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Modelling the 3D vibration of composite archery arrows under free-free boundary 

conditions 

 

Abstract 

Archery performance has been shown to be dependent on the resonance frequencies and 

operational deflection shape of the arrows. This vibrational behaviour is influenced by 

the design and material structure of the arrow, which in recent years has progressed to 

using lightweight and stiff composite materials. This paper investigates the vibration of 

composite archery arrows through a finite difference model based on Euler-Bernoulli 

theory, and a 3D shell finite element modal analysis. Results from the numerical 

simulations are compared to experimental measurements using a Polytec scanning laser 

Doppler vibrometer (PSV-400). The experiments use an acoustically coupled vibration 

actuator to excite the composite arrow with free-free boundary conditions. Evaluation of 

the vibrational behaviour shows good agreement between the theoretical models and the 

experiments. 
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1  INTRODUCTION 

Archery is one of the oldest sporting activities undertaken by humans and has long been 

an area of great interest for engineers. The first documented investigation of arrow 

mechanics by Leonardo da Vinci shows a centre of gravity applied to the dynamics of 

arrow flight [1]. The performance and design of modern archery equipment has 

advanced as manufacturers have made incremental improvements to the mechanical 

components of both bows and arrows. In recent years the use of theoretical modelling 

has been applied to the bow and arrow system to better understand the dynamic 

performance as detailed in previous publications [2, 3, 4, 5, 6, 7, 8]. In this paper finite 

difference and finite element (FE) modelling of composite arrows with free-free 

boundary conditions are analysed and compared to experimental results to determine the 

accuracy of modelling the vibrational behaviour of arrows.  

 

Understanding the mechanical system of the bow and arrow is one of the factors noted 

by Axford [2] that is required in archery performance. The dynamic behaviour of 

interest includes the two phases of the shot, that is the power stroke as force is imparted 

to the arrow by the bow, and the free flight of the arrow influenced by aerodynamic 

drag. It is inevitable that an arrow will flex both during the bow’s power stroke and then 

also as it moves from the bow towards the target as documented by Zanevskyy [3]. 

Aside from the substantial forces from the string accelerating it up to speed, the bow’s 

nocking point (where the arrow is attached during the power stroke) moves both in the 
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vertical and horizontal planes during the power stroke, applying substantial lateral 

forces to the arrow. For a recurve bow the movement in the horizontal plane is due to 

the manner in which the string leaves the archer’s fingers. In the vertical plane the 

nocking point moves laterally due to the arrow being usually placed above the 

geometric centre of the bow. Pekalski [4] and later Kooi and Sparenberg [5] modelled 

the arrow flexing during the power stroke of a recurve bow, solving the equations of 

motion using the implicit backward Euler and Crank-Nicholson methods. For a 

compound bow the movement in the horizontal plane is largely due to the lateral forces 

from the bow’s cables on the cable guard and in the vertical plane it is due to the bow’s 

cam design. Park [6,7], used the Kooi and Sparenberg technique, but with an explicit 

finite difference scheme, to model the behaviour of an arrow both during the power 

stroke of a compound bow and then the arrow’s behaviour in free flight. 

 

It is necessary to have the arrow flex in order for it to pass the support on the bow’s 

handle section without the rear of the arrow making contact and thus disturbing the path 

of the arrow. The flexural rigidity of the arrow should allow one full cycle of oscillation 

by the time it leaves the bow. Klopsteg [8], using high-speed flash photography, 

demonstrates the manner in which an arrow flexes as it passes around the handle section 

of a longbow. Following Klopsteg’s work, Nagler and Rheingans [9] provide a 

mathematical basis for selecting the stiffness of an arrow to match a particular bow. 

This selection of arrows is directly applicable to the wider sporting community. Current 
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methods that are employed to match the arrow to the bow involve using an arrow 

selection chart supplied by the manufacturers [10]. The selection chart gives a range of 

arrows that are suitable for both recurve and compound bows. The chart is a matrix of 

arrow length verses bow weight in five-pound draw force increments. While this 

selection chart is a reasonable starting point for matching arrow to bow, current 

methods require fine-tuning through a process of trial and error to refine the size of the 

arrow groups on the target. This process could be improved by modelling the arrow to 

provide a more precise match of arrow to bow. Modelling is also useful for designing 

archery equipment with better performance, longer product life, and for understanding 

the structural health of arrows during the effective product life [11].  

 

The flexural behaviour of arrows is not easy to measure experimentally. It is necessary 

to use either high frame rate video or multiple single frame photographs a method used 

by Park [6] and also Klopsteg [8] in laboratory conditions. Typically, 4000 frames per 

second has been necessary to capture sufficient detail of an arrow’s behaviour as it 

leaves the bow vibrating at 80 Hz. However, where available, even moderately 

expensive video cameras have only limited resolution when used at those frame rates. 

Nevertheless, and especially for recurve bows (the type used in Olympic Games 

competition), the manner in which an arrow flexes is of fundamental importance in 

adjusting the bow such the arrow flies well. Hence, the ability to model this behaviour 
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mathematically is of interest in assisting archers in optimal equipment selection and 

adjustment. 

 

This paper presents two alternative methods for accurately modelling the vibratory 

response of archery arrows in free flight, as well as the experimental validation. The 

approach used in this research is to compare the results from the finite difference 

method and the FE technique to experimental measurements for three different types of 

composite archery arrows. The aim is to validate the theoretical models to give greater 

confidence in using models to predict the performance of composite arrows. The arrow 

models may then be used to provide a precise match of arrow to bow for a range of 

different arrow lengths and bow weights. Such models may also be used as a basis for 

investigating specific performance requirements such as the aeroelastic behaviour of 

arrows in flight or the effect of damage in the composite arrows.  

 

2  ARCHERY ARROW SPECIMENS 

Arrows most commonly used in major competition are made from tubular carbon fibre 

composite material bonded to an aluminium inner core. This research investigates three 

different composite arrow types; namely the ProTour380, ProTour420 and ProTour470 

made by Easton Technical Products. These arrows were constructed to the same shaft 

length of 710 mm, but have a different nominal diameter as shown in Figure 1. Note 

that the diameter, and hence the mass and stiffness, vary along the arrow’s length. 
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Composite arrows often have a tapered diameter to either the front, or to both the front 

and the back. This tapering provides the arrow stiffness and aerodynamic characteristics 

required for competition archery. The static spine of the arrow may be measured as the 

deflection of the arrow in thousandths of an inch when an 880 gram (1.94 lbs.) mass is 

suspended from the centre of the arrow supported at two points 711 mm (28 inch) apart 

[6]. For example, the ProTour380 has a deflection of 9.652 mm (380/1000 inch) when 

tested for static spine [10]. The static spine test was used for estimating unknown 

material properties of the composite arrow used in the theoretical simulations. 

 

Fig. 1 Measured diameter of arrow specimens 

 

Arrow components including nock, fletching and arrow point must be accounted for in 

the theoretical models. The nock of the arrow made from polycarbonate plastic, which 

fastens the arrow to the bowstring, is attached to a small aluminium pin inserted into the 

arrow shaft. Three fletches made from soft plastic are glued to the rear of the arrow 

shaft. The point of the arrow made from stainless steel has a long shank that fits inside 

the arrow shaft as shown in Figure 2. In this work, the arrow nock and fletches had a 
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combined mass of m=1.58 g, and the arrow point mass was m=7.776 g. The extra mass 

from these arrow components was applied in the most appropriate manner to the 

theoretical models. The finite difference method used lumped masses at appropriate grid 

points along the beam with the stiffness of the arrow shaft increased at both ends; more 

so at the front, in view of the nock pin and point shank. The FE technique used two 

point masses applied at the centre of gravity with mass moments of inertia, one at the 

front and one at the rear of the arrow as seen in Figure 2. The arrow nock, nock pin and 

fletches combined had moments of inertia Ix = 0.034 kgmm
2
 and Iy = Iz = 0.59 kgmm

2
 

applied at the centre of gravity x=15 mm. The arrow point mass moments of inertia 

Ix = 0.0198 kgmm
2
 and Iy = Iz = 4.42 kgmm

2
 applied at the centre of gravity x=703 mm 

from the nock end of the arrow.  

 

Fig. 2 Composite arrow detailing arrow components, with mass and moment of inertia 

loading used in FE model applied at the centre of gravity (CoG) 

 

The arrow shaft composite material was made of a core tube of aluminium with an outer 

layer of carbon and epoxy resin. The core material AL7075-T9 aluminium had an outer 

diameter of 3.572 mm (9/64 inch), a thickness of 0.1524 mm (6/1000 inch) and a 
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density of ρ=2800 kg/m
3
. The aluminium had isotropic material properties with 

Young’s modulus of E=72 GPa and Poisson ratio of ν=0.33 [12].  

 

The properties of the outer layer of carbon and epoxy resin were estimated from 

physical measurements along with the static spine of the arrow as quoted by 

manufacturers. The inner aluminium tube of the arrows has a constant inner and outer 

diameter. For many arrows the outer layer and hence the thickness of the carbon fibre 

composite material, varies in thickness. This can be readily measured. The mass of the 

arrow can also be measured and hence the density of the carbon fibre composite 

obtained. The static spine test is then performed mathematically using the finite 

difference method to solve the equations of motion and the flexural rigidity of the 

carbon fibre composite material adjusted such that the correct static deflection is 

obtained. Consequently both the density and the flexural rigidity are both then available. 

The arrows under test have a high proportion of carbon fibre to matrix and have all of 

the fibres running longitudinally along the arrow shaft (the objective is to have a high 

shaft stiffness but small diameter). Consequently these arrows can be prone to splitting 

longitudinally, although the small diameter aluminium core tube does provide some 

circumferential strength in addition to that provided by the matrix. Larger diameter 

arrows usually include circumferential as well as longitudinal fibres in order to provide 

adequate wall strength, although that type of arrow was not the subject of this work. The 

density and modulus quoted for the composite and is expected to be close to that of the 
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fibres alone. A density of ρ=1590 kg/m
3
 was used for the matrix, with a Young’s 

modulus of E1=222 GPa in the fibre direction along the arrow shaft. Orthotropic elastic 

carbon epoxy materials require properties defined orthogonal to the fibre direction. 

These properties were estimated from similar materials that are transversely isotropic 

[13,14]. A Young’s modulus of E2=E3=9.2 GPa, shear moduli of G12=G13=6.1 GPa, and 

Poisson’s ratios of ν12=ν13=0.2 and ν23=0.4 were used. To complete the required nine 

constants of the orthotropic elastic material, the shear modulus G23 was calculated as 

E2/(2(1+ν23))=3.28 GPa [15]. It is noted that the estimated material properties might be 

a source of error that could be reduced using a model update process to gain a closer 

approximation to the actual physical values [13,16]. The update process was not used in 

this current research as the first estimation made from physical measurements provided 

sufficiently accurate results.  

 

3  FINITE DIFFERENCE METHOD 

Using the finite difference technique of Park [7], the arrow was modelled as an 

inextensible Euler-Bernoulli beam with point masses distributed along the shaft. These 

masses include the nock, fletching and arrow point (as seen in Figure 2). The arrow 

components that were inserted and glued into the arrow shaft increase the stiffness of 

the arrow shaft at both ends as shown in Figure 3. The arrow model needs to include 

these additional masses and increased shaft stiffness.  
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Fig. 3 ProTour420 arrow stiffness along length of shaft 

 

The equations of motion for the arrow were obtained from Newton’s second law of 

motion  
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where ξ is the distance from the rear end of the arrow, mshaft(ξ) is the arrow shaft mass 

per unit length,  ζ(ξ, t) is the deflection of the arrow as a function of time t, M(ξ, t) is the 

bending moment, and EI(ξ) is the arrow’s flexural rigidity. 

 

These equations of motion were then solved using the explicit finite difference method 

as detailed by Park [7]. For an arrow flexing in free space the boundary conditions are 

such that the end conditions are free-free giving a shear force of zero at each end of the 

shaft and the moment at each end of the shaft is zero according to  

 ( ) 0,0 =tM  (3) 
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 ( ) 0, =tLM a  (4) 

where La is the length of the arrow. 

 

The finite difference method only considered the first vibrational mode due to the 

difficulty of initially deforming the arrow to a shape consistent with the higher modes. 

Initially the arrow was flexed as it would be under gravity and at time t=0 it was 

released from the effects of gravity. The arrow modelled with no damping then flexes at 

its natural frequency, which can be measured. The location of the nodes of the 

fundamental mode of vibration can also be readily obtained and the results are shown in 

Table 1. It is useful to know the locations of the vibrational nodes for better 

understanding the behaviour of the arrow as it exits the bow. For these calculations the 

arrow was modelled as 16 segments, each 44 mm in length, and with time steps of 

0.000025 s (40 kHz). Tests for convergence using 32 segments showed that the use of 

an increased number did not improve accuracy significantly. The time step used in the 

finite difference method is related to the space step chosen. If the time step is too great 

for a given space step there is a danger that the explicit finite difference method 

becomes unstable. Hence the time step was selected to be well away from that danger, 

although as noted this does mean greater computing time. 

 

Table 1 Natural frequencies of fundamental bending mode calculated using finite 

difference method, with node locations as distance from nock end of arrow shaft.  
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 ProTour380 ProTour420 ProTour470 

Frequency (Hz) 82.3 80.3 78.4 

Rear node location 145 mm 144 mm 143 mm 

Front node location 643 mm 645 mm 647 mm 

 

4  FINITE ELEMENT MODEL 

Finite element (FE) models were also developed to investigate the modes of vibration of 

the three composite archery arrows. The arrow was modelled using shell elements as it 

was intended to also investigate the shell modes of vibration. The shell modes are 

important in relation to the detection of damage in the composite arrows that are prone 

to splitting longitudinally along the direction of the carbon fibres. Such damage could 

be detected from the cylindrical modes of vibration such as circumferential, torsional 

and breathing modes rather than from the beam vibration modes alone [17, 18]. Details 

of the cylindrical modes of vibration were not included in the paper as it is the subject 

of a future publication. The computer package used was ANSYS Workbench 12.1 that 

provided the SHELL281 element, a multi-layered quadratic shell element of 8 nodes. A 

single shell element represented the full thickness of the arrow wall with 10 elements 

around the circumference as shown in Figure 4. The shell element was defined with two 

layers to account for the isotropic aluminium inner tube and the orthotropic carbon 

epoxy outer layer. Orthotropic elastic material properties were defined such that the 

carbon fibre lay unidirectionally along the arrow shaft, with transversely isotropic 
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properties orthogonal to the fibre direction as detailed in Section 2. The inner diameter 

of the carbon epoxy layer was taken from manufacturer specifications, while the outer 

diameter of each arrow specimen was measured (as detailed in Figure 1) to find the 

thickness of the carbon epoxy layer. The shell body was mapped meshed (typical 

element aspect ratio 1:1) to give 549 element divisions along the 710 mm shaft of the 

arrow. A total of 16490 nodes and 5490 elements were used. 

 

Fig. 4 Meshed arrow 

 

Three FE models were defined to match the physical properties of ProTour380, 

ProTour420 and ProTour470 composite arrows. Simplifications that were made to the 

FE models include approximation of the tapered section and use of point masses 

(including rotational inertia) for the arrow components. The tapered section of the arrow 

was defined by dividing the shaft length into 50 mm sections each of a different 

constant thickness. This section length is reasonable given that the finite difference 

method achieved convergence with similar length segments. The length used results in 

changes of the outer diameter of no more than 5% per section. The mass of the arrow 

point, nock and fletches were simplified into two point masses with appropriate mass 
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moments of inertia, one at the front and one at the rear of the arrow as seen in Figure 2. 

These point masses and mass moment loadings as detailed in Section 2 were applied 

with a region of influence over the arrow shaft to replicate the contact area of the arrow 

components. The region of influence ties the point mass to the arrow shell element 

nodes to account for the increase in stiffness caused by the shank inserts. It is noted that 

the small step discontinuities in the thickness and simplified point masses may cause 

minor discrepancies in the results of the FE models when compared to finite difference 

models and experimental results.  

 

Eigenvalue modal analyses were conducted using ANSYS to obtain the natural 

frequencies and mode shapes. The finite element analysis results for the natural 

frequencies are listed in Table 2. This FE modelling confirmed that the vibrational 

behaviour was dominated by the bending modes of vibration. Other cylindrical modes 

of vibration such as circumferential, torsional and breathing modes were insignificant to 

the overall deflection of the arrow. Comparing the three arrows under investigation the 

natural frequencies are highest in the ProTour380 and lowest in the ProTour470. This 

result was expected and is due to the larger diameter and hence greater flexural stiffness 

of the arrow shaft. The FE technique calculates the minimum and maximum deflection 

locations at the surface of the shell element. The node locations for the fundamental 

bending mode were found by observation from the position of the minimum deflection 

of the arrow shaft. 
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Table 2 FE results of the first eight natural frequencies, with fundamental node 

locations at distance from nock end of arrow shaft. 

 ProTour380 ProTour420 ProTour470 

1
st
 bending mode with two nodes (Hz) 82.7 81.8 77.6 

Rear node location 143 mm 144 mm 139 mm 

Front node location 642 mm 640 mm 645 mm 

2
nd

 bending mode (Hz) 249 247 236 

3
rd

 bending mode (Hz) 498 495 475 

4
th

 bending mode (Hz)  819 815 783 

5
th

 bending mode (Hz)  1218 1210 1165 

6
th

 bending mode (Hz)  1700 1687 1624 

7
th

 bending mode (Hz)  2256 2237 2153 

8
th

 bending mode (Hz)  2875 2849 2741 

 

The FE results for the first bending mode of vibration compare favorably to the 

fundamental bending mode calculated by the finite difference method (shown in Table 

1). The greatest difference in the results was seen in the ProTour420 models where the 

difference in the natural frequency of the fundamental bending mode was 1.5 Hz (2%) 

and the mode shape front node location was 5 mm different.  
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5  EXPERIMENTAL TECHNIQUE 

Experiments were conducted on the composite arrow specimens using a Polytec PSV-

400 3D Scanning Laser Doppler Vibrometer (SLDV). The objective of these 

experiments was to measure the 3D vibrations of the arrow specimens with free-free 

boundary conditions, and through those measurements validate the theoretical models. 

The measurements included the resonance frequencies and modal loss factors of the first 

eight bending modes, along with the operating deflection shape of the fundamental 

bending mode of vibration. The modal loss factor is a measure of the damping in each 

mode and this damping changes the resonance frequency of a structure as detailed later 

in Eqn (6). If the modal loss factors are small the calculated natural frequencies are 

approximately equal to the measured resonance frequencies. Details of the experimental 

apparatus, the SLDV settings, along with the experimental process and results are 

presented in this section. 

 

The experimental apparatus shown in Figure 5 included a frame to support the 

composite arrow and two acoustically coupled vibration actuators. The support frame 

consisted of an optical breadboard with many mounting positions to accommodate the 

different test specimens. The arrow was suspended horizontally by light elastic cords 

positioned at the first bending node locations to minimise the effects of additional mass 

or damping in the connections to the specimen. The vibration actuation was designed to 

be non-contact by using an acoustically coupled source. The acoustic actuators were a 
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compression driver from a 50 W TU-50 horn speaker with outlet diameter of 25 mm, 

and a 3 W loudspeaker with an 80 mm diameter diaphragm. The actuators were required 

to vibrate the arrow specimens at frequencies of between 50 Hz and 4 kHz. The 

limitation of the acoustic vibration actuators was the diameter of the sound outlet, where 

a small diameter will tend to excite higher frequency vibrations in the specimen, while a 

large diameter sound source will tend to excite low frequency vibrations. The coherence 

between the source signal and the measured vibration indicated that the compression 

driver was suitable for the frequency range of 1 kHz to 4 kHz, while the loudspeaker 

produced better coherence in the range of 50 Hz and 1 kHz [11]. Attachments for the 

acoustic actuators were used to direct the sound field into the test specimen.  

 

Fig. 5 Experimental apparatus with acoustic vibration actuators 
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The SLDV used to measure the vibrations operates using the Doppler principle to 

measure the vibratory velocity in the direction of each laser beam. Laser light from each 

scanning head was directed at the arrow and a photo-detector recorded the interference 

of the reflected light with a reference of the original laser light. The Polytec PSV-400 

was applied in a 3D configuration using three laser scanning heads to detect the 

vibrations in three different directions. This 3D configuration provided the data required 

for the PSV software to perform an orthogonal transformation and calculate the velocity 

of vibration in three-dimensional space for every point scanned on the surface of the 

composite arrow. To achieve this the 3D SLDV was aligned such that each laser could 

scan the entire length of the 710 mm arrow specimens with a recommended laser 

deflection angle of less than 10º. The lasers were required to be at an optimal standoff 

distance such that all scan points were within the range 1935±90 mm. When the lasers 

were positioned, both 2D and 3D alignment procedures are required to align the laser 

head and video position relative to one another. After the alignment procedures were 

completed, the error in the positioning of all three lasers on the same point on the arrow 

surface was found to be less than 1 mm. It is noted that the PSV-400 3D SLDV can be 

aligned with greater accuracy [19], but for the objective of this experiment higher 

accuracy was not required.  

 

The PSV software controls the input and output signals of the experiment using the 

following data acquisition parameters: 
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1. General: FFT measurement mode with complex averaging of 75.  

2. Frequency: Bandwidth of 1 kHz using the loudspeaker and 4 kHz using the 

compression driver. Experiments used 1600 FFT lines with an overlapping of 75%. 

3. Window: The rectangle window function was used for pseudo random generated 

waveform. The pseudo random signal is periodic in the time window and therefore 

will generate no leakage effects in the spectrum calculated by the FFT.  

4. SE: Signal Enhancement was used for the vibrometer channel, with the speckle 

tracking turned to a standard level to enhance the signal.  Speckle noise occurs from 

the rough surface of the test specimen that may scatter the laser light. This noise was 

minimised using signal enhancement as well as ensuring a high degree of 

reflectivity on the surface of the test specimen using an ARDROX 9D1B reflective 

surface spray. 

5. Vibrometer: The velocity was set to 1 mm/s/V with tracking filter off and the low 

pass filter set to suit the selected bandwidth.  

6. Generator: A pseudo random waveform was used. 

 

The experimental process can be explained by the flow of actuation control and detected 

measurement signals. The PSV software was used to generate a pseudo random 

reference signal through a hardware junction box. This signal was connected to an 

amplifier with a gain of unity, and delivered a voltage to the acoustic vibration actuator 

to produce the desired excitation in the test specimen. A video camera was used to 
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coordinate the laser alignment to scan the predefined points on the test specimen. As the 

three laser heads perform the scan, a velocity decoder (VD-07) provided a voltage 

proportional to the vibration to a maximum sensitivity of 1 (mm/s)/V. Three signals 

from the laser heads and the original reference signal are digitised and recorded 

simultaneously by the computer. The PSV software presented this recorded data in the 

time domain and in the frequency domain using a Fast Fourier Transform (FFT). A full 

scan of each test specimen was performed that measured a predefined single line of 25 

points along the length of the composite arrow. The time required for each scan 

depended on the data acquisition parameters selected, and was typically around 20 

minutes. Each scan was monitored to ensure good coherence between the generated 

vibration signal and the measured velocity signal. To get the best coherence for the 

resonant frequencies measured, the experiments were conducted using both actuators. 

For the first four bending modes of vibration, the specimens were excited using the 

loudspeaker, and for the higher modes the compression driver was used.  

 

Experimental results listed in Table 3 show the mean resonance frequencies of three 

specimens for each type of arrow. The modal loss factor was calculated by the modal 

bandwidth at a point 3 dB down from the peak of the bending mode frequency and is 

related to the damping ratio by  

 bbb ff ζη 2/ =∆=  (5) 
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where ηb is the modal loss factor, ∆f is the modal bandwidth, fb is the mode centre 

frequency and ζb is the damping ratio for bending mode b. The measured frequency 

response function was between the measured vibration and the excitation voltage signal, 

and it is assumed in these calculations that there was a flat response between the voltage 

signal and the force generating the excitation in the arrow. The difference between the 

calculated natural frequency and the measured resonance frequency can be found by  

 ( )2
21 bnr ζωω −=  (6) 

where ωr is the resonance frequency, ωn is the natural frequency and ζb is the modal 

damping ratio. The measured results show a modal loss factor of less than 0.012, thus 

for these composite arrows each resonance frequency is approximately equal to the 

corresponding natural frequency.  

 

Table 3 Experimental measurement of resonant frequency fb and modal loss factor ηb of 

the tested specimens. Frequency listed as mean ± standard deviation (Hz). 

 ProTour380 ProTour420 ProTour470 

 fb ηb fb ηb fb ηb  

1
st
 bending mode (Hz) 83.3±0.4 0.010 80.2±0.4 0.007 78.3±0.4 0.008 

Rear node location 142 mm  144 mm  139 mm  

Front node location 636 mm  640 mm  642 mm  

2
nd

 bending mode (Hz) 248±0.1 0.005 241±1.3 0.003 238±1.7 0.004 
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3
rd

 bending mode (Hz) 490±0.7 0.005 478±1.8 0.009 471±4.5 0.012 

4
th

 bending mode (Hz) 795±2.3 0.007 775±4.2 0.004 768±6.4 0.003 

5
th

 bending mode (Hz) 1185±2.9 0.006 1152±3.6 0.004 1144±7.5 0.005 

6
th

 bending mode (Hz) 1663±2.9 0.008 1618±5.0 0.004 1607±7.9 0.005 

7
th

 bending mode (Hz) 2230±2.8 0.007 2165±7.0 0.006 2150±8.7 0.008 

8
th

 bending mode (Hz) 2856±16.5 0.010 2777±12.5 0.007 2761±11.5 0.009 

Note: shaded rows show measured results using the compression driver, and unshaded 

rows show results from the loudspeaker experiments. 

 

6  DISCUSSION OF RESULTS 

A comparison of the arrow mass, natural frequencies and vibratory deflection of the 

fundamental mode was conducted on results from the theoretical models and the 

experimental measurements. To compare frequencies, the calculated natural frequency 

is approximately equal to the measured resonance frequencies since the modal loss 

factors were between 0.5% and 1.2% as seen in Table 3. 

 

To measure the fit of models to actual arrow specimens, a comparison of the mass of the 

arrows is shown in Table 4. The arrow specimens were measured using precision scales 

accurate to 0.01 grams. The theoretical models accounted for the mass of arrow shaft 

and components in the most appropriate manner for the method used. In the finite 

difference method the total mass was calculated from the distributed mass along the 
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arrow. Using the FE technique the total mass was calculated from the density and 

volume of the shaft materials plus the mass of the nock, fletches and point. There is a 

small difference between the measured mass of each arrow and the value calculated by 

the finite difference and FE methods. This discrepancy can be explained by the 

simplifications such as the definition of the tapered section in the arrow models and any 

inconsistency in the tapered section of the arrow specimens tested. The arrow specimens 

are expected to have small manufacturing variations that affect the volume and mass of 

the carbon epoxy layer of the arrow shaft, for example differences in the outer diameter 

of the arrow and the position of the tapered section of the shaft.  

 

Table 4 Comparison of measured and calculated mass in grams using different methods 

 ProTour380 ProTour420 ProTour470 

Measured arrow mass (g) 25.10±0.02 24.81±0.04 23.28±0.02 

Finite difference arrow mass (g) 25.20 24.40 23.60 

FE calculated arrow mass (g) 25.60 25.32 23.68 

 

A comparison of the measured frequency and the FE predicted frequency for the first 

eight bending modes of vibration are shown in Figure 6(a). This shows a good 

correlation for the first eight modes of vibration. The fundamental vibration predicted 

by both the finite difference and the FE models were compared to the measured 

frequencies as shown in Figure 6(b). The calculated frequencies of both models were 
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within 2% of the measured fundamental frequencies for the three different composite 

arrows tested. 

 

 

Fig. 6 Comparison of measured and calculated frequencies, (a) first eight bending 

modes calculated by FE method, and (b) fundamental frequency using both finite 

difference and FE methods. 

 

The numerically derived mode shapes and operational deflection shape of the 

fundamental vibration mode for the ProTour420 are shown in Figure 7. The mode 

shapes were calculated by the finite difference method and the FE technique, where the 

finite difference method calculated 17 points along the centre line of the arrow, and the 

FE technique was calculated at 550 points and is shown as a solid line. The magnitude 

of the calculated lateral displacement is a relative value that has been normalised to 

unity. The experimentally measured operational deflection shape of the fundamental 
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vibrational mode was also normalised and is shown as 25 measurement locations on the 

arrow. These locations were offset a small distance from the nock end of the arrow shaft 

to allow a good reflective surface for the lasers. The last measurement point was defined 

on the arrow point just beyond the length of 710 mm arrow shaft. The finite difference 

lateral displacement diverges slightly toward the point end of the arrow where a small 

disparity in the definition of tapered section of the arrow will affect the mode shape 

calculation. This small difference is also seen in the node locations as listed in Tables 1, 

2 and 3. The locations of the nodes in Figure 7, shown as locations of zero 

displacement, are within 5 mm indicating a close correlation between theoretical models 

and the experiments for the ProTour420.  

 

Fig. 7 Lateral displacement comparison of first bending mode for ProTour420 

 

7  CONCLUSION 

This paper has compared the results from the finite difference method and the FE 

technique to experimental results for three different composite archery arrows. The 

finite difference method was used to solve equations of motion and find the 
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fundamental mode of vibration for an arrow flexing in free space. The FE technique 

investigated the modes of vibration up to the eighth bending mode. Experiments were 

conducted to measure the three dimensional vibrations of the arrow specimens and 

determine the resonance frequencies and operational deflection shapes of the bending 

modes of vibration. The theoretical models of these composite archery arrows with free-

free boundary conditions have shown excellent correlation to the experimental 

measurements. The validation that has been performed by this research gives greater 

confidence in applying these theoretical modelling methods to predict composite arrow 

performance. The arrow models can be used to assist archers in optimal equipment 

selection as well as investigate specific performance requirements such as the 

aeroelastic behaviour of arrows in flight or the effect of damage in the composite 

arrows. 
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APPENDIX 

Notation 

b bending mode number 

E Young’s modulus  

EI flexural rigidity 

f resonant frequency in hertz 

fb  mode centre frequency 

G shear modulus 

Ix, Iy,  Iz mass moments of inertia 

La arrow length 

m mass of arrow components 

mshaft arrow shaft mass 

M bending moment 

t time 

x abscissa of the fixed coordinate system 

y ordinate of the fixed coordinate system 

z applicate of the fixed coordinate system 

∆f  modal bandwidth 
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ζ deflection of the arrow 

ζb  modal damping ratio 

η modal loss factor 

ηb  bending mode loss factor 

ν Poisson’s ratio 

ξ distance from the rear end of the arrow shaft 

ρ density 

ωn  natural frequency in radians per second 

ωr  resonance frequency in radians per second 


