Zeta function of Grassmann Varieties

Ratnadha Kolhatkar

Jan 26, 2004.

Topics Covered :

I will present some simple calculations about Zeta function of Grassmann Varieties and Lagrangian Grassmann Varieties. The main topics covered are:

1. Introduction to Grassmann Varieties.
2. Zeta function of Grassmann Varieties.
3. Lagrangian Grassmannian and its Zeta function.
4. A bit of Schubert Calculus...
5. Understanding cohomology of Grassmannians in characteristic zero.

1 Grassmann Varieties

The Grassmannian $\mathrm{G}(\mathrm{d}, \mathrm{n})$: Let V be a vector space of dimension $n \geq 2$ over field k. Let $1 \leq d \leq n$ be any integer. Then the Grassmannian $\mathrm{G}(\mathrm{d}, \mathrm{n})$ is defined to be the set of all d-dimensional subspaces of V, i.e.

$$
G(d, n)=\{W \mid W \text { subspace of } V \text { of } \operatorname{dim} d\} .
$$

Alternately, it is the set of all $(d-1)$-dimensional linear subspaces of the projective space $\mathbb{P}^{n-1}(k)$. If we think of the grassmannian this way, we denote it by $G^{\mathbb{P}}(\mathrm{d}-1, \mathrm{n}-1)$. The simplest example of the grassmannian could be $\mathrm{G}(1, \mathrm{n})$ which is the set of all 1 dimensional subspaces of the vector space V which is nothing but the projective space on V.
Plücker map: We can embed $G(d, n)$ in the projective space $\mathbb{P}\left(\bigwedge^{d} V\right)$ via Plücker map P as follows: Let U be a d dimensional subspace of V having basis $\left\{u_{1}, . ., u_{d}\right\}$. Define $\mathrm{P}(\mathrm{U})$ as the point of $\mathbb{P}\left(\bigwedge^{d} V\right)$ which is determined by $u_{1} \wedge \ldots \wedge u_{d}$. It can be shown that P is a well defined injective map. Thus we may consider $\mathrm{G}(\mathrm{d}, \mathrm{n})$ as a subset of $\mathbb{P}\left(\bigwedge^{d} V\right)$ via P .
Plücker Coordinates: Let $e_{1}, . ., e_{n}$ be a basis for V then the canonical basis for $\Lambda^{d} V$ is given by :

$$
\left\{e_{i_{1}} \wedge \ldots \wedge e_{i_{d}} \mid 1 \leq i_{1}<\ldots<i_{d} \leq n\right\}
$$

Let U be a d-dimensional subspace of V having basis $\left\{u_{1}, \ldots, u_{d}\right\}$. Let $u_{j}=$ $\sum_{i=1}^{n} a_{i j} e_{i}$. Then the coordinates of $\mathrm{P}(\mathrm{U})=\mathrm{u}_{1} \wedge . . \wedge \mathrm{u}_{\mathrm{d}}$ are called the Plücker coordinates. These are nothing but the $\binom{n}{d}$ maximal minors of the matrix $\left(a_{i j}\right)_{1 \leq i \leq n, 1 \leq j \leq d}$.
Grassmannian as an algebraic variety: It can be shown that $G(d, n)$ is a projective algebraic variety defined by quadratic polynomials called Plücker relations. The grassmannian $G(d, n)$ can be covered by open sets isomorphic to the affine space $\mathbb{A}^{d(n-d)}$ and so we have

$$
\operatorname{dim}(\mathrm{G}(\mathrm{~d}, \mathrm{n}))=\mathrm{d}(\mathrm{n}-\mathrm{d})
$$

1.1 To find the number of points of $G(d, n)\left(\mathbb{F}_{q}\right)$.

In order to calculate the Zeta function of $G(d, n)$ we first need to calculate the number of points of $G(d, n)$ over any finite field. To calculate this, we consider the action of $\operatorname{Gal}(\overline{\mathrm{k}} / \mathrm{k})$ on $\mathrm{G}(\mathrm{d}, \mathrm{n})(\overline{\mathrm{k}})$. Let k be a perfect field. We see that the Galois Group $\Gamma=\operatorname{Gal}(\overline{\mathrm{k}} / \mathrm{k})$ acts on $\mathbb{P}^{n}(\bar{k})$ as follows:
For $\sigma \in \Gamma$ and $\left(a_{0}: a_{1}: \ldots: a_{n}\right) \in \mathbb{P}^{n}(\bar{k})$ we define

$$
\sigma\left(a_{0}: \ldots: a_{n}\right)=\left(\sigma\left(a_{0}\right): \ldots . .: \sigma\left(a_{n}\right)\right) .
$$

The action is well defined since $\forall \lambda \in k^{*}$ we have:
$\sigma\left(\lambda a_{0}: \ldots: \lambda a_{n}\right)=\left(\sigma\left(\lambda\left(a_{0}\right)\right): \ldots \ldots: \sigma\left(\lambda\left(a_{n}\right)\right)\right)=\sigma(\lambda)\left(\sigma\left(a_{0}\right): \ldots: \sigma\left(a_{n}\right)\right)=\sigma\left(a_{0}: \ldots: a_{n}\right)$.
Moreover we have,

1. $\operatorname{Id}\left(a_{0}: \ldots . .: a_{n}\right)=\left(a_{0}: \ldots: a_{n}\right)$.
2. $\sigma_{1} \sigma_{2}\left(a_{0}: \ldots: a_{n}\right)=\sigma_{1}\left(\sigma_{2}\left(a_{0}: \ldots: a_{n}\right)\right)$.

One can prove the following lemma:
Lemma 1.1.1 The Galois group $\Gamma=\operatorname{Gal}(\overline{\mathrm{k}} / \mathrm{k})$ acts on $\mathbb{P}^{n}(\bar{k})$ and the fixed points are precisely the points in $\mathbb{P}^{n}(k)$, i.e.

$$
\left\{u=\left(a_{0}: \ldots: a_{n}\right) \in \mathbb{P}^{n}(\bar{k}) \mid \sigma(u)=u \forall \sigma \in \Gamma\right\}=\mathbb{P}^{n}(k)
$$

We will now consider the action of the Galois group $\Gamma=\operatorname{Gal}(\overline{\mathrm{k}} / \mathrm{k})$ on the grassmannian $\mathrm{G}(\mathrm{d}, \mathrm{n})$ and use that to calculate the number of points of $\mathrm{G}(\mathrm{d}, \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)$

1.1.1 Action of the Galois group $\Gamma=\operatorname{Gal}(\overline{\mathrm{k}} / \mathrm{k})$ on $\mathrm{G}(\mathrm{d}, \mathrm{n})$:

Without loss of generality suppose that the n dimensional vector space V is $(\bar{k})^{n} . \mathrm{G}(\mathrm{d}, \mathrm{n})$ is the collection of all d dimensional subspaces of $(\bar{k})^{n}$ and Γ acts on it as follows:
For $U \in \mathrm{G}(\mathrm{d}, \mathrm{n})$ and $\sigma \in \Gamma$, define:

$$
\sigma(U)=\left\{\sigma\left(x_{1}, x_{2}, \ldots x_{n}\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in U\right\} \text { where }
$$

$$
\sigma\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right)
$$

Then it is easy to verify that if U is spanned by $v_{1}, v_{2}, \ldots, v_{d}$ then, $\sigma(U)$ is again a d dimensional subspace of $(\bar{k})^{n}$ spanned by $\sigma\left(v_{1}\right), \ldots, \sigma\left(v_{d}\right)$. We can also think of $\mathrm{G}(\mathrm{d}, \mathrm{n})$ as embedded in the projective space $\mathbb{P}^{N}=\mathbb{P}\left(\Lambda^{d} V\right)$ via the Plücker map $\mathrm{P}: \mathrm{G}(\mathrm{d}, \mathrm{n}) \rightarrow \mathbb{P}^{\mathrm{N}}$ and we may consider the action of Γ on it as induced by the action on the projective space. Note that the two actions of Γ on $\mathrm{G}(\mathrm{d}, \mathrm{n})$ are Γ equivalent.

We say that $U \in \mathrm{G}(\mathrm{d}, \mathrm{n})$ is Γ invariant if $\sigma(U)=U \forall \sigma \in \Gamma$. And one has the following lemma

Lemma 1.1.2 $U \in \mathrm{G}(\mathrm{d}, \mathrm{n})$ is Γ invariant iff U has a basis $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{d}}\right\}$ with each $\mathrm{w}_{\mathrm{i}} \in \mathrm{k}^{\mathrm{n}}$.
Proof: Clearly, if U has a basis $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{d}}\right\}$ with each $\mathrm{v}_{\mathrm{i}} \in \mathrm{k}^{\mathrm{n}}$, then U is Γ invariant. Now let U be a d dimensional subspace of V spanned by vectors $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{d}}$. Let $\sigma(U)=U, \forall \sigma \in \Gamma=\operatorname{Gal}(\overline{\mathrm{k}} / \mathrm{k})$. We prove that \exists a basis $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{d}}\right\}$ of U such that

$$
\forall \sigma \in \Gamma, \sigma\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{w}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{~d} .
$$

As $\sigma(U)=U, \exists A(\sigma) \in \mathrm{GL}(\mathrm{d}, \overline{\mathrm{k}})$ such that

$$
\sigma\left(\begin{array}{c}
\mathbf{v}_{\mathbf{1}} \\
\mathbf{v}_{\mathbf{2}} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{v}_{\mathbf{d}}
\end{array}\right)=A(\sigma)\left(\begin{array}{c}
\mathbf{v}_{\mathbf{1}} \\
\mathbf{v}_{\mathbf{2}} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{v}_{\mathbf{d}}
\end{array}\right)
$$

Then, $A(\sigma \tau)=\sigma A(\tau) A(\sigma) .[A(\sigma \tau)]^{-1}=(A(\sigma))^{-1} \sigma A(\tau)^{-1}$.
So $\left\{(A(\sigma))^{-1}\right\}$ is a 1 -cocycle and using the result that $H^{1}\left(\mathrm{GL}_{\mathrm{n}}\right)$ is identity, we get that the 1-cocycle $\left\{(A(\sigma))^{-1}\right\}$ splits i.e. $\exists B \in \operatorname{GL}(\mathrm{~d}, \overline{\mathrm{k}})$ such that $(A(\sigma))^{-1}=B^{-1} \sigma B$, i.e. $B=(\sigma B) A(\sigma)$. Now let

$$
\begin{aligned}
& \left(\begin{array}{c}
\mathbf{w}_{\mathbf{1}} \\
\mathbf{w}_{\mathbf{2}} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{w}_{\mathbf{d}}
\end{array}\right)=B\left(\begin{array}{c}
\mathbf{v}_{\mathbf{1}} \\
\mathbf{v}_{\mathbf{2}} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{v}_{\mathbf{d}}
\end{array}\right) \\
& \left.\left(\begin{array}{c}
\mathbf{w}_{\mathbf{1}} \\
\mathbf{w}_{\mathbf{2}} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{w}_{\mathbf{d}}
\end{array}\right)=B\left(\begin{array}{c}
\mathbf{v}_{\mathbf{1}} \\
\mathbf{v}_{\mathbf{2}} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{v}_{\mathbf{d}}
\end{array}\right)=(\sigma B) A(\sigma)\left(\begin{array}{c}
\mathbf{v}_{\mathbf{1}} \\
\mathbf{v}_{\mathbf{2}} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{v}_{\mathbf{d}}
\end{array}\right)=(\sigma B) \sigma\left(\begin{array}{c}
\mathbf{v}_{\mathbf{1}} \\
\mathbf{v}_{\mathbf{2}} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{v}_{\mathbf{d}}
\end{array}\right)=\sigma\left[\begin{array}{l}
\\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{v}_{\mathbf{d}}
\end{array}\right)\right]=\sigma\left(\begin{array}{c}
\mathbf{v}_{\mathbf{1}} \\
\mathbf{v}_{\mathbf{2}} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{w}_{\mathbf{d}}
\end{array}\right) .
\end{aligned}
$$

So, $\forall \sigma \in \Gamma, \sigma\left(\mathrm{w}_{\mathrm{i}}\right)=\mathrm{w}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots \mathrm{~d}$ which implies that U has a basis $\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots \mathrm{w}_{\mathrm{d}}\right\}$ with $\mathrm{w}_{\mathrm{i}} \in \mathrm{k}^{\mathrm{n}}\left(\operatorname{As}(\bar{k})^{\Gamma}=k\right)$.

Now, let $k=\mathbb{F}_{q}$. Then we have,

$$
|\mathrm{G}(\mathrm{~d}, \mathrm{n})(\mathrm{k})|=\left|\left[\mathrm{G}(\mathrm{~d}, \mathrm{n})\left(\overline{\mathrm{k}}^{\mathrm{n}}\right)\right]^{\Gamma}\right|
$$

which is the number of d dimensional subspaces of $(\bar{k})^{n}$ which are Γ invariant. Let J denote the collection of all bases $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ with each $v_{i} \in k^{n}$. Then J defines an open subset of $\left(k^{n}\right)^{d}$. So, the number of bases $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ with each $v_{i} \in k^{n}$ equals the cardinality of J . We first find $|\mathrm{J}|$.
The general linear group $\mathrm{GL}(\mathrm{n}, \mathrm{k})=\operatorname{Aut}\left(\mathrm{k}^{\mathrm{n}}\right)$ acts naturally on J and the action is transitive. The stabilizer of $X=\left\{e_{1}, \ldots, e_{d}\right\}$ has the block matrix of the form:

$$
\begin{gathered}
\left(\begin{array}{cc}
\mathbf{I} & * \\
\mathbf{0} & \mathbf{G L}(\mathbf{n}-\mathbf{d})
\end{array}\right) \\
|\mathrm{J}|=\frac{|\mathrm{GL}(\mathrm{n}, \mathrm{k})|}{|\operatorname{Stabilizer}(\mathrm{X})|}=\frac{|\mathrm{GL}(\mathrm{n}, \mathrm{k})|}{|\mathrm{GL}(\mathrm{n}-\mathrm{d}, \mathrm{k})| \cdot \mathrm{q}^{\mathrm{d} \cdot(\mathrm{n}-\mathrm{d})}} .
\end{gathered}
$$

By the lemma it follows that computing the number of subspaces which are Γ-invariant is same as computing elements of J, however, one has to be more careful as one may have different bases giving rise to the same element of $\mathrm{G}(\mathrm{d}, \mathrm{n})$. The number of bases $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ with each $v_{i} \in k^{n}$ is same as

$$
\frac{\text { number of points of } \mathrm{J}}{\text { number of bases for each } \mathrm{U}}
$$

The number of bases for each U is $|\mathrm{GL}(\mathrm{d}, \mathrm{k})|$. So,

$$
\left|\mathrm{G}(\mathrm{~d}, \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)\right|=\frac{\left|\mathrm{GL}(\mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)\right|}{\left|\mathrm{GL}(\mathrm{~d})\left(\mathbb{F}_{\mathrm{q}}\right)\right| \cdot\left|\mathrm{GL}(\mathrm{n}-\mathrm{d})\left(\mathbb{F}_{\mathrm{q}}\right)\right| \cdot \mathrm{q}^{\mathrm{d}(\mathrm{n}-\mathrm{d})}}=\frac{\mathrm{f}(\mathrm{n})}{\mathrm{f}(\mathrm{~d}) \cdot \mathrm{f}(\mathrm{n}-\mathrm{d}) \cdot \mathrm{q}^{\mathrm{d}(\mathrm{n}-\mathrm{d})}}
$$

where $f(n)=\left(q^{n}-1\right)\left(q^{n}-q\right) \ldots\left(q^{n}-q^{n-1}\right)$.

1.2 Zeta function of Grassmannians

As seen before, the Grassmann variety $\mathrm{G}(\mathrm{d}, \mathrm{n})$ can be embedded into projective space $\mathbb{P}\left(\Lambda^{d} V\right)$ by Plücker map. Also $G(\mathrm{~d}, \mathrm{n})$ can be covered by open affine spaces of dimension $d(n-d)$. So it is a smooth projective variety of dimension $d(n-d)$ which we may consider over any finite field \mathbb{F}_{q}. We now calculate the Zeta function of some grassmannians over \mathbb{F}_{q}. We will also verify the rationality of Zeta function and the functional equation. First of all recall the definition of Zeta function of a smooth projective variety X over $k=\mathbb{F}_{q}$. Then the Zeta function is given by

$$
Z(X, t):=\exp \left(\sum_{r=1}^{\infty} N_{r} \cdot \frac{t^{r}}{r}\right) \in \mathbb{Q}[[t]]
$$

where N_{r} is the number of points of X defined over $\mathbb{F}_{q^{r}}$.

Example 1.2.1 Projective space $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$.
One has, $\left|\mathbb{P}^{n}\left(\mathbb{F}_{q}\right)\right|=1+q+q^{2}+\ldots+q^{n}$.
$N_{r}=\left|\mathbb{P}^{n}\left(\mathbb{F}_{q^{r}}\right)\right|=1+q^{r}+q^{2 r}+\ldots .+q^{n r}$.

$$
Z(t)=\exp \left(\sum_{r=1}^{\infty}\left(1+q^{r}+\ldots .+q^{n r}\right) \frac{t^{r}}{r}\right) .
$$

Taking logarithm on both sides we get,

$$
\ln [Z(t)]=\sum_{r=1}^{\infty}\left(1+q^{r}+\ldots .+q^{n r}\right) \frac{t^{r}}{r}
$$

We use the formula : $\ln (1-t)=-t-t^{2} / 2-t^{3} / 3-\ldots$

$$
\begin{aligned}
\ln [Z(t)] & =-\ln (1-t)-\ln (1-q t)-\ldots-\ln \left(1-q^{n} t\right) . \\
& =-\ln \left[(1-t) \ldots \ldots \ldots\left(1-q^{n} t\right)\right] . \\
& \ln \left[Z(t)(1-t) \ldots \ldots \ldots\left(1-q^{n} t\right)\right]=0 \\
& Z(t)=\frac{1}{(1-t)(1-q t) \ldots \ldots \ldots .\left(1-q^{n} t\right)} .
\end{aligned}
$$

We see that $P_{i}(t)=1$ for all odd i and $P_{0}(t)=1-t, P_{2 i}(t)=1-q^{i} t$ for $i=1,2, \ldots, n$. Degree of $P_{i}(t)$ is zero for i odd and 1 for i even So, all odd Betti numbers are zero and the even Betti numbers equal to 1. $E=\sum b_{i}=n+1$. We now verify the functional equation:

$$
\begin{aligned}
Z\left(\frac{1}{q^{n} t}\right) & =\frac{1}{\left(1-1 / q^{n} t\right)\left(1-q / q^{n} t\right) \ldots\left(1-q^{n} / q^{n} t\right)} . \\
& =\frac{q^{n} t \cdot q^{n-1} t \ldots q t \cdot t}{(1-t)(1-q t) \ldots\left(1-q^{n} t\right)} . \\
& =q^{n(n+1) / 2} \cdot t^{n+1} . \\
& =q^{n \cdot E / 2} \cdot t^{E} \cdot Z(t) .
\end{aligned}
$$

So, the functional equation is verified. Also the numbers $b_{0}, b_{1}, \ldots b_{n}$ match with the Betti numbers of the complex projective space $\mathbb{P}^{n}(\mathbb{C})$ and the number $E=n+1$ matches with Euler characteristic of $\mathbb{P}^{n}(\mathbb{C})$.

Example 1.2.2 G(2, 4)
$\operatorname{dim} \mathrm{G}(2,4)=2(4-2)=4$. First calculate N_{r}. We have,

$$
\begin{aligned}
\left|\mathrm{G}(2,4)\left(\mathbb{F}_{\mathrm{q}}\right)\right| & =\frac{\left(q^{4}-1\right)\left(q^{4}-q\right)\left(q^{4}-q^{2}\right)\left(q^{4}-q^{3}\right)}{\left(q^{2}-1\right)^{2}\left(q^{2}-q\right)^{2} q^{4}} \\
& =\left(q^{2}+1\right)\left(q^{2}+q+1\right)=q^{4}+q^{3}+2 q^{2}+q+1
\end{aligned}
$$

$$
\begin{gathered}
N_{r}=q^{4 r}+q^{3 r}+2 q^{2 r}+q^{r}+1 . \\
Z(t)=\exp \left(\sum_{r=1}^{\infty}\left(1+q^{r}+2 q^{2 r}+q^{3 r}+q^{4 r}\right) \frac{t^{r}}{r}\right) . \\
\ln [Z(t)]= \\
Z(t)=\frac{-\ln \left[(1-t)(1-q t)\left(1-q^{2} t\right)^{2}\left(1-q^{3} t\right)\left(1-q^{4} t\right) .\right.}{(1-t)(1-q t)\left(1-q^{2} t\right)^{2}\left(1-q^{3} t\right)\left(1-q^{4} t\right)} .
\end{gathered}
$$

We see that $Z(t)$ is a rational function in $t . P_{i}(t)=1$ for all odd $i . P_{0}(t)=$ $1-t, P_{2}(t)=1-q t, P_{4}(t)=\left(1-q^{2} t\right)^{2}, P_{6}(t)=1-q^{3} t, P_{8}(t)=1-q^{4} t$. The Betti numbers b_{i} are zero for all odd i and $b_{0}=1, b_{2}=1, b_{4}=2, b_{6}=1, b_{8}=1$. $E=\sum b_{i}=6$.
We now verify the functional equation:

$$
\begin{aligned}
Z\left(\frac{1}{q^{4} t}\right) & =\frac{1}{\left(1-1 / q^{4} t\right)\left(1-q / q^{4} t\right)\left(1-q^{2} / q^{4} t\right)^{2}\left(1-q^{3} / q^{4} t\right)\left(1-q^{4} / q^{4} t\right)} . \\
& =q^{4} \cdot q^{3} t .\left(q^{2} t\right)^{2} \cdot q t \cdot t \cdot Z(t) . \\
& =q^{12} \cdot t^{6} \cdot Z(t) . \\
& =q^{4.6 / 2} \cdot t^{6} \cdot Z(t) . \\
& =q^{n E / 2} t^{E} \cdot Z(t) .
\end{aligned}
$$

and the functional equation is verified.
Example 1.2.3 G(2,5)($\left.\mathbb{F}_{\mathrm{q}}\right)$

$$
\begin{aligned}
\begin{aligned}
&\left|\mathrm{G}(2,5)\left(\mathbb{F}_{\mathrm{q}}\right)\right|= \\
& \frac{\left(q^{5}-1\right)\left(q^{5}-q\right)\left(q^{5}-q^{2}\right)\left(q^{5}-q^{3}\right)\left(q^{5}-q^{4}\right)}{\left(q^{2}-1\right)\left(q^{2}-q^{)}\left(q^{3}-1\right)\left(q^{3}-q\right)\left(q^{3}-q^{2}\right) q^{6}\right.} . \\
&=1+q+2 q^{2}+2 q^{3}+2 q^{4}+q^{5}+q^{6} . \\
& N_{r}=1+q^{r}+2 q^{2 r}+2 q^{3 r}+2 q^{4 r}+q^{5 r}+q^{6 r} . \\
& Z(t)=\exp \left(\sum_{r=1}^{\infty}\left(1+q^{r}+2 q^{2 r}+2 q^{3 r}+2 q^{4 r}+q^{5 r}+q^{6 r}\right) \frac{t^{r}}{r}\right) .
\end{aligned} .
\end{aligned}
$$

and by similar calculations we get,

$$
Z(t)=\frac{1}{(1-t)(1-q t)\left(1-q^{2} t\right)^{2}\left(1-q^{3} t\right)^{2}\left(1-q^{4} t\right)^{2}\left(1-q^{5} t\right)\left(1-q^{6} t\right)}
$$

Example 1.2.4 $G(3,6)\left(\mathbb{F}_{q}\right)$

$$
\begin{aligned}
\left|\mathrm{G}(3,6)\left(\mathbb{F}_{\mathrm{q}}\right)\right| & =\frac{\left(q^{6}-1\right)\left(q^{6}-q\right) \ldots\left(q^{6}-q^{5}\right)}{\left(q^{3}-1\right)^{2}\left(q^{3}-q\right)^{2}\left(q^{3}-q^{2}\right)^{2} q^{9}} \\
& =\left(q^{3}+1\right)\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right) \\
& =q^{9}+q^{8}+2 q^{7}+3 q^{6}+3 q^{5}+3 q^{4}+3 q^{3}+2 q^{2}+q+1 \\
N_{r} & =q^{9 r}+q^{8 r}+2 q^{7 r}+3 q^{6 r}+3 q^{5 r}+3 q^{4 r}+3 q^{3 r}+2 q^{2 r}+q^{r}+1 .
\end{aligned}
$$

$Z(t)=\exp \left(\sum_{r=1}^{\infty}\left(q^{9 r}+q^{8 r}+2 q^{7 r}+3 q^{6 r}+3 q^{5 r}+3 q^{4 r}+3 q^{3 r}+2 q^{2 r}+q^{r}+1\right) \frac{t^{r}}{r}\right)$.
Taking logarithm on both sides and simplifying we get,
$Z(t)=\frac{1}{(1-t)(1-q t)\left(1-q^{(2 t}\right)^{2}\left(1-q^{3} t\right)^{3}\left(1-q^{4} t\right)^{3}\left(1-q^{5} t\right)^{3}\left(1-q^{6} t\right)^{3}\left(1-q^{7} t\right)^{2}\left(1-q^{8} t\right)\left(1-q^{9} t\right)}$.
The functional eqation can be easily verified in a similar way as we did for $G(2,4)$.

The general case $\mathrm{G}(\mathrm{d}, \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)$:
As seen before,
$N_{r}=\left|\mathrm{G}(\mathrm{d}, \mathrm{n})\left(\mathbb{F}_{\mathrm{q}^{\mathrm{r}}}\right)\right|=\frac{\left(\mathrm{q}^{\mathrm{nr}}-1\right)\left(\mathrm{q}^{\mathrm{nr}}-\mathrm{q}^{\mathrm{r}}\right) \ldots\left(\mathrm{q}^{\mathrm{nr}}-\mathrm{q}^{(\mathrm{n}-1) \mathrm{r}}\right)}{\left(\mathrm{q}^{\mathrm{dr}}-1\right) \ldots\left(\mathrm{q}^{\mathrm{dr}}-\mathrm{q}^{(\mathrm{d}-1) \mathrm{r}}\right) \cdot\left(\mathrm{q}^{(\mathrm{n}-\mathrm{d}) \mathrm{r}}-1\right) \ldots\left(\mathrm{q}^{(\mathrm{n}-\mathrm{d}) \mathrm{r}}-\mathrm{q}^{(\mathrm{n}-\mathrm{d}-1) \mathrm{r}}\right) \cdot \mathrm{q}^{\mathrm{rd}(\mathrm{n}-\mathrm{d})}}$.
For simplicity set $q^{r}=l$. So we have

$$
N_{r}=\frac{\left(l^{n}-1\right)\left(l^{n}-l\right) \ldots\left(l^{n}-l^{n-1}\right)}{\left(l^{d}-1\right) \ldots\left(l^{d}-l^{d-1}\right) \cdot\left(l^{n-d}-1\right) \ldots\left(l^{n-d}-l^{n-d-1}\right) \cdot l^{d(n-d)}}
$$

Multiplying and dividing by $l^{d(n-d)}$ and simplifying we get,

$$
N_{r}=\frac{\left(l^{n}-1\right)\left(l^{n-1}-1\right) \ldots\left(l^{n-d+1}-1\right)}{\left(l^{d}-1\right)\left(l^{d-1}-1\right) \ldots(l-1)}
$$

This is the usual Gaussian Binomial coefficient $\binom{n}{d}_{l}$ and it can be interpreted as a polynomial in l. To be more precise,

$$
\binom{n}{d}_{l}=\sum_{i=0}^{d(n-d)} b_{i} l^{i}
$$

where the coefficient b_{k} of l^{k} in this polynomial is the number of distinct partitions of k elements that fit inside a rectangle of size $d \times(n-d)$. We illustrate this with examples.
Example 1.2.5 Find the Gaussian binomial coefficient $\binom{4}{2}_{l}$.
Suppose $\binom{4}{2}_{l}=b_{0}+b_{1} l+b_{2} l^{2}+b_{3} l^{3}+b_{4} l^{4}$.
We summarize the number of partitions of k for $k=0,1,2,3,4$ in the following table:

k	Partitions of k	$b_{k}=$ number of allowed partitions
0	$\}$	1
1	$\{1\}$	1
2	$\{\{2\},\{1,1\}\}$	2
3	$\{\{3\},\{2,1\},\{1,1,1\}\}$	1
4	$\{\{4\},\{3,1\},\{2,2\},\{2,1,1\},\{1,1,1,1\}\}$	1

Hence we see that:

$$
\binom{4}{2}_{l}=1+l+2 l^{2}+l^{3}+l^{4} .
$$

i.e. $N_{r}=1+q^{r}+2 q^{2 r}+q^{3 r}+q^{4 r}$. Note that this calculation matches with the calculation done before while calculating Zeta function for $\mathrm{G}(2,4)\left(\mathbb{F}_{\mathrm{q}}\right)$.

Example 1.2.6 Find the Gaussian binomial coefficient $\binom{5}{2}_{l}$.
Suppose $\binom{5}{2}_{l}=b_{0}+b_{1} l+b_{2} l^{2}+b_{3} l^{3}+b_{4} l^{4}+b_{5} l^{5}$.
We summarize the number of allowed partitions of k for $k=0,1,2,3,4,5,6$ in the following table:

k	Allowed partitions of k	$b_{k}=$ number of allowed partitions
0	$\}$	1
1	$\{1\}$	1
2	$\{\{2\},\{1,1\}\}$	2
3	$\{\{2,1\},\{1,1,1\}\}$	1
4	$\{\{2,2\},\{2,1,1\}\}$	1
5	$\{\{2,2,1\}\}$	1
6	$\{\{2,2,2\}\}$	1

Hence we see that:

$$
\binom{5}{2}_{l}=1+l+2 l^{2}+2 l^{3}+2 l^{4}+l^{5}+l^{6}
$$

i.e. $N_{r}=1+q^{r}+2 q^{2 r}+2 q^{3 r}+2 q^{4 r}+q^{5 r}+q^{6 r}$. Again this calculation matches with the calculation done before while calculating Zeta function for $\mathrm{G}(2,5)\left(\mathbb{F}_{\mathrm{q}}\right)$.

Example 1.2.7 Find the Gaussian binomial coefficient $\binom{6}{3}_{l}$.
Here $d(n-d)=3.3=9$. Suppose $\binom{6}{3}_{l}=b_{0}+b_{1} l+b_{2} l^{2}+b_{3} l^{3}+b_{4} l^{4}+b_{5} l^{5}+$ $b_{6} l^{6}+b_{7} l^{7}+b_{8} l^{8}+b_{9} l^{9}$.
We summarize the number of allowed partitions of k for $k=0,1, \ldots, 9$ in the following table:

k	Allowed partitions of k	$b_{k}=$ number of allowed partitions
0	$\}$	1
1	$\{1\}$	1
2	$\{\{2\},\{1,1\}\}$	2
3	$\{\{3\},\{2,1\},\{1,1,1\}\}$	3
4	$\{\{3,1\},\{2,2\},\{2,1,1\}\}$	3
5	$\{\{2,2,1\},\{3,2\},\{3,1,1\}\}$	3
6	$\{\{2,2,2\},\{3,2,1\},\{3,3\}\}$	3
7	$\{\{3,2,2\},\{3,3,1\}\}$	2
8	$\{\{3,3,2\}\}$	1
9	$\{\{3,3,3\}\}$	1

Hence we see that:

$$
\binom{6}{3}_{l}=1+l+2 l^{2}+3 l^{3}+3 l^{4}+3 l^{5}+3 l^{6}+2 l^{7}+l^{8}+l^{9}
$$

i.e. $N_{r}=1+q^{r}+2 q^{2 r}+3 q^{3 r}+3 q^{4 r}+3 q^{5 r}+3 q^{6 r}+2 q^{7 r}+q^{8 r}+q^{9 r}$.

We now consider the general case. Regarding l as a formal variable, it is possible to express the coefficient N_{r} for any grassmannian $\mathrm{G}(\mathrm{d}, \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)$ as

$$
N_{r}=\sum_{i=0}^{d(n-d)} b_{i} l^{i}
$$

where b_{i} can be found as explained before and the Zeta function of the grassmannian $G(d, n)$ then comes out to be :

$$
Z(t)=\frac{1}{(1-t)^{b_{0}}(1-q t)^{b_{1}} \ldots\left(1-q^{d(n-d)} t\right)^{b_{d(n-d)}}} .
$$

From this we see that all the odd Betti mubers of of the grassmannians are zero. The numbers b_{i} here are the even topological Betti numbers of the complex Grassmannian $\mathrm{X}(\mathbb{C})=\mathrm{G}(\mathrm{d}, \mathrm{n})(\mathbb{C})$ i.e. $\mathrm{b}_{\mathrm{i}}=\operatorname{dim} \mathrm{H}_{2 \mathrm{i}}(\mathrm{X}(\mathbb{C}), \mathbb{Z})($ The odd Betti numbers of $\mathrm{X}(\mathbb{C})$ are zero).

2 Lagrangian Grassmannian

Let V be a vector space over field k of dimension $2 n, n \geq 1$. Consider the set of all n dimensional subspaces of V i.e. the grassmannian $G(n, 2 n)$. We are interested in a subvariety of $\mathrm{G}(\mathrm{n}, 2 \mathrm{n})$. We define a pairing on V. For $x, y \in V, x=\left(x_{1}, x_{2}, \ldots, x_{2 n}\right), y=\left(y_{1}, y_{2}, \ldots \ldots, y_{2 n}\right)$ define:

$$
<x, y>=\sum_{i=1}^{n}\left[\left(x_{i} \cdot y_{2 n+1-i}\right)-\left(x_{2 n+1-i} \cdot y_{i}\right)\right]
$$

This is a non-degenerate alternating pairing on V. We say that $U \in \mathrm{G}(\mathrm{n}, 2 \mathrm{n})$ is isotropic iff $<x, y>=0 \forall x, y \in U$.

Definition 2.0.8 In the above notations, the Lagrangian Grassmannian $\mathrm{L}(\mathrm{n}, 2 \mathrm{n})$ is defined by : $\mathrm{L}(\mathrm{n}, 2 \mathrm{n})=\{\mathrm{U} \in \mathrm{G}(\mathrm{n}, 2 \mathrm{n}) \mid \mathrm{U}$ is isotropic $\}$.

It can be shown that $L(n, 2 n)$ is a projective subvariety of $G(n, 2 n)$ of dimension $\frac{n(n+1)}{2}$.

2.1 To calculate the number of points of $\mathrm{L}(\mathrm{n}, 2 \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)$.

The symplectic group $\operatorname{Sp}(2 n)\left(\mathbb{F}_{\mathrm{q}}\right)$ acts transitively on the set of all isotropic subspaces of $\mathrm{G}(\mathrm{n}, 2 \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)$, i.e. on the Lagrangian grassmannian. So we have,

$$
\left|\mathrm{L}(\mathrm{n}, 2 \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)\right|=\frac{\left|\operatorname{Sp}(2 \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)\right|}{\mid \text { Stabilizer of } \mathrm{X} \mid}, \mathrm{X} \in \mathrm{~L}(\mathrm{n}, 2 \mathrm{n})
$$

To find $\left|\operatorname{Sp}(2 \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)\right|$ we use the following result from the linear algebra.
Lemma 2.1.1 If f is a non-degenerate alternating paring on a $2 n$ dimensional vector space V over a field of q elements then the number of pairs $\{u, v\}$ s.t. $f(u, v)=<u, v>=1$ is $\left(q^{2 n}-1\right) q^{2 n-1}$.

Now, given f-non degenerate, alternating pairing on vector space V of dimension $2 n$ by standard results, there exists a symplectic basis
$\left\{v_{1}, v_{2}, \ldots, v_{2 n}\right\}$ for V such that

$$
<v_{i}, v_{i+n}>=1, i=1, \ldots, n ;<v_{i}, v_{j}>=0,|i-j| \neq n
$$

If $\left\{v_{i}\right\}$ is a symplectic basis of V then, $\theta \in S p(2 n)$ iff $\theta . v_{i}$ is also a symplectic basis for V. i.e.

$$
<\theta v_{i}, \theta v_{i+n}>=1, i=1, \ldots, n ;<\theta v_{i}, \theta v_{j}>=0,|i-j| \neq n
$$

The number of pairs such that $<\theta v_{1}, \theta v_{1+n}>=1$ is $\left(q^{2 n}-1\right) q^{2 n-1}$. Once we choose $\left\{\theta v_{1}, \theta v_{1+n}\right\}$ for $\left\{\theta v_{i}\right\}$ to be a symplectic basis the number of pairs $\left\{\theta v_{2}, \theta v_{2+n}\right\}$ such that $<\theta v_{2}, \theta v_{2+n}>=1$ is $q^{(2 n-2)-1}\left(q^{2 n-2}-1\right)$; and so on \ldots Finally, the number of pairs $\left\{\theta v_{n}, \theta v_{2 n}\right\}$ such that $\left\langle\theta v_{n}, \theta v_{2 n}\right\rangle=1$ is $q\left(q^{2}-\right.$ 1). And so,

$$
\left|\operatorname{Sp}(2 n)\left(\mathbb{F}_{q}\right)\right|=\prod_{i=1}^{n}\left(q^{2 i}-1\right) q^{2 i-1}=q^{n^{2}} \prod_{i=1}^{n}\left(q^{2 i}-1\right)=q^{n^{2}} \prod_{i=1}^{n}\left(q^{i}-1\right)\left(q^{i}+1\right)
$$

To find the stabilizer of $\mathrm{X} \in \mathrm{L}(\mathrm{n}, 2 \mathrm{n})$:
Notation : We denote the transpose of a matrix A by A^{t}. Let

$$
J=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{I} \\
-\mathbf{I} & \mathbf{0}
\end{array}\right)
$$

$$
\mathrm{Sp}(2 \mathrm{n})=\left\{\mathrm{A} \in \mathrm{GL}(2 \mathrm{n}) \mid \mathrm{A}^{\mathrm{t}} \mathrm{JA}=\mathrm{J}\right\}
$$

Let $\left(\begin{array}{cc}\mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{C}\end{array}\right) \in \operatorname{StabX}$. If it has to be in $\operatorname{Sp}(2 n)$ we must have,

$$
\begin{aligned}
\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{0} & \mathbf{C}
\end{array}\right)^{t}\left(\begin{array}{cc}
\mathbf{0} & \mathbf{I} \\
-\mathbf{I} & \mathbf{0}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{0} & \mathbf{C}
\end{array}\right) & =\left(\begin{array}{cc}
\mathbf{0} & \mathbf{I} \\
-\mathbf{I} & \mathbf{0}
\end{array}\right) \\
\left(\begin{array}{cc}
\mathbf{A}^{\mathbf{t}} & \mathbf{0} \\
\mathbf{B}^{\mathbf{t}} & \mathbf{C}^{\mathbf{t}}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{0} & \mathbf{I} \\
-\mathbf{I} & \mathbf{0}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{0} & \mathbf{C}
\end{array}\right) & =\left(\begin{array}{cc}
\mathbf{0} & \mathbf{I} \\
-\mathbf{I} & \mathbf{0}
\end{array}\right) \\
\left(\begin{array}{cc}
\mathbf{A}^{\mathbf{t}} & \mathbf{0} \\
\mathbf{B}^{\mathbf{t}} & \mathbf{C}^{\mathbf{t}}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{0} & \mathbf{C} \\
-\mathbf{A} & -\mathbf{B}
\end{array}\right) & =\left(\begin{array}{cc}
\mathbf{0} & \mathbf{I} \\
-\mathbf{I} & \mathbf{0}
\end{array}\right) \\
\left(\begin{array}{cc}
\mathbf{0} & \mathbf{A}^{\mathbf{t}} \mathbf{C} \\
-\mathbf{C}^{\mathbf{t}} \mathbf{A} & \mathbf{B}^{\mathbf{t}} \mathbf{C}-\mathbf{c}^{\mathbf{t}} \mathbf{B}
\end{array}\right) & =\left(\begin{array}{cc}
\mathbf{0} & \mathbf{I} \\
-\mathbf{I} & \mathbf{0}
\end{array}\right)
\end{aligned}
$$

$C=\left(A^{-1}\right)^{t}$ and $B^{t} C=C^{t} B$ i.e. $C^{t} B$ is a symmetric matrix. So, if

$$
M=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{0} & \mathbf{C}
\end{array}\right) \in \text { StabilizerX }
$$

Then it is of the form :

$$
M=\left(\begin{array}{cc}
\mathbf{A} & \left(\mathbf{C}^{\mathbf{t}}\right)^{-\mathbf{1}} \mathbf{S} \\
\mathbf{0} & \left(\mathbf{A}^{-\mathbf{1}}\right)^{\mathbf{t}}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A} & \mathbf{A S} \\
\mathbf{0} & \left(\mathbf{A}^{-\mathbf{1}}\right)^{\mathbf{t}}
\end{array}\right)
$$

for some symmetric $n \times n$ matrix S. One can see that the StabilizerX is the semidirect product of GL(n) the general linear $n \times n$ group and $\mathrm{S}(\mathrm{n})$; the group of symmetric $n \times n$ matrices.

$$
\begin{aligned}
\left|\operatorname{Stab}(\mathrm{X})\left(\mathbb{F}_{\mathrm{q}}\right)\right| & =\left|\mathrm{S}(\mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)\right| \cdot\left|\mathrm{GL}(\mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)\right| \\
& =q^{\frac{n(n+1)}{2}} \prod_{i=0}^{n-1}\left(q^{n}-q^{i}\right) \\
& =q^{\frac{n(n+1)}{2}} q^{\frac{n(n-1)}{2}} \prod_{i=1}^{n}\left(q^{i}-1\right) \\
\left|\mathrm{L}(\mathrm{n}, 2 \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)\right| & =\frac{\left|\mathrm{Sp}(2 \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)\right|}{\left|\mathrm{GL}(\mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)\right| \cdot\left|\mathrm{S}(\mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)\right|} \\
& =\frac{q^{n^{2}} \prod_{i=1}^{n}\left(q^{i}-1\right)\left(q^{i}+1\right)}{q^{\frac{n(n+1)}{2}} q^{\frac{n(n-1)}{2}} \prod_{i=1}^{n}\left(q^{i}-1\right)} . \\
& =\prod_{i=1}^{n}\left(1+q^{i}\right)
\end{aligned}
$$

2.2 Zeta function for Lagrangian Grassmannians:

The Lagrangian Grassmannian $\mathrm{L}(\mathrm{n}, 2 \mathrm{n})$ is a smooth projective subvariety of the grassmannian $\mathrm{G}(\mathrm{n}, 2 \mathrm{n})$ and we may consider it over any finite field \mathbb{F}_{q}. The number of points in $\mathrm{L}(\mathrm{n}, 2 \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)$ is given by:

$$
\left|\mathrm{L}(\mathrm{n}, 2 \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}\right)\right|=\prod_{i=1}^{n}\left(1+q^{i}\right)
$$

As there are no terms in the denominator, N_{r} is a polynomial in powers of q^{r} and the Zeta function of such grassmannians are easy to calculate.

Example 2.2.1 L $(2,4)\left(\mathbb{F}_{q}\right)$

$$
\begin{aligned}
&\left|\mathrm{L}(2,4)\left(\mathbb{F}_{\mathrm{q}}\right)\right|=(1+q)\left(1+q^{2}\right) . \\
&=1+q+q^{2}+q^{3}=1+q+q^{2}+q^{3} . \\
& N_{r}=1+q^{r}+q^{2 r}+q^{3 r}=1+q^{r}+q^{2 r}+q^{3 r} . \\
& Z(t)= \frac{1}{(1-t)(1-q t)\left(1-q^{2} t\right)\left(1-q^{3} t\right)} .
\end{aligned}
$$

Example 2.2.2 $\mathrm{L}(3,6)\left(\mathbb{F}_{\mathrm{q}}\right)$

$$
\begin{gathered}
\left|\mathrm{L}(3,6)\left(\mathbb{F}_{\mathrm{q}}\right)\right|=(1+q)\left(1+q^{2}\right)\left(1+q^{3}\right) . \\
=1+q+q^{2}+2 q^{3}+q^{4}+q^{5}+q^{6} . \\
N_{r}=1+q^{r}+q^{2 r}+2 q^{3 r}+q^{4 r}+q^{5 r}+q^{6 r} . \\
Z(t)=\frac{1}{(1-t)(1-q t)\left(1-q^{2} t\right)\left(1-q^{3} t\right)^{2}\left(1-q^{4} t\right)\left(1-q^{5} t\right)\left(1-q^{6} t\right)} .
\end{gathered}
$$

Example 2.2.3 $\mathrm{L}(4,8)\left(\mathbb{F}_{\mathrm{q}}\right)$

$$
\begin{aligned}
N_{r} & =\left(1+q^{r}\right)\left(1+q^{2 r}\right)\left(1+q^{3 r}\right)\left(1+q^{4 r}\right) . \\
& =1+q^{r}+q^{2 r}+2 q^{3 r}+2 q^{4 r}+2 q^{5 r}+2 q^{6 r}+2 q^{7 r}+q^{8 r}+q^{9 r}+q^{10 r} . \\
Z(t)= & \frac{1}{(1-t)(1-q t)\left(1-q^{2} t\right)\left(1-q^{3} t\right)^{2}\left(1-q^{4} t\right)^{2}\left(1-q^{5} t\right)^{2}\left(1-q^{6} t\right)^{2}\left(1-q^{7} t\right)^{2}\left(1-q^{8} t\right)\left(1-q^{9} t\right)\left(1-q^{10} t\right)}
\end{aligned}
$$

General Case: We have:

$$
\left|\mathrm{L}(\mathrm{n}, 2 \mathrm{n})\left(\mathbb{F}_{\mathrm{q}}^{\mathrm{r}}\right)\right|=\prod_{\mathrm{i}=1}^{\mathrm{n}}\left(1+\mathrm{q}^{\mathrm{ir}}\right)
$$

For simplicity set $q^{r}=l$.
$N_{r}=\left|L(n, 2 n)\left(\mathbb{F}_{q}^{r}\right)\right|=\prod_{i=1}^{n}\left(1+l^{i}\right)=(1+l)\left(1+l^{2}\right) \ldots\left(1+l^{n}\right)=1+b_{1} l+b_{2} l^{2}+\ldots+b_{m} l^{m}$.
where the coefficient b_{i} is equal to the number of strict partitions of i whose parts do not exceed $n, m=n(n+1) / 2$. So, the coeficcients b_{i} can be calculated precisely and one observes that the Zeta function in general case is

$$
Z(t)=\frac{1}{(1-t)(1-q t)^{b_{1}}\left(1-q^{2} t\right)^{b_{2}} \ldots\left(1-q^{m} t\right)^{b_{m}}} .
$$

where, b_{i} and m are described as above.

3 Schubert Calculus

Schubert Calculus provides us the machinery necessary to describe the cohomology ring of $G^{\mathbb{P}}(\mathrm{d}, \mathrm{n})$ with integer coefficients when the base field is \mathbb{C}. We now define some important notions in schubert calculus.
(1) Schubert conditions and Schubert varieties : We are interested in finding a necessary and sufficient condition for a d-plane in \mathbb{P}^{n} to intersect a given sequence of linear spaces in \mathbb{P}^{n} in a prescribed way. Let $\underline{\mathrm{A}}: A_{0} \subset A_{1} \subset \ldots \subset A_{d}$ be a strictly increasing sequence of $d+1$ linear spaces of \mathbb{P}^{n}. Such a sequence is called a flag. A d-plane L in \mathbb{P}^{n} is said to satisfy the Schubert condition defined by a flag $\underline{\mathrm{A}}$ if, $\operatorname{dim}\left(\mathrm{A}_{\mathrm{i}} \bigcap \mathrm{L}\right) \geq \mathrm{i} \forall \mathrm{i}=0,1, \ldots$, d. i.e. A d-plane satisfying the Schubert conditions with respect to a flag $\underline{\mathrm{A}}$ intersects A_{0} at least in a point, A_{1} at least in a line,...etc and it lies in A_{d}. One can show that the condition $\operatorname{dim}\left(A_{i} \bigcap L\right) \geq i$ for $i=0, \ldots, d$ is satisfied iff the Plücker coordinates of d-plane L satisfy certain linear relations in addition to the quadratic plücker relations. Hence, the collection of all such d-planes in $G^{\mathbb{P}}(d, n)$ satisfying the Schubert condition with respect to a given flag \underline{A} defines a projective variety. It is known as Schubert variety $\Omega(\underline{A})$ corresponding to the flag \underline{A}. In fact, this variety is the intersection of a linear subspace of \mathbb{P}^{n} with $G^{\mathbb{P}}(\mathrm{d}, \mathrm{n})$. The dimension of Schubert variety $\Omega(\underline{\mathrm{A}})$ with $\underline{\mathrm{A}}$ as above is $\sum_{i=0}^{d}\left(a_{i}-i\right)$.
(2)Schubert cycle : The Schubert variety $\Omega(\underline{A})$ defines a cohomology class in the cohomology ring $H^{*}\left(G^{\mathbb{P}}(\mathrm{d}, \mathrm{n}) ; \mathbb{Z}\right)$. The cohomology class of $\Omega(\underline{\mathrm{A}})$ in $H^{*}\left(G^{\mathbb{P}}(d, n) ; \mathbb{Z}\right)$ is called a Scubert cycle. Although the variety $\Omega(\underline{A})$ depends on the choice of the flag \underline{A}, the cohomology class of $\Omega(\underline{A})$ depends only on the integers $a_{i}=\operatorname{dim} A_{i}$. So, we denote the class of $\Omega(\underline{\mathrm{A}})$ by $\Omega(\underline{a})$ where, \underline{a} is defined by integers $a_{i}=\operatorname{dim} A_{i}, 0 \leq a_{0}<a_{1}<\ldots<a_{d} \leq n$.

We now state the fundamental theorem of Schubert Calculus which asserts that the Schubert cycles completely determine the cohomology of $G^{\mathbb{P}}(d, n)$.

Theorem 3.0.4 The Basis Theorem : Considered additively, $\mathrm{H}^{*}\left(\mathrm{G}^{\mathbb{P}}(\mathrm{d}, \mathrm{n}) ; \mathbb{Z}\right)$ is a free abelian group and the Schubert cycles $\Omega\left(a_{0} \ldots a_{d}\right)$ form a basis. Each integral cohomology group $\mathrm{H}^{2 \mathrm{p}}\left(\mathrm{G}^{\mathbb{P}}(\mathrm{d}, \mathrm{n}) ; \mathbb{Z}\right)$ is a free abelian group and the Schubert
cycles $\Omega(\underline{a})$ with $\left[(d+1)(n-d)-\sum_{i=0}^{d}\left(a_{i}-i\right)\right]=p$ form a basis. Each cohomology group $\mathrm{H}^{\mathrm{r}}\left(\mathrm{G}^{\mathbb{P}}(\mathrm{d}, \mathrm{n}) ; \mathbb{Z}\right)$, with r odd, is zero.

This theorem determines the additive structure of the cohomology ring $H^{*}\left(G^{\mathbb{P}}(d, n) ; \mathbb{Z}\right)$. Since each odd cohomology group is zero we observe that the cup product is commutative and the $\operatorname{ring} H^{*}\left(G^{\mathbb{P}}(d, n) ; \mathbb{Z}\right)$ is a commutative ring.

We now calculate the cohomology groups of some grassmannians and find their dimensions.

Example 3.0.5 Projective space $\mathbb{P}^{n}=\mathrm{G}(1, \mathrm{n}+1)=\mathrm{G}^{\mathbb{P}}(0, \mathrm{n})$. $\operatorname{dim}\left(\mathbb{P}^{\mathrm{n}}\right)=\mathrm{n}$.
Using the basis theorem, for $p=0,1, \ldots, n, H^{2 p}\left(\mathbb{P}^{n} ; \mathbb{Z}\right)$ is one dimensional generated by the cycle $\Omega\left(a_{0}\right)$ with $n-a_{0}=p . H^{r}\left(\mathbb{P}^{n} ; \mathbb{Z}\right)$ is 0 for r odd. So all odd Betti numbers are zero and the even Betti numbers are equal to 1 .

Example 3.0.6 $G(2,4)=G^{\mathbb{P}}(1,3)$.
$\operatorname{dim}(\mathrm{G}(2,4))=2.2=4$. For $0 \leq p \leq 4, \mathrm{H}^{2 \mathrm{p}}\left(\mathrm{G}^{\mathbb{P}}(1,3) ; \mathbb{Z}\right)$ is generated by cycles $\Omega\left(a_{0} \cdot a_{1}\right)$ with $4-\left[a_{0}+\left(a_{1}-1\right)\right]=p$. i.e. $a_{0}+a_{1}=5-p$. For $p=0$, the only integer solution to $a_{0}+a_{1}=5$ with a_{0} and a_{1} as in Schubert conditions is $a_{0}=2$ and $a_{1}=3$. Hence, $\mathrm{H}^{0}\left(\mathrm{G}^{\mathbb{P}}(1,3) ; \mathbb{Z}\right)$ is generated by the cycle $\Omega(2.3)$ and has dimension 1. We do similar calculations and form the following table:

p	$\operatorname{dim}\left(\mathrm{H}^{2 \mathrm{p}}\left(\mathrm{G}^{\mathbb{P}}(1,3) ; \mathbb{Z}\right)\right)$	Generators
0	1	$\Omega(2.3)$
1	1	$\Omega(1.3)$
2	2	$\Omega(0.3), \Omega(1.2)$
3	1	$\Omega(0.2)$
4	1	$\Omega(0.1)$

Example 3.0.7 $G(2,5)=G^{\mathbb{P}}(1,4)$.
$\operatorname{dim}(G(2,5))=2.3=6$. For $0 \leq p \leq 6, \mathrm{H}^{2 \mathrm{p}}\left(\mathrm{G}^{\mathbb{P}}(1,4) ; \mathbb{Z}\right)$ is generated by the cycles $\Omega\left(a_{0} \cdot a_{1}\right)$ with $6-\left[a_{0}+\left(a_{1}-1\right)\right]=p$. i.e. $a_{0}+a_{1}=7-p$. For $p=0$, the only integer solution to $a_{0}+a_{1}=7$ with a_{0} and a_{1} as in Schubert conditions is $a_{0}=3$ and $a_{1}=4$. We summarize the calculation for other cohomology groups in the following table:

p	$\operatorname{dim}\left(\mathrm{H}^{2 \mathrm{p}}\left(\mathrm{G}^{\mathbb{P}}(1,4) ; \mathbb{Z}\right)\right)$	Generators
0	1	$\Omega(3.4)$
1	1	$\Omega(2.4)$
2	2	$\Omega(1.4), \Omega(2.3)$
3	2	$\Omega(0.4), \Omega(1.3)$
4	2	$\Omega(0.3), \Omega(1.2)$
5	1	$\Omega(0.2)$
6	1	$\Omega(0.1)$

Connections to the cohomology in characteristic zero:

If $X \rightarrow$ Spec $\mathbb{Z}_{(p)}$ is a smooth and proper morphism of schemes then, the cohomology of $X \otimes \overline{\mathbb{Q}}$ with the Galois action gives the information about the cohomology of $X \otimes \overline{\mathbb{F}}_{p}$ with its Galois action. Let \mathcal{O} be the ring of integers of $\overline{\mathbb{Q}}$. Suppose p is a prime and μ is a maximal ideal containing p. Then \mathbb{O}_{μ} is a local ring with unique maximal ideal $\mu \mathcal{O}_{\mu}$. The residue field $k=\mathcal{O}_{\mu} / \mu \mathcal{O}_{\mu} \cong \overline{\mathbb{F}}_{p}$. Let $\tilde{X}=X \otimes \mathcal{O}_{\mu}$. If $X \otimes \mathcal{O}_{\mu} \rightarrow \operatorname{Spec} \mathcal{O}_{\mu}$ is a smooth and proper morphism of schemes then the cohomology of $\tilde{X} \otimes \overline{\mathbb{Q}}$ with Galois action gives the cohomology of $\tilde{X} \otimes k$ with its Galois action. Now let $X=\mathcal{G}$ be the grassmannn variety $\mathrm{G}(\mathrm{d}, \mathrm{n})$. Let $m=\operatorname{dim} \mathbb{G}=\mathrm{d}(\mathrm{n}-\mathrm{d})$. The equations defining \mathcal{G} i.e. the Plücker relations are relations with integer coefficients. So, we can consider \mathcal{G} over fields of characteristic zero namely \mathbb{Q}, over \mathbb{C} and also over finite field \mathbb{F}_{q}. Let $\mathcal{G} \otimes_{\mathcal{O}_{\mu}} \overline{\mathbb{Q}}$ denote the grassmann variety $\mathrm{G}(\mathrm{d}, \mathrm{n})$ over $\overline{\mathbb{Q}}$ and let $\mathcal{G} \otimes_{\mathcal{O}_{\mu}} k$ denote the grassmann variety $\mathrm{G}(\mathrm{d}, \mathrm{n})$ over $\overline{\mathbb{F}}_{p}$. Since over any algebraically closed field L, \mathcal{G} is smooth and proper, the morphism $\mathcal{G} \rightarrow \operatorname{Spec}\left(\mathcal{O}_{\mu}\right)$ is smooth and proper. Let l be a prime other than p. We have an isomorphism

$$
f: H_{e t}^{i}\left(\mathcal{G} \otimes \overline{\mathbb{Q}} ; \mathbb{Q}_{l}\right) \rightarrow H_{e t}^{i}\left(\mathcal{G} \otimes k ; \mathbb{Q}_{l}\right)
$$

(see Milne Lecture notes 20.4) which is Galois equivariant. The Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ contains the decomposition group D_{μ} and the inertia group I_{μ} as its subgroups. We have $I_{\mu} \subset D_{\mu} \subset \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. To say f is Galois equivariant means that, if $\tau \in D_{\mu}$ then, $\bar{\tau} \in \operatorname{Gal}\left(\overline{\mathbb{F}_{\mathrm{p}}} / \mathbb{F}_{\mathrm{p}}\right)$ and for a class $c \in H_{e t}^{2 i}\left(\mathcal{G} \otimes \overline{\mathbb{Q}} ; \mathbb{Q}_{l}\right)$ one has

$$
f(\tau c)=\bar{\tau} . f(c)
$$

This implies that the inertia group I_{μ} acts trivially on $H_{\text {et }}^{i}\left(\mathcal{G} \otimes \overline{\mathbb{Q}} ; \mathbb{Q}_{l}\right)$. The Frobenius morphism $\mathrm{F}: \mathcal{G} \otimes \mathbb{F}_{\mathrm{p}} \rightarrow \mathcal{G} \otimes \mathbb{F}_{\mathrm{p}}$ induces linear map F^{*} on cohomology. Let $\alpha \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{\mathrm{p}} / \mathbb{F}_{\mathrm{p}}\right)$ be the geometric Frobenius $x \mapsto x^{1 / p}$. Let us denote by α also the induced linear map on cohomology. Then $\alpha=\mathrm{F}^{*}$. Also there exists $\beta \in D_{\mu}$ such that $\bar{\beta}=\alpha$. We now use all this to simplify the expression of Zeta function of \mathcal{G}. We have $Z(\mathcal{G}, t)$ as (see Hartshorne appendix C)

$$
\begin{aligned}
Z(\mathcal{G}, t) & =\prod_{i=0}^{2 m} \operatorname{det}\left[1-\mathrm{tF}^{*} \mid \mathrm{H}_{\mathrm{et}}^{\mathrm{i}}\left(\mathcal{G} \otimes \overline{\mathbb{F}}_{\mathrm{p}} ; \mathbb{Q}_{1}\right)\right]^{(-1)^{\mathrm{i}+1}} . \\
& =\prod_{i=0}^{2 m} \operatorname{det}\left[1-\mathrm{t} \alpha \mid \mathrm{H}_{\mathrm{et}}^{\mathrm{i}}\left(\mathcal{G} \otimes \overline{\mathbb{F}}_{\mathrm{p}} ; \mathbb{Q}_{1}\right)\right]^{(-1)^{\mathrm{i}+1}} . \\
& =\prod_{i=0}^{2 m} \operatorname{det}\left[1-\mathrm{t} \beta \mid \mathrm{H}_{\mathrm{et}}^{\mathrm{i}}\left(\mathcal{G} \otimes \overline{\mathbb{Q}} ; \mathbb{Q}_{1}\right)\right]^{(-1)^{\mathrm{i}+1}} .
\end{aligned}
$$

We use 3.6 and 3.7 of Hartshorne appendix C and get,
$H_{e t}^{i}\left(\mathcal{G} \otimes \overline{\mathbb{Q}} ; \mathbb{Q}_{l}\right) \cong H_{e t}^{i}\left(\mathcal{G} \otimes \mathbb{C} ; \mathbb{Q}_{l}\right) \cong H_{\text {betti }}^{i}\left(\mathcal{G} \otimes \mathbb{C} ; \mathbb{Q}_{l}\right) \cong H_{\text {betti }}^{i}(\mathcal{G} \otimes \mathbb{C} ; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathcal{Q}_{l}$.

As seen by the basis theorem in Schubert Calculus, we see that the Schubert cycles generate $H^{*}(\mathcal{G} \otimes \mathbb{C} ; \mathbb{Z})$. Now, if Y is a subvariety of \mathcal{G} of codimension i, it gives a class $[Y] \in H_{e t}^{2 i}\left(\mathcal{G} \otimes \mathbb{Q} ; \mathbb{Q}_{l}\right)$ on which β acts by $\beta[Y]=p^{i}[\beta(Y)]$. So, we have a simpler formula for the Zeta function for $G(d, n)$ as :

$$
Z(\mathcal{G}, t)=\frac{1}{\prod_{i=0}^{m}\left(1-p^{i} t\right)^{b_{2 i}}}
$$

where $b_{2 i}$ denotes the rank of $H^{2 i}(\mathcal{G} ; \mathbb{Z})$ over \mathbb{Z}. So the Zeta function for grassmann variety $\mathrm{G}(\mathrm{d}, \mathrm{n})$ of dimension m is given by :

$$
Z(\mathcal{G}, t)=\frac{1}{(1-t)(1-p t)^{b_{2}}\left(1-p^{2} t\right)^{b_{4}} \ldots\left(1-p^{m} t\right)^{b_{2 m}}}
$$

which matches with the calculation done before. One observes that knowing the cohomology in characteristic p, we can know the cohomology in characteristic zero and vice versa.

References

[1] Joe Harris, Algebraic Geometry, A First Course, Vol. 133 January 1994.
[2] Robin Hartshorne, Algebraic Geometry, Graduate Texts in mathematics, Springer Verlag, New-York, 1977, Appendix C : The Weil Conjectures.
[3] S.L.Kleiman and Laksov, Schubert Calculus, The American Mathematical Monthly, vol 79, no. 10, Dec 1972.

