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Experimental verification of Landauer’s principle
linking information and thermodynamics
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In 1961, Rolf Landauer argued that the erasure of information is a
dissipative process'. A minimal quantity of heat, proportional to the
thermal energy and called the Landauer bound, is necessarily pro-
duced when a classical bit of information is deleted. A direct con-
sequence of this logically irreversible transformation is that the
entropy of the environment increases by a finite amount. Despite
its fundamental importance for information theory and computer
science®, the erasure principle has not been verified experimentally
so far, the main obstacle being the difficulty of doing single-particle
experiments in the low-dissipation regime. Here we experimentally
show the existence of the Landauer bound in a generic model of a
one-bit memory. Using a system of a single colloidal particle
trapped in a modulated double-well potential, we establish that
the mean dissipated heat saturates at the Landauer bound in the
limit of long erasure cycles. This result demonstrates the intimate
link between information theory and thermodynamics. It further
highlights the ultimate physical limit of irreversible computation.

The idea of a connection between information and thermodynamics
can be traced back to Maxwell’s ‘demon™®. The demon is an intelligent
creature able to monitor individual molecules of a gas contained in two
neighbouring chambers initially at the same temperature. Some of the
molecules will be going faster than average and some will be going
slower. By opening and closing a molecular-sized trap door in the
partitioning wall, the demon collects the faster (hot) molecules in one
of the chambers and the slower (cold) ones in the other. The temperature
difference thus created can be used to run a heat engine, and produce
useful work. By converting information (about the position and velocity
of each particle) into energy, the demon is therefore able to decrease the
entropy of the system without performing any work himself, in apparent
violation of the second law of thermodynamics. A simplified, one-mole-
cule engine introduced later” has been recently realized experimentally
using non-equilibrium feedback manipulation of a Brownian particle™.
The paradox of the apparent violation of the second law can be resolved
by noting that during a full thermodynamic cycle, the memory of the
demon, which is used to record the coordinates of each molecule, has to
be reset to its initial state'"">. Indeed, according to Landauer’s principle,
any logically irreversible transformation of classical information is
necessarily accompanied by the dissipation of at least kTIn(2) of heat
per lost bit (about 3 X 107! J at room temperature (300 K)), where k is
the Boltzmann constant and T is the temperature.

A device is said to be logically irreversible if its input cannot be
uniquely determined from its output'®. Any Boolean function that
maps several input states onto the same output state, such as AND,
NAND, OR and XOR, is therefore logically irreversible. In particular,
the erasure of information, the RESET TO ONE operation, is logically
irreversible and leads to an entropy increase of kIn(2) per erased bit'*'°.
This entropy cost required to reset the demon’s memory to a blank state
is always larger than the initial entropy reduction, thus safeguarding
the second law. Landauer’s principle hence seems to be a central
result that not only exorcizes Maxwell’s demon, but also represents the

fundamental physical limit of irreversible computation. However, its
validity has been repeatedly questioned and its usefulness criticized'” .
From a technological perspective, energy dissipation per logic opera-
tion in present-day silicon-based digital circuits is about a factor of
1,000 greater than the ultimate Landauer limit, but is predicted to
quickly attain it within the next couple of decades®**. Moreover,
thermodynamic quantities on the scale of the thermal energy kT have
been measured in mesoscopic systems such as colloidal particles in
driven harmonic® and non-harmonic optical traps™.

To verify the erasure principle experimentally, we consider, following
the original work of Landauer’, an overdamped colloidal particle in a
double-well potential as a generic model of a one-bit memory. For this,
we use a custom-built vertical optical tweezer that traps a silica bead
(2 um in diameter) at the focus of a laser beam?”**, We create the double-
well potential by focusing the laser alternately at two different positions
with a high switching rate. The exact form of the potential is determined
by the laser intensity and by the distance between the two focal points
(Methods). As a result, the bead experiences an average potential U(x; t),
whose measured form is plotted in Fig. 1 for different stages of the
erasure cycle. When the barrier is high compared with the thermal
energy, kT (Fig. 1a, f), the particle is trapped in one of the potential wells.
By contrast, when the barrier is low (Fig. 1b), the particle can jump from
one well to the other. The state of the memory is assigned the value 0 if
the particle is in the left-hand well (x < 0) and 1 if the particle is in the
right-hand well (x > 0). The memory is said to be erased when its state is
reset to 1 (or alternatively 0) irrespective of its initial state.

In our experiment, we follow a procedure which is quite similar to
that discussed in detail in ref. 12. We start with the theoretical con-
figuration in which the two wells are occupied with an equal probability
of one-half. The initial entropy of the system is thus S; = kIn(2). The
memory is reset to 1 by first lowering the barrier height (Fig. 1b) and
then applying a tilting force that brings the particle into the right-hand
well (Fig. 1c—e). Finally, the barrier is increased to its initial value
(Fig. 1f). At the end of this reset operation, the information initially
contained in the memory has been erased and the final entropy is zero:
S¢= 0. Thus, the minimum entropy production of this erasure process
is kIn(2). The possibility of reaching this minimum depends on the
timing of the procedure. The one used in our experiment is sketched
in Fig. 2a. Specifically, we lower the barrier from a heightlarger than 8kT
t02.2kT over a time of 1 s by decreasing the power of the laser. This time
is long compared with the relaxation time of the bead. We keep the
barrier low for a time 7, during which we apply a linearly increasing
force of maximal amplitude Fy,,,, which corresponds to the tilt of the
potential. We generate this force by displacing the cell containing the
single bead with respect to the laser with the help of a piezoelectric
motor. We close the erasure cycle by switching off the tilt and bringing
the barrier back to its original height in again 1s (Fig. 2a). A particle
initially in memory state 0 will then be brought into state 1. The total
duration of the erasure protocol is Teyge =7+ 2s. Our two free
parameters are the duration of the tilt, 7, and its maximal amplitude,
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Figure 1 | The erasure protocol used in the experiment. One bit of
information stored in a bistable potential is erased by first lowering the central
barrier and then applying a tilting force. In the figures, we represent the
transition from the initial state, 0 (left-hand well), to the final state, 1 (right-hand
well). We do not show the obvious 1 — 1 transition. Indeed the procedure is such
that irrespective of the initial state, the final state of the particle is always 1. The
potential curves shown are those measured in our experiment (Methods).

Fihax (Methods). The second cycle in Fig. 2a corresponds to the reversed
protocol, which brings the particle from state 1 to state 0 (Methods).

We use a fast camera to record the successive positions of the bead
during the erasure process. A typical measured trajectory of the particle
fora transition 0 — 1 during a cycle is shown in Fig. 2c. A trajectory for
the transition 1— 1 is depicted in Fig. 2d. In this case there is an
instantaneous jump to the other well induced by thermal noise, but
the final state is 1.

Thermodynamic quantities are stochastic variables at the micro-
scopic level of our experiment, because thermal fluctuations cannot
be neglected. The dissipatfecj heat along a given trajectory, x(f), is given

by the integral® Q= — dt x(t)0U(x,t)/ 0x. According to the laws

0
of thermodynamics, the mean dissipated heat obtained by averaging
over many trajectories is always larger than the entropy difference:

(Q)= —TAS = kTIn(2) = (Q)randaver- In Ppractice, we average over
situations in which the memory is either initially already in state 1
or is switched from state 0 to state 1. We typically average over more
than 600 cycles. It is inconvenient to select randomly the initial con-
figuration during two erasure cycles, so we treat the two cases indepen-
dently. When the state of the memory is changed, we use a series of
double cycles (Fig. 2a), which bring the bead from one well to the other,
and back. In the opposite case, when the state of the memory is un-
modified, we apply a series of double cycles containing a reinitialization
phase (Fig. 2b). This series is useless in the erasure process itself, but is
necessary to restart the measurement by keeping the bead in the initial
well (Methods). We determine the dissipated heat during one erasure
cycle as follows. We first note that the bead necessarily ends up in the
initial state after completion of both double cycles. Because the modu-
lation of the height of the barrier occurs on times much slower than the
relaxation of the bead, it is quasi-reversible and does not contribute to
the dissipated heat. We therefore only retain the contribution stemming
from the external tilt, averaged over the cycles corresponding to the
change of state and over the cycles in which the memory is unchanged.

A key characteristic of the erasure process is its success rate, that is, the
relative number of cycles bringing the bead in the expected well. Figure 3a
shows the dependence of the erasure rate on the tilt amplitude, Fy,,,. For
definiteness, we have kept the product F,,.xt constant. We observe that
the erasure rate drops sharply at low amplitudes when the tilt force is too
weak to push the bead over the barrier, as expected. For large values of
Fpa0 the erasure rate saturates at around 95%. This saturation reflects the
finite size of the barrier and the possible occurrence of spontaneous
thermal activation into the wrong well. An example of a distribution of
the dissipated heat for the transition 0— 1 is displayed in Fig. 3b. Owing
to thermal fluctuations, the dissipated heat may be negative and
maximum erasure below the Landauer limit may be achieved for
individual realizations, but not on average'’.

Figure 3c shows the average dissipated heat, {Q), over a large number
of erasure protocols as a function of the duration of the cycle, for
various success rates. For each cycle duration, 7, we have set the
amplitude, Fy,,,, of the tilt such that the erasure rate remains constant
to a good approximation. For large durations, the mean dissipated
heat does saturate at the Landauer limit. We observe, moreover,
that incomplete erasure leads to less dissipated heat. For a success
rate of r, the Landauer bound can be generalized to (Q)], dauer =
kT[In(2)+7In(r)+ (1 —r)In (1 —r)]. Thus, no heat needs to be pro-
duced for r = 0.5. In that case, the state of the memoryis left unchanged
by the protocol and the transformation is quasi-reversible. For ideal
quasi-static erasure processes (t— ), the dissipated heat is equal to
the Landauer value. For large but finite 7, we can quantify the asymptotic
approach to the Landauer limit by noting, following ref. 30, that
(Q) = (Q)Landauer T B/t, where B is a positive constant (Methods). For

Figure 2 | Erasure cycles and typical trajectories.

a, Protocol used for the erasure cycles bringing the
bead from the left-hand well (state 0) to the right-
hand well (state 1), and vice versa. b, Protocol used
to measure the heat for the cycles in which the bead
does not change wells. The reinitialization is
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needed to restart the measurement, but is not a part
of the erasure protocol (Methods). ¢, Example of a
measured bead trajectory for the transition 0— 1.
d, Example of a measured bead trajectory for the
transition 1 — 1.
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Figure 3 | Erasure rate and approach to the Landauer limit. a, Success rate of
the erasure cycle as a function of the maximum tilt amplitude, F,,,.y, for
constant F,,,,.7. b, Heat distribution P(Q) for transition 0 — 1 with t = 25 sand
Fonax = 1.89 X 10~ " N. The solid vertical line indicates the mean dissipated
heat, (Q), and the dashed vertical line marks the Landauer limit, {(Q); sndauer-
¢, Mean dissipated heat for an erasure cycle as a function of protocol duration, z,
measured for three different success rates, r: plus signs, r = 0.90; crosses,

r = 0.85; circles, r = 0.75. The horizontal dashed line is the Landauer limit. The
continuous line is the fit with the function [Aexp(—t/tk) + 1]B/t, where 1y is
the Kramers time for the low barrier (Methods). Error bars, 1 s.d.

shorter durations, we find excellent agreement with an exponential
relaxation, (Q) = (Q)Landaver T [Aexp(—#/tx) + 1]B/z, with a relaxation
time given by the Kramers time, 7y, for the low barrier (Methods). Our
experimental results indicate that the thermodynamic limit to informa-
tion erasure, the Landauer bound, can be approached in the quasi-static
regime but not exceeded. They hence demonstrate one of the fun-
damental physical limitations of irreversible computation. Owing to
the universality of thermodynamics, this limit is independent of the actual
device, circuit or material used to implement the irreversible operation.

METHODS SUMMARY

We use a custom-built vertical optical tweezer made of an oil immersion objec-
tive (X63; numerical aperture, 1.4) that focuses a laser beam (wavelength,
/. =1,064nm) to the diffraction limit for trapping glass beads®*® (2um in
diameter). The beads are dispersed in bidistilled water at a very low concentration.
The suspension is introduced in a disk-shaped cell (18 mm in diameter, 1 mm in
depth), and a single bead is then trapped and moved away from the others. The
position of the bead is tracked using a fast camera with a resolution of 108 nm per
pixel, which after treatment gives the position with a precision greater than 10 nm.
The trajectories of the bead are sampled at 502 Hz. The double-well potential is
obtained by switching the laser at a rate of 10 kHz between two points separated by
a distance d; = 1.45 um, which is kept fixed. The distance between the two minima
of the double-well potential is 0.9 um. The height of the barrier is modulated by
varying the power of the laser from I, =48 mW (barrier height, >8kT) to
I = 15mW (barrier height, 2.2kT). The external tilt is created by displacing the
cell with respect to the laser with a piezoelectric motor, thus inducing a viscous
flow. The viscous force is simply F = —yv, where y = 1.89 X 10" N'sm ™" is the
coefficient of friction and v is the velocity of the cell. In the erasure protocol, the
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amplitude of the viscous force is increased linearly during time t: F(t) = & Fy,x/7.
The heat dissipated by the tilt is

Teyde

|| atrio=+ [ at Fute/oi0
0

0

Q=_

The velocity is computed using the discretization X(f+At/2)~[x(t+At)—
x(1)] /At

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS

Experimental set-up. We use a custom-built vertical optical tweezer made of an
oil immersion objective (X63; numerical aperture, 1.4) that focuses a laser beam
(wavelength, 2 =1,064nm) to the diffraction limit for trapping glass beads*”**
(2pm in diameter). The beads are dispersed in bidistilled water at a very low
concentration. The suspension is introduced in a disk-shaped cell (18 mm in
diameter, 1 mm in depth), and a single bead is then trapped and moved away
from the others. This step is important to stop the trapped bead being perturbed by
other Brownian particles during the measurement. The position of the bead is
tracked using a fast camera with a resolution of 108 nm per pixel, which after
treatment gives the position with a precision greater than 10 nm. The trajectories
of the bead are sampled at 502 Hz. The double-well potential is obtained by
switching the laser at a rate of 10 kHz between two points by a distance d¢ = 1.45
um, which is kept fixed. The form of the potential, which is a function of drand the
laser intensity, I, can be determined in equilibrium by measuring the probability,
P(x,I;) = Nexp[— Uy(x, I)/kT], of the bead being at position x, which implies that
Up(x, I) = —kTIn[P(x, I )/N] (Fig. 1a, b, f). The distribution P(x, ;) is estimated
from about 10° samples. The measured Uy(x, I1) are plotted in Fig. 1a, b, fand can
be fitted by an eighth-order polynomial: Uy(x,I.) = Zi=0 u,(Iy,df)x". The dis-
tance between the two minima of the double-well potential is 0.9 pm. The two
wells are nearly symmetrical, with a maximum energy difference of 0.4kT. The
height of the barrier, AU, is modulated by varying the power of the laser from
I =48 mW (barrier height, >8kT) to Iy = 15mW (barrier height, 2.2kT). In
equilibrium for a barrier of 8kT, the characteristic jumping time (Kramers time),
Tk = Toexp(AU/KT), between the two wells is about 3,000 s, which is much longer
than any timescale in the experiment (7, = 1 s in our experiment).

The external tilt is created by displacing the cell with respect to the laser with a
piezoelectric motor, thus inducing a viscous flow. The viscous force is simply
F= —yv, where y=1.89 X 10 " Nsm ™" is the coefficient of friction and v is
the velocity of the cell. In the erasure protocol, the amplitude of the viscous force
is increased linearly during time t: F(f) = *Ft/t. In Fig. lc-e, we plot
U(x, t) = Uy(x, I) — F(t)x for I = 15mW and for three different values of t.
The reinitialization procedure shown in Fig. 2b is necessary to displace the cell
to its initial position, but it does not contribute to the erasure process. We note
that, unlike the useful erasure cycles, this reinitialization is performed when the
barrier is high. Thus, the bead remains always in the same well.

Heat measurements. The heat dissipated by the tilt is

Teyde T

Q=— j deF(x(t) = + [dt Fn(t/0K(0)
0 0

The velocity is computed using the discretization x(t + At /2)= [x(t + At) — x(t)] / At.
To characterize the asymptotic approach to the Landauer bound we use the fact that,
in the quasi-static limit (t — %), the mean work, (W), can be expressed in terms of
the free energy difference, AF, as (W)~AF + B/t (ref. 30). According to the firstlaw
of thermodynamics, (AU) = (W) —(Q) = 0 for a cycle, and we therefore find that
AF = —TASand (Q) = (W)~kT In (2) + B/z. This asymptotic result is generic and
does not depend on the details of the potential. For shorter times, we find an
exponential relaxation of the form (Q) = kTIn(2) + [Aexp(—t/tx) + 1]B/t, where
Tk is the Kramers time for the low barrier. The presence of the characteristic
Kramers time can be understood by noting that cycles that last more than a few
multiples of 7y are very efficient for erasure because the probability that a jump to
the right-hand well occurs by thermal activation is greatly increased.
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