
INFORMATION .4.ND CONTROL 4, 353-358 (1961) 

A Note on Mathematical Induction on Phrase 
Structure Grammars 

ROBERT W. FLOYD 

Armour Research Foundation of Illinois Institute of Technology, Chicago 16, Illinois 

Two rules of derivation are exhibited and shown to yield valid 
metalinguistic theorems concerning phrase structure grammars (type 
2 or context-free grammars, in Chomsky's notation). 

DEFINITIO~TS. The notion of a character or letter is taken as un- 
defined. Characters will be represented by  small Greek letters. An 
alphabet or vocabulary is a finite collection of distinct characters. For 
convenience, an alphabet  will be assumed to be an ordered set {al ,  a2, 
. . . ,  an}; this assumption is not essential. A string is a finite nonempty  
sequence of characters chosen from a given alphabet.  In  particular, each 
character  is itself a string. Strings will be represented by  small Latin 
letters. A grammatical  category is a (possibly infinite or empty )  set of 
strings. Categories will be represented by  Latin capitals. A language is a 
finite set of categories, of which one may  optionally be singled out as 
the category of sentences or well formed formulas. 

The length of a string x, written l (x) ,  is the number  of characters in 
the str~ng. For  any  string x and character a, l(x) _-> 1 and l(a) = 1. 
The concatenation xy of two strings x and y is the string of length l(x) + 
l(y)  whose first l(x) characters are those of x in the order in which they  
appear  in x, and whose next l(y) characters are those of y in order. 
Concatenat ion is associative; (xy)z = x(yz) .  I f  there exists a string y 
such tha t  xy = z, then x is a head of z; similarly, if yx = z, x is a tail 
of z. In  either case, l(x) < l(z). 

The union or disjunction of two categories A and B, writ ten A ~.~ B, 
is the set Ix I x C -4 V x  C B/. The product A B  is the set of strings of the 
form xy, where x C A and y C B. A primary category {a} is tha t  whose 
~ole element is the string a consisting of a single character.  

A phrase structure language (PSL)  is a set of categories A~(1 -< i -- m) 
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each of which is defined by 

A~ = l~J,} (~) 

or A~ = Akl Al~ (2) 

or A, = A~ ~j A~ (3) 

Not every such set of definitions serves to define a language, in the 
sense of determining unambiguously whether a given string belongs to 

given category. Consider the set of definitions 

A = B ~ j C  

B = C ~ j A  

C = A ~ B  

Clearly an arbitrary string may be consistently assumed to belong to 
each of A, B, and C, or to none of them. The incompleteness of the set 
of definitions may be traced to the presence of a cycle of disjunctive 
definitions. A phrase structure grammar (PSG) is a set of definitions of 
the three forms given above, where if A~ is defined by As = Ak~ ~j Az~ 
then k~ < i and l, < i. This restriction serves to eliminate disjunctive 
cycles without diminishing the set of definable languages (proof is 
omitted here). Such a grammar is equivalent to a type 2 (or context- 
free) grammar in Chomsky's notation (Chomsky, 1959) or a simple 
phrase structure grammar in the notation of Bar-Hillel et al. (1960). 

Consider a proposition T concerning a PSG whose categories are 
A~(1 <- i <- m),  and whose letters are ~ ( 1  <_- j < n).  Suppose T takes 

m m T the form h~=l(x C A~ D P~ (x) ), abbreviated A~I i • 
THEOREM 1. I f  for each A~ defined by A, = {a3~}, there is a proof of 

P~ (a~.i); and for each A~ defined by A~ = Ak A~, there is a proof of 
Pk (x) A PI (y) ~ P,  (xy) ; and for each A~ defined by As = Ak ~ A ~ , 
there is a proof of P~ (x) V Pz (x) ~ P~ (x); then there is a proof of 
A'~=~(x ~ A,  ~ P~ (x) ), abbreviated A~I T~ or simply T. 

PRoof:  T is equivalent to the conjunction 

(~(x) = 1 ~ Ti)  A ( l ( x )  = 1 D T~) A --" A (~(x) = 1 D T ~ ) A  

( l ( x )  = 2 D T~) /~ ( l ( x )  = 2 D T2) /~ . . .  A ( l ( x )  = 2 D T . ~ ) £  

( l (x)  = 3 ~ T1) A "'" etc., 
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orkp=Kl(x) = q-~ 1 D Tr+l), where q and r are the quotient and 
remainder respectively of ( p - 1 ) / m .  Let us designate T ~ as 
A~=l(/(x) = q + l  D Tr+l). We shall show that T ~ D T ;+1. Since T O is 
vacuously true, T ~ is true for all ~-, and therefore T is true. 

Assume the t ruth of T ~. Only the last term of T ~+1 remains to be 
proven. The last term of T ~+1 is l ( x )  = Q + I  D TR+I, where Q and R 
are quotient and remainder respectively of 7r/re. Three cases must be 
distinguished. 

Case 1 

If AR+~ is defined by AR~_~ = {c~jR+~}, there is a proof of P,+~ (a~a+~), 
and thus of x C A,+~ D PR--I (x) and of l ( x )  = Q-4-1 D TR+~. 

Case 2 

If AR+I is defined by AR+I = Ak Az, and x C AR+I, l ( x )  = Q + I ,  then 
x = yz, where y C Ak and z ~ A t ,  l ( y )  < QA-1 and l ( z )  < Q-]-I. Now 
T ~ implies Pk (Y) and Pz (z). Since P~ (y) A Pz (z) D PR+~ (yz), we 
may deduce l ( x )  = Q + t  D (x ~ A~+~ D P,+~ (x)),  the last term of 
~ + 1 .  

Case 3 

If A~+~ is defined by AR+, = Ak , j  A~ , and x ~ AR+I , l ( x )  = Qq-1,  

then x ~  Aa. or x ~  At .  Since ~: < R + I  and l < R - t - l ,  T ~ implies 
Pk (z) k / P z  (z). Since Pk (x) k / P l  (x) D PR+I (x), we may deduce 
l ( z )  = Q-}-I ~ ( z  C AR+I D Pa+I ( z )  ). 

No matter  which definition scheme is used for AR+~, T~D T ~--I. 
Therefore T is provable by mathematical induction. 

EXAMPLE. Le~ Odd(x) and Even(x) stand for the assertions that  
l ( x )  is odd or even respectively. Let P ( A ~ )  mean x C A~ D P ( x ) .  
Define a PSG by A = {a}, B = CA,  C = D A ,  and D = A ~_~B. Then 
to prove Odd(A) /k Odd(B) A Even(C) /~ Odd(D) requires only 
proof of Odd(a) ,  Even(x) /k Odd(y) D Odd(xy), Odd(x) /k Odd(y) 
D Even(xy),  and O d d ( x ) V  O d d ( x ) ~  Odd(z),  each of which is 
obvious. 

By an induction analogous to that  of Theorem 1, it is possible to 
prove assertions concerning the heads and tails of the strings of a 
category. Certain properties of heads will first be remarked. If A = {a~}, 
then xy  ~_ A .  I r A  = BC, and x y  ~ A then (1) x ~ B, y ~ C, or (2) 
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there exist strings u and v such tha t  x = uv, u E B, vy E C, l(vy) < l(xy), 
or (3) there exist strings u and v such tha t  y = uv, xu E B, v E C, 
l(xu) < l (xy ) .  I f  A = B ~ j C ,  and x y E  A, then xy E B or x y E  C. 
Consider a proposition of the form A~I  xy E A~ ~ Pi (x). 

THEORE~ 2. I f  for each As defined by Ai = Ak At there is a proof of 
x E A k ~ P i ( x )  and of u E A ~ / ~ P l ( v )  ~ P ~ ( u v )  and of Pk (x) 
P~ (x) ;  and if  for each Ai defined by A~ = Ak ~.~ A~ there is a proof of 
Pk (x) ~/ Pz (x) D P~ (x) ; then there is a proof ofA~.=l xy E Ai ~ P~ (x). 

PROOF: The proof of Theorem 2 is much like tha t  of Theorem 1, 
except tha t  the induction is carried out on l(xy) rather  than  l(x). 

For an integer i such tha t  A~ is a p r imary  category, there are no 
strings x and y such tha t  xy E A i .  I t  is convenient to choose for P~ (x) 
an identically false proposition, such as x ~ x. This simplifies certain 
steps in the proof procedure; if P~ (v) is false for all v, then 
u E Ak /~  Pz (v) ~ P~ (uv) is true for all u and v, etc. 

An analogous procedure, interchanging the roles of x and y, allows 
proof of propositions of the form A~=~ xy E A~ D Q~ (y). 

COROLLARY. I f  for each Ai defined by A~ = Ak At there is a proof of 
y E At ~ QI (y) and of Qk (u) /~ v E At ~ Q~ (uv) and of Q~ (y) 
Qi (y) ;  and if  for each A~ defined by A~ = Ak ~j Az there is a proof of 
Qk (Y) ~/Q~ (y) D Q~ (y) ;  then thereisa proof of A~.=l xy E A~ ~ Q~ (y). 

A linear string function (LSF)  is a function f (x)  whose domain is the 
set of strings over a given alphabet,  and whose range is a subset of the 
real numbers,  such tha t  for all strings x and y, f(xy) = f(x)  ~- f(y) .  The 
length of a string is a LSF. The LSF's  f~ (x) whose values are com- 
pletely determined by  f~. (a~) = 5j~ form a basis for the vector space 
of LSF's.  I f  A is a category and f (x)  a LSF, we shall write f ( A )  to  
mean an arbi t rary  element of the range of f (x)  when x is restricted 
to be a member  of A. To prove for a given PSG thatf(A~.) = c~, where 
c~ is a constant  depending only on i, it is necessary and sufficient to  
prove for each A i 

(1) I f  A~ = {a~}, that  f (~ j )  = c~.. 

(2) I f  A~ = A~ A t ,  tha t  c~ = c~ + c~. 

(3) I f A ~  = A ~ j A t , t h a t c ,  = c, = c , .  

The set of LSF 's  which take on constant values for each of several 
categories A~ is a vector subspace of the set of all LSF's.  
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EXAMPLE. Define a language Lp by 

V = {¢0} Q = P ~ U  

U---{¢1} R =  QF 

B = {¢2} Y = R ~  V 

P = B F  

Interpret ing ¢0 as a variable, ¢1 as a unary prefix operator, ¢5 as a binary 
prefix operator, and F as the category of well formed formulas, Lp is the 
well known Polish prefix notation. The categories P,  Q, and R are 
auxiliary. Defining f as the linear string function with f (¢o) = 1, f (¢1) 
= O, f(¢2) = --1, it is readily proven that  f ( V )  = 1, f ( U )  = O, f ( B )  
- 1, f ( P )  = 0, f (Q)  = O , f ( R )  = 1, f ( F )  = 1, using Theorem 1. 
I t  may  then be proven using Theorem 2 and its corollary that  

xy  C P ~ ( f ( x )  -< --1 A f ( y )  > 1) 

xy  C Q D ( f ( x )  =< - 1  A f ( y )  > 1) 

xy  C R ~ ( f ( x )  <__ 0 i f ( y )  ~ 1) 

xy  ~ F D ( f ( x )  <__ 0 A f ( y )  >= 1) 

REMARKS. The variants of mathematical induction offered above as 
mechanisms for reasoning about phrase structure grammars suffer from 
the defect that  the theorem proven must refer explicitly to every cate- 
gory of the language. This unpleasant situation is unavoidable. In  most 
languages of practical interest, whether natural or artificial, there is a 
complicated interdependence of categories, so that  a proof must simul- 
taneously consider properties of each category. If a particular set of 
categories is independent it may  be treated as a sublanguage with a 
resulting simplification of proofs. A proof procedure of general applica- 
bility, however, can not assume this possibility. 

Familiarity with the uses and pitfalls of the two proof procedures 
described allows them to be used in a more informal manner. The 
language L~,  for example, may  be defined informally by  F = 
¢o ~.~ ¢~ F ~.~ ¢5 FF.  Inspection then indicates that  for any LSF such 
tha t  f ( F )  = 1 it is necessary that  f (¢o) = 1, f(¢1) = 0, and f(¢2) = - 1. 

RECEIVED: Ma y  27, 1961 
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