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1. Review from previous class

In the previous lecture, we discussed the difficulties of carrying out exact infer-
ence when the posterior density pZ|X is either intractable or overly complex.1 The
graph we had in mind is contained in Figure 1; it is this same graph which continues
to be of interest in this article. In the situation where the posterior is unwieldy, we
noted that is often easier to perform approximate inference over a more tractable
density qZ which approximates pZ|X .
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Figure 1. Simple Observed Directed Graph

In our pursuit, we discovered that the logarithm of pX admits the expansion

(1) log pX(x) = L (qZ) + KL
(
qZ ||pZ|X

)
,

where

L (qZ) = EqZ

[
log

pX,Z(x,Z)
qZ(Z)

]
KL
(
qZ ||pZ|X

)
= EqZ

[
log

qZ(Z)
pZ|X(Z|x)

]
.

The relation turned out to be fundamental in the sense that it provides a means by
which we can determine optimal approximations. The optimality requires finding
the qZ which minimizes the KL term, the Kullback-Leibler divergence. In this arti-
cle, we discuss a generalization of the KL divergence, the so-called “α-divergence,”
and various properties which it exhibits. In addition, our considerations elucidate
the meaning of optimality not only for solutions obtained via the minimization of
the Kullback-Leibler divergence but also the α divergences as well.

2. α-divergences

In previous notes we introduced the KL-divergence and discussed the conse-
quences of using both KL

(
qZ ||pZ|X

)
and KL

(
pZ|X ||qZ

)
. In order to obtain more

freedom in choosing the metric according to which we are approximating a density,
we introduce a more general class of metrics called α-divergences, which can be
used to obtain distributions for qZ which approximate pZ|X . For ease of notation,

1For a more detailed description of notation, see the related article on variational Bayes.
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since there is no ambiguity for future reference we will refer to these two densities
simply as q and p.

We define the α-divergence as follows:

(2) Dα(p||q) =
∫
αp(x) + (1− α)q(x)− [p(x)]α[q(x)]1−αdx

α(1− α)
, α ∈ [−∞,+∞],

Some of the properties of the α-divergence are

(1) Dα(p||q) is convex with respect to both p and q.
(2) Dα(p||q) ≥ 0
(3) Dα(p||q) = 0 when p = q a.e.

Similar to the KL divergence, these properties allow us to minimize the α-divergence
in order to find the best approximating distribution q(x) in some class of potential
approximations. There are several special cases for various values of α that are of
interest to us. The most important cases are

lim
α→0

Dα(p||q) = KL(q||p)(3)

lim
α→1

Dα(p||q) = KL(p||q).(4)

Hence the α-divergences include the KL divergences as a special case. Other special
cases are

D−1(p||q) =
1
2

∫
(q(x)− p(x))2

q(x)
dx(5)

D2(p||q) =
1
2

∫
(q(x)− p(x))2

p(x)
dx(6)

D 1
2
(p||q) = 2

∫ (√
p(x)−

√
q(x)

)2

dx(7)

D 1
2

is known as the Hellinger distance.
√
D 1

2
is a valid distance metric (it satisfies

both the traingle inequality and symmetric properties).

3. Investigating the behavior of Dα for different values of α

The definition of the α-divergence in (2) exhibits the reduced representation

(8) Dα(p||q) =
1−

∫
[p(x)]α[q(x)]1−αdx
α(1− α)

.

As discussed before, we are interested in approximating an intractable prob-
ability distribution p(x) with a tractable distribution q(x). In this process, we
introduced α-divergence, Dα(p||q), as a class of pseudo-metrics which measure the
accuracy of our approximation. Thus, we minimize Dα(p||q) over a tractable family
of approximating distributions q(x) in order to find the best approximation of p(x)
in that family.

In this section, we investigate the behavior of the α-divergence for different
values of α. Sweeping α from −∞ to ∞ will result in different properties for the
resulting approximation q(x). We will start with an example and will discuss the
main results. These results will be proven in the next lecture.
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We will describe the properties of the approximation using an example. Suppose
the density p(x) is given by

(9) p(x) = |x− 1|2e−(x−0.5)2 , x ∈ R.
Here, we are interested in finding an approximation to p(x) using a Gaussian dis-
tribution. Moreover, we are interested in understanding the resulting “optimal”
approximation q(x) as a result of different choices of α. These approximations are
demonstrated in Figure 2.

First, assume that α is a very large negative value. In this case, the minimization
of Dα(p||q) will force q(x) to be an exclusive approximation, i.e., the mass of q(x)
will lie within p(x), as shown in Figure 2 for α = −11.

When α is increased toward zero, the approximation starts to lose the exclusivity
property. The approximation for α ≤ 0 satisfies the following: if p(x) = 0 at some
point x0, the approximation will be such that q(x) = 0 at x0, as demonstrated in
Figure 2.

When α = 0, D0(p||q) = KL(q||p), the Kullback-Leibler divergence. We dis-
cussed the properties of KL-divergences in the previous lectures. In particular,
q(x) is such that p(x) = 0 ⇒ q(x) = 0, i.e., the mechanism by which we obtain
solutions is zero forcing.

From α = 0 to α = 1, the approximation changes from D0(p||q) = KL(q||p) to
D1(p||q) = KL(p||q). For α ≥ 1, the approximation satisfies the following property:
p(x) > 0⇒ q(x) > 0, as demonstrated in Figure 2.

As α grows from 1 to infinity, the approximation becomes inclusive, i.e., the mass
of q(x) includes all the mass of p(x).

As discussed above and demonstrated in Figure 2, the value of α plays a sig-
nificant role in determining the properties of the approximation by minimizing the
α-Divergence.
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Figure 2. Optimal Gaussian approximation q(x) for p(x) for dif-
ferent values of α
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