Finding limits with the TI-89

To find the limit of some function f(x) as $x \to a$: Go to **F3 Calc**. Then select **3: limit(** The command line should then be completed in the following form:

$$limit(f(x),\,x,\,a)$$

Examples:	
Entered command	$\underline{\text{Result}}$
limit((2x - 3)/(x^2 - 1), x, - ∞)	0
$ m limit((2x - 3)/(x^{\wedge}2 - 1), x, -1)$	undef
limit((2x - 3)/(x^2 - 1), x , -1, -1)	-∞

(Note: Entering a negative number such as -1 as an additional part of the command means to take the limit from the left. Remember that "pretty print" will echo the usual limit notation on your home screen.)

 $\lim_{x \to \infty} \lim_{x \to \infty} (x^{\wedge}2 - 1), x, -1, 1)$

(Entering a positive number such as 1 as an additional part of the command means to take the limit from the right.)

 $\begin{array}{ll} \text{limit}((2\text{x} - 3)/(\text{x}^2 - 1), \text{ x}, 1, -1) & & \\ \\ \text{limit}((2\text{x} - 3)/(\text{x}^2 - 1), \text{ x}, 1, 1) & & -\infty \\ \\ \text{limit}((2\text{x} - 3)/(\text{x}^2 - 1), \text{ x}, \infty) & & 0 \end{array}$

Exercise: Let $f(x) = (2x^2 - 3)/(x^2 - 1)$. Use the TI-89 to find the limit of f(x) as x approaches

a∞	b1 from the left	c1 from the right
d. 1 from the left	e. 1 from the right	f. ∞

(You should be able to check these using "paper and pencil" techniques as well. These limits are useful for sketching the graph of f.)

[Answers: a. 2	b∞	c. ∞
d. ∞	e∞	f. 2]