
Configuration from bare metal to the cloud - leveraging modern systems to

enhance manageability

Michael A. Rothman, Intel Vincent Zimmer, Intel

Abstract

Most users of a platform see the operating system as a

fully instantiated entity. But from a system administra-

tion perspective, the platform is just as much the operat-

ing system (OS) and its application suite as it is the un-

derlying substrate upon which the OS has been in-

stalled. And it is this substrate which includes hardware

and firmware elements. Of the two, the firmware works

in conjunction with the hardware and the OS-level in-

stallers and infrastructure code to both provision, man-

age, and recover a platform. The details of these firm-

ware behaviors for management of the overall platform

include capabilities to explicate the platform state,

health, and security posture. Some of the platform ca-

pabilities can in turn be updated by the platform owner

for interfaces that adjust the configuration of the ma-

chine.

To particularize some of the points made above, indus-

try standard firmware infrastructure, such as found in

the Unified Extensible Firmware Interface (UEFI) [1],

shall be used to demonstrate user cases and scenarios

around the bare metal secure management of a platform.

This will include both the extant challenges and emer-

gent opportunities in fusing these firmware capabilities

with an overall management strategy.

1. Introduction

Managing platforms today can be rather chaotic espe-

cially when we consider that an administrator may need

to deal with hardware from different Original Equip-

ment Manufacturer (OEM)s. These platforms range

from embedded, to mobile, handheld, desktop, and even

servers. Each of these platform’s configuration schema

may differ, and each platform may have third party add-

in devices, all of which are configurable (possibly in

differing ways).

Add-in device vendors are also challenged, because

each of them may get a request for quote (RFQ) by an

OEM to comply with their manageability sche-

ma/methodology. This leads to the vendor having to

have multiple SKUs of their own device to cover the

manageability needs for their clients.

Because of some of the complications associated with

getting all of the configurable devices to expose things

in a well-understood way, managed aspects of systems

were relegated to configurable options based on the

platform’s CPU, chipset, and other baseboard configu-

rable options.

In a bare-metal world the agent in charge of the target

has been the platform’s BIOS (and in some cases, the

BIOS would cooperate with a management controller, if

available.) The features that had been offered in the

BIOS that assisted the platform’s administration were

limited and certainly inconsistent.

Given that, the underlying BIOS had largely been re-

sponsible solely for the initialization of the platform

hardware and ultimately launching a target software

target (e.g. operating system). Over the last decade, the

BIOS has evolved with the hardware and the previously

arcane interfaces have now been standardized within a

public forum known as UEFI [1].

It should be noted that in the past, the only platforms

that had built-in connectivity were the special SKU’d

platforms with a management controller. Platforms in

the past rarely had a network card, and those that did

had very limited use of the device prior to the OS being

run.

Today’s platforms almost always have some form of

built-in network connectivity hardware, and as the

hardware has evolved, so has the underlying BIOS to

natively support it via standard programmatic interfac-

es.

In addition to exposing networking connectivity within

this evolving BIOS infrastructure, added measures were

enabled to expand the configurability of all aspects of

the platform hardware, both motherboard-based as well

as add-in devices. With this drive for standardization

and facilitating standard programmatic interfaces to

interact with the hardware in a bare-metal manner, the

need for security would certainly be needed. Whether

this was allowing a platform to load only properly au-

thorized content, or enforcing the ability to enable se-

cure policy handshakes from the moment the machine is

powered on, to the launch of the OS, and up to and in-

cluding running content within the OS – a chain of trust

is now something that can be maintained. This chain of

trust is capability which would have been a serious chal-

lenge in previous years on reasonably open hardware

platforms.

1.1 Pre-OS / OS Interaction

During the platform initialization, the BIOS is primarily

responsible for initializing sufficient hardware to be

able to launch the software target (e.g. Windows, Linux,

etc.)

During this initialization, there are a variety of standard

programmatic interfaces that are made available as well

as static structures which enable interaction with the

platform and expose information about the platform

configuration. A simple illustration of this interaction is

illustrated in Figure 1.

Figure 1

It should be noted that although this paper will focus on

the capabilities exposed at the platform level due to

standardization efforts within the BIOS, there are also

significant new opportunities for synergy between the

pre-OS environment and the OS and middle-ware lay-

ers.

Subsequent sections of this paper will further illustrate

details on how bare-metal manageability, connectivity,

and security are achieved within this pre-OS domain.

1.2 Exposed Capabilities

Even though there are thousands of pages of standards-

based documentation detailing all aspects of the UEFI

standards, this paper will attempt to highlight some as-

pects that will facilitate enabling bare-metal features

such as provisioning, managing and recovering a plat-

form.

1.2.1 Human Interface Infrastructure (HII)

During the platform initialization, one of the earliest

facilities that is exposed is something called the HII

Database. As Figure 2 illustrates, this database serves as

a repository for all things related to the platform config-

uration and user interaction. This includes data such as

user presentation forms (BIOS/device setup pages),

strings (possibly encoded in many languages), keyboard

layouts, fonts, etc.

Since this database is a central focus for lots of infor-

mation that pertains to the platform’s configuration da-

ta, it also holds much of what becomes central to estab-

lishing the necessary metadata for understanding how a

platform is configured in a programmatic way.

Figure 2

Much more of this will be covered in section 3 of this

paper which will provide details of the configuration

infrastructure and how this metadata which is contained

within the HII database is used.

1.2.2 Networking

Platform firmware has had integrated network boot ca-

pabilities since the Pre-Boot Execution Environment

(PXE) [1] was defined in the mid 1990’s as part of the

Wired For Management (WFM) [17] efforts. PXE can

be thought of as ‘in-band’ networking since it runs on

the main host CPU’s, not an out-of-band chipset or plat-

form microprocessor, or a ‘non-host processor’ (NHP).

PXE entails two elements – (1) client side API’s, in-

cluding Base-Code and UNDI, for purposes of orches-

trating the download of a network boot program (NBP)

and (2) a wire protocol for interacting with the boot

server. The PXE boot process is ‘client initiated’ in that

the in-band firmware initiates a DHCP discovery pro-

cess to start the networking interactions with a boot

server.

PXE was originally part of the PC/AT BIOS and a spec-

ification jointly owned by a small consortium of com-

panies. With the advent of the Extensible Firmware

Interface (EFI) in the late 1990’s, the ‘base code’ and

‘UNDI’ interfaces from BIOS PXE were mapped into

EFI interfaces. This continued through the EFI 1.10

specification in 2001. The EFI1.10 specification was

an Intel-owned document. In order to support broader

industry adoption, EFI 1.10 was contributed to the Uni-

fied Extensible Firmware Interface (UEFI) forum in

2005, along with some post EFI1.10 networking API’s.

The latter included a modular IPV4 network stack that

broke out IP, UDP, TCP, DHCP, ARP and other ele-

ments into separate API’s, as opposed to the EFI1.10

reference implementation of the monolithic PXE stack.

With this modular network stack in UEFI2.0 in 2006,

the foundation was laid to create additional networking

services on the UEFI platform. These services have

included a refactored PXE Client that leverages the

modular network stack and an ISCSI initiator, both in

the open source.

More information on UEFI can be found at [5] and the

specification itself at [1].

The question was posed to the industry group in 2007

about how to evolve PXE. At the time, there were

many extant scenarios built upon the IPV4 PXE wire

protocol, including support in all of the Linux distribu-

tions and the Windows Deployment Services (WDS)

feature in Microsoft Windows. The most important

feature request entailed addition of IPV6 support. As

such, the UEFI Forum worked w/ the IETF and generat-

ed RFC 5970 that includes the option tags for IPV6

network boot. This RFC, along with a network interac-

tion flow, form ‘netboot6’, or a variant of PXE that in-

teroperates across IPV6.

The IETF and the UEFI Network Subteam (UNST),

chaired by Vincent Zimmer [7], evolve the pre-OS wire

protocols and UEFI API’s, respectively.

The modular network stack and the IPV6 and IPV4

variants of PXE [9] can be found in the EFI Developer

Kit 2 (edk2) project on source forge in the Network

Package (NetworkPkg) [6]. Some details of the pack-

ages can be found in Figure 3.

Figure 3 Network stack layout

Netboot6, along w/ UEFI Secure Boot [8], provided

UEFI-only features not available on a PC/AT BIOS.

These features, along w/ fast-boot, were integrated into

Microsoft Windows8 and helped motivate the decision

to mandate UEFI 2.3.1c specification conformance for

this operating system in 2012. So the EFI effort that

commenced in 1998 resulted in the 2012 launch of

Windows8 that required UEFI.

This was the tipping point for the standards adoption

and many of the preceding tactics, such as feature crea-

tion and open source, helped to motivate this decision.

1.2.3 Security

The management of a platform, especially across a net-

work, in an enterprise network necessarily has consider-

ations regarding platform security. To that end, there

are a series of specifications and capabilities that de-

scribe the trust. This includes the underlying firmware

infrastructure leading up to the UEFI interfaces. The

former required some cryptographically signed updates,

such as required by NIST 800-147. These updates

should only be done under the authority of the Platform

Manufacturer (PM). The latter portion of the platform,

such as the extensible 3
rd

 party UEFI executables, in-

cluding the network boot program (NBP), are under the

administrative control of the Platform Owner (PO). The

PO administrative domain is often the same as the oper-

ating system or hypervisor administrator. In the case of

UEFI executables, such as OS loaders, provisioning

agents, and independent hardware vendor (IHV) driv-

ers, cryptographic signing of the UEFI executables is

applied.

In addition to authentication of the UEFI executables,

the PM or PO may need to be authenticated for pre-OS

operations, such as critical API usage, or during OS

runtime. The former can be accomplished by the UEFI

User Identity (UID) infrastructure, which allows for

multifactor authentication. During OS runtime, there

are few interfaces, with the most important for purposes

of platform management that read on security concerns

being the UEFI runtime API’s of SetVariable, and Up-

dateCapsule. The former can be access controlled via

read-only variables, but for art that must updated at

runtime, the

EFI_VARIABLE_AUTHENTICATED_WRITE can be

used to ensure that only the creator of the variable can

do field updates.

Finally, security considerations inhere in UEFI Pre-OS

networking with network protocol authentication. There

are two classes of network authentication, wherein the

extant network infrastructure can challenge a new ma-

chine executing in the UEFI pre-OS when it attempts to

join the network. For this case, the UEFI platform will

surface some platform identity, such as via an 802.1x

layer 2 challenge/response, prior to getting access to IP

traffic. The latter case, wherein the UEFI platform

wants to protect itself from possibly malevolent network

or boot server infrastructure, is often handled via UEFI

Secure Boot wherein the platform will only execute

remotely-delivered UEFI executables signed under one

of the keys in the UEFI trust anchors, or the DB for

UEFI Secure Boot.

Figure 4

1.3 What To Expect In This Paper

Clearly within the scope of a relatively short paper, it is

impossible to cover all of the details of any technology

or even a semi-interest usage case. Since the subject

matter of managing platforms is likely familiar ground

for the reader, the authors want to expose advances in

some of the manageability infrastructure.

Given that it is nearly impossible to keep up with the

advances of all the manageability related technologies,

this paper aims to focus the reader’s attention on a few

key elements that have recently evolved in the platform

firmware environment.

After reading this, you should expect a better basic un-

derstanding of the advances in the pre-OS configuration

and how that applies to managed platforms.

The paper will also cover the topics of both networking

and security within the pre-OS environment, and ex-

plain what the recent advances have been within those

domains and how they all relate to each other.

It is said that Socrates made a statement similar to this,

“The only true wisdom is in knowing you know noth-

ing.”

The goal of this paper is to try and make the reader

aware of certain advances that can be leveraged to en-

hance the manageability of platforms. Give them suffi-

cient understanding so that further exploration by the

reader is reasonably possible.

2. Pre-OS handshake

Historically, managed systems had at least in-band

management capabilities – meaning that the target plat-

form was running an OS with the necessary middleware

for the administrator to remotely communicate with it.

In-band manageability didn’t typically provide the abil-

ity to provision a system or significantly affect bare-

metal operations such as BIOS settings or recovering

from an issue prior to the launch of the OS.

In those situations, out-of-band (OOB) manageability

would come into play. Platforms with OOB manageabil-

ity would have a dedicated device such as a baseboard

management controller (BMC) [2] whose job it was to

enable communication between the client and the ad-

ministrator, regardless of what may or may not be hap-

pening on the client’s platform. This removed the de-

pendency on the installed software actively running or

in many cases, for the platform to even be on. The only

requirement would oftentimes simply be that the man-

aged target was connected to a power source (e.g. wall

plug or battery.)

In many cases, systems can provide either methods of

enabling a client-admin communication both, or even

both. The communication illustrated in Figure 5 is a

very typical example of a client-admin communication

through a BMC which would typically run independent-

ly of whatever was occurring on the in-band platform

processor.

Figure 5

Given these methods of communication, there are data

handshakes that occur within the platform in today’s

systems that had not truly occurred in the past. For in-

stance, in figure 6 we demonstrate how third-party add-

in devices within the system would communicate with

the underlying BIOS interfaces. Prior to the advent of

UEFI standards-based firmware, the configurability of

add-in devices were limited to the user-initiated “Hit the

Fx key to enter setup” and from an administrator per-

spective, these devices were largely black boxes. They

either worked, or didn’t work.

With the vast majority of OEMs and IHVs beginning to

use the UEFI infrastructure, devices no longer have to

be isolated as the black boxes they have been. Each

configurable item in the platform has an opportunity to

expose its metadata to the UEFI configuration infra-

structure, and in turn will then be propagated to a varie-

ty of standard tables and interfaces which the OS would

Figure 6

be exposed to. The left side of figure 6 illustrates the

common scenario which has historically plagued man-

aged systems. Much of the configurability of a system

has been limited to soldered-down devices on the moth-

erboard. On the right side of the illustration, there is a

much more robust ability for third-party devices to be

exposed and have a standard fashion by which they can

be configured.

Whether this enhanced configurability is exposed via

in-band or out-of-band manageability, the fact that such

configuration portability exists enhances all managea-

bility methodologies.

3. Configuration Infrastructure

So far, the paper has made reference to the existence of

new capabilities to expose configuration data that had

previously not been exposed.

This section will analyze the details associated with the

UEFI configuration infrastructure, and exactly how it

relates to enhancing the manageability of a platform.

3.1 Configuration Protocols

In the UEFI configuration infrastructure, there are sev-

eral key protocols (interfaces) that exist which encom-

pass how all user visible data is managed. Whether it is

string information, forms, glyphs, or other extant data –

there is a means by which such things are shared and

exposed in UEFI systems today.

3.1.1 The Database Protocol

The EFI_HII_DATABASE_PROTOCOL interface is

primarily responsible for the registration of data that

encompasses configuration as well as usability elements

such as fonts and images.

Any device that intends to be configured or in some

way interact with the user will have to use the database

protocol to achieve this. This paper will focus primarily

on the forms and strings that get registered with the da-

tabase and how they are used to achieve manageability

goals.

3.1.2 The String Protocol

Once a package of configuration-related data has been

registered with the database protocol, the

EFI_HII_STRING_PROTOCOL interface can be used

to simply extract the strings so that they can be used.

3.2 Localization

The concept of localization had historically been a lim-

ited subject in the BIOS world. With the advent of

UEFI, the concept of string tokens was introduced. By

tokenizing the strings, any device in the platform can

register multiple versions of any given string.

Figure 7

These different versions of string data were associated

with a known language encoded by their corresponding

RFC 4646 [4] language tag. Figure 7 illustrates how a

single token (e.g. #4), could be interpreted as complete-

ly different elements based on the language tag speci-

fied when retrieving the string.

The language tags that are used for strings are generally

associated with a language or language/country pairing.

Examples being: es, en-US, de-DE. The first being

Spanish (regardless of country), second being English

as spoken in the United States and finally, German as

spoken in Germany.

3.3 Forms

When registering configuration related data, there are

two required elements, forms and strings.

Forms are binary encodings which define configurable

objects, and one of the simplest examples of such a

thing would be to think of a form being a web page. For

each item on the page, there is a corresponding binary

encoding which represents some configurable data.

Figure 8 – Configuration question encoding

Figure 8 illustrates what a typical configuration question

would look like. In each question, there are a few key

items in the encoding that should be noted:

 Prompt Token #: The string token associated

with the configuration question.

 VarStore ID: The ID associated with the varia-

ble storage declaration. This corresponds to

where a particular configuration question’s da-

ta resides on the platform. For instance, a par-

ticular variable storage declaration may corre-

spond to a UEFI NV variable with a particular

name (e.g. “Setup”) and a particular GUID

value.

 VarStoreInfo: This value would typically relate

to the offset within the VarStore associated

with a question. For instance, the offset value

might be 23. So this particular question’s cur-

rent setting can be determined to be within the

“Setup” UEFI variable at offset 23 into it.

From the encoding of the configuration op-code in Fig-

ure 8, it is easy to see how string references are inti-

mately tied to each question. One thing that should be

noted is that for each unique question, there is an asso-

ciated Prompt Token.

We’ve already noted how each token value is a lan-

guage agnostic reference to a string. For instance, To-

ken #1 may have an English, Spanish and German

equivalent. These are all languages that are human

readable.

One fact that isn’t obvious – but is leveraged for pur-

poses of managing configuration elements is that not all

of the language tags need to be human-readable. In oth-

er words, a device may expose a set of strings which are

associated with a unique language tag (e.g. x-i-UEFI).

The “x” designation stipulates a private use language

which the UEFI specification [1] uses as a

UEFI_CONFIG_LANG_2 definition.

So if there is a forms-based question which asks, “Do

you want to enable USB?” Let’s assert that the

PROMPT token has a value of 5. So if we probe the

string protocol to determine what values token 5 have,

we may certainly obtain one of them being the en-US

value of “Do you want to enable USB?”

However, there may be a x-i-UEFI instance of token 5

which has a value of “USB_Enable”.

OEMs typically have their own keywords and

namespaces that they use when interacting with target

platforms. Given that, a standard method to interact

with a target platform might be one which leverages the

syntax established by DMTF’s SMASH CLP [3]. The

typical CIM_BIOSAttribute associated with CLP ex-

presses configuration data by using a “<Or-

gID>:<identifier>” syntax.

Given the previous example, one can imagine that a

UEFI-based syntax could be expressed by having the x-

i-UEFI language equivalent value replace the <identifi-

er> value and the <OrgID> value would be UEFI.

So a CLP expression of the configuration question

might resemble something like: “UEFI:USB_Enable”

3.4 Interaction with existing standards

When an administrator interacts with a UEFI compliant

target, it would be trivial to request that the contents of

the configuration infrastructure is exported. This means

that the forms-based encoding and strings would mini-

mally be exposed to the administrator.

If the administrator wanted to then enable USB on that

particular system, they would search the string contents

for the pertinent keyword (e.g. USB_Enable). Once the

keyword is found, the administrator knows which token

number the keyword is associated with and can then

look in the forms data to see which question refers to

that particular token.

After identifying which question the keyword is associ-

ated with programmatically, the administrator has suffi-

cient information to know where that setting is stored on

the system, and most importantly, how to change the

setting.

This is a powerful concept because an administrator can

now interact with a heterogeneous set of platforms that

are all UEFI compliant and broadcast the same request

to everyone without having to have special schema-

based knowledge of each vendor’s device.

4. Networking Infrastructure

So the IFR and HII mentioned above can convey ele-

ments that may be necessary for configuring the net-

work infrastructure, such as the Network Interface Card

(NIC) MAC address. For that case, a local administrator

may use a pre-OS UI to configure this information, or a

UEFI protocol that accesses the out-of-band (OOB)

management controller on the platform, may be used to

get this information. A more common case, though, is

that the in-band UEFI network will be used to download

an agent that can locally modify the UEFI variables and

interact with the UEFI protocols in order to update the

UEFI variables.

One such topology is shown in the figure 9.

Figure 9 – Client / Server interaction

A more detailed view of this flow includes the below.

The recovery action can include downloading a disk

image, diagnostics, or other configuration tools. The

download can be the PXE 2.1 based upon TFTP, with

its connectionless UDP. With RFC 5970 and boot from

URI, though, the boot server can be expressed as a URI.

Recall that Netboot6 is a combination of the wire proto-

col defined in both RFC 5970 [10] and chapter 21.3.1

of the Unified Extensible Firmware Interface 2.4 speci-

fication [1]. The UEFI client machine uses DHCP as a

control channel to expose its machine type and other

parameters as it attempts to initiate a network boot. This

is referred to as 'client initiated' network boot, as op-

posed to 'server initiated.' Examples of the latter include

Intel(R) Active Management Technology (AMT) Inte-

grated Disk Electronics Redirection (IDE-R), or expos-

ing the local hardware network disk interface to the

management console for purposes of the management

control provisioning a disk image [11]. An implementa-

tion of Netboot6 can be found at in order to demon-

strate a client-initiated download.

For client-initiated network bootstrap art like Netboot6,

what are the details of the parameters? The most im-

portant parameter entails the architecture type of the .efi

image that the boot server needs to provide. The client

machine that has initiated the network boot needs to

expose its execution mode to the boot server so that the

appropriate boot image can be returned. Recall that

UEFI supports EBC, Itanium, ARM 32, ARM 64, Intel

32-bit, and Intel 64-bit. This list may grow over time

with corresponding updates to the UEFI Specification

of machine bindings. Beyond a UEFI-style boot, some

of my co-authors on 5970 worked for IBM and wanted

to network boot a system software image over 1) HTTP

and 2) not based upon UEFI technology. As such, the

parameters at [12] cover both UEFI and non-UEFI, with

the latter class including PC/AT BIOS and both Pow-

erPC Open Firmware and Power PC ePAPR, respec-

tively.

So RFC 5970 can be used in scenarios beyond Net-

boot6's TFTP-based download. This is enabled by the

architecture type field extensibility, and also by the fact

that the boot image is described by a URI, not a simple

name with an implied download wire application proto-

col of TFTP as found in PXE2.1 IPV4 usages.

A way to explain this further can be done by examining

our Linux configuration use case. In Linux, the DHCP

server actions are performed by the dhcpd, or "Domain

Host Controller Protocol Daemon." The daemon is pa-

rameterized by the file dhcpd.conf.

Within dhcpd.conf we enable Netboot6 by way of the

following lines:

option dhcp6.client-arch-type code 61 = array of

unsigned integer 16;

if option dhcp6.client-arch-type = 00:07 {

 option dhcp6.bootfile-url

"tftp://[fc00:ba49:1625:fb0f::137]/bootx64.efi";

} else {

 option dhcp6.bootfile-url

"tftp://[fc00:ba49:1625:fb0f::137]/bootia32.efi";

}

The notable aspects are 'arch type' field and then the

'tftp' term. The bootx64.efi or bootia32.efi program,

also known as the Network Boot Program (NBP), when

executed on the local client (hopefully with UEFI Se-

cure Boot logic applied prior to passing control into the

image) can use any of the UEFI networking API's in the

protocols defined in the UEFI Spec to download further

.efi images, data files, or the operating system kernel.

The device path protocol on the loaded image protocol

of the NBP can be used by the NBP code's implementa-

tion to find the network address of the boot server from

which the NBP was loaded, too.

As mentioned earlier, this technology isn't limited to a

UEFI style boot, though. A Linux PowerPC Open

Firmware boot could be done with the same dhcp.conf

by adding

if option dhcp6.client-arch-type = 00:0c {

 option dhcp6.bootfile-url

"http://[fc00:ba49:1625:fb0f::137]/linux-powerpc-

kernel.bin";

}

to enable booting a PowerPC based native binary of

Linux from a web server.

To leverage this flexibility of boot from URI, additional

types can be added, as noted in [10].

5. Security Infrastructure

As mentioned earlier, for the network deployed plat-

form configuration, there are two models. The first is

where the network infrastructure protects itself from the

candidate bare metal UEFI platform. In that case, the

sysops may not even want the UEFI machine’s network

stack on its network. In that case, the network perime-

ter can be protected via a 802.1x controlled port. The

associated challenge response protocol in that case is

shown in figure 10.

Figure 10

In this case, the UEFI machine, or the supplicant in

terms of this topology, will provide some authentication

to the server.

The 802.1x qualified challenge response is a precursor

to the PXE download.

As a quick background:

Intel (R) Boot Guard binds the OEM low level boot

firmware (PI code as exemplified by SEC/PEI/DXE)

with the hardware, so the Boot guard trust anchors

would not directly interface with the trust anchors for

3
rd

 party UEFI content. Details on Intel Boot Guard can

be found on page 4 of [13].

People often ask about the relationship of something

like Intel (R) Boot Guard and its "Verified Boot" versus

UEFI Secure Boot, as defined in chapter 26 of the UEFI

2.4 specification. Some background on the difference

between platform and UEFI Secure boot can be found

at [14], page 16. The “Reset Time Verified Launch” in

Figure 5 of [14] logically maps to something like In-

tel(R) Boot Guard. The verification happens 'before'

UEFI PI code and vets the provenance of that code,

typically if the code was created and updated under the

authority of the system board manufacturer. UEFI, on

the other hand, is on the right hand side of that flow.

In other words, the underlying PI-code update key, say

for validating a capsule update (install time verification)

or the embedded signature of the PI code (load time

verification) should not be the PK but some other sys-

tem board vendor-managed key store. Recall that on

certain x86 systems the end user could even edit the PK

via a physically-present setup page. In that latter case,

having the end user control the PI update key (and asso-

ciated system firmware updates) is often not desired. In

the PI specification there are definitions of signed firm-

ware files and volumes, but there is no defined policy

store and trust anchors for 'Secure Boot' of PEI and

DXE elements.

In the end, users want end-to-end integrity, though, so

both protection of the underlying firmware and the run

time are important. This is shown in the figure 11.

Figure 11

Note in this picture above that Intel (R) Device Protec-

tion Technology with Boot Guard surfaces from the

system hardware and precedes execution of the PI

SEC/PEI/DXE codes.

UEFI Secure Boot, on the other hand, is intended for

3
rd

 party UEFI content, such as UEFI drivers or applica-

tions on the UEFI system partition. Intel(R) Boot

Guard and PI code verification keys should have their

own manifest and storage structure. For the 3rd party

trust anchors, the place where this enrollment would

happen is with the UEFI Secure Boot key hierarchy.

The hierarchy for UEFI Secure boot includes the PK,

KEK, DB, DBX. The factory-default configuration

typically entails a PK that is owned by the OEM, and

the PK authorizes updates to the KEK. The KEK is OS

Vendor1 + OEM + other OS vendors, and the KEK

entries authorize updates to the DB/DBX. DB is the

‘allowed’ list of code that can execute, and for a Mi-

crosoft (R) Windows8 machine contains a Microsoft OS

certificate, the Microsoft UEFI CA cert, and possibly

other OSV/ISV entries. Some of the theory/rationale

behind this design can be found in [8].

Now for going from theory-to-practice-

Given a population of UEFI Secure Boot capable ma-

chines in the field, how is a pre-OS Independent Soft-

ware Vendor (ISV) able to deploy content (i.e., the ac-

tion item from above)? The short answer is that the

ISV has 2 options:

- 1. Sign up w/ Winqual and get the UEFI driv-

er/application signed by the UEFI CA

and/or

- 2. Create own verification certificate and

o Have end user enroll manually

and/or

o Have OEM preinstall (or update in field via firmware

update)

An ISV can do 1+2 above since UEFI Authenticode-

based executables support ‘multisigning’ so that they

can be signed by BOTH the UEFI CA and the ISV’s

own key (see more on the final links below w/ SUSE

example).

For the first option 1. above, the ISV can sign up w/

Microsoft Winqual and submit their content to be

signed by the Microsoft UEFI CA. Most ISV's, IHV's,

and non-MSFT OSV's already has a Winqual account if

they deliver signed Windows drivers today since Mi-

crosoft has been doing kernel mode driver signing since

Vista SP1. In addition, most IA machines that support

UEFI2.3.1 Secure Boot carry a Microsoft UEFI CA DB

certificate, so getting signed by the MSFT UEFI CA

will mean that the ISV's .efi UEFI driver or application

will simply work on a large class of UEFI machines.

For the second option 2. above, if the ISV wishes to

generate its own roots and manually enroll in a PC (e.g.,

using PC setup screens) or distribute its keys for the

OEM’s to pre-enroll, some details on the process can be

found at [6]

If you have a machine at home, you can use some of the

flows described in the white paper above on running

dmpstore and other commands at the UEFI shell to dis-

cover the configuration of UEFI Secure boot. A more

user friendly way is to run the Secure Boot Checkup

Utility [15] from Insyde on your Microsoft (R) Win-

dows 8 machine.

This is the report from a Asus Windows 8 Intel (R) i3

touch laptop. The output from the report proceeds be-

low:

http://3.bp.blogspot.com/-yC4K0U2LzUU/UkcSROow4EI/AAAAAAAAAQA/Z0dnAekI2wg/s1600/full.jpg
http://3.bp.blogspot.com/-yC4K0U2LzUU/UkcSROow4EI/AAAAAAAAAQA/Z0dnAekI2wg/s1600/full.jpg
http://apps.insyde.com/sbutil.html

Secure Boot Status on this system:

System Status: MS Required KEK: MS Required

OS Cert: 3rd Party (MS CA):

Secure Boot Enabled Present Present Present

UEFI Variables:

SetupMode:

SecureBoot:

OsIndicationsSupported:

BootOrder Item List:

BootCurrent: Boot00000 1 0000000000000001 0000

0000 Windows Boot Manager

Secure Boot Database Contents:

PK Variable Certificate (Platform Master Key):

X.509 Certificate:

CN=ASUSTeK Notebook PK Certificate

KEK Variable Certificates (Database Management):

X.509 Certificate: X.509 Certificate: X.509 Certifi-

cate:

CN=ASUSTeK Notebook KEK Certificate

CN=Microsoft Corporation KEK CA 2011

CN=Canonical Ltd. Master Certificate Authority

db Variable Certificates and Hashes (Allowed Sign-

ers):

X.509 Certificate: X.509 Certificate: X.509 Certifi-

cate: X.509 Certificate: X.509 Certificate:

CN=ASUSTeK Notebook SW Key Certificate

CN=ASUSTeK MotherBoard SW Key Certificate

CN=Microsoft Corporation UEFI CA 2011

CN=Microsoft Windows Production PCA 2011

CN=Canonical Ltd. Master Certificate Authority

dbx Variable Certificates and Hashes (Forbidden

Signers):

X.509 Certificate:

CN=DO NOT TRUST - Lost Certificate

The interesting thing about this machine is that there is

both a ASUSTeK KEK and Canonical KEK, along with

the Microsoft KEK. So this set of KEK entries includes

one for the OEM and two alternative operating system

vendors, namely Microsoft for Windows and Canonical

for Ubuntu [16].

Figure 12 is a friendlier view of the tool in action.

Figure 12

With the rich infrastructure of UEFI Secure Boot and

the multi-tenant nature of the trust anchors in the DB,

various IT and software entities can be represented in

this trust relationship.

6. Platform Examples

The management usages described above can span a

large variety of platforms, from phone to multiprocessor

server.

So we have seen configuration, networking and security

elements detailed. The UEFI infrastructure provides the

substrate upon which these capabilities are deployed,

but the capabilities did not speak to a specific class of

platform. In fact, the management usages described

above can span a large variety of platforms, from phone

to multiprocessor server. Since all of these platforms

have a host processor running UEFI style firmware, in

addition to a networking capability that may be accessi-

ble for UEFI, the associated UEFI configuration objects

can be leveraged to make these manageable, deployable

platforms.

7. Related Work

The Desktop Management Task Force [3] and the Open

Mobile Alliance [17] have manageability elements, but

neither provide the combination of management inter-

faces, stylized binary configuration data, networking

API’s and security considerations as found in the UEFI

work described herein.

8. Future developments

The infrastructure in this document can include a gener-

ic ‘configuration language’ to allow for seamless cross-

vendor, cross platform migration, including machine

cloning. In addition, the networking API’s continue to

evolve, as do the networking media, including 3G/4G

http://3.bp.blogspot.com/-qvSx-K5sJD4/UkdbHXrZp8I/AAAAAAAAAQg/B5CJD8Pr02M/s1600/s.jpg.png
http://3.bp.blogspot.com/-qvSx-K5sJD4/UkdbHXrZp8I/AAAAAAAAAQg/B5CJD8Pr02M/s1600/s.jpg.png

and Wi-Fi. Finally, security considerations are ever-

present and the classes of security hardware, software

access control mechanisms, and machine capabilities

continue to evolve.

References

[1] UEFI Specification URL:

http://www.uefi.org/specifications

[2] Usage of BMC in industry:

http://www.dell.com/downloads/global/power/

ps4q04-20040110-Zhuo.pdf

[3] DMTF Schema reference:

http://schemas.dmtf.org/wbem/cim-

html/2/CIM_BIOSAttribute.html

[4] Language identification tags:

http://www.ietf.org/rfc/rfc4646.txt

[5] Zimmer, et al Beyond BIOS: Developing with

the Unified Extensible Firmware Interface,

Second Edition, November 2010

[6] EFI Developer Kit II

http://edk2.sourceforge.net

[7] Mark Doran, Vincent Zimmer, Michael Roth-

man, “Beyond BIOS: Exploring the Many

Dimensions of the Unified Extensible Firm-

ware Interface,” in Intel Technology Journal -

UEFI Today: Boostrapping the Continuum,

Volume 15, Issue 1, pp. 8-21, October 2011,

ISBN 978-1-934053-43-0, ISSN 1535-864X

http://noggin.intel.com/technology-

journal/2011/151/uefi-today-bootstrapping-

continuum

[8] Magnus Nystrom (Microsoft), Martin Nicholes

(Insyde), Vincent Zimmer, "UEFI Networking

and Pre-OS Security," in Intel Technology

Journal - UEFI Today: Boostrapping the

Continuum, Volume 15, Issue 1, pp. 80-101,

October 2011, ISBN 978-1-934053-43-0,

ISSN 1535-864X

http://noggin.intel.com/technology-

journal/2011/151/uefi-today-bootstrapping-

continuum

[9] Pre-Boot Execution Environment 2.1

http://download.intel.com/design/archives/wfm

/downloads/pxespec.pdf

[10] T. Huth (IBM Germany), J. Freimann (IBM

Germany), V. Zimmer (Intel), D. Thaler (Mi-

crosoft), "DHCPv6 Options for Network

Boot," Internet RFCs, ISSN 2070-1721, RFC

5970, September 2010, http://www.rfc-

editor.org/rfc/rfc5970.txt

[11] Advanced Management Technology

http://software.intel.com/sites/manageability

/AMT_Implementation_and_Reference_Gui

de/default.htm?turl=WordDocuments%2Fs

etsoliderandotherbootoptions.htm

[12] Boot Architecture Types

http://www.iana.org/assignments/dhcpv6-

parameters/dhcpv6-parameters.xml

[13] Intel CPU documentation

http://www.intel.com/content/dam/www/pu

blic/us/en/documents/product-briefs/4th-

gen-core-family-mobile-brief.pdf

[14] Platform Security

http://uefidk.intel.com/sites/default/files/resour

ces/Platform_Security_Review_Intel_Cisco_W

hite_Paper.pdf

[15] Secure Boot Utility

http://apps.insyde.com/sbutil.html

[16] Ubuntu

http://www.ubuntu.com/

[17] Wired For Management

http://www.intel.com/design/archives/
wfm/downloads/base20.htm

[18] Open Mobile Alliance

http://openmobilealliance.org/about-
oma/work-program/device-
management/

http://www.uefi.org/specifications
http://www.dell.com/downloads/global/power/ps4q04-20040110-Zhuo.pdf
http://www.dell.com/downloads/global/power/ps4q04-20040110-Zhuo.pdf
http://schemas.dmtf.org/wbem/cim-html/2/CIM_BIOSAttribute.html
http://schemas.dmtf.org/wbem/cim-html/2/CIM_BIOSAttribute.html
http://www.ietf.org/rfc/rfc4646.txt
http://edk2.sourceforge.net/
http://noggin.intel.com/technology-journal/2011/151/uefi-today-bootstrapping-continuum
http://noggin.intel.com/technology-journal/2011/151/uefi-today-bootstrapping-continuum
http://noggin.intel.com/technology-journal/2011/151/uefi-today-bootstrapping-continuum
http://noggin.intel.com/technology-journal/2011/151/uefi-today-bootstrapping-continuum
http://noggin.intel.com/technology-journal/2011/151/uefi-today-bootstrapping-continuum
http://noggin.intel.com/technology-journal/2011/151/uefi-today-bootstrapping-continuum
http://download.intel.com/design/archives/wfm/downloads/pxespec.pdf
http://download.intel.com/design/archives/wfm/downloads/pxespec.pdf
http://www.rfc-editor.org/rfc/rfc5970.txt
http://www.rfc-editor.org/rfc/rfc5970.txt
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm?turl=WordDocuments%2Fsetsoliderandotherbootoptions.htm
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm?turl=WordDocuments%2Fsetsoliderandotherbootoptions.htm
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm?turl=WordDocuments%2Fsetsoliderandotherbootoptions.htm
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/default.htm?turl=WordDocuments%2Fsetsoliderandotherbootoptions.htm
http://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xml
http://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xml
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-family-mobile-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-family-mobile-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/4th-gen-core-family-mobile-brief.pdf
http://uefidk.intel.com/sites/default/files/resources/Platform_Security_Review_Intel_Cisco_White_Paper.pdf
http://uefidk.intel.com/sites/default/files/resources/Platform_Security_Review_Intel_Cisco_White_Paper.pdf
http://uefidk.intel.com/sites/default/files/resources/Platform_Security_Review_Intel_Cisco_White_Paper.pdf
http://apps.insyde.com/sbutil.html
http://www.ubuntu.com/
http://www.intel.com/design/archives/wfm/downloads/base20.htm
http://www.intel.com/design/archives/wfm/downloads/base20.htm

