Finding limits with the TI-89

To find the limit of some function $f(x)$ as $x \rightarrow a$: Go to F3 Calc. Then select 3: limit(The command line should then be completed in the following form:

$$
\operatorname{limit}(f(x), x, a)
$$

Examples:

Entered command

Result

$\operatorname{limit}\left((2 x-3) /\left(x^{\wedge} 2-1\right), x,-\infty\right)$	0
$\operatorname{limit}\left((2 x-3) /\left(x^{\wedge} 2-1\right), x,-1\right)$	undef
$\operatorname{limit}\left((2 x-3) /\left(x^{\wedge} 2-1\right), x,-1,-1\right)$	$-\infty$

(Note: Entering a negative number such as -1 as an additional part of the command means to take the limit from the left. Remember that "pretty print" will echo the usual limit notation on your home screen.)
$\operatorname{limit}\left((2 \mathrm{x}-3) /\left(\mathrm{x}^{\wedge} 2-1\right), \mathrm{x},-1,1\right) \quad \infty$
(Entering a positive number such as 1 as an additional part of the command means to take the limit from the right.)

```
\(\operatorname{limit}\left((2 \mathrm{x}-3) /\left(\mathrm{x}^{\wedge} 2-1\right), \mathrm{x}, 1,-1\right) \quad \infty\)
\(\operatorname{limit}\left((2 \mathrm{x}-3) /\left(\mathrm{x}^{\wedge} 2-1\right), \mathrm{x}, 1,1\right) \quad-\infty\)
\(\operatorname{limit}\left((2 \mathrm{x}-3) /\left(\mathrm{x}^{\wedge} 2-1\right), \mathrm{x}, \infty\right) \quad 0\)
```

Exercise: Let $f(x)=\left(2 x^{2}-3\right) /\left(x^{2}-1\right)$. Use the TI-89 to find the limit of $f(x)$ as x approaches
a. $-\infty$
b. -1 from the left
c. -1 from the right
d. 1 from the left
e. 1 from the right
f. ∞
(You should be able to check these using "paper and pencil" techniques as well. These limits are useful for sketching the graph of f.)
[Answers: a. 2
b. $-\infty$
c. ∞
d. ∞
e. $-\infty$
f. 2]

