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Abstract 

Most users of a platform see the operating system as a 

fully instantiated entity. But from a system administra-

tion perspective, the platform is just as much the operat-

ing system (OS) and its application suite as it is the un-

derlying substrate upon which the OS has been in-

stalled. And it is this substrate which includes hardware 

and firmware elements. Of the two, the firmware works 

in conjunction with the hardware and the OS-level in-

stallers and infrastructure code to both provision, man-

age, and recover a platform. The details of these firm-

ware behaviors for management of the overall platform 

include capabilities to explicate the platform state, 

health, and security posture. Some of the platform ca-

pabilities can in turn be updated by the platform owner 

for interfaces that adjust the configuration of the ma-

chine.   

To particularize some of the points made above, indus-

try standard firmware infrastructure, such as found in 

the Unified Extensible Firmware Interface (UEFI) [1], 

shall be used to demonstrate user cases and scenarios 

around the bare metal secure management of a platform. 

This will include both the extant challenges and emer-

gent opportunities in fusing these firmware capabilities 

with an overall management strategy. 

1. Introduction 

Managing platforms today can be rather chaotic espe-

cially when we consider that an administrator may need 

to deal with hardware from different Original Equip-

ment Manufacturer (OEM)s. These platforms range 

from embedded, to mobile, handheld, desktop, and even 

servers. Each of these platform’s configuration schema 

may differ, and each platform may have third party add-

in devices, all of which are configurable (possibly in 

differing ways).  

Add-in device vendors are also challenged, because 

each of them may get a request for quote (RFQ) by an 

OEM to comply with their manageability sche-

ma/methodology. This leads to the vendor having to 

have multiple SKUs of their own device to cover the 

manageability needs for their clients. 

Because of some of the complications associated with 

getting all of the configurable devices to expose things 

in a well-understood way, managed aspects of systems 

were relegated to configurable options based on the 

platform’s CPU, chipset, and other baseboard configu-

rable options.  

In a bare-metal world the agent in charge of the target 

has been the platform’s BIOS (and in some cases, the 

BIOS would cooperate with a management controller, if 

available.) The features that had been offered in the 

BIOS that assisted the platform’s administration were 

limited and certainly inconsistent.  

Given that, the underlying BIOS had largely been re-

sponsible solely for the initialization of the platform 

hardware and ultimately launching a target software 

target (e.g. operating system). Over the last decade, the 

BIOS has evolved with the hardware and the previously 

arcane interfaces have now been standardized within a 

public forum known as UEFI [1].  

It should be noted that in the past, the only platforms 

that had built-in connectivity were the special SKU’d 

platforms with a management controller. Platforms in 

the past rarely had a network card, and those that did 

had very limited use of the device prior to the OS being 

run.  

Today’s platforms almost always have some form of 

built-in network connectivity hardware, and as the 

hardware has evolved, so has the underlying BIOS to 

natively support it via standard programmatic interfac-

es. 

In addition to exposing networking connectivity within 

this evolving BIOS infrastructure, added measures were 

enabled to expand the configurability of all aspects of 

the platform hardware, both motherboard-based as well 

as add-in devices. With this drive for standardization 

and facilitating standard programmatic interfaces to 

interact with the hardware in a bare-metal manner, the 

need for security would certainly be needed. Whether 

this was allowing a platform to load only properly au-

thorized content, or enforcing the ability to enable se-

cure policy handshakes from the moment the machine is 

powered on, to the launch of the OS, and up to and in-

cluding running content within the OS – a chain of trust 

is now something that can be maintained. This chain of 



trust is capability which would have been a serious chal-

lenge in previous years on reasonably open hardware 

platforms.  

 

1.1 Pre-OS / OS Interaction 

During the platform initialization, the BIOS is primarily 

responsible for initializing sufficient hardware to be 

able to launch the software target (e.g. Windows, Linux, 

etc.) 

During this initialization, there are a variety of standard 

programmatic interfaces that are made available as well 

as static structures which enable interaction with the 

platform and expose information about the platform 

configuration. A simple illustration of this interaction is 

illustrated in Figure 1. 

Figure 1 

It should be noted that although this paper will focus on 

the capabilities exposed at the platform level due to 

standardization efforts within the BIOS, there are also 

significant new opportunities for synergy between the 

pre-OS environment and the OS and middle-ware lay-

ers.  

Subsequent sections of this paper will further illustrate 

details on how bare-metal manageability, connectivity, 

and security are achieved within this pre-OS domain.  

1.2 Exposed Capabilities 

Even though there are thousands of pages of standards-

based documentation detailing all aspects of the UEFI 

standards, this paper will attempt to highlight some as-

pects that will facilitate enabling bare-metal features 

such as provisioning, managing and recovering a plat-

form.  

1.2.1 Human Interface Infrastructure (HII) 

During the platform initialization, one of the earliest 

facilities that is exposed is something called the HII 

Database. As Figure 2 illustrates, this database serves as 

a repository for all things related to the platform config-

uration and user interaction. This includes data such as 

user presentation forms (BIOS/device setup pages), 

strings (possibly encoded in many languages), keyboard 

layouts, fonts, etc. 

Since this database is a central focus for lots of infor-

mation that pertains to the platform’s configuration da-

ta, it also holds much of what becomes central to estab-

lishing the necessary metadata for understanding how a 

platform is configured in a programmatic way. 

Figure 2 

Much more of this will be covered in section 3 of this 

paper which will provide details of the configuration 

infrastructure and how this metadata which is contained 

within the HII database is used.   

1.2.2 Networking 

Platform firmware has had integrated network boot ca-

pabilities since the Pre-Boot Execution Environment 

(PXE) [1] was defined in the mid 1990’s as part of the 

Wired For Management (WFM) [17] efforts.   PXE can 

be thought of as ‘in-band’ networking since it runs on 

the main host CPU’s, not an out-of-band chipset or plat-

form microprocessor, or a ‘non-host processor’ (NHP).  

PXE entails two elements – (1) client side API’s, in-

cluding Base-Code and UNDI, for purposes of orches-

trating the download of a network boot program (NBP) 

and (2) a wire protocol for interacting with the boot 

server.  The PXE boot process is ‘client initiated’ in that 

the in-band firmware initiates a DHCP discovery pro-

cess to start the networking interactions with a boot 

server. 

PXE was originally part of the PC/AT BIOS and a spec-

ification jointly owned by a small consortium of com-

panies. With the advent of the Extensible Firmware 

Interface (EFI) in the late 1990’s, the ‘base code’ and 

‘UNDI’ interfaces from BIOS PXE were mapped into 

EFI interfaces.   This continued through the EFI 1.10 

specification in 2001.   The EFI1.10 specification was 

an Intel-owned document.   In order to support broader 

industry adoption, EFI 1.10 was contributed to the Uni-

fied Extensible Firmware Interface (UEFI) forum in 

2005, along with some post EFI1.10 networking API’s.   

The latter included a modular IPV4 network stack that 

broke out IP, UDP, TCP, DHCP, ARP and other ele-



ments into separate API’s, as opposed to the EFI1.10 

reference implementation of the monolithic PXE stack.   

With this modular network stack in UEFI2.0 in 2006, 

the foundation was laid to create additional networking 

services on the UEFI platform.    These services have 

included a refactored PXE Client that leverages the 

modular network stack and an ISCSI initiator, both in 

the open source.  

More information on UEFI can be found at [5] and the 

specification itself at [1]. 

The question was posed to the industry group in 2007 

about how to evolve PXE.  At the time, there were 

many extant scenarios built upon the IPV4 PXE wire 

protocol, including support in all of the Linux distribu-

tions and the Windows Deployment Services (WDS) 

feature in Microsoft Windows.   The most important 

feature request entailed addition of IPV6 support.  As 

such, the UEFI Forum worked w/ the IETF and generat-

ed RFC 5970 that includes the option tags for IPV6 

network boot.  This RFC, along with a network interac-

tion flow, form ‘netboot6’, or a variant of PXE that in-

teroperates across IPV6. 

The IETF and the UEFI Network Subteam (UNST), 

chaired by Vincent Zimmer [7], evolve the pre-OS wire 

protocols and UEFI API’s, respectively. 

The modular network stack and the IPV6 and IPV4 

variants of PXE [9] can be found in the EFI Developer 

Kit 2 (edk2) project on source forge in the Network 

Package (NetworkPkg) [6].  Some details of the pack-

ages can be found in Figure 3. 

Figure 3 Network stack layout 

Netboot6, along w/ UEFI Secure Boot [8], provided 

UEFI-only features not available on a PC/AT BIOS.  

These features, along w/ fast-boot, were integrated into 

Microsoft Windows8 and helped motivate the decision 

to mandate UEFI 2.3.1c specification conformance for 

this operating system in 2012.   So the EFI effort that 

commenced in 1998 resulted in the 2012 launch of 

Windows8 that required UEFI.  

This was the tipping point for the standards adoption 

and many of the preceding tactics, such as feature crea-

tion and open source, helped to motivate this decision. 

1.2.3 Security 

The management of a platform, especially across a net-

work, in an enterprise network necessarily has consider-

ations regarding platform security. To that end, there 

are a series of specifications and capabilities that de-

scribe the trust. This includes the underlying firmware 

infrastructure leading up to the UEFI interfaces. The 

former required some cryptographically signed updates, 

such as required by NIST 800-147.  These updates 

should only be done under the authority of the Platform 

Manufacturer (PM). The latter portion of the platform, 

such as the extensible 3
rd

 party UEFI executables, in-

cluding the network boot program (NBP), are under the 

administrative control of the Platform Owner (PO). The 

PO administrative domain is often the same as the oper-

ating system or hypervisor administrator. In the case of 

UEFI executables, such as OS loaders, provisioning 

agents, and independent hardware vendor (IHV) driv-

ers, cryptographic signing of the UEFI executables is 

applied. 

In addition to authentication of the UEFI executables, 

the PM or PO may need to be authenticated for pre-OS 

operations, such as critical API usage, or during OS 

runtime.  The former can be accomplished by the UEFI 

User Identity (UID) infrastructure, which allows for 

multifactor authentication.  During OS runtime, there 

are few interfaces, with the most important for purposes 

of platform management that read on security concerns 

being the UEFI runtime API’s of SetVariable, and Up-

dateCapsule. The former can be access controlled via 

read-only variables, but for art that must updated at 

runtime, the 

EFI_VARIABLE_AUTHENTICATED_WRITE can be 

used to ensure that only the creator of the variable can 

do field updates. 

Finally, security considerations inhere in UEFI Pre-OS 

networking with network protocol authentication. There 

are two classes of network authentication, wherein the 

extant network infrastructure can challenge a new ma-

chine executing in the UEFI pre-OS when it attempts to 

join the network. For this case, the UEFI platform will 

surface some platform identity, such as via an 802.1x 

layer 2 challenge/response, prior to getting access to IP 

traffic. The latter case, wherein the UEFI platform 

wants to protect itself from possibly malevolent network 

or boot server infrastructure, is often handled via UEFI 



Secure Boot wherein the platform will only execute 

remotely-delivered UEFI executables signed under one 

of the keys in the UEFI trust anchors, or the DB for 

UEFI Secure Boot.  

Figure 4 

1.3 What To Expect In This Paper 

Clearly within the scope of a relatively short paper, it is 

impossible to cover all of the details of any technology 

or even a semi-interest usage case. Since the subject 

matter of managing platforms is likely familiar ground 

for the reader, the authors want to expose advances in 

some of the manageability infrastructure.  

Given that it is nearly impossible to keep up with the 

advances of all the manageability related technologies, 

this paper aims to focus the reader’s attention on a few 

key elements that have recently evolved in the platform 

firmware environment.  

After reading this, you should expect a better basic un-

derstanding of the advances in the pre-OS configuration 

and how that applies to managed platforms. 

The paper will also cover the topics of both networking 

and security within the pre-OS environment, and ex-

plain what the recent advances have been within those 

domains and how they all relate to each other. 

It is said that Socrates made a statement similar to this, 

“The only true wisdom is in knowing you know noth-

ing.”  

The goal of this paper is to try and make the reader 

aware of certain advances that can be leveraged to en-

hance the manageability of platforms. Give them suffi-

cient understanding so that further exploration by the 

reader is reasonably possible. 

2. Pre-OS handshake 

Historically, managed systems had at least in-band 

management capabilities – meaning that the target plat-

form was running an OS with the necessary middleware 

for the administrator to remotely communicate with it.  

In-band manageability didn’t typically provide the abil-

ity to provision a system or significantly affect bare-

metal operations such as BIOS settings or recovering 

from an issue prior to the launch of the OS.  

In those situations, out-of-band (OOB) manageability 

would come into play. Platforms with OOB manageabil-

ity would have a dedicated device such as a baseboard 

management controller (BMC) [2] whose job it was to 

enable communication between the client and the ad-

ministrator, regardless of what may or may not be hap-

pening on the client’s platform. This removed the de-

pendency on the installed software actively running or 

in many cases, for the platform to even be on. The only 

requirement would oftentimes simply be that the man-

aged target was connected to a power source (e.g. wall 

plug or battery.)  

In many cases, systems can provide either methods of 

enabling a client-admin communication both, or even 

both. The communication illustrated in Figure 5 is a 

very typical example of a client-admin communication 

through a BMC which would typically run independent-

ly of whatever was occurring on the in-band platform 

processor.  

Figure 5 

Given these methods of communication, there are data 

handshakes that occur within the platform in today’s 

systems that had not truly occurred in the past. For in-

stance, in figure 6 we demonstrate how third-party add-

in devices within the system would communicate with 

the underlying BIOS interfaces. Prior to the advent of 

UEFI standards-based firmware, the configurability of 

add-in devices were limited to the user-initiated “Hit the 

Fx key to enter setup” and from an administrator per-

spective, these devices were largely black boxes. They 

either worked, or didn’t work.  

With the vast majority of OEMs and IHVs beginning to 

use the UEFI infrastructure, devices no longer have to 

be isolated as the black boxes they have been. Each 

configurable item in the platform has an opportunity to 

expose its metadata to the UEFI configuration infra-

structure, and in turn will then be propagated to a varie-

ty of standard tables and interfaces which the OS would  



 

Figure 6 

be exposed to. The left side of figure 6 illustrates the 

common scenario which has historically plagued man-

aged systems. Much of the configurability of a system 

has been limited to soldered-down devices on the moth-

erboard. On the right side of the illustration, there is a 

much more robust ability for third-party devices to be 

exposed and have a standard fashion by which they can 

be configured.  

Whether this enhanced configurability is exposed via 

in-band or out-of-band manageability, the fact that such 

configuration portability exists enhances all managea-

bility methodologies.  

3. Configuration Infrastructure 

So far, the paper has made reference to the existence of 

new capabilities to expose configuration data that had 

previously not been exposed.  

This section will analyze the details associated with the 

UEFI configuration infrastructure, and exactly how it 

relates to enhancing the manageability of a platform. 

3.1 Configuration Protocols 

In the UEFI configuration infrastructure, there are sev-

eral key protocols (interfaces) that exist which encom-

pass how all user visible data is managed. Whether it is 

string information, forms, glyphs, or other extant data – 

there is a means by which such things are shared and 

exposed in UEFI systems today. 

3.1.1 The Database Protocol 

The EFI_HII_DATABASE_PROTOCOL interface is 

primarily responsible for the registration of data that 

encompasses configuration as well as usability elements 

such as fonts and images.  

Any device that intends to be configured or in some 

way interact with the user will have to use the database 

protocol to achieve this. This paper will focus primarily 

on the forms and strings that get registered with the da-

tabase and how they are used to achieve manageability 

goals. 

3.1.2 The String Protocol 

Once a package of configuration-related data has been 

registered with the database protocol, the 

EFI_HII_STRING_PROTOCOL interface can be used 

to simply extract the strings so that they can be used.  

3.2 Localization 

The concept of localization had historically been a lim-

ited subject in the BIOS world. With the advent of 

UEFI, the concept of string tokens was introduced. By 

tokenizing the strings, any device in the platform can 

register multiple versions of any given string.  

Figure 7 

These different versions of string data were associated 

with a known language encoded by their corresponding 

RFC 4646 [4] language tag. Figure 7 illustrates how a 

single token (e.g. #4), could be interpreted as complete-

ly different elements based on the language tag speci-

fied when retrieving the string. 

The language tags that are used for strings are generally 

associated with a language or language/country pairing. 

Examples being: es, en-US, de-DE. The first being 

Spanish (regardless of country), second being English 

as spoken in the United States and finally, German as 

spoken in Germany. 

3.3 Forms 

When registering configuration related data, there are 

two required elements, forms and strings.  

Forms are binary encodings which define configurable 

objects, and one of the simplest examples of such a 

thing would be to think of a form being a web page. For 

each item on the page, there is a corresponding binary 

encoding which represents some configurable data. 



 

Figure 8 – Configuration question encoding 

Figure 8 illustrates what a typical configuration question 

would look like. In each question, there are a few key 

items in the encoding that should be noted: 

 Prompt Token #: The string token associated 

with the configuration question. 

 VarStore ID: The ID associated with the varia-

ble storage declaration. This corresponds to 

where a particular configuration question’s da-

ta resides on the platform. For instance, a par-

ticular variable storage declaration may corre-

spond to a UEFI NV variable with a particular 

name (e.g. “Setup”) and a particular GUID 

value. 

 VarStoreInfo: This value would typically relate 

to the offset within the VarStore associated 

with a question. For instance, the offset value 

might be 23. So this particular question’s cur-

rent setting can be determined to be within the 

“Setup” UEFI variable at offset 23 into it. 

From the encoding of the configuration op-code in Fig-

ure 8, it is easy to see how string references are inti-

mately tied to each question. One thing that should be 

noted is that for each unique question, there is an asso-

ciated Prompt Token. 

We’ve already noted how each token value is a lan-

guage agnostic reference to a string. For instance, To-

ken #1 may have an English, Spanish and German 

equivalent. These are all languages that are human 

readable.  

One fact that isn’t obvious – but is leveraged for pur-

poses of managing configuration elements is that not all 

of the language tags need to be human-readable. In oth-

er words, a device may expose a set of strings which are 

associated with a unique language tag (e.g. x-i-UEFI).  

The “x” designation stipulates a private use language 

which the UEFI specification [1] uses as a 

UEFI_CONFIG_LANG_2 definition. 

So if there is a forms-based question which asks, “Do 

you want to enable USB?” Let’s assert that the 

PROMPT token has a value of 5. So if we probe the 

string protocol to determine what values token 5 have, 

we may certainly obtain one of them being the en-US 

value of “Do you want to enable USB?” 

However, there may be a x-i-UEFI instance of token 5 

which has a value of “USB_Enable”. 

OEMs typically have their own keywords and 

namespaces that they use when interacting with target 

platforms. Given that, a standard method to interact 

with a target platform might be one which leverages the 

syntax established by DMTF’s SMASH CLP [3]. The 

typical CIM_BIOSAttribute associated with CLP ex-

presses configuration data by using a “<Or-

gID>:<identifier>” syntax. 

Given the previous example, one can imagine that a 

UEFI-based syntax could be expressed by having the x-

i-UEFI language equivalent value replace the <identifi-

er> value and the <OrgID> value would be UEFI. 

So a CLP expression of the configuration question 

might resemble something like: “UEFI:USB_Enable”  

3.4 Interaction with existing standards 

When an administrator interacts with a UEFI compliant 

target, it would be trivial to request that the contents of 

the configuration infrastructure is exported. This means 

that the forms-based encoding and strings would mini-

mally be exposed to the administrator.  

If the administrator wanted to then enable USB on that 

particular system, they would search the string contents 

for the pertinent keyword (e.g. USB_Enable). Once the 

keyword is found, the administrator knows which token 

number the keyword is associated with and can then 

look in the forms data to see which question refers to 

that particular token. 

After identifying which question the keyword is associ-

ated with programmatically, the administrator has suffi-

cient information to know where that setting is stored on 

the system, and most importantly, how to change the 

setting. 

This is a powerful concept because an administrator can 

now interact with a heterogeneous set of platforms that 

are all UEFI compliant and broadcast the same request 

to everyone without having to have special schema-

based knowledge of each vendor’s device.  

4. Networking Infrastructure 

So the IFR and HII mentioned above can convey ele-

ments that may be necessary for configuring the net-

work infrastructure, such as the Network Interface Card 



(NIC) MAC address. For that case, a local administrator 

may use a pre-OS UI to configure this information, or a 

UEFI protocol that accesses the out-of-band (OOB) 

management controller on the platform, may be used to 

get this information. A more common case, though, is 

that the in-band UEFI network will be used to download 

an agent that can locally modify the UEFI variables and 

interact with the UEFI protocols in order to update the 

UEFI variables. 

One such topology is shown in the figure 9. 

Figure 9 – Client / Server interaction 

A more detailed view of this flow includes the below. 

The recovery action can include downloading a disk 

image, diagnostics, or other configuration tools. The 

download can be the PXE 2.1 based upon TFTP, with 

its connectionless UDP. With RFC 5970 and boot from 

URI, though, the boot server can be expressed as a URI. 

Recall that Netboot6 is a combination of the wire proto-

col defined in both RFC 5970 [10] and chapter 21.3.1 

of the Unified Extensible Firmware Interface 2.4 speci-

fication [1]. The UEFI client machine uses DHCP as a 

control channel to expose its machine type and other 

parameters as it attempts to initiate a network boot. This 

is referred to as 'client initiated' network boot, as op-

posed to 'server initiated.' Examples of the latter include 

Intel(R) Active Management Technology (AMT) Inte-

grated Disk Electronics Redirection (IDE-R), or expos-

ing the local hardware network disk interface to the 

management console for purposes of the management 

control provisioning a disk image [11]. An implementa-

tion of Netboot6 can be found at in order to demon-

strate a client-initiated download.  

For client-initiated network bootstrap art like Netboot6, 

what are the details of the parameters?  The most im-

portant parameter entails the architecture type of the .efi 

image that the boot server needs to provide. The client 

machine that has initiated the network boot needs to 

expose its execution mode to the boot server so that the 

appropriate boot image can be returned. Recall that 

UEFI supports EBC, Itanium, ARM 32, ARM 64, Intel 

32-bit, and Intel 64-bit. This list may grow over time 

with corresponding updates to the UEFI Specification 

of machine bindings.  Beyond a UEFI-style boot, some 

of my co-authors on 5970 worked for IBM and wanted 

to network boot a system software image over 1) HTTP 

and 2) not based upon UEFI technology. As such, the 

parameters at [12] cover both UEFI and non-UEFI, with 

the latter class including PC/AT BIOS and both Pow-

erPC Open Firmware and Power PC ePAPR, respec-

tively. 

 

So RFC 5970 can be used in scenarios beyond Net-

boot6's TFTP-based download. This is enabled by the 

architecture type field extensibility, and also by the fact 

that the boot image is described by a URI, not a simple 

name with an implied download wire application proto-

col of TFTP as found in PXE2.1 IPV4 usages. 

A way to explain this further can be done by examining 

our Linux configuration use case. In Linux, the DHCP 

server actions are performed by the dhcpd, or "Domain 

Host Controller Protocol Daemon." The daemon is pa-

rameterized by the file dhcpd.conf. 

Within dhcpd.conf we enable Netboot6 by way of the 

following lines: 

 

option dhcp6.client-arch-type code 61 = array of 

unsigned integer 16; 

 

if option dhcp6.client-arch-type = 00:07 { 

  option dhcp6.bootfile-url 

"tftp://[fc00:ba49:1625:fb0f::137]/bootx64.efi"; 

} else { 

  option dhcp6.bootfile-url 

"tftp://[fc00:ba49:1625:fb0f::137]/bootia32.efi"; 

} 

 

The notable aspects are 'arch type' field and then the 

'tftp' term. The bootx64.efi or bootia32.efi program, 

also known as the Network Boot Program (NBP), when 

executed on the local client (hopefully with UEFI Se-

cure Boot logic applied prior to passing control into the 

image) can use any of the UEFI networking API's in the 

protocols defined in the UEFI Spec to download further 

.efi images, data files, or the operating system kernel. 

The device path protocol on the loaded image protocol 

of the NBP can be used by the NBP code's implementa-

tion to find the network address of the boot server from 

which the NBP was loaded, too. 

 

As mentioned earlier, this technology isn't limited to a 



UEFI style boot, though. A Linux PowerPC Open 

Firmware boot could be done with the same dhcp.conf 

by adding 

 

if option dhcp6.client-arch-type = 00:0c { 

  option dhcp6.bootfile-url 

"http://[fc00:ba49:1625:fb0f::137]/linux-powerpc-

kernel.bin"; 

} 

 

to enable booting a PowerPC based native binary of 

Linux from a web server. 

 

To leverage this flexibility of boot from URI, additional 

types can be added, as noted in [10]. 

 

5. Security Infrastructure 

As mentioned earlier, for the network deployed plat-

form configuration, there are two models.  The first is 

where the network infrastructure protects itself from the 

candidate bare metal UEFI platform.  In that case, the 

sysops may not even want the UEFI machine’s network 

stack on its network.  In that case, the network perime-

ter can be protected via a 802.1x controlled port. The 

associated challenge response protocol in that case is 

shown in figure 10. 

Figure 10 

In this case, the UEFI machine, or the supplicant in 

terms of this topology, will provide some authentication 

to the server.  

 

The 802.1x qualified challenge response is a precursor 

to the PXE download.   

 

As a quick background: 

Intel (R) Boot Guard binds the OEM low level boot 

firmware (PI code as exemplified by SEC/PEI/DXE) 

with the hardware, so the Boot guard trust anchors 

would not directly interface with the trust anchors for 

3
rd

 party UEFI content.  Details on Intel Boot Guard can 

be found on page 4 of [13].   

 

People often ask about the relationship of something 

like Intel (R) Boot Guard and its "Verified Boot" versus 

UEFI Secure Boot, as defined in chapter 26 of the UEFI 

2.4 specification. Some background on the difference 

between platform and UEFI Secure boot can be found 

at [14], page 16.  The “Reset Time Verified Launch” in 

Figure 5 of [14] logically maps to something like In-

tel(R) Boot Guard. The verification happens 'before' 

UEFI PI code and vets the provenance of that code, 

typically if the code was created and updated under the 

authority of the system board manufacturer. UEFI, on 

the other hand, is on the right hand side of that flow.  

 

In other words, the underlying PI-code update key, say 

for validating a capsule update (install time verification) 

or the embedded signature of the PI code (load time 

verification) should not be the PK but some other sys-

tem board vendor-managed key store.  Recall that on 

certain x86 systems the end user could even edit the PK 

via a physically-present setup page.  In that latter case, 

having the end user control the PI update key (and asso-

ciated system firmware updates) is often not desired.  In 

the PI specification there are definitions of signed firm-

ware files and volumes, but there is no defined policy 

store and trust anchors for 'Secure Boot' of PEI and 

DXE elements.  

In the end, users want end-to-end integrity, though, so 

both protection of the underlying firmware and the run 

time are important.  This is shown in the figure 11. 



Figure 11 

 

Note in this picture above that Intel (R) Device Protec-

tion Technology with Boot Guard surfaces from the 

system hardware and precedes execution of the PI 

SEC/PEI/DXE codes. 

 

UEFI Secure Boot, on the other hand, is intended for 

3
rd

 party UEFI content, such as UEFI drivers or applica-

tions on the UEFI system partition.  Intel(R) Boot 

Guard and PI code verification keys should have their 

own manifest and storage structure.  For the 3rd party 

trust anchors, the place where this enrollment would 

happen is with the UEFI Secure Boot key hierarchy.  

The hierarchy for UEFI Secure boot includes the PK, 

KEK, DB, DBX.  The factory-default configuration 

typically entails a PK that is owned by the OEM, and 

the PK authorizes updates to the KEK.  The KEK is OS 

Vendor1 + OEM + other OS vendors, and the KEK 

entries authorize updates to the DB/DBX.  DB is the 

‘allowed’ list of code that can execute, and for a Mi-

crosoft (R) Windows8 machine contains a Microsoft OS 

certificate, the Microsoft UEFI CA cert, and possibly 

other OSV/ISV entries. Some of the theory/rationale 

behind this design can be found in [8].   

 

Now for going from theory-to-practice- 

 

Given a population of UEFI Secure Boot capable ma-

chines in the field, how is a pre-OS Independent Soft-

ware Vendor (ISV) able to deploy content (i.e., the ac-

tion item from above)?   The short answer is that the 

ISV has 2 options: 

 

-          1. Sign up w/ Winqual and get the UEFI driv-

er/application signed by the UEFI CA 

 

and/or 

-          2. Create own verification certificate and  

o   Have end user enroll manually 

 

and/or 

o   Have OEM preinstall (or update in field via firmware 

update) 

 

 

An ISV can do 1+2 above since UEFI Authenticode-

based executables support ‘multisigning’ so that they 

can be signed by BOTH the UEFI CA and the ISV’s 

own key (see more on the final links below w/ SUSE 

example). 

 

For the first option 1. above, the ISV can sign up w/ 

Microsoft Winqual and submit their content to be 

signed by the Microsoft UEFI CA.  Most ISV's, IHV's, 

and non-MSFT OSV's already has a Winqual account if 

they deliver signed Windows drivers today since Mi-

crosoft has been doing kernel mode driver signing since 

Vista SP1.  In addition, most IA machines that support 

UEFI2.3.1 Secure Boot carry a Microsoft UEFI CA DB 

certificate, so getting signed by the MSFT UEFI CA 

will mean that the ISV's .efi UEFI driver or application 

will simply work on a large class of UEFI machines.   

For the second option 2. above, if the ISV wishes to 

generate its own roots and manually enroll in a PC (e.g., 

using PC setup screens) or distribute its keys for the 

OEM’s to pre-enroll, some details on the process can be 

found at [6]   

If you have a machine at home, you can use some of the 

flows described in the white paper above on running 

dmpstore and other commands at the UEFI shell to dis-

cover the configuration of UEFI Secure boot.  A more 

user friendly way is to run the Secure Boot Checkup 

Utility [15] from Insyde on your Microsoft (R) Win-

dows 8 machine.   

This is the report from a Asus Windows 8 Intel (R) i3 

touch laptop. The output from the report proceeds be-

low: 
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Secure Boot Status on this system: 

System Status: MS Required KEK: MS Required 

OS Cert: 3rd Party (MS CA): 

Secure Boot Enabled Present Present Present 

 

UEFI Variables: 

SetupMode:  

SecureBoot:  

OsIndicationsSupported:  

 

BootOrder Item List:  

BootCurrent: Boot00000 1 0000000000000001 0000 

0000 Windows Boot Manager 

 

Secure Boot Database Contents: 

 

PK Variable Certificate (Platform Master Key): 

X.509 Certificate: 

CN=ASUSTeK Notebook PK Certificate 

 

KEK Variable Certificates (Database Management): 

X.509 Certificate: X.509 Certificate: X.509 Certifi-

cate: 

CN=ASUSTeK Notebook KEK Certificate  

CN=Microsoft Corporation KEK CA 2011  

CN=Canonical Ltd. Master Certificate Authority 

 

db Variable Certificates and Hashes (Allowed Sign-

ers): 

X.509 Certificate: X.509 Certificate: X.509 Certifi-

cate: X.509 Certificate: X.509 Certificate: 

CN=ASUSTeK Notebook SW Key Certificate  

CN=ASUSTeK MotherBoard SW Key Certificate  

CN=Microsoft Corporation UEFI CA 2011  

CN=Microsoft Windows Production PCA 2011  

CN=Canonical Ltd. Master Certificate Authority 

 

dbx Variable Certificates and Hashes (Forbidden 

Signers): 

X.509 Certificate: 

CN=DO NOT TRUST - Lost Certificate 

 

The interesting thing about this machine is that there is 

both a ASUSTeK KEK and Canonical KEK, along with 

the Microsoft KEK.  So this set of KEK entries includes 

one for the OEM and two alternative operating system 

vendors, namely Microsoft for Windows and Canonical 

for Ubuntu [16]. 

 

Figure 12 is a friendlier view of the tool in action. 

Figure 12 

With the rich infrastructure of UEFI Secure Boot and 

the multi-tenant nature of the trust anchors in the DB, 

various IT and software entities can be represented in 

this trust relationship. 

 

6. Platform Examples 

The management usages described above can span a 

large variety of platforms, from phone to multiprocessor 

server.  

So we have seen configuration, networking and security 

elements detailed. The UEFI infrastructure provides the 

substrate upon which these capabilities are deployed, 

but the capabilities did not speak to a specific class of 

platform.  In fact, the management usages described 

above can span a large variety of platforms, from phone 

to multiprocessor server.  Since all of these platforms 

have a host processor running UEFI style firmware, in 

addition to a networking capability that may be accessi-

ble for UEFI, the associated UEFI configuration objects 

can be leveraged to make these manageable, deployable 

platforms. 

7. Related Work 

The Desktop Management Task Force [3] and the Open 

Mobile Alliance [17] have manageability elements, but 

neither provide the combination of management inter-

faces, stylized binary configuration data, networking 

API’s and security considerations as found in the UEFI 

work described herein. 

8. Future developments 

The infrastructure in this document can include a gener-

ic ‘configuration language’ to allow for seamless cross-

vendor, cross platform migration, including machine 

cloning. In addition, the networking API’s continue to 

evolve, as do the networking media, including 3G/4G 

http://3.bp.blogspot.com/-qvSx-K5sJD4/UkdbHXrZp8I/AAAAAAAAAQg/B5CJD8Pr02M/s1600/s.jpg.png
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and Wi-Fi. Finally, security considerations are ever-

present and the classes of security hardware, software 

access control mechanisms, and machine capabilities 

continue to evolve. 
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