the 
role of human influence and natural variability in 
the occurrence of event like 2018 spring temperature 
anomalies. Nevertheless, to first-order approxima-
tion, human influence has clearly increased the oc-
currence probability by 10–30 times of temperature 
extremes such as the 2018 event.
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A cross Africa, droughts are a major type of  
 natural disaster and a household insecurity  
 trigger. The south southern Africa region (SSA; 

encompassed by the 22°–35°S, 18°–32°E rectangle) 
experienced extremely poor rainfall during the first 
half [i.e., October–December 2018 (OND)] of the 
October 2018 to March 2019 rainfall season (Fig. 1a). 
The OND subseason marks the important first half 
of southern Africa’s rainfall season (Landman and 
Mason 1999). Late rainfall onset dates normally lead 
to below normal seasonal rainfall in southern Africa 
(Dunning et al. 2016). Dry conditions during OND 
2018 led to a 2-month delay in sowing in parts of 
southern Africa (SADC CSC 2018), which translated 

to reduced regional crop yield, where livelihoods are 
principally agriculture-based. In South Africa’s large 
cereal-producing provinces, 40%–50% reduced rains 
delayed plantings and curbed sown areas (FAO 2019; 
FEWSNET 2019). Late rain onset acted as a disincen-
tive to farmers to take risks of sowing outside of the 
optimal planting window (FAO 2019). This contrib-
uted to Zambia and South Africa (the main regional 
grain suppliers) recording below-average harvests, 
thereby reducing exportable surplus from 7.5 to 
1.4 million tons (SADC RVAA 2019), hence affecting 
regional food security.

The poor rains were also accompanied by water 
loss through above average reference evapotranspira-
tion (Fig. 1b). This exacerbated the drought impact, 
considering the region’s large population. Water loss 
worsened the water supply situation since dam and 
river water levels were already low due to the three pre-
vious consecutive droughts (Richman and Leslie 2018).

This study investigates how extreme the OND 2018 
SSA drought was, and explores the related anthropo-
genic influences.

DATA AND METHODS. Gridded observational 
temperature, from the Global Historical Climatology 
Network Gridded v2 and Climate Anomaly Monitor-
ing System dataset (GHCN-CAMS; Fan and van den 
Dool 2008) is used here available at 0.5° horizontal 
grid resolution. A precipitation average of the Global 
Precipitation Climatology Centre v2018 (GPCC-FD 
v2018; Schneider et al. 2015) dataset available at 1° 
horizontal grid resolution and the Climate Research 
Unit v4.0.3 (CRU-TS 4.03; Harris et al. 2014) dataset 
available since 1901 at 0.5° horizontal resolution is 
also utilized.

Two C20C+ Detection and Attribution project 
(Folland et al. 2014; Stone et al. 2019) global mod-

ATTRIBUTION OF THE 2018 OCTOBER–DECEMBER 
DROUGHT OVER SOUTH SOUTHERN AFRICA

ShiNgirai NaNgombe, TiaNjuN Zhou, Lixia ZhaNg, aNd WeNxia ZhaNg

The HadGEM3 (CAM5) model suggests that anthropogenic emissions increased  

the chances of the October–December 2018 drought over the southernmost area  

of southern Africa by 1.4 (0.97–1.96) times [4.3 (3.43–5.46) times],  

with higher influence on reference evapotranspiration than on precipitation.
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els are employed here in evaluating anthropogenic 
inf luence on this drought occurrence: HadGEM3 
(Ciavarella et al. 2018) and CAM5 (Risser et al. 2018). 
These comprise two suites of simulations representing 
the actual climate (All-Hist) and a hypothetical natu-
ral climate excluding anthropogenic influence (Nat-
Hist). In HadGEM3, both All-Hist and Nat-Hist have 
15 realizations ranging from 1960 to 2013; in CAM5, 
there are 50 realizations ranging from 1960 to 2017.

To factor in high temperatures, a drought index 
that incorporates reference evapotranspiration is 
used: specifically, OND averaged P-refET, where P 
and refET denote precipitation and reference evapo-
transpiration, respectively. The Hamon method is 
used to estimate refET (Haith and Shoemaker 1987) 
from temperature data using the refevt_hamon func-
tion (Brown et al. 2019). The online supplemental 

information and Eq. (7) in 
Haith and Shoemaker (1987) 
provide details of refET cal-
culation.

The Gaussian distribution 
(Wellmer 1998) was fitted to 
the observed OND averaged 
data, and return period of the 
2018 event derived, separately 
for P, ref ET, and P-ref ET. 
Using 810 and 2900 model 
years from HadGEM3 and 
CAM5 All-Hist simulations 
respectively, OND averaged 
P, ref ET, and P-ref ET in-
dices were extracted. Then 
Gaussian distributions are 
fitted to the All-Hist-based 
indices and used to derive 
the drought events that have 
similar return periods as the 
2018 observed one. Last, as 
in Stott et al. (2004) and Ma 
et al. (2017), the probabil-
ity ratio (PR = P1 / P0) and 
the fraction of attributable 
risk (FAR = 1 − P0 / P1) are 
estimated, where P1 (P0) is 
the likelihood of an event 
occurring in the All-Hist 
(Nat-Hist) simulations. Here, 
a null hypothesis of existing 
human inf luence against 
an alternative hypothesis of 
no human inf luence on the 
drought occurrence is used. 

However, in some cases like precipitation where high 
model uncertainty exists, the null hypothesis may be 
disproved. A total of 1,000 bootstrapping samples are 
used to estimate the 5th–95th confidence intervals 
for PR and FAR.

RESULTS. The observed OND precipitation area-
averaged over SSA in 2018 was 0.68 mm day–1 (46%) 
below normal (1960–2013 baseline), while refET 
was 0.23 mm day–1 above normal (Fig. 1e). These 
precipitation and refET anomalies were ranked 
as the second lowest and third highest since 1950, 
respectively. Consequently, P-refET was the second 
record-breaking event with -0.91 mm day–1 (−60%) 
anomaly (Figs. 1c,e) and a 72-yr return period. 
Precipitation (refET) had a 40-yr (32-yr) return 
period (not shown).

Fig. 1. The OND 2018 anomalies of (a) precipitation derived from the GPCC 
and CRU averaged datasets, (b) reference evapotranspiration calculated 
from GHCN-CAMS, and (c) difference between precipitation and reference 
evapotranspiration (P-refET) denoting the drought index. (d) Map of geopo-
tential height (shading; hPa) and moisture transport (vector; kg kg–1 m s–1) 
anomalies at 850 hPa during OND 2018 derived from the JRA-55 reanalysis 
(Kobayashi et al. 2015). (e) SSA area-averaged OND P (blue) and P-refET 
(red) with overlaid refET (sky-blue and brown bars). (f) Map of OND 2018 
outgoing longwave radiation flux anomalies (W m–2). SSA is shown by a black 
box in (a)–(d) and (f). All the anomalies are calculated from a 1960–2013 
climatology. The units are in mm day–1 unless stated otherwise.
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SSA in OND is normally characterized by north-
easterly moisture transport from the tropical Indian 
Ocean (Fig. S1a), leading to precipitation. However, 
in 2018, there was weak southerly moisture flux into 
SSA (Fig. 1d). A cyclonic anomaly in the Indian and 
Atlantic Oceans dominated the 850-mb moisture 
flux, hence diverting moisture flow away from SSA 
(Fig. 1d). Moreover, late 2018 was associated with 
El Niño conditions (Fig. S1b). Typically, during 
El Niño in austral summer, southern Africa receives 
drought (Hoell and Cheng 2018; Manatsa et al. 2017) 
while temperatures are usually above average (Nan-
gombe et al. 2018). Likewise, Figs. S1c and S1d show 
a positive (negative) relationship between the OND 
ENSO index and OND SSA refET (P-refET) index.

Meanwhile, using outgoing longwave radiation 
(OLR) as a proxy for tropical temperate trough (TTT) 
events, anomalously high OLR over SSA in OND 2018 
indicates a decrease in convection linked to TTTs 
(Fig. 1f). TTTs are the main rainfall bearers to SSA 
(Cook et al. 2004). Therefore, sea surface tempera-
tures in the Pacific and Indian Oceans accompanied 
by anomalous low TTTs over SSA contributed to 
below normal 2018 OND precipitation in SSA.

On evaluating the model performance, correlation 
coefficients of P-refET, P, and refET area-averaged 
over SSA between the HadGEM3 (CAM5) All-Hist 
ensemble-mean and observation are 0.36, 0.31, and 
0.38 (0.34, 0.21, and –0.1), respectively, with about 
1 to 2 mm day–1 overestimation of the models. All 
the correlations based on the HadGEM3 (CAM5) 
model are significant (insignificant) at the 0.05 level. 
Nonetheless, results from both models under All-Hist 
and Nat-Hist cover the observed range (Figs. S2a,b). 
Additionally, there are statistical similarities between 
the density distributions of the All-Hist simulations 
and observation/reanalysis (Figs. S2c,d), hence our 
confidence in using these models.

In exploring the anthropogenic influence, CAM5 
depicts a distinct leftward shift of the probability 
functions of the OND P-refET in All-Hist compared 
to Nat-Hist, while HadGEM3 suggests a slight shift 
(Figs. 2a,b). This signifies a likely anthropogenic 
influence on P-refET in the SSA. The shift is even 
more pronounced for refET, albeit in the rightward 
direction (Figs. 2e,f). Conversely, for precipitation, 
there is no obvious shift in All-Hist compared to Nat-
Hist simulations of HadGEM3, while CAM5 depicts 
a moderate shift (Figs. S2e,f). In HadGEM3 (CAM5), 
–2.02 mm day–1 (–1.79 mm day–1) of P-refET is se-
lected as the threshold for attribution of SSA drought 
since it has a return period similar to the observed 
2018 P-refET. For refET (P), the thresholds used are 

3.32 (1.33) mm day–1 and 3.59 (1.84) mm day–1, respec-
tively. The HadGEM3 (CAM5) model estimates PR 
and FAR to be 1.36 (0.97–1.96) [4.34 (3.43–5.46)] and 
26% (–3% to 49%) [77% (71%–82%)], respectively, for 
P-refET. The attributable influence from anthropo-
genic forcings is weaker in HadGEM3 than in CAM5, 
as the lower bound of the confidence interval of PR 
from HadGEM3 is slightly less than 1. Nonetheless, 
HadGEM3 simulations suggest PR and FAR values of 
157.16 (86.90–310.74) and 99% (99%–100%) for refET 
while CAM5 suggests 105.75 (77.04–146.45) and 99% 
(99%–99%), respectively. We note that the PR and 
FAR estimates calculated from the CAM5 simulations 
are substantially affected by the nonstationarity of 
the ALL-Hist simulations (in terms of greenhouse 
gas concentrations) compared to estimates from the 
HadGEM3 simulations (not shown).

Furthermore, using simulations from composite 
El Niño years in estimating P-refET, HadGEM3 and 
CAM5 estimate PR values of 0.75 (0.24–2.77) and 
2.19 (0.68–8.03) respectively. Thus, comparing with 
the other PR values, this portrays a reduction in the 
anthropogenic influence on drought of similar magni-
tude to that of OND 2018 in SSA during El Niño years.

Examining precipitation associated with the 2018 
drought, CAM5 estimates the related PR (FAR) 
to be 1.95 (1.63–2.33) [49% (39%–57%)], whereas 
HadGEM3 suggests 0.76 (0.59–0.98) and –32% (–2% 
to –69%) PR (FAR) values, respectively, hence imply-
ing a reduced probability of occurrence due to anthro-
pogenic forcing. Thus, comparing the two models, the 
anthropogenic forcing impact on precipitation-based 
drought in SSA is uncertain. Also, Yuan et al. (2018) 
highlighted that the major sources of uncertainty in 
detecting/attributing flash droughts over southern 
Africa are soil moisture and precipitation variation. 
Plus, the interannual variability of precipitation is 
much higher in African regions, hence making it 
difficult to distinguish anthropogenic signal from 
noise (Otto et al. 2013). Nonetheless, although low 
precipitation seasons such as OND 2018 are not nec-
essarily more likely due to anthropogenic emissions, 
they may have severe impacts in an anthropogenically 
warmed world due to increased temperatures and 
hence increased refET.

CONCLUDING REMARKS. SSA experienced an 
extreme drought event in OND 2018 accompanied by 
extremely low rainfall and high reference evapotrans-
piration. This translated to substantial delay in the 
planting season hence affected the regional 2018/19 
crop yield where livelihoods are largely agriculture-
based.
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Fig. 2. HadGEM3’s probability density functions (PDFs) of October–December (a) P-refET from all 
years, (c) P-refET El Niño years, (e) refET all years, and (g) refET El Niño years, area-averaged over 
the SSA region. (b),(d),(f),(h) As in (a),(c),(e),(g), but for the CAM5 model. All-Hist simulations and 
Nat-Hist simulations are represented by red and blue PDFs, respectively. The PDFs of HadGEM3 are 
based on 15-member realizations of both All-Hist and Nat-Hist ranging from 1960 to 2013 while CAM5 
PDFs are based on 50-member realizations of both All-Hist and Nat-Hist ranging from 1959 to 2016. 
The dashed lines are the thresholds similar to the observed 2018 values. PDFs are calculated by the 
Gaussian kernel density estimator.
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Here, the HadGEM3 model suggests that anthro-
pogenic influence may have increased the probability 
of SSA droughts, such as the OND 2018 drought (P-
refET), by 1.4 times [0.97, 1.96], and the CAM5 model 
indicates 4.3 times [3.43, 5.46]. The high anthropo-
genic influence on refET mostly contributed to this 
drought occurrence. El Niño conditions may also have 
had an influence. Therefore, the increase in tempera-
ture accompanied by rainfall decrease projected over 
southern Africa might result in increase in drought 
occurrence of at least OND 2018 magnitudes in the 
future (Kusangaya et al. 2014; Niang et al. 2014; Maúre 
et al. 2018; Nikulin et al. 2018; Nangombe et al. 2018).
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