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ABSTRACT

An algorithm is presented for the estimation of the fundamental frequency (F0) of monophonic sounds.
The method relies upon accurate partial estimates, obtained on a frame basis by means of enhanced
Fourier analysis. The use of state-of-the-art sinusoidal estimators allows the proposed algorithm to work
with frames of minimum length (i.e., about two fundamental periods). The accuracy of the proposed
method does not degrade for high pitched sounds, making it suitable for musical sounds.

INTRODUCTION

Extracting the fundamental frequency (F0) contour
of a monophonic sound recording has a number of
applications, such as audio coding, prosodic analysis,
melodic transcription and onset detection.
Pitch determination in speech signals is a exten-

sively studied topic, mostly motivated by immediate
applications in telecommunications. Musical pitch es-
timation, however, has received considerably less at-
tention.
Speech and musical pitch estimation pose different

challenges for pitch determination algorithms (PDA).
Fundamental frequency estimation in music signals is
in many ways more challenging than that in speech
signals. In music, the pitch range can be wide, com-
prising more than seven octaves, and the sounds pro-
duced by different musical instruments vary a lot in
their spectral content. The inharmonicity phenom-
enon has to be taken into account.
On the other hand, the dynamic (time-varying)

properties of speech signals are more complex than
those of an average music signal. The F0 values in
music are temporally more stable than in speech.
Despite the aforementioned differences, it is occa-

sionally possible to employ speech-tailored PDAs to
monophonic musical recordings, with variable degree
of success.
The human voice and most pitched musical instru-

ments used in Western music produce quasi-harmonic
sounds1. The reason for this is encountered in the
physics of vibrating strings and tubes. As the pitch of
a quasi-harmonic sounds is closely related to its fun-
damental frequency, both terms were used indistinctly
in the present work.

PROPOSED METHOD
A number of techniques have been proposed for

pitch estimation, mostly aiming at measuring period-
icity in the time or frequency domain. Most funda-

1The mallet percussion family is a notable exception.
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mental frequency estimation methods may be clas-
sified according to the domain on which they oper-
ate. The ones which operate directly on the signal
waveform are termed time-domain methods. Meth-
ods which transform the waveform to a spectral repre-
sentation are called frequency-domain methods. This
transformation is usually carried out by means of con-
stant Q or short-time Fourier transforms (STFT).
Although the proposed method employs the Fourier

transform, it does not operate on the complete spec-
trum signal, but rather on a small set of partials. It re-
quires frequency analysis, followed by extraction and
estimation of partials. The list of partials in each frame
is the input to the proposed algorithm.
The main steps of the proposed method are shown

in Figure 1.
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Figure 1: Flowchart of the proposed method.

Detection of Partials
The spectral analysis module produces, for each

audio frame, its corresponding complex spectrum.
Notwithstanding, we note that only prominent partials
are relevant for fundamental frequency estimation.
Under reasonable assumptions, each partial in the

input signal produces a local maximum in the magni-
tude spectrum; the converse is not true due to smearing
effects and noise intrinsic to discrete analysis. There-
fore several heuristics were proposed to discriminate
local maxima induced by partials from those induced
by noise. A popular strategy in analysis/resynthesis
systems is partial tracking [1, 2], which does not op-
erate on isolated frames and thus suggests an offline
partial filtering strategy.
In the present study, the discrimination between

genuine and spurious peaks is postponed to the sub-
sequent module. In this approach every peak is esti-
mated “as if it were” a partial. Then, the ones whose
frequency estimate depart more than half bin from its
original value are discarded as noise.

Estimation of Partials
In order to correctly estimate a 12-tone-equal-

tempered pitch from a given fundamental frequency,

an accuracy2 of at least F0min
�

24√2 − 1
�

Hz is needed,
where F0min denotes the lowest expected fundamental
frequency in the input signal. In order to accurately
follow expressive subtleties such as vibrati and glis-
sandi a higher accuracy is needed.
Frequency accuracy of conventional STFT is half

the inverse of frame length, represented by {2τ}−1 Hz.
STFT’s frequency resolution3, although constrained
by the frame length, depends also on the window
shape. More precisely, it is determined by the 6 dB
bandwidth of the window power spectrum main lobe
and is given by Lw · τ−1 Hz, where Lw depends on
the window. For classic windows, such as Hann and
Blackman, Lw lies between 1.2 and 3.1 [3, 4].
For instance, in order to discriminate between

pitches of a 6-stringed guitar whose lowest pitch is
an E corresponding to 82.4 Hz, one needs a frame of
duration at least

�

2 × 82.4 ×
�

24√2 − 1
��−1

≃ 207 ms.
Musical signals seldom exhibit quasi-periodic behav-
iour for so long. Large frames tend to lower temporal
precision because of contamination from two or more
succesive notes occurring in a single analysis frame.
In addition, a temporal accuracy of 20 ms asks for an
overlap factor of 90% and therefore raises the compu-
tational workload by a factor of ten.
In monophonic quasi-harmonic signals any two par-

tials are at least F0min Hz apart and thus a frame length
of Lw ·F0min−1 s is enough for them to be resolved (i.e.,
separated). This new bound is much tighter than the
previous one. For the guitar example, a Hamming-
windowed frame of 1.81 × 82.4−1 ≃ 22 ms is enough.
Fortunately, several techniques exist for improving

the estimates of resolved partials. These generally fall
into two categories, phase-based and interpolation-
based.

Interpolation-based Techniques
One of the techniques for improving the estimates

of sinusoidal components is spectral oversampling. It
is usually attained by means of zero-padding, which
consists in adding a sequence of zeros to the win-
dowed frame before computing the STFT. The disad-
vantage of spectral oversampling is that the increase
in the computational workload is proportional to the
improvement in accuracy.
Another technique is quadratic (or parabolic) inter-

polation, whose estimates are computed using each lo-
cal maximum of the spectrum and its adjacent bins.
It benefits from the fact that the main lobe of the
logarithmic power spectrum of several windows are

2In the present work, the term accuracy is used in the sense of
exactness. An estimator is thus said to have accuracy ǫ if every
estimate is within ǫ of its true value, i.e., | f̂i − fi | < ǫ for all i.

3Throughout the text, frequency resolution will refer to how
close two sinusoids may get while still being separable in the spec-
trum. A resolution of ∆ means that two sinusoids with same am-
plitude and frequencies f1 and f2 may separated if and only if
| f1 − f2 | ≥ ∆ and min { f1, f2} ≥ ∆. The second inequality is due
odd-simmetry of the spectrum of real signals.
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MITRE ET AL. 		           FUNDAMENTAL FREQUENCY DETERMINATION FROM PARTIAL ESTIMATES



4º CONGRESSO / 10ª CONVENÇÃO NACIONAL DA AES BRASIL, SÃO PAULO, 08 A 10 DE MAIO DE 2006 115

MITRE ET AL. FUNDAMENTAL FREQUENCY DETERMINATION FROM PARTIAL ESTIMATES

very close to a quadratic function. Purposefully de-
signed windows are sometimes employed, which are
obtained by taking the inverse transform of a perfect
quadratic function. The parabolic interpolation tech-
nique is often combined with spectral oversampling.
For the special case of the Hann window, Grandke

designed an interpolation technique which considers
each peak and its greatest neighbour [5].
A number of interpolation techniques exist for the

rectangular-windowed STFT4, however spectral leak-
age problems prevent the use of rectangular window
for musical signal analysis.

Phase-based Techniques
More sophisticated partial estimation techniques

use the phase spectrum in addition to magnitude infor-
mation. The Derivative Method [6] uses the spectra
of the original signal and its derivative (aproximated
by a low-pass filter) and the Spectral Reassignment
Method [7, 8] associates energy content to the cells of
a time-frequency representation in order to improve
accuracy of the estimates. Thanks to a trigonometric
interpretation of the Derivative Method, an improved
estimator was derived in [9]. The new estimator is as
precise for close-to-Nyquist frequencies as the Deriv-
ative is for low frequencies.
These techniques give better estimates at the ex-

pense of additional STFT computations. Comparative
studies of these techniques with respect to mean error,
variance and bias can be found in [10] and [11].

Amplitude Estimation
Except by quadratic interpolation and spectral over-

sampling, the aforementioned techniques only esti-
mate the frequency of partials. Nevertheless, one can
obtain precise amplitude estimates of partials by ap-
plying analytical knowledge about the window used.
Denoting by f̂k the frequency estimate of the partial

at the k-th bin, whose center frequency is fk, and by
W the frequency response of the window, the precise
amplitude estimate for the partial is given by the for-
mula

âk =
ak

W
��

�

� f̂k − fk
�

�

�

� (1)

Prior to fundamental frequency determination, de-
scribed in the “Fundamental Frequency Determina-
tion” section, the magnitude of the partials must be
normalized to absolute decibels. This is accomplished
by the following formula.

âdB−norm
k = α + 20 · log10 âk (2)

The term α is set to map the maximum possible am-
plitude to 70 dB. It is determined by the window size
(in samples), the windowing function and the record-
ing bit-depth.

4Rectangular-windowed STFT is often misleadingly referred to
as unwindowed, instead of unsmoothed, STFT.

Finally, non relevant partials are filtered prior to fun-
damental frequency determination. A partial is con-
sidered relevant if its frequency is within human hear-
ing range (20−20, 000 Hz) and its magnitude is strictly
positive.

Fundamental Frequency Determination
The proposed method assumes that the strongest

partial belongs to the main harmonic series, thus its
frequency is expected to be multiple of F0. Letting f⋆
denote the frequency corresponding to the strongest
partial, the set of candidates for F0 is composed by
submultiples of f⋆. Formally,

C =
�

cn
def
=

f⋆
n
: 1 ≤ n ≤

�

f⋆
F0min

��

(3)

The next step consists in collecting the harmonic
series corresponding to each F0 candidate. This is
carried out by the following algorithm: firstly, par-
tials are sorted in decreasing order of magnitude; then,
each partial is sequentially assigned to the nearest (in
a quarter tone vicinity) “empty slot” of the candidate’s
harmonic series.
As a result of the previous algorithm, the i-th har-

monic of the n-th candidate is given by

H[n][i] = argmax
p∈Λn

i

�

pmag
�

(4)

where p denotes a partial with frequency pfreq and
magnitude pmag. In words, H[n][i] is the partial with
greatest magnitude among the set of potential i-th har-
monic of the n-th candidate, given by

Λn
i =

�

p : li <
pfreq
icn
< hi

�

(5)

where li and hi ensure smaller than quarter-tone devi-
ation and, in the case of higher order harmonics, pre-
vent single partials from being assigned to multiple
adjacent harmonics “slots”. Formally,

li = max















24√
2−1,
�

i − 1
i















(6)

hi = min















24√2,
�

i + 1
i















(7)

In short, if the i-th harmonic of the n-th candidate
belongs to the spectrum, it will be assigned to H[n][i].
Otherwise, it is agreed that H[n][i]mag = 0.
It is further necessary to quantify the prominence of

each candidate according to its harmonic series. This
takes into account psychoacoustic factors, particularly
the critical band [12, §2.4 and §3.4]. The functions Φ
and Ψ defined below are based on the harmonic sum
model [13, §6.3.3]. The psychoacoustic motivation
for these formulas can be found in the same reference.
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Formally stating, the prominence of the n-th candi-
date is given by

Φ (n) =
I(n)
�

i=1
H[n][i]mag · Ψ (i) (8)

I(n) = max
�

j : H[n][ j]mag > 0
�

(9)
and Ψ (i) denotes the fraction of the critical band
which corresponds to the i-th harmonic, given by

Ψ (i) =
�

1, if i ≤ 4
Γ (i) − Γ (i − 1) , otherwise (10)

Γ (n) = log21/3














n ·
�

n + 1
n















(11)

The fundamental frequency estimation is performed
in three steps, given the prominence of the candidates
as defined above. The first step selects those candi-
dates with relative prominence of at least β ∈ [0, 1]
with respect to the maximal prominence:

CΦ =
�

cn ∈ C : Φ(n) ≥ β · max
m|cm∈C

{Φ(m)}
�

(12)

For each of these candidates the weighted average har-
monic magnitude is computed as:

χ(n) =

I(n)
�

i=1
H[n][i]mag · Ψ(i)

I(n)
�

i=1
Ψ(i)

(13)

Then the one with the highest value of χ is selected as
F0, whose index is

ϕ = argmax
n:cn∈CΦ

{χ (n)} (14)

Fundamental Frequency Refinement
The exact value of the estimated F0 was based on

the frequency estimate of a single partial: the strongest
one. However, the F0 estimate may be improved by
considering frequency estimates of all partials in the
harmonic series of the winner candidate. Since partial
estimates are expected to be non-biased, individual er-
rors should cancel each other out by averaging.
The realiability of a partial estimate is affected by its

signal-to-noise ratio (SNR) and the stability of its ab-
solute frequency. Therefore strong and small indexed
harmonics should be privileged, since they have the
higher SNR and smallest absolute frequency modula-
tions.
Taking these facts into account, we propose the fol-

lowing formula for further refining the initial funda-
mental frequency:

F̂0 =

I(n)
�

i=1
H[i]freq/i · H [i]mag · Ψ (i)

I(n)
�

i=1
H [i]mag · Ψ (i)

(15)

where H[i] denotes the i-th partial of the harmonic se-
ries of cϕ, which is, H[i] def

= H[ϕ][i].
The F0 refinement might be thought as an weighted

average of local F0 estimates. Local estimates should
be understood regarding the harmonic indice, i.e., the
local F0 estimate for the i-th harmonic is H[i]freq/n.

ADVANTAGES AND DRAWBACKS
It is well known that spectral and temporal reso-

lutions are reciprocals and thus detecting F0 as low
as f Hz requires a window whose length is at least
K · f −1 s, where K is independent of f . In the case
of Fourier spectrum based methods, K is mainly de-
termined by the window [3].
On the one hand, all short-time F0 estimators suf-

fer from this limitation. On the other hand, while
waveform-based PDAs have their precision deter-
mined (i.e., fixed) by the signal’s sample rate, the pre-
cision of F0 estimates produced by spectrum-based
PDAs might be increased by employing longer win-
dows. Notwithstanding, the use of interpolation may
be helpful for methods on either domain.
The precision of the proposed method has the same

order of magnitude as that of the sinusoid estimator
employed, occasionally surpassing it due to the refine-
ment procedure. It must be noted, however, that if spu-
rious peaks in the magnitude spectrum are incorrectly
classified as partials and collected to the harmonic se-
ries of the winner F0 candidate, the refinement stage
may degrade, instead of enhance, the initial F0 esti-
mate.
The method is timbre-independent, being robust to

the following phenomena:

• weak or absent fundamental

• incomplete series (e.g., only odd harmonics)

• sinusoidal-like sounds

• moderate levels of inharmonicity (as found in
acoustic instruments)

It must be noted that although inharmonicity is not
explicitly modelled, the tolerance of the harmonic se-
ries collector allows for moderately inharmonic low
order partials.
Experiments conducted with severely bandlimited

(e.g. telephone-like bandpass filtered) versions of mu-
sical recordings have shown that the method is robust
against bandlimiting. In some sense this is expected,
since the method is partially derived from a bandwise
multiple-F0 estimator [14].

IMPLEMENTATION ISSUES
Profiling revealed that the most processing-intense

step of the proposed method is the calculation of the
STFT, which can be carried out by the Fast Fourier
Transform algorithm.
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The memory required by the method, excluding the
STFT, is proportional to |C|, the number of candidates.
It can be seen from Equation 3 that |C| is indirectly de-
pendant on the window length, as F0min should never
be lower than Lw · τ−1. Notwithstanding, the num-
ber of candidates can be safely assumed to be smaller
than 200, as in musical sounds it is usually the case
that f⋆ < 5 kHz and F0min > 27.5 Hz.
Thus, not only the processing, but also the memory

requirements of the proposed method are dominated
by the STFT.

EXPERIMENTS AND RESULTS
By the writing of this article, only informal (al-

though extensive) evaluation was conducted. The re-
sults were, in general, very encouraging. Figures 2
and 3 show F0 contours produced by the proposed
method with expressive recordings of acoustic instru-
ments.
There were two main reasons that retarded formal

evaluation. The first reason is that there is no stan-
dardized musical database available for the task of
PDA evaluation, i.e., one which provides reference F0
tracks along with the audio recordings. The second
reason is that, to the best of authors knowledge, there
is no tool available for automatic generating statistics
from reference and estimated F0 tracks.
In an effort to remedy the situation, an auto-

matic PDA evaluation tool was developed and musi-
cal monophonic recordings were collected, compris-
ing most acoustic, electric and electronic instruments.
In spite of this, manually obtaining reference F0 tracks
for the recordings is a laborious process which could
not be concluded until the article’s submission dead-
line.
It must be stressed that formal evaluation will

be carried out. As soon as the work is
done, the recordings, reference F0 tracks, evalu-
ation tool and results will be made available at
http://www.mitre.com.br/pda.
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Figure 2: Expressive saxophone performance of the
initial notes of a jazz standard.

CONCLUSION
A new algorithm was proposed for monophonic F0

estimation. The method benefits from state-of-the-
art partial estimators to reduce the required analysis
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Figure 3: Expressive violin performance of an excerpt
from a classical piece.

frame length to a minimum (i.e., about two fundamen-
tal periods). This accounts for increased time reso-
lution and reduced computational workload. The re-
duced number of configuration parameters makes it
easier to fine-tune the method. Furthermore, informal
evaluation suggests that the method is very robust for
musical sounds.

REFERENCES

[1] Robert J. McAulay and Thomas F. Quatieri.
Speech Analysis/Synthesis Based on a Sinu-
soidal Representation. IEEE International
Conference on Acoustics, Speech and Signal
Processing (ICASSP), 34(4):744–754, 1986.

[2] Mathieu Lagrange, Sylvain Marchand, Martin
Raspaud, and Jean-Bernard Rault. Enhanced
Partial Tracking Using Linear Prediction. In Pro-
ceedings of the 6th International Conference on
Digital Audio Effects(DAFx-03), Londres, Reino
Unido, 2003.

[3] Fredric J. Harris. On the Use of Windows for
Harmonic Analysis with the Discrete Fourier
Transform. Proceedings of the IEEE, 66(1), Jan-
uary 1978.

[4] Albert H. Nuttall. Some Windows with Very
Good Sidelobe Behavior. IEEE Transactions
on Acoustics, Speech and Signal Processing,
29(1):84–91, February 1981.

[5] Thomas Grandke. Interpolation algorithms for
discrete Fourier transforms of weighted signals.
IEEE Transactions on Instrumentation and Mea-
surments, 32(2):350–355, June 1983. 1983.

[6] Myriam Desainte-Catherine and Sylvain Marc-
hand. High Precision Fourier Analysis of
Sounds Using Signal Derivatives. Journal of
the Audio Engineering Society, 48(7/8):654–
667, July/August 2000.

[7] Kunihiko Kodera, Roger Gendrin, and Claude
de Villedary. Analysis of time-varying sig-
nals with small BT values. IEEE Transactions
on Acoustics, Speech and Signal Processing,
26(1):64–76, February 1978.
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