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OF LOGICAL AND “∧”/LOGICAL OR “∨” RELATIONS:

REPORT ON THE OCCASION OF THE

PUBLICATION OF THE FOUR MAIN PAPERS ON

INTER-UNIVERSAL TEICHMÜLLER THEORY
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Section 1: General summary for non-specialists

We begin with an overall summary of non-mathematical aspects of the situation
surrounding [IUTchI-IV], which may be of interest to both non-mathematicians
and mathematicians. We also refer to [FsADT], [FKvid], [FsDss], [FsPio] for a
discussion of various aspects of this situation from slightly different points of view.

§1.1. Publication of [IUTchI-IV]

The four main papers [IUTchI-IV] on inter-universal Teichmüller theory (IUT)
were accepted for publication in the Publications of the Research Institute for
Mathematical Sciences (PRIMS) on February 5, 2020. This was announced at an
online video news conference held at Kyoto University on April 3, 2020. The four
papers were subsequently published in several special volumes of PRIMS, a leading
international journal in the field of mathematics with a distinguished history dating
back over half a century.

The refereeing for these Special Volumes was overseen by an Editorial Board for
the Special Volumes chaired by Professors Masaki Kashiwara and Akio Tamagawa.
[Needless to say, as the author of these four papers, I was completely excluded
from the activities of this Editorial Board for the Special Volumes.] Professor
Kashiwara, a professor emeritus at RIMS, Kyoto University, is a global leader in
the fields of algebraic analysis and representation theory. Professor Tamagawa,
currently a professor at RIMS, Kyoto University, is a leading pioneer in the field
of anabelian geometry and related research in arithmetic geometry. Here, it should
be noted that, to a substantial extent,

inter-universal Teichmüller theory arose as an extension/application
— developed by the author in the highly mathematically stimulating en-
vironment at RIMS, Kyoto University, over the course of roughly two
decades [i.e., 1992 - 2012] — of precisely the sort of anabelian geome-
try that was pioneered by Tamagawa.

It is for this reason that PRIMS stood out among mathematics journals worldwide
as the most appropriate — i.e., in the sense of being by far the most [and indeed
perhaps the only truly] technically qualified — journal for the task of refereeing and
publishing the four papers [IUTchI-IV] on inter-universal Teichmüller theory.

Both Professors Kashiwara and Tamagawa have an outstandingly high inter-
national reputation, built up over distinguished careers that span several decades.
It is entirely inconceivable that any refereeing process overseen by these mathemati-
cians might be conducted relative to anything less than the highest mathematical
standards, free of any inappropriate non-mathematical considerations. In an arti-
cle in the Asahi Shimbun [a major Japanese newspaper] published shortly after the
announcement of April 3, 2020, Professor Tamagawa is quoted as saying that he
has

“100 percent confidence in the refereeing”

that was done for the four papers [IUTchI-IV].

In another article in the Asahi Shimbun [also published shortly after the an-
nouncement of April 3, 2020], Professors Shigefumi Mori, a professor emeritus at



LOGICAL STRUCTURE OF INTER-UNIVERSAL TEICHMÜLLER THEORY 3

RIMS, Kyoto University, and Nobushige Kurokawa, a professor emeritus at the
Tokyo Institute of Technology, express their expectations about the possibility of
applying inter-universal Teichmüller theory to other unsolved problems in number
theory.

In particular, the results proven in these four papers [IUTchI-IV] may now
be quoted in the mathematical literature as results proven in papers that have
been published in a leading international journal in the field of mathematics after
undergoing an exceptionally thorough [seven and a half year long] refereeing process.

§1.2. Redundancy assertions of the “redundant copies school” (RCS)

Unfortunately, it has been brought to my attention that, despite the develop-
ments discussed in §1.1, fundamental misunderstandings concerning the math-
ematical content of inter-universal Teichmüller theory persist in certain sectors of
the mathematical community. These misunderstandings center around a certain
oversimplification — which is patently flawed, i.e., leads to an immediate contradic-
tion — of inter-universal Teichmüller theory. This oversimplified version of inter-
universal Teichmüller theory is based on assertions of redundancy concerning
various multiple copies of certain mathematical objects that appear in inter-
universal Teichmüller theory. In the present paper, I shall refer to the school of
thought [i.e., in the sense of a “collection of closely interrelated ideas”] constituted
by these assertions as

the “RCS”, i.e., “redundant copies school [of thought]”.

One fundamental reason for the use of this term “RCS” [i.e., “redundant copies
school [of thought]”] in the present paper, as opposed to proper names of math-
ematicians, is to emphasize the importance of concentrating on mathematical
content, as opposed to non-mathematical — i.e., such as social, political, or psy-
chological — aspects or interpretations of the situation.

Thus, in a word, the central assertions of the RCS may be summarized as
follows:

Variousmultiple copies of certain mathematical objects in inter-universal
Teichmüller theory are redundant and hence may be identified with one
another. On the other hand, once one makes such identifications, one
obtains an immediate contradiction.

In the present paper, I shall refer to redundancy in the sense of the assertions of the
RCS as “RCS-redundancy”, to the identifications of RCS-redundant copies that
appear in the assertions of the RCS as “RCS-identifications”, and to the over-
simplified version of inter-universal Teichmüller theory obtained by implementing
the RCS-identifications as “RCS-IUT”.

As discussed in [Rpt2018] [cf., especially, [Rpt2018], §18], there is absolutely
no doubt that

RCS-IUT is indeed a meaningless and absurd theory that leads immediately
to a contradiction.
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A more technical discussion of this contradiction, in the language of inter-universal
Teichmüller theory, is given in §3.1 below, while a digested version in more ele-
mentary language of the technical discussion of §3 may be found in Example 2.4.5
below.

Rather, the fundamental misunderstandings underlying the RCS lie in the as-
sertions of RCS-redundancy. The usual sense of the word “redundant” suggests
that there should be some sort of equivalence, or close logical relationship,
between the original version of the theory [i.e., IUT] and the theory obtained [i.e.,
RCS-IUT] by implementing the RCS-identifications of RCS-redundant objects. In
fact, however,

implementing the RCS-identifications of RCS-redundant objects radi-
cally alters/invalidates the essential logical structure of IUT

in such a fundamental way that it seems entirely unrealistic to verify any sort of
“close logical relationship” between IUT and RCS-IUT.

A more technical discussion of the three main types of RCS-redundancy/RCS-

identification — which we refer to as “(RC-FrÉt)”, “(RC-log)”, and “(RC-Θ)” —
is given, in the language of inter-universal Teichmüller theory, in §3.2, §3.3, §3.4,
below. In fact, however, the essential mathematical content of these three
main types of RCS-redundancy/RCS-identification is entirely elementary and
lies well within the framework of undergraduate-level mathematics. A discussion of
this essentially elementary mathematical content is given in §2.3, §2.4 below [cf.,
especially, Example 2.4.5].

One important consequence of the technical considerations discussed in §3
below is the following:

from the point of view of the logical relationships between various as-
sertions of the RCS, the most fundamental type of RCS-redundancy is
(RC-Θ).

That is to say, (RC-Θ) may be understood as the logical cornerstone of the
various assertions of the RCS.

§1.3. Qualitative assessment of assertions of the RCS

As discussed in detail in §3.4 below [cf. also §2.3, §2.4],
implementing the logical cornerstone RCS-identification of (RC-Θ)
completely invalidates the crucial logical AND “∧” property sat-
isfied by the Θ-link — a property that underlies that the entire logical
structure of inter-universal Teichmüller theory.

In particular, understanding the issue of how the RCS treats this fundamental
conflict between the RCS-identification of (RC-Θ) and the crucial ∧-property of the
Θ-link is central to the issue of assessing the assertions of the RCS.

In March 2018, discussions were held at RIMS with two adherents of the RCS
concerning, in particular, (RC-Θ) [cf. [Rpt2018], [Dsc2018]]. Subsequent to these
discussions, after a few e-mail exchanges, these two adherents of the RCS informed
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me via e-mail in August 2018 — in response to an e-mail that I sent to them in which
I stated that I was prepared to continue discussing inter-universal Teichmüller the-
ory with them, but that I had gotten the impression that they were not interested
in continuing these discussions — that indeed they were not interested in continuing
these discussions concerning inter-universal Teichmüller theory. In the same e-mail,
I also stated that perhaps it might be more productive to continue these discussions
of inter-universal Teichmüller theory via different participants [i.e., via “represen-
tatives” of the two sides] and encouraged them to suggest possible candidates for
doing this, but they never responded to this portion of my e-mail. [Incidentally,
it should be understood that I have no objection to making these e-mail messages
public, but will refrain from doing so in the absence of explicit permission from the
two recipients of the e-mails.]

Since March 2018, I have spent a tremendous amount of time discussing the
fundamental “(RC-Θ) vs. ∧-property” conflict mentioned above with quite
a number of mathematicians. Moreover, over the past two years, many mathemati-
cians [including myself!] with whom I have been in contact have devoted a quite
substantial amount of time and effort to analyzing and discussing certain 10pp.
manuscripts written by adherents of the RCS — indeed to such an extent that by
now, many of us can cite numerous key passages in these manuscripts by memory.
More recently, one mathematician with whom I have been in contact has made a
quite intensive study of the mathematical content of recent blog posts by adherents
of the RCS.

Despite all of these efforts, the only justification for the logical cornerstone
RCS-identification of (RC-Θ) that we [i.e., I myself, together with the many
mathematicians that I have discussed these issues with] could find either in oral
explanations during the discussions of March 2018 or in subsequent written records
produced by adherents of the RCS [i.e., such as the 10pp. manuscripts referred to
above or various blog posts] were statements of the form

“I don’t see why not”.

[I continue to find it utterly bizarre that such justifications of the assertions of
the RCS appear to be taken seriously by some professional mathematicians.] In
particular, we were unable to find any detailed mathematical discussion by adherents
of the RCS of the fundamental “(RC-Θ) vs. ∧-property” conflict mentioned
above. That is to say, in summary,

the mathematical justification for the “redundancy” asserted in the
logical cornerstone assertion (RC-Θ) of the RCS remains a complete
mystery to myself, as well as to all of the mathematicians that I have
consulted concerning this issue.

Put another way, the response of all of the mathematicians with whom I have
had technically meaningful discussions concerning the assertions of the RCS was
completely uniform and unanimous, i.e., to the effect that these assertions of the
RCS were obviously completely mathematically inaccurate/absurd, and
that they had no idea why adherents of the RCS continued to make such manifestly
absurd assertions. In particular, it should be emphasized that

I continue to search for a professional mathematician [say, in the field of
arithmetic geometry] who feels that he/she understands the mathematical



6 SHINICHI MOCHIZUKI

content of the assertions of the RCS and is willing to discuss this math-
ematical content with me or other mathematicians with whom I am in
contact

[cf. the text at the beginning of [Dsc2018]].

In this context, one important observation that should be kept in mind is the
following [cf. the discussion of [Rpt2018], §18]:

There is a fundamental difference between criticism of a mathematical
theory that is based on a solid, technically accurate understanding
of the content and logical structure of the theory and criticism of a mathe-
matical theory that is based on a fundamental ignorance of the content
and logical structure of the theory.

An elementary classical example of this sort of difference is discussed in §2.1 below.

In the case of the RCS, the lack of any thorough mathematical discussion of
the fundamental “(RC-Θ) vs. ∧-property” conflict mentioned above in the
various oral/written explanations set forth by adherents of the RCS demonstrates,
in a definitive way, that none of the adherents of the RCS has a solid, technically
accurate understanding of the logical structure of inter-universal Teichmüller theory
in its original form, i.e., in particular, of the central role played in this logical
structure by the “∧-property” of the Θ-link. Put another way, the only logically
consistent explanation of this state of affairs is that the theory “RCS-IUT” that
adherents of the RCS have in mind, i.e., the theory that is the object of their
criticism, is simply a completely different—and logically unrelated— theory
from the theory constituted by inter-universal Teichmüller theory in its original
form.

Finally, it should be mentioned that although some people have asserted par-
allels between the assertions of the RCS and the fundamental error in the first
version of Wiles’s proof of the Modularity Conjecture in the mid-1990’s, this anal-
ogy is entirely inappropriate for numerous reasons. Indeed, as is well-known,
nothing even remotely close to the phenomena discussed thus far in the present
§1.3 occurred in the case of the error in the first version of Wiles’s proof. The fact
that there was indeed a fatal error in the first version of Wiles’s proof was never
disputed in any way by any of the parties involved; the only issue that arose was
the issue of whether or not the proof could be fixed. By contrast, no essential er-
rors have been found in inter-universal Teichmüller theory, since the four preprints
[IUTchI-IV] on inter-universal Teichmüller theory were released in August 2012.
That is to say, in a word, the assertions of the RCS are nothing more than mean-
ingless, superficial misunderstandings of inter-universal Teichmüller theory on
the part of people who are clearly not operating on the basis of a solid, technically
accurate understanding of the mathematical content and essential logical structure
of inter-universal Teichmüller theory.

§1.4. The importance of extensive, long-term interaction

In general, the transmission of mathematical ideas between individuals
who share a sufficient stock of common mathematical culture may be achieved
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in a relatively efficient way and in a relatively brief amount of time. Typical ex-
amples of this sort of situation in the context of interaction between professional
mathematicians include

· one-hour mathematical lectures,
· week-long mathematical lecture series, and
· informal mathematical discussions for several days to a week.

In the context of mathematical education, typical examples include

· written or oral mathematical examinations and
· mathematics competitions.

The successful operation of each of these examples relies, in an essential way, on
a common framework of mathematical culture that is shared by the various
participants in the activity under consideration.

On the other hand, in the case of a fundamentally new area of research,
such as inter-universal Teichmüller theory, which evolved out of research over the
past quarter of a century concerning absolute anabelian geometry, certain types
of categories arising from arithmetic geometry, and certain arithmetic aspects of
theta functions, the collection of mathematicians who share such a sufficient stock
of common mathematical culture tends to be relatively small in number. In par-
ticular, for most mathematicians — even many arithmetic geometers or anabelian
geometers — short-term interaction of the sort that occurs in the various typical
examples mentioned above is far from sufficient to achieve an effective trans-
mission of mathematical ideas. That is to say, no matter how mathematically
talented the participants in such platforms of interaction may be, it takes time for
the participants to

· analyze and sort out numerous mutual misunderstandings,
· develop effective techniques of communication that can transcend such
misunderstandings, and
· digest and absorb new ideas and modes of thought.

Depending on the mathematical content under consideration, as well as on the
mathematical talent, mathematical background, and time constraints of the partic-
ipants, this painstaking process of analysis/development/digestion/absorption may
require

patiently sustained efforts to continue constructive, orderly mathematical
discussions [via e-mail, online video discussions, or face-to-face meetings]
over a period of months or even years

to reach fruition. Indeed, my experience in exposing the ideas of inter-universal
Teichmüller theory to numerous mathematicians over the past decade suggests
strongly that, in the case of inter-universal Teichmüller theory, it is difficult to
expedite this process to the extent that it can be satisfactorily achieved in less than
half a year or so.

In particular, in the case of inter-universal Teichmüller theory, a week-long
session of discussions such as the discussions held at RIMS in March 2018 with
two adherents of the RCS [cf. [Rpt2018], [Dsc2018]] is far from sufficient. This is
something that I emphasized, both orally during these discussions and in e-mails
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to these two adherents of the RCS during the summer of 2018 subsequent to these
discussions.

§1.5. The historical significance of detailed, explicit, accessible records

As was discussed in §1.3, I continue to search for a professional mathematician
[say, in the field of arithmetic geometry] who purports to understand the math-
ematical justification for the RCS-redundancy asserted in the logical corner-
stone assertion (RC-Θ) — i.e., in particular, who has confronted the mathematical
content of the fundamental “(RC-Θ) vs. ∧-property” conflict mentioned in
§1.3 — and who is prepared to discuss this mathematical content with me or other
mathematicians with whom I am in contact. Of course, instead of direct mathe-
matical discussions [via e-mail, online video discussions, or face-to-face meetings],

a detailed, explicit, mathematically substantive, and readily ac-
cessible written exposition

of the mathematical justification for (RC-Θ) would also be quite welcome [cf. the
discussion of [Rpt2014], (7)]. Moreover, in this context, it should be emphasized that
such a detailed, explicit, mathematically substantive, and readily accessible written
exposition would be of great value not only for professional mathematicians and
graduate students who are involved with inter-universal Teichmüller theory at the
present time, but also for scholars in the [perhaps distant!] future.

In general, it cannot be overemphasized that maintaining such detailed, ex-
plicit, mathematically substantive, and readily accessible written records is

of fundamental importance to the development of mathematics.

Indeed, as was discussed in the final portion of [Rpt2018], §3, from a historical
point of view, it is only by maintaining such written records that the field of math-
ematics can avoid the sort of well-known and well-documented confusion that
lasted for so many centuries concerning “Fermat’s Last Theorem”. Moreover, it is
fascinating to re-examine, from the point of view of a modern observer, the intense
debates that occurred, during the time of Galileo, concerning the theory of helio-
centrism or, during the time of Einstein, concerning the theory of relativity. Again,
it cannot be overemphasized that

such historical re-examinations are technically possible precisely because
of the existence of detailed, explicit, mathematically substantive,
and readily accessible written expositions of the logical structure
underlying the various central assertions that arose in the debate.

§1.6. The importance of further dissemination

One fundamental and frequently discussed theme in the further development
of inter-universal Teichmüller theory is the issue of increasing the number of profes-
sional mathematicians who have a solid, technically accurate understanding
of the details of inter-universal Teichmüller theory. Indeed, this issue is in some
sense the central topic of [Rpt2013], [Rpt2014]. As discussed in §1.4, in order to
achieve such a solid, technically accurate understanding of the theory, it is neces-
sary to devote a substantial amount of time and effort over a period of roughly
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half a year to two or three years, depending on various factors. It also requires the
participation of professional mathematicians or graduate students who are

· sufficiently familiar with numerous more classical theories in arithmetic
geometry [cf. the discussion of [Alien], §4.1, (ii); [Alien], §4.4, (ii)],
· sufficiently well motivated and enthusiastic about studying inter-universal
Teichmüller theory, and
· sufficiently mathematically talented, and who have a
· sufficient amount of time to devote to studying the theory.

As a result of quite substantial dissemination efforts not only on my part, but
also on the part of many other mathematicians, the number of professional mathe-
maticians who have achieved a sufficiently detailed understanding of inter-universal
Teichmüller theory to make independent, well informed, definitive statements con-
cerning the theory that may be confirmed by existing experts on the theory [cf. also
the discussion of §1.7 below] is roughly on the order of 10. It is worth noting that
although this collection of mathematicians is centered around RIMS, Kyoto Uni-
versity, it includes mathematicians of many nationalities and of age ranging from
around 30 to around 60. One recent example demonstrated quite dramatically that
it is quite possible to achieve a solid mathematical understanding of inter-universal
Teichmüller theory as a graduate student by studying on one’s own, outside of
Japan, and with essentially zero contact with RIMS, except for a very brief pe-
riod of a few months at the final stage of the student’s study of inter-universal
Teichmüller theory.

Finally, we observe, in the context of the discussion [cf. §1.3, §1.4, §1.5] of the
assertions of the RCS, that another point that should be emphasized is that it is
also of fundamental importance to

increase the number of professional mathematicians [say, in the field of
arithmetic geometry] who have a solid technical understanding of the
mathematical content of the assertions of the RCS, and who are pre-
pared to discuss this mathematical content with members of the “IUT
community”

[i.e., with mathematicians who are substantially involved in mathematical research
and/or dissemination activities concerning inter-universal Teichmüller theory]. Here,
we note in passing that such a solid technical understanding of the mathematical
content of the assertions of the RCS is by no means “equivalent” to expressions
of support for the RCS on the basis of non-mathematical — i.e., such as social,
political, or psychological — reasons. In this context, it should also be emphasized
and understood [cf. the discussion of [Rpt2014], (7)] that both

· producing detailed, explicit, mathematically substantive, and readily ac-
cessible written expositions of the mathematical justification of assertions
of the RCS [such as (RC-Θ)!], i.e., as discussed in §1.5, and
· increasing the number of professional mathematicians [say, in the field
of arithmetic geometry] who have a solid technical understanding of the
mathematical content of the assertions of the RCS, and who are prepared
to discuss this mathematical content with members of the IUT community

are in the interest not only of the IUT community, but of the RCS as well.
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§1.7. The notion of an “expert”

One topic that sometimes arises in the context of discussions of dissemination
of inter-universal Teichmüller theory [i.e., as in §1.6], is the following issue:

What is the definition of, or criterion for, being an “expert” on inter-
universal Teichmüller theory?

In a word, it is very difficult to give a brief, definitive answer, e.g., in the form of a
straightforward, easily applicable criterion, to this question. On the other hand, in
this context, it should also be pointed out that the difficulties that arise in the case of
inter-universal Teichmüller theory are, in fact, not so qualitatively different from the
difficulties that arise in answering the analogous question for mathematical theories
other than inter-universal Teichmüller theory. These difficulties arise throughout
the daily life of professional mathematicians in numerous contexts, such as the
following:

(Ev1) preparing suitable exercises or examination problems to educate and
evaluate students,

(Ev2) evaluating junior mathematicians,
(Ev3) refereeing/evaluating mathematical papers for journals.

From my point of view, as the author of [IUTchI-IV], one fundamental criterion
that I always keep in mind — not only the in case of [IUTchI-IV], but also in the
case of other papers that I have written, as well as when I am involved in the various
types of evaluation procedures (Ev1) ∼ (Ev3) discussed above — is the issue of

the extent to which the level of understanding of the mathematician in
question enables the mathematician to “stand on his/her own two feet”
with regard to various assertions concerning the theory, on the basis of
independent, logical reasoning, without needing to be “propped up” or cor-
rected by me or other known experts in the theory.

I often refer to this criterion as the criterion of autonomy of understanding.
Of course, from a strictly rigorous point of view, this criterion is, in some sense,
not so “well-defined” and, in many contexts, difficult to apply in a straightforward
fashion. On the other hand, in the past, various mathematicians involved with
inter-universal Teichmüller theory have demonstrated such an autonomous level of
understanding in the following ways:

(Atm1) the ability to detect various minor errors/oversights in [IUTchI-III];

(Atm2) the ability to propose new, insightful ways of thinking about various
aspects of inter-universal Teichmüller theory;

(Atm3) the ability to propose ways of modifying inter-universal Teichmüller
theory so as to yield stronger or more efficient versions of the theory;

(Atm4) the ability to produce technically accurate oral or written expositions of
inter-universal Teichmüller theory;

(Atm5) the ability to supervise or direct new mathematicians — i.e., by train-
ing/educating professional mathematicians or graduate students with re-
gard to inter-universal Teichmüller theory — who, in due time, demon-
strate various of the four types of ability (Atm1) ∼ (Atm4) discussed
above.
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Of course, just as in the case of other mathematical theories, different experts
demonstrate their expertise in different ways. That is to say, experts in inter-
universal Teichmüller theory often demonstrate their expertise with respect to some
of these five types of ability (Atm1) ∼ (Atm5), but not others.

In this context, it should be pointed out that one aspect of inter-universal
Teichmüller theory that is currently still under development is the analogue for
inter-universal Teichmüller theory of (Ev1), i.e., preparing suitable exercises for
mathematicians studying inter-universal Teichmüller theory. This point of view
may be seen in the discussion in the final portion of the Introduction to [Alien], as
well as in the discussion of “valuable pedagogical tools” in [Rpt2018], §17. Indeed,
many of the technical issues discussed in [Rpt2018], §15, may easily be reformu-
lated as “exercises” or, alternatively, as “examination problems” for evaluating the
level of understanding of mathematicians in the process of studying inter-universal
Teichmüller theory.

§1.8. Fabricated versions spawn fabricated dramas

As discussed in §1.6, §1.7, by now there is a substantial number of mathe-
maticians who have attained a thorough, accurate, and automous understanding of
inter-universal Teichmüller theory. In each of the cases of such mathematicians that
I have observed thus far, such an understanding of the theory was achieved essen-
tially by means of a thorough study of the original papers [IUTchI-IV], followed by
a period of constructive discussions with one or more existing experts that typically
lasted roughly from two to six months to sort out and resolve various “bugs” in the
mathematician’s understanding of the theory that arose when the mathematician
studied the original papers on his/her own [cf. the discussion of §1.4].

On the other hand, there is also a growing collection of mathematicians who
have a somewhat inaccurate and incomplete — and indeed often quite superficial
— understanding of certain aspects of the theory. This in and of itself is not
problematic — that is to say, so long as the mathematician in question maintains
an appropriate level of self-awareness of the inaccurate and incomplete nature of
his/her level of understanding of the theory — and indeed is a phenomenon that
often occurs as abstract mathematical theories are disseminated.

Unfortunately, however, a certain portion of this collection of mathematicians
[i.e., whose understanding of the theory is inaccurate and incomplete] have exhibited
a tendency to

assert/justify the validity of their inaccurate and incomplete understand-
ing of the theory by means of “reformulations” or “simplifications”
of the theory, which are in fact substantively different from and have no
directly logical relationship to [e.g., are by no means “equivalent” to!] the
original theory.

Indeed, the version, referred to in the present paper as “RCS-IUT” [cf. §1.2], that
arises from implementing the assertions of the RCS appears to be the most famous
of these fabricated versions of inter-universal Teichmüller theory. On the other
hand, other, less famous fabricated versions of inter-universal Teichmüller theory
have also come to my attention in recent years.
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Here, before proceeding, we note that, in general, reformulations or simplifica-
tions of a mathematical theory are not necessarily problematic, i.e., so long as they
are indeed based on a thorough and accurate understanding of the original theory
and, moreover, can be shown to have a direct logical relationship to the original
theory.

The authoring of fabricated versions of inter-universal Teichmüller theory ap-
pears to be motivated, to a substantial extent, by a deep desire to recast inter-
universal Teichmüller theory in a “simplified” form that is much closer to the sort
of mathematics with which the author of the fabricated version is already famil-
iar/feels comfortable. On the other hand, this phenomenon of producing fabricated
versions also appears to have been

substantially fueled by numerous grotesquely distorted mass media reports
and comments on the English-language internet that blithely paint inter-
universal Teichmüller theory as a sort of cult religion, fanatical political
movement, mystical philosophy, or vague sketch/proposal for a mathemat-
ical theory.

Moreover, another unfortunate tendency, of which RCS-IUT is perhaps the most
egregious example, is for fabricated versions of inter-universal Teichmüller theory
to

spawn lurid social/political dramas revolving around the content of
the fabricated version, which in fact have essentially nothing to do with
the content of inter-universal Teichmüller theory.

Such lurid dramas then spawn further grotesquely distorted mass media reports
and comments on the English-language internet, which then reinforce and enhance
the social/political status of the fabricated version. Here, it should be emphasized
that such vicious spirals have little [or nothing] to do with substantive mathe-
matical content and indeed serve only to mass-produce unnecessary confusion
that is entirely counterproductive, from the point of the view of charting a sound,
sustainable course in the future development of the field of mathematics [cf. the
discussion of [Alien], §4.4, (iv)].

In fact, of course, inter-universal Teichmüller theory is neither a religion, nor
a political movement, nor a mystical philosophy, nor a vague sketch/proposal for a
mathematical theory. Rather, it should be emphasized that

inter-universal Teichmüller theory is a rigorously formulated mathematical
theory that has been verified countless times by quite a number of mathe-
maticians, has undergone an exceptionally thorough seven and a half year
long refereeing process, and was subsequently published in a leading inter-
national journal in the field of mathematics.

[cf. the discussion of §1.1]. In particular, in order to avoid the sort of vicious spirals
referred to above, it is of the utmost importance

to concentrate, in discussions of inter-universal Teichmüller theory, on
substantive mathematical content, as opposed to non-mathematical
— such as social, political, or psychological — aspects or interpretations
of the situation.
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As discussed in §1.2, this is the main reason for the use of the term “RCS” in the
present paper.

§1.9. Geographical vs. mathematical proximity

Historically, mathematical interaction between professional mathematicians re-
lied on physical meetings or the exchange of hardcopy documents. Increasingly,
however, advances in information technology have made it possible for mathemati-
cal interaction between professional mathematicians to be conducted electronically,
by means of e-mail or online video communication. Of course, this does not imply
that physical meetings or the exchange of hardcopy documents — especially in sit-
uations where physical meetings or the exchange of hardcopy documents do indeed
function in a meaningful way, from the point of view of those involved — should
necessarily be eschewed.

On the other hand, physical meetings between participants who live in dis-
tant regions requires travel. Moreover, travel, depending on the situations of the
participants, can be a highly taxing enterprise. Indeed, travel, as well as lodging
accommodations, typically requires the expenditure of a quite substantial amount
of money, as well as physical and mental effort on the part of those involved.
This effort can easily climb to unmanageable [i.e., from the point of view of certain
of the participants] proportions, especially when substantial cultural — i.e., either in
mathematical or in non-mathematical culture, or in both — differences are involved.
The current situation involving the COVID-19 pandemic adds yet another dimen-
sion to the reckoning, from the point of view of the participants, of the physical
and mental effort that must be expended in order to travel. As a result,

when, from the point of view of at least one of the key participants, the
amount of effort, time, and/or money that must be expended to travel
clearly exceeds, by a substantial margin — i.e., “≫” — the gain [i.e.,
relative to various mathematical or non-mathematical criteria of the key
participant in question] that appears likely to be obtained from the travel
under consideration, it is highly probable that the travel under considera-
tion will end up simply not taking place.

One “classical” example of this phenomenon “≫” is the relative scarcity of profes-
sional mathematicians in Europe or North America who travel to Japan frequently
[e.g., at least once a year] or for substantial periods to time.

I have, at various times in my career, been somewhat surprised by assertions
on the part of some mathematicians to the effect that travel should somehow be
forced on mathematicians, i.e., to the effect that some sort of coercion may somehow
“override” the fundamental inequality “≫” that exists as a result of the circum-
stances in which a mathematician finds him/herself in. In my experience, although
this sort of coercion to travel may result in some sort of superficial influence in
the very short term, it can never succeed in the long term. That is to say, the
fundamental circumstances that give rise to the fundamental inequality “≫” can
never be altered by means of such coercive measures to travel [cf. the discussion of
[Rpt2014], (8)].

In this context, I was most impressed by the following two concrete examples,
which came to my attention recently. In describing these examples, I have often
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used somewhat indirect expressions, in order to protect the privacy of the people
involved.

Example 1.9.1: The insufficiency of geographic proximity. This example
concerns the results obtained in a paper written in the fall of 2019 by a graduate stu-
dent (St1) from country (Ct1). This student (St1) showed his paper to a prominent
senior researcher (Pf1) at a university in country (Ct2) in a certain area of number
theory. The education and career of this researcher (Pf1) was conducted entirely
at universities in countries (Ct2), (Ct3), and (Ct4). This researcher (Pf1) informed
(St1) of his very positive evaluation of the originality of the results obtained in
the paper by (St1). Another prominent senior researcher (Pf2) in a certain area of
number theory was informed by (Pf1) of the paper by (St1). This researcher (Pf2),
who works at a university in country (Ct2) in close physical proximity to (Pf1),
also took a generally positive position with regard to the paper by (St1). On the
other hand, several months subsequent to this interaction between (Pf1) and (St1),
a junior researcher (Pf3), who is originally from country (Ct5), but currently works
at a university in country (Ct2) in close physical proximity to (Pf1) and (Pf2),
informed student (St1) [via e-mail contacts between (Pf3) and (St1)’s advisor] that

the results of the paper by (St1) are in fact “well-known” and essen-
tially contained in papers published in the 1990’s by (Pf4), a
prominent senior researcher in country (Ct6).

[To be more precise, in fact the results of the paper by (St1) are not entirely
contained in the papers by (Pf4) in the sense that the paper by (St1) contains
certain numerically explicit estimates that are not contained in the papers by (Pf4).]
Country (Ct6) is in close physical proximity to country (Ct3), and in fact, one of
the research advisors of researcher (Pf4), when (Pf4) was a graduate student, was a
prominent researcher (Pf5) who is originally from country (Ct7), but has pursued
his career as a mathematician mainly in countries (Ct3) and (Ct6). Here, it should
be pointed out that (Pf1), (Pf2), and (Pf4) are very close in age, and that (Pf1)
received his undergraduate education in country (Ct3) at one of the universities
that played in prominent role in the career of (Pf5). The paper by student (St1)
concerns mathematics that has been studied extensively by — and indeed forms
one of the central themes of the research of — both (Pf1) and (Pf4), but from very
different points of view, using very different techniques, since (Pf1) and (Pf4) work
in substantially different areas of number theory. On the other hand, at no time
during the initial several months of interaction between (Pf1), (Pf2), and (St1)
was the work of (Pf4) mentioned. That is to say, (Pf1) and (Pf2) discussed the
results obtained in the paper by (St1) in a way that can only be explained by the
hypothesis that

(Pf1) and (Pf2) were, at the time, entirely unaware of the very close
relationship between the results obtained in the paper by (St1) and the
papers in the 1990’s by (Pf4).

— i.e., despite the numerous opportunities afforded by close physical prox-
imity, as well as proximity of age, for substantial interaction between (Pf1) and
(Pf4). The paper by student (St1) is currently submitted for publication to a cer-
tain mathematical journal. Student (St1) recently received a referee’s report for
his paper, which apparently [i.e., judging from the comments made in the referee’s
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report] was written by a mathematician working in an area of number theory close
to (Pf1). This referee’s report also makes no mention of the papers in the 1990’s
by (Pf4) and the fact that the results obtained in the paper by (St1) appear, with
the exception of certain numerically explicit estimates, to be essentially contained
in these papers of (Pf4). Finally, it should be mentioned that each official language
of each of these countries (Ct1), (Ct2), (Ct3), (Ct4), (Ct5), (Ct6), (Ct7) belongs to
the European branch of the Indo-European family of languages, and that at least
six of the ten pairs of countries in the list (Ct2), (Ct3), (Ct4), (Ct6), (Ct7) share a
common official language [i.e., with the other country in the pair].

Example 1.9.2: The remarkable potency of mathematical proximity. This
example concerns the study of inter-universal Teichmüller theory by a graduate stu-
dent (St2), who is originally from country (Ct8), but was enrolled in the doctoral
program in mathematics at a university in country (Ct9) under the supervision of a
senior faculty member (Pf6), who is originally from country (Ct10). This graduate
student (St2) began his study of inter-universal Teichmüller theory as a graduate
student and continued his study during his years as a graduate student with es-
sentially no mathematical contact with any researchers who are significantly
involved with inter-universal Teichmüller theory, except for his advisor (Pf6) and
one mid-career researcher (Pf7) from country (Ct11). Here, we remark that the
official language of each of these countries (Ct8), (Ct9), (Ct10), (Ct11) belongs
to the European branch of the Indo-European family of languages. In particular,
with the exception of a few very brief e-mail exchanges with me and a brief two-
week long stay at RIMS in 2016 to participate in a workshop on IUT, this student
(St2) had essentially no mathematical contact, prior to the fall of 2019, with
any researchers at Kyoto University who are involved with inter-universal
Teichmüller theory. Even in these circumstances,

this student was able not only to achieve a very technically sound un-
derstanding of inter-universal Teichmüller theory on his own, by reading
[IUTchI-IV] and making use of various resources, activities, and contacts
within country (Ct9), but also to succeed, as a graduate student, in making
highly nontrivial original research contributions to a certain mild
generalization of inter-universal Teichmüller theory, as well as to certain
related aspects of anabelian geometry.

My first [i.e., with the exception of a few very brief e-mail exchanges prior to this]
mathematical contact with this student (St2) was in the fall of 2019. Although this
student (St2) initially had some technical questions concerning aspects of inter-
universal Teichmüller theory that he was unable to understand on his own, after a
few relatively brief discussions in person with me, he was able to find answers to
these technical questions in a relatively short period of time [roughly a month or
two] without much trouble.

Section 2: Elementary mathematical aspects of “redundant copies”

The essence of the central mathematical assertions of the RCS revolves, per-
haps somewhat remarkably, around quite elementary considerations that lie well
within the framework of undergraduate-level mathematics. Before examining, in §3,
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the assertions of the RCS in the technical terminology of inter-universal Teichmüller
theory, we pause to give a detailed exposition of these elementary considerations.

§2.1. The history of limits and integration

The classical notion of integration [e.g., for continuous real-valued functions
on the real line], as well as the more fundamental, but closely related notion of a
limit, have a long history, dating back [at least] to the 17-th century. Initially,
these notions did not have rigorous definitions, i.e., were not “well-defined”, in the
sense understood by mathematicians today. The lack of such rigorous definitions
frequently led, up until around the end of the 19-th century, to “contradictions”
or “paradoxes” in mathematical work — such as Grandi’s series

∞∑
n=0

(−1)n

— concerning integrals or limits.

Ultimately, of course, the theory of limits and integrals evolved, especially
during the period starting from around the mid-19-th century and lasting until
around the early 20-th century, to the extent that such “contradictions/paradoxes”
could be resolved in a definitive way. This process of evolution involved, for instance,
in the case of integration, first the introduction of the Riemann integral and later the
introduction of the Lebesgue integral, which made it possible to integrate functions
— such as, for instance, the indicator function on the real line of the subset of
rational numbers — whose Riemann integral is not well-defined.

Here, it should be noted that at various key points during this evolution of the
notions of limits and integration, the central “contradictions/paradoxes” that, at
times, led to substantial criticism and confusion arose from a solid, technically
accurate understanding of the content and logical structure of the assertions —
such as, for instance, various possible approaches to computing the value of Grandi’s
series — at the center of these “contradictions/paradoxes”. It is precisely for this
reason that such criticism and confusion ultimately lead to substantive refinements
in the theory that were sufficient to resolve the original “contradictions/paradoxes”
in a definitive way.

Such constructive episodes in the history of mathematics — which may
be studied by scholars today precisely because of the existence of detailed,
explicit, mathematically substantive, and readily accessible written records!
[cf. the discussion of §1.5] — stand in stark contrast to criticism of a
mathematical theory that is based on a fundamental ignorance of the
content and logical structure of the theory, such as the following “false
contradiction” in the theory of integration, which may be observed in
some students who are still in an initial stage with regard to their study
of the notion of integration.

Example 2.1.1: False contradiction in the theory of integration. Consider
the following computation of the definite integral of a real-valued function on the
real line ∫ 1

0

xn dx = 1
n+1
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for n a positive integer. Suppose that one takes the [drastically oversimplified and
manifestly absurd, from the point of view of any observer who has an accurate
understanding of the theory of integration!] point of view that the most general
possible interpretation of the equation of the above display is one in which the
following three symbols

“

∫ 1

0

”, “x”, “dx”

are allowed to be arbitrary positive real numbers a, b, c. Here, we note that in the
case of “dx”, such a substitution “dx �→ c” could be “justified” by quoting conven-
tional “ε-δ” treatments of the theory of limits and integrals, in which infinitesimals
— i.e., such as “dx” or “ε” — are allowed to be arbitrary positive real numbers,
which are regarded as being “arbitrarily small”, and observing that any positive
real number c is indeed much smaller than “most other positive real numbers” [such
as 1000 · c, etc.]. On the other hand, by substituting the values n = 1, 2, 3, one
obtains relations

abc = 1, ab2c = 1
2 , ab3c = 1

3 .

The first two of these relations imply that b = 1
2 [so b2 = 1

4 ], while the first and

third relations imply that b2 = 1
3 �= 1

4 — a “contradiction”!

§2.2. Derivatives and integrals

In the context of the historical discussion of integration in §2.1, it is interesting
to recall the fundamental theorem of calculus, i.e., the result to the effect that,
roughly speaking, the operations of integration and differentiation of functions [i.e.,
real-valued functions on the real line satisfying suitable conditions] are inverse to
one another. Thus, from a certain point of view,

the “essential information” contained in a function may be understood as
being “essentially equivalent” to the “essential information” contained
in the derivative of the function

— that is to say, since one may always go back and forth at will between a function
and its derivative by integrating and then differentiating. This point of view might
then tempt some observers to conclude that

any mathematical proof that relies, in an essential way, on consideration
of the derivative of a function must be fundamentally flawed since any
information that might possibly be extracted from the derivative of the
function should already be available [cf. the “essential equivalence” dis-
cussed above] from the function prior to passing to the derivative, i.e., in
“contradiction” to the essential dependence of the proof on passing to the
derivative.

Alternatively, this point of view may be summarized in the following way:

the “essential equivalence” discussed above implies that any usage, in a
mathematical proof, of the derivative of a function is necessarily inherently
redundant in nature.
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In fact, of course, such “pseudo-mathematical reasoning” is itself fundamen-
tally flawed. Two examples of well-known proofs in arithmetic geometry that
depend, in a essential way, on passing to the derivative will be discussed in the final
portion of §3.2 below. These examples are in fact closely related to the mathematics
that inspired inter-universal Teichmüller theory [cf. the discussion in the final por-
tion of §3.2 below]. One central aspect of the situations discussed in §3.2 below is
the exploitation of properties of [various more abstract analogues of] the derivative
of a function that differ, in a very substantive, qualitative way, from the prop-
erties of the original function. One important example of this sort of situation is
the validity/invalidity of various symmetry properties. This phenomenon may
be observed in the following elementary example.

Example 2.2.1: Symmetry properties of derivatives. The real-valued func-
tion

f(x) = x

on the real line is not invariant [i.e., not symmetric] with respect to translations
by an arbitrary constant c ∈ R. That is to say, in general, it is not the case that
f(x + c) = f(x). On the other hand, the derivative f ′(x) = 1 of this function is
manifestly invariant/symmetric with respect to such translations.

§2.3. Line segments vs. loops

By comparison to the examples given in §2.1, §2.2, the following elementary
geometric examples are much more closely technically related to the assertions of
the RCS concerning inter-universal Teichmüller theory.

Example 2.3.1: Endpoints of an oriented line segment.

(i) Write

I
def
= [0, 1] ⊆ R

for the closed unit interval [i.e., the set of nonnegative real numbers ≤ 1] in the real
line R. Thus, I is equipped with a natural topology [i.e., induced by the topology
of R], hence can be regarded as a topological space, indeed more specifically, as a
one-dimensional topological manifold with boundary that is equipped with a natural
orientation [i.e., induced by the usual orientation of R]. Write

α
def
= {0}, β

def
= {1}

for the topological spaces [consisting of a single point!] determined by the two
endpoints of I. Thus, α and β are isomorphic as topological spaces. In certain
situations that occur in category theory, it is often customary to replace a given
category by a full subcategory called a skeleton, which is equivalent to the given
category, but also satisfies the property that any two isomorphic objects in the
skeleton are equal. This point of view of working with skeletal categories [i.e.,
categories which are their own skeletons] is motivated by the idea that nonequal
isomorphic objects are “redundant”. Of course, there are indeed various situations
in which nonequal isomorphic objects are redundant in the sense that working
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with skeletal categories, as opposed to arbitrary categories, does not result in any
substantive difference in the mathematics under consideration.

(ii) On the other hand, if, in the present discussion of I, α, β — which one
may visualize as follows

I

•——>——•
α β

— one identifies α and β, then one obtains a new topological space, that is to say,
more specifically, an oriented one-dimensional topological manifold [whose orienta-
tion is induced by the orientation of I]

L
def
= I/〈α ∼ β〉

that is homeomorphic to the unit circle, i.e., may be visualized as a loop. Write
γL ⊆ L for the image of α ⊆ I, or, equivalently, β ⊆ I, in L. As is well-known
from elementary topology, the topological space L is structurally/qualitatively very
different from the topological space I. For instance, whereas I has a trivial fun-
damental group, L has a nontrivial fundamental group [isomorphic to the additive
group of integers Z]. In particular,

it is by no means the case that the fact that α and β are isomorphic as
topological spaces implies a sort of “redundancy” to the effect that any
mathematical argument involving I [cf. the above observation concerning
fundamental groups!] is entirely equivalent to a corresponding math-
ematical argument in which α and β are identified, i.e., in which “I” is
replaced by “L”.

(iii) In this context, we observe that the [one-dimensional oriented topological
manifold with boundary] I does not admit any symmetries that switch α and
β. Moreover, even if one passes to the quotient I � L, the [one-dimensional ori-
ented topological manifold] L does not admit any symmetries that reverse the
orientation of L.

Example 2.3.2: Gluing of adjacent oriented line segments.

(i) A similar elementary geometric situation to the situation discussed in Ex-
ample 2.3.1, but which is technically a bit more similar to the situation that arises
in inter-universal Teichmüller theory may be given as follows. We begin with two
distinct copies †I, ‡I of I. Thus, †I has endpoints †α, †β [i.e., corresponding re-
spectively to the endpoints α, β of I]; similarly, ‡I has endpoints ‡α, ‡β. We then
proceed to form a new topological space J by gluing †I to ‡I via the unique isomor-
phism of topological spaces †β ∼→ ‡α. Thus, †β and ‡α are identified in J. Let us
write γJ for the one-pointed topological space obtained by identifying †β and ‡α.
Thus, J may be visualized as follows:

†I ‡I
•——>——•——>——•†α γJ

‡β
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(ii) Observe that the gluing operation that gave rise to J is such that we may
regard †I and ‡I as subspaces †I ⊆ J, ‡I ⊆ J of J. Since each of these subspaces
†I, ‡I of J is naturally isomorphic to I, one may take the point of view, as in the
discussion of Example 2.3.1, that these two subspaces are “redundant” and hence
should be identified with one another [say, via the natural isomorphisms of †I, †I
with I] to form a new topological space

M
def
= J/〈†I ∼ ‡I〉

— where we observe that the natural isomorphisms of †I, †I with I determine a
natural isomorphism of topological spaces M

∼→ L = I/〈α ∼ β〉, with the loop L

considered in Example 2.3.1. Write γM ⊆ M for the image of γJ ⊆ J in M. Thus,

the natural isomorphism M
∼→ L maps γM isomorphically onto γL. On the other

hand, just as in the situation discussed in Example 2.3.1,

it is by no means the case that the fact that †I and ‡I are [in fact, natu-
rally] isomorphic as topological spaces implies a sort of “redundancy” to
the effect that any mathematical argument involving J is entirely equiv-
alent to a corresponding mathematical argument in which †I and ‡I are
identified [say, via the natural isomorphisms of †I, †I with I], i.e., in
which “J” is replaced by “M”.

Indeed, for instance, one verifies immediately, just as in the situation of Exam-
ple 2.3.1, that the fundamental groups of J and M are not isomorphic. That is
to say, just as in the situation of Example 2.3.1, the topological space J is struc-
turally/qualitatively very different from the topological space M.

§2.4. Logical AND “∧” vs. logical OR “∨”
The essential mathematical content of the elementary geometric examples dis-

cussed in §2.3 may be reformulated in terms of the symbolic logical relators AND
“∧” and OR “∨”. This reformulation renders the elementary geometric examples
of §2.3 in a form that is even more directly technically related to various central
aspects of the assertions of the RCS concerning inter-universal Teichmüller theory.

Example 2.4.1: “∧” vs. “∨” for adjacent oriented line segments.

(i) Recall the situation discussed in Example 2.3.2. Thus, J ⊇ †I ⊇ †β = γJ =
‡α ⊆ ‡I ⊆ J, i.e.,

(AOL1) the following condition holds:

(
γJ =

†β ⊆ †I
)

∧
(
γJ =

‡α ⊆ ‡I
)
.

On the other hand, if one identifies †I, ‡I, then one obtains a topological space
M

∼→ L, i.e., a loop. Here, “
∼→ ” denotes the natural isomorphism discussed in

Example 2.3.2, (ii). Now suppose that we are given a connected subspace

γI ⊆ I
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whose image in the quotient I � L = I/〈α ∼ β〉 coincides with γL ⊆ L, i.e., with
the image of γJ ⊆ J via the composite of the quotient J� M = J/〈†I ∼ ‡I〉 with
the natural isomorphism M

∼→ L. Then observe that

(AOL2) the following condition holds: γI ∈ {α, β}, i.e.,
(
γI = β ⊆ I

)
∨

(
γI = α ⊆ I

)
.

Of course,

(AOL3) the essential mathematical content discussed in this condition (AOL2)
may be formally described as a condition involving the AND relator “∧”:

(
β ∈ {α, β}

)
∧

(
α ∈ {α, β}

)
.

But the essential mathematical content of the OR relator “∨” statement in (AOL2)
remains unchanged.

(ii) On the other hand, [unlike the case with γJ!]

(AOL4) the following condition does not hold:

(
γI = β ⊆ I

)
∧

(
γI = α ⊆ I

)
.

That is to say, in summary, the operation of identifying †I, ‡I — e.g., on the
grounds of “redundancy” [cf. the discussion of Example 2.3.2] — has the effect
of passing from a situation in which

the AND relator “∧” holds [cf. (AOL1)]

to a situation in which

the OR relator “∨” holds [cf. (AOL2), (AOL3)], but
the AND relator “∧” does not hold [cf. (AOL4)]!

(iii) It turns out that this phenomenon — i.e., of an identification of “redundant
copies” leading to a passage from the validity of an “∧” relation to the validity of
an “∨” relation coupled with the invalidity of an “∧” relation — forms a very
precise model of the situation that arises in the assertions of the RCS concerning
inter-universal Teichmüller theory [cf. the discussion of §3.2, §3.4 below].

Example 2.4.2: Differentials on oriented line segments.

(i) In the situation of Example 2.4.1, one way to understand the gap between
(AOL1) and (AOL4) — i.e., the central issue of whether the AND relator “∧” holds
or does not hold — is to think in terms of the restriction to I ⊆ R of the coordinate
function “x” of Example 2.2.1. Indeed,
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(AOD1) one may interpret (AOL4) as the statement that the coordinate functions
“x” on the two copies †I, ‡I that constitute J do not glue together to
form a single, well-defined R-valued function on J [that is to say, since it
is not clear whether the value of such a function on γJ ⊆ J should be 0 or
1, i.e., such a function is not well-defined on γJ ⊆ J];

(AOD2) on the other hand, (AOL1) may be interpreted as the statement that
such a function [i.e., obtained by gluing together the coordinate functions
“x” on the two copies †I, ‡I that constitute J] can indeed be defined if
one regards its values as being [not in a single copy of R, but rather] in
the set †,‡R obtained by gluing together two distinct copies †R, ‡R of R
by identifying †1 ∈ †R with ‡0 ∈ ‡R.

(ii) On the other hand, if, instead of considering the coordinate function “x”,
one considers the differential “dx” associated to this coordinate function [cf. the
discussion of Example 2.2.1], then one observes immediately that

(AOD3) the differentials “dx” on the two copies †I, ‡I that constitute J do
indeed glue together to form a single, well-defined differential on J that,
moreover, is compatible with the quotient J � M = J/〈†I ∼ ‡I〉 in the
sense that, as is easily verified, it arises as the pull-back, via this quotient
map J�M, of a [smooth] differential on the [smooth manifold constituted
by the] loop M.

Note, moreover, that the gluings and compatibility of (AOD3) may be achieved
without considering functions or differentials valued in some sort of complicated
[i.e., by comparison to R!] set such as †,‡R.

(iii) It turns out [cf. the discussion of Example 2.4.1, (iii)] that the phenomenon
discussed in (AOD3) is closely related to the situation that arises in inter-universal
Teichmüller theory [cf. the discussion of §3.2 below].

Example 2.4.3: Representation via subgroup indices of “∧” vs. “∨”.

(i) Let A be an abelian group and B1, B2 ⊆ A subgroups of A such that B1∩B2

has finite index in B1 and B2. Then one may define a positive rational number,
which we call the index of B2 relative to B1,

[B1 : B2]
def
= [B1 : B1 ∩B2]/[B2 : B1 ∩B2] ∈ Q>0.

Thus, [B1 : B2] · [B2 : B1] = 1; when B2 ⊆ B1, this notion of index coincides with
the usual notion of the index of B2 in B1.

(ii) Let n be a positive integer ≥ 2. Consider the diagram of group homomor-
phisms

G1
n·−→ G2

n·−→ G3

— where, for i = 1, 2, 3, Gi denotes a copy of [the additive group of rational
integers] Z, and the arrows are given by multiplication by n. For i = 1, 2, 3, write



LOGICAL STRUCTURE OF INTER-UNIVERSAL TEICHMÜLLER THEORY 23

GQ
i

def
= Gi ⊗Z Q for the tensor product of Gi over Z with Q. Then observe that this

diagram induces a diagram of group isomorphisms

GQ
1

∼→ GQ
2

∼→ GQ
3

— i.e., in which the arrows are isomorphisms. Let us use these isomorphisms to
identify the groups GQ

i , for i = 1, 2, 3, and denote the resulting group by GQ
∗ .

(iii) Observe that the first diagram of (ii) is structurally reminiscent of the
object J discussed in Examples 2.3.2, 2.4.1, 2.4.2, i.e., if one regards

· the first arrow of the first diagram of (ii) as corresponding to †I,
· the second arrow of the first diagram of (ii) as corresponding to ‡I, and
· G1, G2, and G3 as corresponding to †α, †β = ‡α, and ‡β, respectively.

Here, we observe that G2 appears simultaneously as the codomain of the arrow
G1

n·−→ G2 AND [cf. (AOL1)!] as the domain of the arrow G2
n·−→ G3. Moreover,

we may consider indices of G1, G2, and G3 as subgroups of GQ
∗

[G2 : G1] = [G1 : G2]
−1 = n; [G3 : G2] = [G2 : G3]

−1 = n;

[G3 : G1] = [G1 : G3]
−1 = n2

in a consistent fashion, i.e., in a fashion that does not give rise to any contra-
dictions.

(iv) On the other hand, suppose that we delete the “distinct labels” G1, G2, G3

from the copies of Z considered in the first diagram of (ii). This yields a diagram

Z
n·−→ Z

n·−→ Z

in which the second arrow may be regarded as a copy of the first arrow. This
situation might motivate some observers to conclude that these two arrows are
“redundant” and hence should be identified with one another — cf. the discus-
sion of the quotient J�M in Example 2.3.2, (ii) — to form a diagram

n·
� Z

consisting of a single copy of Z and the endomorphism of this single copy of Z given
by multiplication by n. At first glance, this operation of identification may appear
to give rise to various “contradictions” in the computation of the index, i.e., such
as

1 = [G1 : G1] = [Z : Z] = [G2 : G1] = n ≥ 2

and so on. In fact, however, if one takes into account the OR relator “∨” [but not
the AND relator “∧”!] relations that one obtains upon executing the identification
operation in question [cf. (AOL2), (AOL4)!], then one concludes that [after exe-
cuting the identification operation in question!] each of the indices [Gi : Gj ], for
i, j ∈ {1, 2, 3}, may only be computed up to multiplication by an integral power of
n, i.e., that

each index [Gi : Gj ], for i, j ∈ {1, 2, 3}, is only well-defined as “some

indeterminate element” of nZ def
= {nm | m ∈ Z} ⊆ Q>0.
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In particular, in fact there is no contradiction.

Example 2.4.4: Elementary numerical representation of “∧” vs. “∨”.
Consider the following argument concerning a natural number x ∈ {1, 3}, i.e., a
natural number for which it holds that (x = 1) ∨ (x = 3):

(ENR1) Suppose that x = 3. Then it follows that x = 3 > 2. That is to say, we
conclude that x > 2.

(ENR2) Since (x = 1) ∨ (x = 3), we may consider the case x = 1. Then, by
applying the conclusion of (ENR1), we conclude that 1 = x > 2, i.e., that
1 > 2 — a contradiction!

Of course, this argument is completely fallacious! On the other hand, it yields a
readily understood concrete example of the absurdity that arises when, as is in effect
done in (ENR2), “∨” is confused with “∧”! That is to say, the reasoning applied
in (ENR2) would have been entirely logically sound if one knew that it holds that
(x = 1) ∧ (x = 3) [i.e., as opposed to (x = 1) ∨ (x = 3)]. On the other hand, any
attempt to prove that (x = 1) ∧ (x = 3) cannot succeed precisely because of the
fact that 1 �= 3.

Example 2.4.5: Slightly more sophisticated numerical representation of
“∧” vs. “∨”.

(i) A slightly more sophisticated numerical representation of the difference
between “∧” and “∨” — which in fact mirrors the essential logical structure
of inter-universal Teichmüller theory in a very direct fashion — may be given as
follows [cf. [Alien], Example 3.11.4]. Indeed, the essential logical flow of inter-
universal Teichmüller theory may be summarized as follows:

· one starts with from the definition of an object called the Θ-link;
· one then constructs a complicated apparatus that is referred to as the
multiradial representation of the Θ-pilot [cf. [IUTchIII], Theorem
3.11];
· finally, one derives a final numerical estimate [cf. [IUTchIII], Corol-
lary 3.12] in an essentially straightforward fashion from the multiradial
representation of the Θ-pilot.

(ii) An elementary model of this essential logical flow may be given by means
of real numbers A,B ∈ R>0 and ε,N ∈ R such that 0 ≤ ε ≤ 1 in the following way:

· Θ-link: (
N

def
= −2B

)
∧

(
N

def
= −A

)
;

· multiradial representation of the Θ-pilot:(
N = −2A+ ε

)
∧

(
N = −A

)
;

· final numerical estimate:

−2A+ ε = −A, hence A = ε, i.e., A ≤ 1.
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Thus, the definition of the Θ-link and the construction of the multiradial represen-
tation of the Θ-pilot are meaningful/nontrivial precisely on account of the validity
of the AND relator “∧”, which is rendered possible, in the definition of the Θ-link,
precisely by allowing the real numbers A, B to be [a priori] distinct real numbers
— cf. (AOL1) vs. (AOL4), where we think in terms of the correspondences

B ←→ †I, N ←→ γJ, A ←→ ‡I

−2B ←→ †β, −A ←→ ‡α, −2A ←→ ‡β.

The passage from themultiradial representation of the Θ-pilot to the final numerical
estimate is then immediate/straightforward/logically transparent.

(iii) By contrast, if, in the elementary numerical model of (ii), one replaces
“∧” by “∨”, then our elementary numerical model of the logical structure of inter-
universal Teichmüller theory takes the following form:

· “∨” version of Θ-link:(
N

def
= −2B

)
∨

(
N

def
= −A

)
[cf.

(
N

def
= −2A

)
∨

(
N

def
= −A

)
];

· “∨” version of multiradial representation of the Θ-pilot:

(
N = −2A+ ε

)
∨

(
N = −A

)
;

· final numerical estimate:

−2A+ ε = −A, hence A = ε, i.e., A ≤ 1.

That is to say, the use of distinct real numbers A, B in the definition of the “∨” ver-
sion of Θ-link seems entirely superfluous [cf. (AOL2), relative to the correspon-
dences discussed in (ii)]. This motivates one to identify A and B — i.e., to suppose
“for the sake of simplicity” that A = B — which then has the effect of rendering
the definition of the original “∧” version of the Θ-link invalid/self-contradictory [cf.
(AOL4), relative to the correspondences discussed in (ii)]. Once one identifies A
and B, i.e., once one supposes “for the sake of simplicity” that A = B, the pas-
sage from the “∨” version of Θ-link to the resulting “∨” version of the multiradial
representation of the Θ-pilot then seems entirely meaningless/devoid of any
interesting content. The passage from the resulting meaningless “∨” version of
the multiradial representation of the Θ-pilot to the final numerical estimate then
seems abrupt/mysterious/entirely unjustified, i.e., put another way, looks as
if

one erroneously replaced the “∨” in the meaningless “∨” version of
the multiradial representation of the Θ-pilot by an “∧” without any
mathematical justification whatsoever.

It is precisely this pernicious chain of misunderstandings emanating from the
“redundancy” assertions of the RCS that has given rise to a substantial amount
of unnecessary confusion concerning inter-universal Teichmüller theory.
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Section 3: The logical structure of inter-universal Teichmüller theory

In the present §3, we give a detailed exposition of the essential logical struc-
ture of inter-universal Teichmüller theory, with a special focus on issues related to
RCS-redudancy. From a strictly rigorous point of view, this exposition assumes a
substantial knowledge and understanding of the technical details of inter-universal
Teichmüller theory [which are surveyed, for instance, in [Alien]]. On the other
hand, in a certain qualitative sense, the discussion of the present §3 may in fact
be understood, at a relatively elementary level, via the analogies that we discuss
with the topics covered in §2. Indeed, in this context, it should be emphasized
that, despite the relatively novel nature of the set-up of inter-universal Teichmüller
theory,

the essential mathematical content that lies at the heart of all of the issues
covered in the present §3 concerns entirely well-known mathematics at the
advanced undergraduate or beginning graduate level.

§3.1. One-dimensionality via identification of RCS-redundant copies

Inter-universal Teichmüller theory concerns the explicit description of the re-
lationship between various possible intertwinings — namely,

the “Θ”- and “q-” intertwinings

— between the two underlying combinatorial/arithmetic dimensions of a
ring [cf., e.g., [Alien], §2.11; [Alien], §3.11, (v), as well as the discussion of §3.9
below]. There are many different ways of thinking about these two underlying
combinatorial/arithmetic dimensions of a ring; one way to understand these two
dimensions is to think of them as corresponding, respectively, to the unit group
and value group of the various local fields that appear as completions of a number
field at one of its valuations.

In more technical language, this sort of decomposition into unit groups and
value groups may be seen in the F��×μ-prime-strips that appear in the Θ-link
of inter-universal Teichmüller theory. Thus, if one thinks in terms of such F��×μ-
prime-strips, then inter-universal Teichmüller theory may be summarized as follows:

(2-Dim) The main content of inter-universal Teichmüller theory is an explicit
description, up to certain relatively mild indeterminacies, of the Θ-
intertwining on the [two-dimensional!] F��×μ-prime-strips that ap-
pear in the Θ-link in terms of the q-intertwining on these F��×μ-prime-
strips by means of the log-link and various types of Kummer theory
that are used to relate Frobenius-like and étale-like structures.

In particular, the essential mathematical content of inter-universal Teichmüller the-
ory concerns an a priori variable relationship between the two underlying com-
binatorial/arithmetic dimensions of a ring.

Put another way, if one arbitrarily “crushes” these two dimensions into a single
dimension — i.e., in more technical language, assumes that

(1-Dim) there exists a consistent choice of a fixed relationship between these
two dimensions of (2-Dim), so that these two dimensions may, in effect,
be regarded as a single dimension
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— then one immediately obtains a superficial contradiction. This is not a “new” ob-
servation, but rather, in some sense, the starting point of inter-universal Teichmüller
theory, i.e., the initial motivation for regarding the relationship between the two
underlying combinatorial/arithmetic dimensions of a ring as being variable, rather
than fixed.

One central assertion of the RCS [which appears, for instance, in certain 10pp.
manuscripts written by adherents of the RCS] is to the effect that the existence, as
in (1-Dim), of a consistent choice of a fixed relationship between the two dimensions
of (2-Dim) may be derived as a consequence — i.e., in more succinct notation,

(RC-FrÉt), (RC-log), (RC-Θ) “ =⇒ ” (1-Dim)

— of certain “redundant copies assertions”, as follows:

(RC-FrÉt) the Frobenius-like and étale-like versions of objects in inter-universal
Teichmüller theory are “redundant”, i.e., may be identified with one
another without affecting the essential logical structure of the theory;

(RC-log) the (Θ±ellNF-)Hodge theaters on either side of the log-link in inter-
universal Teichmüller theory are “redundant”, i.e., may be identified
with one another without affecting the essential logical structure of the
theory;

(RC-Θ) the (Θ±ellNF-)Hodge theaters on either side of the Θ-link in inter-
universal Teichmüller theory are “redundant”, i.e., may be identified
with one another without affecting the essential logical structure of the
theory.

In the remainder of the present §3 [cf., especially, §3.2, §3.3, §3.4], we discuss in more

detail the falsity of each of these “RCS-redundancy” assertions [i.e., (RC-FrÉt),
(RC-log), (RC-Θ)].

Here, it should be noted that this falsity of (RC-FrÉt), (RC-log), (RC-Θ) is
by no means a difficult or subtle issue, but rather a sort of matter of “belaboring
the intuitively obvious” from the point of view of mathematicians who are thor-
oughly familiar with inter-universal Teichmüller theory. Nevertheless, as discussed
in [Rpt2018], §17, it is a pedagogically meaningful exercise to write out and discuss
the details surrounding this sort of issue. Moreover, as discussed in §1.5 of the
present paper, it is desirable from a historical point of view to produce detailed,
explicit, and readily accessible written expositions concerning this sort of issue.

This state of affairs prompts the following question:

Why do adherents of the RCS continue to insist on asserting the validity
of these assertions (RC-FrÉt), (RC-log), (RC-Θ)?

Any sort of complete, definitive answer to this question lies beyond the scope of
the present paper. On the other hand, it seems natural to conjecture that one
fundamental motivation for these assertions of RCS-redundancy may be found in
the fact that
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many arithmetic geometers have only experienced working in situations
were all schemes — or, alternatively, rings — that appear in a theory
are regarded as belonging to a single category that is fixed throughout
the theory.

It is not difficult to imagine that the heuristics and intuition that result from years
[or decades!] of immersive experience in such mathematical situations could create
a mindset that is fertile ground for the RCS-redundancy assertions that will be
discussed in detail in the remainder of the present §3 [cf., especially, §3.2, §3.3,
§3.4].

Finally, we observe that this situation is, in certain respects, reminiscent of
the situation that occurred in the late 19-th century with regard to such novel
[i.e., at the time] notions as the notion of an abstract manifold or an abstract
Riemann surface. That is to say, from the point of view of anyone for whom it is
a “matter of course” or “common sense” that all geometry must take place within
some fixed, static ambient Euclidean space — such as, for instance, the complex
plane — such abstract geometric notions as the notion of an abstract manifold
or abstract Riemann surface might come across as deeply disturbing and unlikely
to be of use in any substantive mathematical sense [cf. the discussion of [IUTchI],
§I.2]. In this context, it is of interest — especially from a historical point of view
— to recall that, in some sense, the most fundamental classical example of such an
abstract geometry is the Riemann surface that arises by applying the technique of
analytic continuation to the complex logarithm, i.e., which may be regarded
as a sort of distant ancestor [cf. the discussion of [IUTchI], Remark 5.1.4; [Alien],
§3.3, (vi)] of the log-link of inter-universal Teichmüller theory.

Another historically important instance of this sort of situation may be seen
in the introduction, in the early 19-th century, of Galois groups — i.e., of [finite]
automorphisms groups of abstract fields — as a tool for investigating the roots
of polynomial equations. That is to say, until the advent of Galois groups/abstract
fields, the issue of investigating the roots of polynomial equations was always re-
garded — again as a “matter of course” or “common sense” — as an issue of in-
vestigating various “exotic numbers” inside some fixed, static ambient field such
as the field of complex numbers. From this more classical “common sense” point of
view, the idea of working with automorphisms of abstract fields — i.e., fields that
are not constrained [since such constraints would rule out the existence of nontriv-
ial automorphisms!] to be treated as subsets of some fixed, static ambient field —
might come across as deeply disturbing and unlikely to be of use in any substantive
mathematical sense. On the other hand, from the point of view of inter-universal
Teichmüller theory, this radical transition

roots as concrete numbers � Galois groups/abstract fields

that occurred in the early 19-th century may be regarded as a sort of distant ancestor
of the transition

Galois groups/abstract fields � abstract groups/anabelian algorithms

that occurs in inter-universal Teichmüller theory [cf. the discussion at the beginning
of §3.2 below; the discussion of §3.8 below; the discussion of the final portion of
[Alien], §4.4, (i)].
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§3.2. RCS-redundancy of Frobenius-like/étale-like versions of objects

We begin by recalling that (Θ±ellNF-)Hodge theaters — i.e., lattice points
in the log-theta-lattice — give rise to both Frobenius-like and étale-like objects.
Whereas the datum of a Frobenius-like object depends, a priori, on the coordinates
“(n,m)” of the (Θ±ellNF-)Hodge theater from which it arises, étale-like objects
satisfy various [horizontal/vertical] coricity properties to the effect that they
map isomorphically to corresponding objects in a vertically [in the case of vertical
coricity] or horizontally [in the case of horizontal coricity] neighboring (Θ±ellNF-
)Hodge theater of the log-theta-lattice [cf., e.g., the discussion of [Alien], §2.7, (ii),
(iii), (iv); [Alien], §2.8, 2Fr/ét; [Alien], §3.3, (ii), (vi), (vii); [Rpt2018], §15]. Here,
we recall that étale-like objects correspond, for the most part, to

arithmetic fundamental groups — such as, for instance, the étale
fundamental group “π1(X)” of a hyperbolic curve X over a number field
or mixed characteristic local field

— or, more generally, to objects that may be reconstructed from such arithmetic
fundamental groups, so long as the object is regarded as being equipped with auxil-
iary data consisting of the arithmetic fundamental group from which it was recon-
structed, together with the reconstruction algorithm that was applied to reconstruct
the object. Here, we recall that, in this context, it is of fundamental importance
that these arithmetic fundamental groups be treated simply as abstract topological
groups [cf. the discussion of §3.8 below for more details]. Étale-like objects also
satisfy a

crucial symmetry property with respect to permutation of adjacent
vertical lines of the log-theta-lattice

[cf. [Alien], §3.2; the discussion surrounding Fig. 3.12 in [Alien], §3.6, (i)]. That is
to say, in summary,

the crucial coricity/symmetry properties satisfied by étale-like objects
— which are, in essence, a formal consequence of treating the arithmetic
fundamental groups that appear as abstract topological groups [cf.
the discussion of §3.8 below for more details] — play a central role in
the multiradial algorithms of inter-universal Teichmüller theory [i.e.,
[IUTchIII], Theorem 3.11] and are not satisfied by Frobenius-like ob-
jects

— cf., e.g., the discussion of [Alien], §2.7, (iii); [Alien], §3.1, (iii); [Alien], Example
3.2.2; [Rpt2018], §15, (LbΘ), (Lblog), (LbMn), (EtFr), (EtΘ), (Etlog), (EtMn).

On the other hand, once one implements the RCS-identifications discussed
in (RC-log), (RC-Θ), there is, in effect, “only one” (Θ±ellNF-)Hodge theater in the
log-theta-lattice, so all issues of determining relationships between corresponding
objects in (Θ±ellNF-)Hodge theaters at distinct coordinates “(n,m)” of the log-
theta-lattice appear, at first glance, to have been “trivially resolved”. Put another
way,

once one implements the RCS-identifications of (RC-log), (RC-Θ), even
Frobenius-like objects appear, at first glance, to satisfy all possible coric-
ity/symmetry properties, i.e., at a more symbolic level,



30 SHINICHI MOCHIZUKI

(RC-log), (RC-Θ) “ =⇒ ” (RC-FrÉt).

In particular, the assertions of the RCS discussed in §3.1 and the present §3.2 may
be summarized, at a symbolic level, as follows:

(RC-log), (RC-Θ) “ =⇒ ” (RC-FrÉt), (RC-log), (RC-Θ) “ =⇒ ” (1-Dim).

In fact, however, the RCS-identifications of (RC-log), (RC-Θ) do not resolve
such issues [i.e., of relating corresponding objects in (Θ±ellNF-)Hodge theaters at
distinct coordinates “(n,m)” of the log-theta-lattice] at all [cf. the discussion of
symmetries in Example 2.3.1, (iii)!], but rather merely have the effect of

translating/reformulating such issues of relating corresponding objects in
(Θ±ellNF-)Hodge theaters at distinct coordinates “(n,m)” of the log-theta-
lattice into issues of tracking the effect on objects in (Θ±ellNF-)Hodge the-
aters as one moves along the paths constituted by various composites
of Θ- and log-links.

On the other hand, at a purely formal level,

the discussion given above of the falsity of (RC-FrÉt) — i.e., as a conse-
quence of the crucial coricity/symmetry properties discussed above —
is, in some sense, predicated on the falsity of (RC-log), (RC-Θ).

This falsity of (RC-log), (RC-Θ) will be discussed in detail in §3.3, §3.4, below.
In this context, it is useful to observe that the situation surrounding the Θ-

link and (RC-Θ), (RC-FrÉt) (respectively, the log-link and (RC-log), (RC-FrÉt))
is structurally reminiscent of the object J discussed in Examples 2.3.2, 2.4.1,
2.4.2 [cf. also the correspondences discussed in Example 2.4.5, (ii); the discussion
of [IUTchIII], Remark 1.2.2, (vi), (vii)], i.e., if one regards

(StR1) the domain of the Θ- (respectively, log-) link as corresponding to †I,
(StR2) the codomain of the Θ- (respectively, log-) link as corresponding to ‡I,
(StR3) the gluing data — i.e., a certain F��×μ-prime-strip (respectively, F-

prime-strip) — that arises from the domain (Θ±ellNF-)Hodge theater of
the Θ- (respectively, log-) link as corresponding to †β = γJ,

(StR4) the gluing data — i.e., a certain F��×μ-prime-strip (respectively, F-
prime-strip) — that arises from the codomain (Θ±ellNF-)Hodge theater of
the Θ- (respectively, log-) link as corresponding to γJ =

‡α,
(StR5) the étale-like objects that are coric with respect to the Θ- (respectively,

log-) link as corresponding to the glued differential discussed in (AOD3),
and

(StR6) the RCS-identification of (RC-Θ) (respectively, (RC-log)) as correspond-
ing to the operation of passing to the quotient

J � M = J/〈†I ∼ ‡I〉 ∼→ L = I/〈α ∼ β〉.

This strong structural similarity will play an important role in the discussion
of §3.3, §3.4, below.

Finally, we observe that the portion, i.e., (StR5), of this strong structural
similarity involving the glued differential discussed in (AOD3) is particularly of
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interest in the context of the discussion of [Alien], §2. That is to say, as discussed in
the first paragraph of [Alien], §2.6, étale-like objects in inter-universal Teichmüller
theory play an analogous role to the role played by tangent bundles/sheaves of
differentials in the

· special case of the invariance of the height under isogenies between
abelian varieties [due to Faltings] discussed in [Alien], §2.3, §2.4 [cf. also
[Rpt2018], §16, (DiIsm)], as well as in the

· discussion of differentiation of p-adic liftings of the Frobenius morphism
given in [Alien], §2.5.

The efficacy of the technique of considering induced maps on differentials in the
various examples discussed in [Alien], §2.3, §2.4, §2.5, is also notable in the context
of the discussion of the fundamental theorem of calculus in §2.2, as well as in the
context of (RC-FrÉt) and (StR5).

§3.3. RCS-redundant copies in the domain/codomain of the log-link

The Θ-link of inter-universal Teichmüller theory is defined, in the style of
classical complex Teichmüller theory [cf. Example 3.3.1 below; [IUTchI], Remark
3.9.3], as a deformation of the ring structure in a (Θ±ellNF-)Hodge theater
that depends, in an essential way, on the splitting into unit groups and value
groups of the various localizations of the number field involved. On the other
hand, the log-link of inter-universal Teichmüller theory [i.e., in essence, the p-adic
logarithm at primes of the number field of residue characteristic p] has the effect of
juggling/rotating these unit groups and value groups, e.g., by mapping units to
non-units [cf., e.g., the discussion of [Alien], Example 2.12.3, (v)]. In particular,

there is no natural way to relate the two Θ-links [i.e., the two horizon-
tal arrows in the following diagram] that emanate from the domain and
codomain of the log-link [i.e., the left-hand vertical arrow in the following
diagram]

• Θ−→ •�⏐⏐log

...
??...• Θ−→ •

— that is to say, there is no natural candidate for “??” [i.e., such as, for instance,
an isomorphism or the log-link between the two bullets “•” on the right-hand side
of the diagram] that makes the diagram commute. Indeed, it is an easy exercise, in
the style of [Rpt2018], §15, (LbΘ), (Lblog), (LbMn), to show that neither of these
candidates for “??” [i.e., an isomorphism or the log-link] yields a commutative
diagram.

Thus, in summary, any identification of the domain and codomain of the log-
link [cf. (RC-log)!] yields a situation in which the local splittings into unit groups
and value groups of the resulting identified “•’s” are no longer well-defined. In
particular,

any such identification of the domain and codomain of the log-link [cf.
(RC-log)!] yields a situation in which the Θ-link is not well-defined
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— i.e., a situation in which the apparatus of inter-universal Teichmüller theory
completely ceases to function — cf. the discussion of the definition of the Θ-link
in the latter half of [Alien], §3.3, (ii). This discussion may be summarized, at a
symbolic level, as follows:

definition of the Θ-link =⇒ falsity of (RC-log).

Next, we observe [cf. the discussion of [IUTchI], Remark 3.9.3, (iii), (iv)] that
the non-existence of a solution for “??” in the above diagram [i.e., that makes
the diagram commute] amounts, at a structural level, to essentially the same phe-
nomenon as the incompatibility of the dilations that appear in classical complex
Teichmüller theory with multiplication by non-real roots of unity [cf. Example
3.3.1 below]. Write R, C, respectively, for the topological fields of real and complex
numbers. Then as observed in the discussion of the latter half of [Alien], §3.3, (ii)
[cf., especially, the discussion surrounding [Alien], Fig. 3.6]:

...
...�⏐⏐log

�⏐⏐log

. . .
Θ−→ • Θ−→ • Θ−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ−→ • Θ−→ • Θ−→ . . .�⏐⏐log

�⏐⏐log

. . .
Θ−→ • Θ−→ • Θ−→ . . .�⏐⏐log

�⏐⏐log

...
...

⊇

...
...�⏐⏐log

�⏐⏐log

• •�⏐⏐log

�⏐⏐log

• Θ−→ •�⏐⏐log

�⏐⏐log

• •�⏐⏐log

�⏐⏐log

...
...

(InfH) this structural similarity is consistent with the analogy discussed in loc.
cit. between

· the “infinite H” portion of the log-theta-lattice consisting
of the two vertical lines [i.e., of log-links] on either side of a
horizontal arrow [i.e., a Θ-link] of the log-theta-lattice and

· the elementary theory surrounding the bijection

C×\GL+
2 (R)/C

× ∼→ [0, 1)(
λ 0
0 1

) �→ λ−1
λ+1

— where λ ∈ R≥1; GL+
2 (R) denotes the group of 2 × 2 real

matrices of positive determinant; C× denotes the multiplicative
group of C, which we regard as a subgroup of GL+

2 (R) via the

assignment a+ ib �→ (
a b
−b a

)
, for a, b ∈ R such that (a, b) �= (0, 0);

the domain of the bijection is the set of double cosets.
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That is to say,

· the dilation
(
λ 0
0 1

)
— cf. the dilations that appear in classical

complex Teichmüller theory, i.e., as reviewed in Example 3.3.1
below — corresponds to the Θ-link portion of an “infinite H”
[cf. Example 3.3.2, (iii), below], while

· the two copies of the group of toral rotations “C×” [e.g., by
roots of unity in C×] on either side of “GL+

2 (R)” — which may
be thought of as a representation of the holomorphic structures in
the domain and codomain of the dilation

(
λ 0
0 1

)
[cf. the discussion

of Example 3.3.1 below] — correspond, respectively, to the two
vertical lines of log-links in the “infinite H” on either side of the
Θ-link [cf. the discussion of Example 3.3.2, (iv), below].

Example 3.3.1: Classical complex Teichmüller theory. Let λ ∈ R>1. Re-
call the most fundamental deformation of complex structure in classical complex
Teichmüller theory

Λ : C → C

C � z = x+ iy �→ ζ = ξ + iη
def
= x+ λ · iy ∈ C

— where x, y ∈ R. Let n ≥ 2 be an integer, ω a primitive n-th root of unity. Write
(ω ∈) μn ⊆ C for the group of n-th roots of unity. Then observe that

if n ≥ 3, then there does not exist ω′ ∈ μn such that Λ(ω · z) = ω′ · Λ(z)
for all z ∈ C.

[Indeed, this observation follows immediately from the fact that if n ≥ 3, then
ω �∈ R.] That is to say, in words,

Λ is not compatible with multiplication by μn unless n = 2 [in which
case ω = −1].

This incompatibility with “indeterminacies” arising from multiplication by μn,
for n ≥ 3, may be understood as one fundamental reason for the special role played
by square differentials [i.e., as opposed to n-th power differentials, for n ≥ 3] in
classical complex Teichmüller theory [cf. the discussion of [IUTchI], Remark 3.9.3,
(iii), (iv)].

Example 3.3.2: The Jacobi identity for the classical theta function.

(i) Write z = x + iy for the standard coordinate on the upper half-plane

H
def
= {z = x+ iy ∈ C | y > 0}. Recall the theta function on H

Θ(q)
def
=

+∞∑
n=−∞

q
1
2n

2

.
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— where we write q
def
= e2πiz. Restricting to the imaginary axis [i.e., x = 0] yields

a function

θ(t)
def
=

+∞∑
n=−∞

e−πn2t.

— where we write t
def
= y.

(ii) Next, let us observe that

ι
def
=

(
0 1

−1 0

)
∈ C× ⊆ GL+(R)

maps z �→ −z−1, hence iy �→ iy−1, i.e., t �→ t−1, while, for λ ∈ R≥1,

(
λ 0

0 1

)
∈ C× ⊆ GL+(R)

maps z �→ λ · z, hence iy �→ iλ · y, i.e., t �→ λ · t.
(iii) Next, we observe the following:

· As t → +∞, the terms in the series for θ(t) are rapidly decreasing,
and θ(t) → +0. In particular, the series for θ(t) is relatively easy to
compute.

· As t → +0, the terms in the series for θ(t) decrease very slowly,
and θ(t) → +∞. In particular, the series for θ(t) is very difficult to
compute.

Thus, in summary, the “flow/dilation”
(
λ 0
0 1

)
along the imaginary axis may be re-

garded as a sort of “link”, in the context of the theta function θ(t), between small
values [i.e., θ(t) → +0 as t → +∞] and large values [i.e., θ(t) → +iy as t → +0].
That is to say, this flow/dilation along the imaginary axis behaves in a way that
is strongly reminiscent of the Θ-link of inter-universal Teichmüller theory [cf. the
discussion of (InfH)].

(iv) The Jacobi identity for the theta function θ(t)

θ(t) = t−
1
2 · θ(t−1)

allows one to analyze the behavior of θ(t) as t → +0, which is very difficult to
compute [cf. (iii)], in terms of the behavior of θ(t) as t → +∞, which is relatively
easy compute [cf. (iii)] — cf. the discussion of the Jacobi identity in [Pano], §3,
§4; [Alien], §4.1, (i). Observe that this identity may be understood as a sort of
invariance with respect to ι [cf. (ii)], up to a certain easily computed factor [i.e.,

t−
1
2 ]. Note that ι “juggles”, or “rotates/permutes”, the two dimensions of R2. This

aspect of ι is strongly reminiscent of the log-link of inter-universal Teichmüller
theory, which “juggles”, or “rotates/permutes”, the two underlying dimensions of
the ring structures in a vertical column of the log-theta-lattice [cf., e.g., the discus-
sion of [Alien], Example 2.12.3, (v)]. By contrast, we note that the theta function



LOGICAL STRUCTURE OF INTER-UNIVERSAL TEICHMÜLLER THEORY 35

θ(t) does not satisfy any interesting properties of invariance with respect to the

dilations
(
λ 0
0 1

)
.

Finally, we recall that, in any vertical line of log-links in the log-theta-lattice,

· the discrepancy between the [holomorphic] Frobenius-like copies of objects
on either side of a log-link [cf. (RC-log)], as well as

· the discrepancy between [holomorphic] Frobenius-like copies of objects

and [holomorphic] étale-like copies of objects [cf. (RC-FrÉt)],

may be understood as the extent to which the diagram of arrows that constitutes
the log-Kummer-correspondence associated to this vertical line of log-links fails
to commute.

This failure to commute may be estimated by means of the indeterminacy
(Ind3), i.e., by interpreting this failure to commute as a sort of “upper semi-
commutativity”. This indeterminacy (Ind3) is highly nontrivial and, in particu-
lar, gives rise to the inequality that appears in the final computation of log-volumes
in inter-universal Teichmüller theory [cf. [IUTchIV], Corollary 3.12]. In this con-
text, it is important to recall that the theory surrounding this indeterminacy (Ind3)
depends, in an essential way, on the absolute anabelian geometry of [AbsTopIII], §1,
i.e., which allows one to reconstruct a hyperbolic curve X over a number field or
mixed characteristic local field from the abstract profinite group determined by the
étale fundamental group π1(X) of the curve. That is to say, in summary, this
absolute anabelian geometry allows one to show that

the discrepancies between the various [holomorphic] Frobenius-like and
[holomorphic] étale-like copies of objects in a vertical line of log-links [cf.

(RC-log), (RC-FrÉt)] in the log-theta-lattice are “bounded by” the [rel-
atively mild] indeterminacy (Ind3).

On the other hand, this absolute anabelian geometry most certainly does not imply
that these discrepancies are trivial/non-existent, i.e., as asserted in (RC-log), (RC-

FrÉt) — cf. the discussion of the falsity of (RC-log), (RC-FrÉt) in §3.2 and the
present §3.3.

§3.4. RCS-redundant copies in the domain/codomain of the Θ-link

The Θ-link of inter-universal Teichmüller theory

• Θ−→ •

is defined as a gluing between the (Θ±ellNF-)Hodge theater “•” in the domain
of the arrow and the (Θ±ellNF-)Hodge theater “•” in the codomain of the arrow
along F��×μ-prime-strips “∗” that arise from the Θ-pilot object “Θ-plt” in the
domain and the q-pilot object “q-plt” in the codomain. Here, it is important to
note that this gluing is obtained by regarding these F��×μ-prime-strips “∗” as
being known only up to isomorphism. This point of view, i.e., of regarding these
F��×μ-prime-strips “∗” as being known only up to isomorphism, is implemented
formally by taking the gluing to be the full poly-isomorphism — i.e., the set of
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all isomorphisms — between the F��×μ-prime-strips arising from the domain and
codomain of the Θ-link. Here, we recall that

· q-plt essentially amounts to the arithmetic line bundle determined by [the
ideal generated by] some 2l-th root q of the q-parameters at the valuations

∈ V
bad, while

· Θ-plt essentially amounts to the collection of arithmetic line bundles de-

termined by [the ideals generated by] the collection {qj2}, as j ranges over
the integers 1, . . . , l�

def
= l−1

2 [where l is the prime number that appears in
the initial Θ-data under consideration].

Also, we recall that each (Θ±ellNF-)Hodge theater “•” gives rise to an associated
model “Ring” of the ring/scheme theory surrounding the elliptic curve under con-
sideration. In the following discussion, we shall write

· †• for the “•” in the domain of the Θ-link,
· ‡• for the “•” in the codomain of the Θ-link,
· � for an arbitrary element of the set consisting of “†”, “‡”, and the
“empty symbol” [i.e., no symbol at all],

· �Θ-plt ∈ �Ring for the Θ-pilot arising from the collection “{�qj2}” that

appears in the model of ring/scheme theory associated to �•, and
· �q-plt ∈ �Ring for the q-pilot arising from the “�q” that appears in the

model of ring/scheme theory associated to �•.
Finally, we recall that since, for j �= 1, the valuation [at each valuation ∈ V

bad] of

qj
2

differs from that of q, the arithmetic degrees of the line bundles constituted by

q-plt and Θ-plt differ.

Thus, at a more formal level, the above description of the gluing that consti-
tutes the Θ-link may be summarized as follows:

†Ring � †Θ-plt ←: ∗ :→ ‡q-plt ∈ ‡Ring

Ring � q-plt �= Θ-plt ∈ Ring

[where “←:” and “:→” denote the assignments that consitute the gluing discussed
above].

In this context, we note the following fundamental observation, which un-
derlies the entire logical structure of inter-universal Teichmüller theory [cf. the
discussion of [IUTchIII], Remark 3.12.2, (citw), (fitw); [Alien], §3.11, (iv)]:

(AOΘ1) the following condition holds:(
∗ :→ †Θ-plt ∈ †Ring

)
∧

(
∗ :→ ‡q-plt ∈ ‡Ring

)
.

By contrast, if one simply deletes the distinct labels “†”, “‡” [cf. (RC-Θ)!], then

(AOΘ2) the following condition holds:(
∗ :→ Θ-plt ∈ Ring

)
∨

(
∗ :→ q-plt ∈ Ring

)
.
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Of course,

(AOΘ3) the essential mathematical content discussed in this condition (AOΘ2)
may be formally described as a condition involving the AND relator “∧”:

(
q-plt ∈ {q-plt,Θ-plt}

)
∧

(
Θ-plt ∈ {q-plt,Θ-plt}

)
.

On the other hand, precisely as a consequence of the fact [discussed above] that
Ring � q-plt �= Θ-plt ∈ Ring,

(AOΘ4) the following condition does not hold:

(
∗ :→ Θ-plt ∈ Ring

)
∧

(
∗ :→ q-plt ∈ Ring

)
.

That is to say, the operation of identifying †•, ‡• [hence also †Ring, ‡Ring] — e.g.,
on the grounds of “redundancy” [i.e., as asserted in (RC-Θ)!] — by deleting the
distinct labels “†”, “‡” has the effect of passing from a situation in which

the AND relator “∧” holds [cf. (AOΘ1)]

to a situation in which

the OR relator “∨” holds [cf. (AOΘ2), (AOΘ3)], but
the AND relator “∧” does not hold [cf. (AOΘ4)]!

In particular, relative to the correspondences

†•, †Ring ←→ †I; ∗ ←→ γJ;
‡•, ‡Ring ←→ ‡I

†Θ-plt ←→ †β; ‡q-plt ←→ ‡α

[cf. the correspondences (StR1) ∼ (StR6) discussed in §3.2; the correspondences
discussed in Example 2.4.5, (ii); the discussion of [Alien], §3.11, (iv)], one obtains
very precise structural resemblances

(AOΘ1) ←→ (AOL1),
(AOΘ2) ←→ (AOL2),
(AOΘ3) ←→ (AOL3),
(AOΘ4) ←→ (AOL4)

with the situation discussed in Example 2.4.1, (i), (ii). Thus, in summary,

the falsity of (RC-Θ) may be understood as a consequence of the falsity
[cf. (AOΘ4)] of the crucial AND relator “∧” in the absence of distinct
labels, in stark contrast to the truth [cf. (AOΘ1)] of the crucial AND
relator “∧” as an essentially tautological consequence of the use of the
distinct labels “†”, “‡”.

In the context of the central role played in the logical structure of inter-universal
Teichmüller theory by the validity of (AOΘ1), it is important to note [cf. the
property discussed in (AOΘ4)!] that
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(NoRng) there does not exist an isomorphism of ring structures †Ring
∼→ ‡Ring

that induces, on value groups of corresponding local rings, the desired

assignment {†qj2} �→ ‡q [i.e., that appears in the Θ-link].

On the other hand, if, instead of considering the full ring structures of †Ring, ‡Ring,
one considers [cf. the discussion of [Rpt2018], §6]

· certain suitable subquotients — i.e., in the notation of [Alien], §3.3,
(vii), (aq), (aΘ), “O×

k
” — of the underlying multiplicative monoids

of corresponding local fields, as well as
· the absolute Galois groups — i.e., in the notation of [Alien], §3.3, (vii),
(aq), (aΘ), “Gk” — associated to corresponding local rings, regarded as
abstract topological groups [that is to say, not as Galois groups, or
equivalently/alternatively, as groups of field automorphisms! — cf. the
discussion of §3.8 below],

then one obtains structures — i.e., the structures that constitute the F��×μ-prime-
strips that appear in the Θ-link — that are simultaneously associated [as “un-
derlying structures”] to both †Ring and ‡Ring via isomorphisms [i.e., of certain
suitable multiplicative monoids equipped with actions by certain suitable abstract
topological groups] that restrict, on the subquotient monoids that correspond to the

respective value groups, to the desired assignment {†qj2} �→ ‡q. It is this crucial

simultaneity that yields, as a tautological consequence, the validity of the AND
relator “∧” in (AOΘ1).

Working, as in the discussion above, with multiplicative monoids equipped
with actions by abstract topological groups, necessarily gives rise to certain inde-
terminacies, called (Ind1), (Ind2), that play an important role in inter-universal
Teichmüller theory. Certain aspects of these indeterminacies (Ind1), (Ind2) will be
discussed in more detail in §3.5 below. In this context, we recall that one central
assertion of the RCS [cf. the discussion of (SSInd), (SSId) in [Rpt2018], §7, §10] is
to the effect that

(NeuRng) these indeterminacies (Ind1), (Ind2) may be eliminated, without affecting
the essential logical structure of inter-universal Teichmüller theory, by tak-
ing the multiplicative monoids and abstract topological groups that appear
in the F��×μ-prime-strips of the above discussion to be equipped with
rigidifications by regarding them as arising from some fixed “neutral”
ring structure �Ring.

On the other hand, as discussed in (NoRng) above, there does not exist any ring
structure that is compatible [i.e., in the sense discussed in (NoRng)], with the desired

assignment {†qj2} �→ ‡q. That is to say, in summary,

(NeuORInd) working with such a fixed “neutral” ring structure �Ring as in (NeuRng)
means either that

(NeuORInd1) there is no relationship between “∗” and �Ring [cf. the
situation discussed in [Rpt2018], §10, (SSId)], or that

(NeuORInd2) the relationship between “∗” and �Ring is always necessarily
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subject to an indeterminacy [cf. (AOΘ2), (AOΘ3)!]

(
∗ :→ �Θ-plt ∈ �Ring

)
∨

(
∗ :→ �q-plt ∈ �Ring

)
.

Here, we observe that whichever of these “options”/“indeterminacies” that appear
in (NeuORInd) [i.e., (NeuORInd1), (NeuORInd2)] one chooses to adopt, one is
forced to contend with an indeterminacy that is, in some sense, much more drastic
than the relatively mild indeterminacies (Ind1), (Ind2) whose elimination formed
the original motivation for the introduction of �Ring!

Finally, we observe that this much more drastic indeterminacy (NeuORInd)
means [cf. the discussion of Example 2.4.4!] that throughout any argument, one
must always take the position that the only possible relationship between “∗” and
�Θ-plt, �q-plt is one in which

(PltRel) “∗” maps either to �Θ-plt or — i.e., “∨”! — to �q-plt, but not both!

Since ‡Ring may be thought of as a ring structure in which “∗” tautologically maps
to ‡Θ-plt, while †Ring may be thought of as a ring structure in which “∗” tauto-
logically maps to ‡q-plt, one may rephrase the above observation as the observation
that one must always take the position that the only possible relationship between
�Ring, on the one hand, and ‡Ring, †Ring, on the other, is one in which

(RngRel) the ring structure �Ring is identified either with the ring structure ‡Ring
or — i.e., “∨”! — with the ring structure †Ring, but not both!

At this point, let us recall [cf., e.g., the discussion of §3.5, §3.11, below; [Rpt2018],
§9, (GIUT), (ΘCR)] that

inter-universal Teichmüller theory requires, in an essential way, the use of
the log-links, hence, in particular, [in order to define the power series of
the various p-adic logarithm functions that constitute these log-links!] the
ring structures †Ring, ‡Ring on both sides — i.e., “∧”! — of the Θ-link

[cf. the discussion surrounding (InfH) of the two vertical lines of log-links in the
“infinite H” on either side of the Θ-link]. In particular, we conclude formally that

it is impossible to implement the arguments of inter-universal Teichmüller
theory once this sort of much more drastic indeterminacy (NeuORInd)
has been imposed.

§3.5. Indeterminacies and pilot discrepancy

As discussed in §3.4, the Θ-link involves a gluing

{†qj2} �→ ‡q

that identifies ‡q [i.e., 2l-th roots of the q-parameters at primes of multiplicative

reduction of the [copy belonging to ‡Ring of the] elliptic curve under consideration]
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with elements, i.e., the †qj
2

’s, which, when j �= 1, have different valuations from

the valuation of ‡q.

On the other hand, in inter-universal Teichmüller theory, by applying the mul-
tiradial representation of [IUTchIII], Theorem 3.11, which involves various in-
determinacies (Ind1), (Ind2), (Ind3), and then forming [cf. [IUTchIII], Corollary
3.12, and its proof] the holomorphic hull of the union of possible images of the
Θ-pilot in this multiradial representation,

(ΘGl) one may treat both sides of the Θ-link gluing of the above display
as belonging to a single ring theory without disturbing [cf. the crucial
AND relator “∧” property discussed in §3.4!] the gluing.

Alternative ways to understand the essential mathematical content of (ΘGl) include
the following:

(NonInf) One may think of (ΘGl) as a statement concerning the mutually non-
interference or simultaneous executatibility of the Kummer theo-
ries surrounding the q-pilot and Θ-pilot relative to the gluing of abstract
F��×μ-prime-strips constituted by the Θ-link, i.e., when the Kummer
theory surrounding the q-pilot is held fixed, and one allows the Kummer
theory surrounding the Θ-pilot to be subject to various indeterminacies.

(Cohab) One may think of (ΘGl) as a statement concerning the “cohabitation”,
or “coexistence”, of the q-pilot and Θ-pilot — relative to the gluing
of abstract F��×μ-prime-strips constituted by the Θ-link — within the
common container obtained by applying the multiradial representation
of the Θ-pilot, forming the holomorphic hull [relative to the holomorphic
structure [i.e., (Θ±ellNF-)Hodge theater] that gave rise to the q-pilot under
consideration], and finally taking log-volumes.

In this context, it is important to recall that this sort of phenomenon — i.e.,

of computations of global degrees/heights of elliptic curves in sit-
uations where a certain “confusion”, up to suitable indeterminacies,
is allowed between q-parameters of the elliptic curves and certain large
positive powers of these q-parameters [i.e., as in (ΘGl)]

— may be seen in various classical examples such as

· the proof by Faltings of the invariance of heights of abelian varieties
under isogeny [cf. the discussion of [Alien], §2.3, §2.4],
· the classical proof in characteristic zero of the geometric version of the
Szpiro inequality via the Kodaira-Spencer morphism, phrased in terms of
the theory of crystals [cf. the discussion of [Alien], §3.1, (v)], and
· Bogomolov’s proof over the complex numbers of the geometric version
of the Szpiro inequality [cf. the discussion of [Alien], §3.10, (vi)]

— cf. also the discussion of [Rpt2018], §16.
Unfortunately, however, the situation summarized above in (ΘGl) has resulted

in certain frequently voiced misunderstandings by some mathematicians. One
such frequently voiced misunderstanding is to the effect that
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(CnfInd1+2) the situation summarized in (ΘGl) may be explained as a consequence of
a “confusion” between q-parameters and large positive powers of these
q-parameters that results from the indeterminacies (Ind1), (Ind2).

In fact, however, as discussed in Example 3.5.1, (iii), below,

at least in the case of q-parameters of sufficiently small valuation [i.e.,
sufficiently large positive order, in the sense of loc. cit.], such a “con-
fusion” [i.e., between q-parameters and large positive powers of these
q-parameters] can never occur as a consequence of (Ind1), (Ind2), i.e.,
both of which amount to automorphisms of the [underlying topological
module of the] log-shells involved

[cf. also the discussion of (ΘInd) in [Rpt2018], §11]. In this context, we note that
this misunderstanding (CnfInd1+2) appears to be caused in many cases, at least
in part, by a more general misunderstanding concerning the operation of passage
to underlying structures [cf. Example 3.5.2 below]. A more detailed discussion of
the operation of passage to underlying structures may be found in §3.9 below.

As discussed in [Rpt2018], §11, the “confusion” summarized in (ΘGl) occurs
in inter-universal Teichmüller theory as a consequence not only of the local in-
determinacies (Ind1), (Ind2), (Ind3), but also of the constraints imposed by the
global realified Frobenioid portions of the F��×μ-prime-strips that appear in
the Θ-link. In this context, it is of particular importance to observe that

(CnfInd3) the indeterminacy (Ind3), which constrains one to restrict one’s atten-
tion to upper bounds [i.e., but not lower bounds!] on the log-volume
that is the subject of the computation of [IUTchIII], Corollary 3.12, al-
ready by itself — i.e., without considering (Ind1), (Ind2), or global reali-
fied Frobenioids! [cf. the discussion of (Ind3>1+2) in §3.11 below] — is
sufficient to account for the possibility of a “confusion” of the sort
summarized in (ΘGl) [i.e., between q-parameters and large positive powers
of these q-parameters].

Indeed, the indeterminacy (Ind3) is defined in precisely such a way as to identify
the ideals generated by arbitrary positive powers of the q-parameters.

Example 3.5.1: Bounded nature of log-shell automorphism indetermina-
cies.

(i) Write Zp for the ring of p-adic integers, for some prime number p; Qp for
the field of fractions of Zp. Let M be a finitely generated free Zp-module, which, in

the following discussion, we shall think of as being embedded in MQp

def
= M ⊗Zp Qp;

α : M
∼→ M

an automorphism of the Zp-module M . For n ∈ Z, write

U(M,n)
def
= {x ∈ MQp | x ∈ pn ·M, x �∈ pn+1 ·M} ⊆ MQp .

Then observe that α induces a bijection

U(M,n)
∼→ U(M,n)
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for every n ∈ Z.

(ii) In the notation of (i), suppose, for simplicity, that p is odd. Let K be a
finite field extension of Qp. Write OK ⊆ K for the ring of integers of K; O×

K ⊆ OK

for the group of units of OK ; mK ⊆ OK for the maximal ideal of K; IK ⊆ K for
the log-shell associated to K [cf., e.g., the discussion of [IUTchIII], Remark 1.2.2,
(i)], i.e., the result of multiplying by p−1 the image logp(O×

K) of O×
K by the p-adic

logarithm logp(−). Thus,

OK ⊆ IK ⊆ p−c · OK

for some nonnegative integer of c that depends only on the isomorphism class of the
field K [cf. [IUTchIV], Proposition 1.2, (i)]. In particular, there exists a positive
integer s that depends only on the isomorphism class of the field K such that for
any automorphism

φ : IK ∼→ IK
of the Zp-module IK and any n ∈ Z, it holds that

φ(U(OK , n)) ⊆
s⋃

i=−s

U(OK , n+ i)

[where i ranges over the integers between −s and s].

(iii) In the situation of (ii), we define the order of a nonzero element x ∈ K to
be the unique n ∈ Z such that x ∈ mn, x �∈ mn+1. One thus concludes from the final
portion of the discussion of (ii) that there exists a positive integer t that depends
only on the isomorphism class of the field K such that for any automorphism

φ : IK ∼→ IK

of the Zp-module IK and any nonzero element q ∈ OK [i.e., such as the q-parameter
of a Tate curve over K!], the absolute value of the difference between the orders of
q and φ(q) is ≤ t, i.e., in words,

automorphisms of the Zp-module IK only give rise to bounded discrep-
ancies in the orders of nonzero elements of OK .

Example 3.5.2: Automorphisms of underlying structures. In general, dis-
tinct auxiliary structures on some common underlying structure are not necessarily
mapped to one another by some automorphism of the common underlying struc-
ture. Concrete examples of this phenomenon may be found in quite substantial
abundance and include, in particular, the following [cf. the discussion of [Rpt2018],
§11]:

(i) The group structures of the finite abelian groups Z/2Z×Z/2Z and Z/4Z
are not mapped to one another by any isomorphism of sets, despite the fact that
the underlying sets of these two groups are indeed isomorphic to one another.
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(ii) The scheme structures of non-isomorphic algebraic curves over a com-
mon algebraically closed field are not mapped to one another by any isomorphism
of topological spaces, despite the fact that the underlying topological spaces of al-
gebraic curves over a common algebraically closed field are indeed isomorphic to
one another.

(iii) The holomorphic structures of non-isomorphic compact Riemann sur-
faces of the same genus are not mapped to one another by any isomorphism of
topological spaces, despite the fact that the underlying topological spaces of such
Riemann surfaces are indeed isomorphic to one another.

(iv) The field structures of non-isomorphic mixed-characteristic local
fields [which, by local class field theory, may be regarded as [the formal union with
“{0}” of] some suitable subquotient of their respective absolute Galois groups] are
not, in general, mapped to one another by any isomorphism of profinite groups
between the respective absolute Galois groups [cf., e.g., [Ymgt], §2, Theorem, for
an example of this phenomenon].

§3.6. Chains of logical AND relations

From the point of view of the simple qualitative model of inter-universal Te-
ichmüller theory given in Example 2.4.5, the discussion of §3.4 concerns the AND
relator “∧” in the “Θ-link” portion of Example 2.4.5, (ii). On the other hand,
strictly speaking, this portion of inter-universal Teichmüller theory only concerns
the initial definition of the Θ-link. That is to say, the bulk of the theory developed
in [IUTchI-III] concerns, from the point of view of the simple qualitative model of
inter-universal Teichmüller theory given in Example 2.4.5, (ii), the preservation
of the AND relator “∧” as one passes from

· the “Θ-link” portion of Example 2.4.5, (ii), to
· the “multiradial representation” portion of Example 2.4.5, (ii).

By contrast, the passage from the “multiradial representation” portion of Example
2.4.5, (ii), to the “final numerical estimate” portion of Example 2.4.5, (ii) — i.e.,
which corresponds to the passage from [IUTchIII], Theorem 3.11, to [IUTchIII],
Corollary 3.12 — is [cf. the discussion of the final portion of Example 2.4.5, (ii)!]
relatively straightforward [cf. the discussion of §3.10, §3.11, below].

At this point, it is perhaps of interest to consider “typical symptoms” of
mathematicians who are operating under fundamental misunderstandings con-
cerning the essential logical structure of inter-universal Teichmüller theory. Such
typical symptoms, which are in fact closely related to one another, include the
following:

(Syp1) a sense of unjustified and acutely harsh abruptness in the pas-
sage from [IUTchIII], Theorem 3.11, to [IUTchIII], Corollary 3.12 [cf. the
discussion of the final portions of Example 2.4.5, (ii), (iii)!];

(Syp2) a desire to see the “proof” of some sort of commutative diagram or
“compatibility property” to the effect that taking log-volumes of pilot
objects in the domain and codomain of the Θ-link yields the same real
number [a property which, in fact, can never be proved since it is false! —
cf. the discussion of §3.5];
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(Syp3) a desire to see the inequality of the final numerical estimate obtained
as the result of concatenating some chain of intermediate inequali-
ties, i.e., as is often done in proofs in real/complex/functional analysis or
analytic number theory.

Here, it should be noted that (Syp2) and (Syp3) often occur as approaches to
mitigating the “harsh abruptness” of (Syp1).

With regard to (Syp3), it should be emphasized that it is entirely unrealistic
to attempt to obtain the inequality of the final numerical estimate as the result of
concatenating some chain of intermediate inequalities since this is simply not the
way in which the logical structure of inter-universal Teichmüller theory is organized.
That is to say, in a word, the logical structure of inter-universal Teichmüller theory
does not proceed by concatenating some sort of chain of intermediate inequalities.
Rather,

(∧-Chn) the logical structure of inter-universal Teichmüller theory proceeds by
observing a chain of AND relations “∧”

[cf. the discussion of [IUTchIII], Remark 3.9.5, (viii), (ix); [IUTchIII], Remark
3.12.2, (citw), (fitw); [Alien], §3.11, (iv), (v)]. As observed in Example 2.4.5, (ii),
(iii), once one follows this chain of AND relations “∧” up to and including the
multiradial representation of the Θ-pilot [i.e., [IUTchIII], Theorem 3.11], the pas-
sage to the final numerical estimate [i.e., [IUTchIII], Corollary 3.12] is relatively
straightforward [i.e., as one might expect, from the use of the word “corollary”!].

One essentially formal consequence of (∧-Chn) is the following: Since the defi-
nition of the Θ-link, the construction of themultiradial representation of the Θ-pilot,
and the ultimate passage to the final numerical estimate consist of a finite number
of steps, one natural and effective way to analyze/diagnose [cf. the discussion
of §1.4!] the precise content of misunderstandings of inter-universal Teichmüller
theory is to determine

(∧-Dgns) precisely where in the finite sequence of steps that appear is the first
step at which the person feels that the preservation of the crucial AND
relator “∧” is no longer clear.

In some sense, the starting point of the various AND relations “∧” that appear
in the multiradial algorithm of [IUTchIII], Theorem 3.11, is the observation that

(∧-Input) the input data for this multiradial algorithm consists solely of an
abstract F��×μ-prime-strip; moreover, this multiradial algorithm is
functorial with respect to arbitrary isomorphisms between F��×μ-prime-
strips

[cf. [IUTchIII], Remark 3.11.1, (ii); the final portion of [Alien], §3.7, (i)]. This
property (∧-Input) means that the multiradial algorithm may be applied to any
F��×μ-prime-strip that appears, or alternatively/equivalently, that any F��×μ-
prime-strip may serve as the gluing data [cf. the “γJ” in the analogies discussed
in §3.2, (StR3), (StR4), as well as Example 2.4.5, (ii)!] between a given situation
[i.e., such as the (Θ±ellNF-)Hodge theater in the codomain of the Θ-link!] and the
content of the multiradial algorithm.
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On the other hand, in order to conclude that the multiradial algorithm yields
output data satisfying suitable AND relations “∧”, it is necessary also to examine
in detail the content of this output data, i.e., in particular, in the context of the
central IPL and SHE properties discussed in [IUTchIII], Remark 3.11.1, (iii), as
well as the chain of (sub)quotients aspect of the SHE property [cf. [IUTchIII],
Remark 3.11.1, (iii); [IUTchIII], Remark 3.9.5, (viii), (ix)]. In a word, the essential
“principle” that is applied throughout the various steps of the multiradial algorithm
in order to derive new AND relations “∧” from old AND relations “∧” is the
following “principle of extension of indeterminacies”:

(ExtInd) If A, B, and C are propositions, then it holds [that B =⇒ B ∨ C and
hence] that

A ∧B =⇒ A ∧ (B ∨ C).

One important tool that is frequently used in inter-universal Teichmüller theory in
a fashion that is closely related to (ExtInd) is the notion of a poly-morphism [cf.
the discussion of §3.7 below for more details].

In the context of (ExtInd), it is interesting to note that, from the point of view
of the discussion of §3.4,

the “∨” that appears in the conclusion — i.e., A∧ (B ∨C) — of (ExtInd)
may be understood as amounting to essentially the same phenomenon as
the “∨” that appears in (NeuORInd2) [e.g., by taking “C” to be A].

That is to say, instead of generating AND relations “∧” tautologically by means of
the introduction of distinct labels [i.e., as in (AOΘ1)] — i.e., say, by introducing a
new distinct label for “C” so as to conclude a tautological relation

A ∧B ∧ C

— (ExtInd) allows one to generate new AND relations “∧” while avoiding the
introduction of new distinct labels. As discussed in §3.4, this point of view [i.e., of
avoiding the introduction of new distinct labels] leads inevitably to OR relations
“∨”, i.e., as in (NeuORInd2) or as in the conclusion “A ∧ (B ∨ C)” of (ExtInd).
As discussed above, the reason that one wishes to avoid the introduction of new
distinct labels when applying (ExtInd) is precisely that

(sQLTL) one wishes to apply (ExtInd) to form “(sub)quotients/splittings”
of the log-theta-lattice [cf. the title of [IUTchIII]!], i.e., to project the
vertical line on the left-hand side of the infinite “H” portion of the log-
theta-lattice onto the vertical line on the right-hand side of this infinite
“H” by somehow achieving some sort of “crushing together” of distinct
coordinates [i.e., “(n,m)”, where n,m ∈ Z] of the log-theta-lattice

[cf. the discussion of §3.11 below; [IUTchIII], Remark 3.9.5, (viii), (ix); [IUTchIII],
Remark 3.12.2, (citw), (fitw); [Alien], §3.11, (iv), (v)).

At this point, it is of interest to note that there are, in some sense, two ways in
which (ExtInd) is applied during the execution of the various steps of the multiradial
algorithm [cf. the discussion of §3.10, §3.11, below, for more details]:

(ExtInd1) operations that consist of simply adding more possibilites/indeter-
minacies [which corresponds to passing from B to B ∨ C) within some
fixed container;
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(ExtInd2) operations in which one identifies [i.e., “crushes together”, by passing
from B to B ∨ C] objects with distinct labels, at the cost of passing to
a situation in which the object is regarded as being only known up to
isomorphism.

Typical examples of (ExtInd1) include the upper semi-continuity of (Ind3), as well
as the passage to holomorphic hulls. Typically, such applications of (ExtInd1) play
an important role in establishing various symmetry or invariance properties such
as multiradiality. This sort of establishment of various symmetry or invariance prop-
erties by means of (ExtInd1) then allows one to apply label crushing operations
as in (ExtInd2). Put another way,

· (ExtInd1) may be understood as a sort of operation whose purpose is to
prepare suitable descent data, while

· (ExtInd2) may be thought of as a sort of actual descent operation, i.e.,
from data that depends on the specification of a member of some collection
of distinct labels to data that is independent of such a label specification.

[We refer to the discussion of §3.8 below for more details on foundational aspects
of (ExtInd2) and to the discussion of §3.9 below for more details concerning the
notion of “descent”.] Typical examples of (ExtInd2) in inter-universal Teichmüller
theory are the following [cf. the notational conventions of [IUTchI], Definition 3.1,
(e), (f)]:

· identifying “Πv”’s [where v ∈ V] at different vertical coordinates [i.e.,
“(n,m)” and “(n,m′)”, for n,m,m′ ∈ Z] of the log-theta-lattice, which
results in a “Πv regarded up to isomorphism” that is labeled by a new label
“(n, ◦)”;
· identifying “Gv”’s [where v ∈ V] at different horizontal or vertical coor-
dinates [i.e., “(n,m)” and “(n′,m′)”, for n, n′,m,m′ ∈ Z] of the log-theta-
lattice, which results in a “Gv regarded up to isomorphism” that is labeled
by a new label “(◦, ◦)”;
· identifying the F��×μ-prime-strips in the Θ-link that arise from the Θ-
and q-pilot objects in distinct (Θ±ellNF-)Hodge theaters [i.e., the (Θ±ellNF-
)Hodge theaters in the domain and codomain of the Θ-link] by working
with these F��×μ-prime-strips up to isomorphism.

In some sense, the most nontrivial instances of the application of (ExtInd)
in the context of the multiradial algorithm occur in relation to the log-Kummer
correspondence [i.e., in the vertical line on the left-hand side of the infinite “H”]
and closely related operations of Galois evaluation [cf. the discussion of §3.11
below]. The Kummer theories that appear in this log-Kummer-correspondence —
i.e., Kummer theories for

· multiplicative monoids of nonzero elements of rings of integers in mixed-
characteristic local fields,
· mono-theta environments/theta monoids, and
· pseudo-monoids of κ-coric functions

— involve the construction of various [Kummer] isomorphisms between
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· Frobenius-like data and
· corresponding data constructed via anabelian algorithms from étale-like
objects.

The output of such algorithms typically involves constructing the “corresponding
data” as one possibility among many. Here, we note that

either of these Frobenius-like/étale-like versions of “corresponding data” is
— unlike, for instance, the data that constitutes an F��×μ-prime-strip!
— sufficiently robust that it completely determines [even when only
regarded up to isomorphism!] the [usual] embedding of the Θ-pilot.

That is to say, taken as a whole, the multiradial algorithm — and, especially, the
portion of the multiradial algorithm that involves the log-Kummer correspondence
and closely related operations of Galois evaluation — plays the role of

exhibiting the Frobenius-like Θ-pilot as one possibility within a collec-
tion of possibilities constructed via anabelian algorithms from étale-like
data.

Thus, in this situation, one obtains the crucial preservation of the AND relation
“∧” by applying (ExtInd) twice, i.e., by applying

· (ExtInd1) to the enlargement of the collection of possibilities under
consideration and
· (ExtInd2) to the Kummer isomorphisms involved, when one passes
from Frobenius-like object labels “(n,m)” [where n,m ∈ Z] to étale-like
object labels “(n, ◦)” [where n ∈ Z].

This is precisely what is meant by the chain of (sub)quotients aspect of the SHE
property [cf. [IUTchIII], Remark 3.11.1, (iii); [IUTchIII], Remark 3.9.5, (viii), (ix)]
discussed above [cf. also the discussion of §3.10, §3.11, below].

§3.7. Poly-morphisms and logical AND relations

Poly-morphisms— i.e., sets of morphisms between objects — appear through-
out inter-universal Teichmüller theory as a tool for facilitating

the explicit enumeration of a collection of possibilities.

Composable ordered pairs of poly-morphisms [i.e., pairs for which the domain of
the first member in the pair coincides with the codomain of the second member
in the pair] may be composed by considering the set of morphisms obtained by
composing the morphisms that belong to the sets of morphisms that constitute the
given pair of poly-morphisms. Such compositions of poly-morphisms allow one to
keep track — in a precise and explicit fashion — of collections of possibilities under
consideration.

From the point of view of chains of AND relations “∧”, as discussed in
§3.6,

the collections of possibilities enumerated by poly-morphisms are to
be understood as being related to one another via OR relations “∨”.
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That is to say, poly-morphisms may be thought of as a sort of indeterminacy,
which is used in inter-universal Teichmüller theory to produce structures that satisfy
various symmetry or invariance properties, hence yield suitable descent data
[cf. the discussion of (ExtInd1) in §3.6; the discussion of §3.9 below].

Thus, for instance, in the case of the full poly-isomorphism that constitutes the
Θ-link, one may understand the fundamental AND relation “∧” of (AOΘ1) —
which, for simplicity, we denote by

A ∧B

[where A and B correspond, respectively, in the notation of the discussion of §3.4,
to “∗ :→ ‡q-plt ∈ ‡Ring” and “∗ :→ †Θ-plt ∈ †Ring”] — may be understood as
a relation “A ∧ (B1 ∨B2 ∨ . . . )”, i.e., a relation to the effect that

if one fixes fixes the q-pilot ‡q-plt, then this q-pilot is glued, via the
Θ-link, to the Θ-pilot †Θ-plt by means of one isomorphism [of the full
poly-isomorphism that constitutes the Θ-link] or another isomorphism, or
yet another isomorphism, etc.

[Here, the various possible gluings that constitute B are denoted by B1, B2, . . . .]
In particular, as discussed in (∧-Chn), if one starts with the Θ-link and then con-
siders various subsequent logical AND relations “∧” that arise — for instance, by
considering various composites of poly-morphisms! — by applying (ExtInd), then

(∧(∨)-Chn) the essential logical structure of inter-universal Teichmüller theory, as
discussed in (∧-Chn), may be understood as follows:

A ∧B = A ∧ (B1 ∨B2 ∨ . . . )

=⇒ A ∧ (B1 ∨B2 ∨ . . . ∨B′
1 ∨B′

2 ∨ . . . )

=⇒ A ∧ (B1 ∨B2 ∨ . . . ∨B′
1 ∨B′

2 ∨ . . . ∨B′′
1 ∨B′′

2 ∨ . . . )

...

Finally, we recall that various “classical examples” of the notion of a poly-
morphism include

· the collection of maps between topological spaces that constitutes a ho-
motopy class, or stable homotopy class, of maps;

· the collection of morphisms between complexes that constitutes a mor-
phism of the associated derived category;

· the collection of morphisms obtained by considering some sort of orbit by
some sort of group action on the domain or codomain of a given morphism

[cf. the discussion of [Rpt2018], §13, (PMEx1), (PMEx2), (PMQut)]. Also, in this
context, it is useful to recall [cf. the discussion of [Alien], §4.1, (iv)] that

· gluings via poly-morphisms are closely related to the sorts of gluings
that occur in the construction of algebraic stacks [i.e., algebraic stacks
which are not algebraic spaces].
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§3.8. Inter-universality and logical AND relations

One fundamental aspect of inter-universal Teichmüller theory lies in the con-
sideration of distinct universes that arise naturally when one considers Galois
categories— i.e., étale fundamental groups— associated to various schemes. Here,
it is important to note that, when phrased in this way,

this fundamental aspect of inter-universal Teichmüller theory is, at least
from the point of view of mathematical foundations, no different from
the situation that arises in [SGA1].

On the other hand, the fundamental difference between the situation considered
in [SGA1] and the situations considered in inter-universal Teichmüller theory lies
in the fact that, whereas in [SGA1], the various distinct schemes that appear are
related to one another by means of morphisms of schemes or rings,

the various distinct schemes that appear in inter-universal Teichmüller
theory are related to one another, in general, by means of relations —
such as the log- and Θ-links — that are non-ring/scheme-theoretic in
nature, i.e., in the sense that they do not arise from morphisms of schemes
or rings.

In general, when considering relations between distinct mathematical objects, it
is of fundamental importance to specify those mathematical structures that are
common — i.e., in the terminology of inter-universal Teichmüller theory, coric —
to the various distinct mathematical objects under consideration. Here, we observe
that

this notion of being “common”/“coric” to the various distinct mathemat-
ical objects under consideration constitutes, when formulated at a formal,
symbolic level, a logical AND relation “∧”.

— cf. the discussion of §3.4, §3.5, §3.6, §3.7.
Thus, in the situations considered in [SGA1], the ring/scheme structures of the

various distinct schemes that appear are coric and hence allow one to relate the
universes/Galois categories/étale fundamental groups associated to these distinct
schemes in a way that makes use of the common ring/scheme structures between
these schemes. At a concrete level, this means that

in the situations considered in [SGA1], étale fundamental groups may be
related to one in such a way that the only indeterminacies that occur are
inner automorphism indeterminacies.

Moreover, these inner automorphism indeterminacies are by no means superfluous
— cf. the discussion of Example 3.8.1 below.

Example 3.8.1: Inner automorphism indeterminacies. The unavoidabil-
ity of inner automorphism indeterminacies may be understood in very elementary
terms, as follows.

(i) Let k be a perfect field; k an algebraic closure of k; N ⊆ Gk
def
= Gal(k/k)

a normal closed subgroup of Gk; σ ∈ Gk such that the automorphism ισ : N
∼→ N
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of N given by conjugating by σ is not inner. [One verifies immediately that, for
instance, if k is a number field or a mixed-characteristic local field, then such N , σ do

indeed exist.] Write kN ⊆ k for the subfield of N -invariants of k, GkN

def
= N ⊆ Gk,

QN
def
= Gk/GkN . Then observe that this situation yields an example of a situation

in which one may verify directly that

the functoriality of the étale fundamental group only holds if one
allows for inner automorphism indeterminacies in the definition of
the étale fundamental group.

Indeed, let us first observe that the “basepoints” of k and kN determined by k
allows us to regard Gk and GkN , respectively, as the étale fundamental groups of
k and kN . Thus, if one assumes that the functoriality of the étale fundamental
group holds even in the absence of inner automorphism indeterminacies, then the
commutative diagram of schemes

Spec(kN )
σ−→ Spec(kN )

↘ ↙
Spec(k)

[where the diagonal morphisms are the natural morphisms] induces a commutative
diagram of profinite groups

GkN

ισ−→ GkN

↘ ↙
Gk

— which [since the natural inclusion N = GkN
↪→ Gk is injective!] implies that ισ

is the identity automorphism, in contradiction to our assumption concerning σ!

(ii) The phenomenon discussed in (i) may be understood as a consequence of
the fact that, whereas Spec(k) is coric in the commutative diagram of schemes that
appears in (i) [i.e., in the sense that this diagram does indeed commute!], Spec(k)
is not coric in the diagram of schemes

Spec(k)

↙ ↘
Spec(kN )

σ−→ Spec(kN )

↘ ↙
Spec(k)

[where the diagonal morphisms are the natural morphisms], i.e., in the sense that
the upper portion of this diagram does not commute!

(iii) Finally, we consider the natural exact sequence

1 −→ GkN −→ Gk −→ QN −→ 1
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of profinite groups. Then observe that the inner automorphisms indeterminacies
of Gk [cf. the discussion of (i), (ii)!] induce outer automorphism indeterminacies
of GkN

that will not, in general, be inner. That is to say,

if one considers GkN in the context of this natural exact sequence, then
one must in fact consider GkN

[not only up to inner automorphism in-
determinacies, i.e., as discussed in (i), (ii), but also] up to certain outer
automorphism indeterminacies.

Relative to the point of view of the discussion of (ii), these outer automorphism
indeterminaciesmay be understood as a consequence of the fact that, in the context
of the field extensions k ⊆ kN ⊆ k and the automorphisms of these field extensions
induced by elements of Gk,

the field k is coric, whereas the field kN is not coric

— i.e., in the context of these field extensions and automorphisms of field extensions,
the relationship of k to the various field extensions that appear is constant and
fixed, whereas the relationship of kN to the various field extensions that appear is
variable, i.e., subject to indeterminacies arising from the action of elements of
Gk.

Unlike the situations considered in [SGA1] [cf. the discussion of Example
3.8.1], in which the ring/scheme structures of the various distinct schemes that
appear are coric, the ring structures of the rings that appear on either side of the
log- and Θ-links of inter-universal Teichmüller theory — i.e., such as number fields
or completions of number fields at various valuations — are not coric [with respect
to the respective links]. This leads one naturally to consider weaker structures
such as

· sets equipped with a topology and a continuous action of a topological
group, in the case of the log-link, or

· realified Frobenioids or topological monoids equipped with a continuous
action of a topological group, in the case of the Θ-link,

which are indeed coric [with respect to the respective links]. Indeed, it is precisely
this sort of consideration that gave rise to the term “inter-universal”.

Here, we note that it is of fundamental importance that these topological groups
[which typically in fact arise as Galois groups or arithmetic fundamental groups
of schemes] be treated as abstract topological groups, rather than as Galois
groups or arithmetic fundamental groups [cf. the discussion at the beginning of
§3.2]. That is to say, to treat these topological groups as Galois groups or arithmetic
fundamental groups requires the use of the ring/scheme structures involved, i.e.,
the use of structures which are not available since they are not common/coric to
the rings/schemes that appear on opposite sides of the log-/Θ-link [cf. the discussion
of [Alien], §2.10; [IUTchIII], Remarks 1.1.2, 1.2.4, 1.2.5; [IUTchIV], Remarks 3.6.1,
3.6.2, 3.6.3]. In this context, it is also of fundamental importance to observe that it
is precisely because these topological groups must be treated as abstract topological
groups that anabelian results play a central role in inter-universal Teichmüller
theory.
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One consequence of the constraint [discussed above] that one must typically
work, in inter-universal Teichmüller theory, with structures that are substantially
weaker than ring structures is the necessity, in inter-universal Teichmüller theory,
of allowing for various indeterminacies, such as (Ind1), (Ind2), (Ind3), that are
somewhat more involved than the relatively simple inner automorphism indetermi-
nacies that occur in [SGA1]. Here, we recall that from the discussion of (∧(∨)-Chn)
in §3.7 that

it is precisely the numerous indeterminacies that arise in inter-universal
Teichmüller theory that give rise to the numerous logical OR relations
“∨” in the display of (∧(∨)-Chn).

On the other hand, once one takes such indeterminacies into account, i.e.,

once one consents to work with various objects “up to certain suitable
indeterminacies” — e.g., by means of poly-morphisms, as discussed in
§3.7 — it is natural to identify, by applying (ExtInd2) [as discussed in
§3.6], objects that are related to one another by means of collections of
isomorphisms [i.e., poly-isomorphisms] that are uniquely determined up
to suitable indeterminacies.

Here, we observe that this sort of (ExtInd2) identification that occurs re-
peatedly in inter-universal Teichmüller theory [cf. the discussion of §3.6] may at
first glance appear somewhat novel. In fact, however, from the point of view of
mathematical foundations — i.e., just as in the discussion of inter-universality given
above! — this sort of (ExtInd2) identification is qualitatively very similar to nu-
merous classical constructions, such as the following:

· the notion of an algebraic closure of a field [cf. the discussion of Example
3.8.1];

· various categorical constructions such as direct and inverse limits [i.e.,
such as fiber products of schemes] that are defined by means of some sort
of universal property.

That is to say, in each of the classical constructions, the “output object” is, strictly
speaking, from the point of view of mathematical foundations, not well-defined as
a particular set, but rather as a collection of sets [where we note that, typically,
this “collection” is not a set!] that are related to one another — and hence, in
common practice, identified with one another, in the fashion of (ExtInd2)! —
via unique [modulo, say, some sort of well-defined indeterminacy] isomorphisms by
means of some sort of “universal” property.

In this context, it is also important to note that, from a foundational point of
view, the sort of “(sub)quotient” obtained by applying (ExtInd2) [cf. the discussion
of “(sub)quotients” in (sQLTL) and indeed throughout §3.6] must be regarded, a
priori, as a formal (sub)quotient, i.e., as some sort of diagram of arrows. That
is to say, at least from an a priori point of view,

(NSsQ) any explicit construction of a “naive set-theoretic (sub)quotient”
necessarily requires the use of some sort of set-theoretic enumeration
of each of the individual [set-theoretic] objects that are identified, up to
isomorphism, via an application of (ExtInd2). On the other hand, as
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is well-known, typically such set-theoretic enumerations — which often
reduce, roughly speaking, to consideration of the “set of all sets”! — lead
immediately to a contradiction.

Indeed, it is precisely this aspect of the constructions of inter-universal Teichmüller
theory that motivated the author to include the discussion of species in [IUTchIV],
§3. Finally, we recall [cf. also the discussion of §3.10 below] that

(LVsQ) it is only in the final portion of inter-universal Teichmüller theory, i.e.,
once one obtains a formal (sub)quotient that forms a “closed loop”, that
one may pass from this formal (sub)quotient to a “coarse/set-theoretic
(sub)quotient” by taking the log-volume

[cf. the discussion of [Alien], §3.11, (v); [IUTchIII], Remark 3.9.5, (ix); Step (x) of
the proof of [IUTchIII], Corollary 3.12].

§3.9. Passage and descent to underlying structures

One fundamental aspect of inter-universal Teichmüller theory lies in the use of
numerous functorial algorithms that consist of the construction

input data � output data

of certain output data associated to given input data. When one applies such func-
torial algorithms, there are two ways in which the output data may be treated
[cf. [Alien], §2.7, (iii); the discussion of “post-anabelian structures” in [IUTchII],
Remark 1.11.3, (iii), (v); [IUTchIII], Remark 1.2.2, (vii)] :

(UdOut) One may consider the output data independently of the given input data
and functorial algorithms used to construct the output data. In this case,
the output data may be regarded as a sort of “underlying structure”
associated to the input data.

(InOut) One may consider the output data as data equipped with the additional
structure constituted by the input data, together with the functorial algo-
rithm that gave rise to the output data by applying the algorithm to the
input data.

Typical examples of this phenomenon in inter-universal Teichmüller theory are the
following [cf. the notational conventions of [IUTchI], Definition 3.1, (e), (f)]:

(sQGOut) Functorial algorithms that associate to Πv [where v ∈ V
non] some sub-

quotient group of Πv, such as, for instance, the quotient Πv � Gv:
In this sort of situation, treatment of the output data [i.e., subquotient
group of Πv] according to (InOut) is indicated by a “(Πv)” following the
notation for the particular subquotient under consideration; by contrast,
treatment of the output data [i.e., subquotient group of Πv] according to
(UdOut) is indicated by the omission of this “(Πv)”.

(MnOut) Functorial algorithms that associate to Πv [where v ∈ V
non] some sort of

[abelian] monoid equipped with a continuous action by Πv, such as, for
instance, [data isomorphic to] various subquotient monoids [i.e., “O�”,
“O×”, “O×μ”, etc.] of the multiplicative monoid F

×
v : In this sort of
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situation, treatment of the output data [i.e., monoid equipped with an
action by Πv] according to (InOut) is indicated by a “(Πv)” following the
notation for the particular monoid equipped with an action by Πv under
consideration; by contrast, treatment of the output data [i.e., monoid
equipped with an action by Πv] according to (UdOut) is indicated by the
omission of this “(Πv)”.

(PSOut) Functorial algorithms that associate some sort of prime-strip to some
sort of input data: In this sort of situation, treatment of the output data
[i.e., some sort of prime-strip] according to (InOut) is indicated by a “(−)”
[where “−” is the given input data] following the notation for the particular
prime-strip under consideration; by contrast, treatment of the output data
[i.e., some sort of prime-strip] according to (UdOut) is indicated by the
omission of this “(−)”.

Perhaps the most central example of (PSOut) in inter-universal Teichmüller theory
is the notion of the “q-/Θ-intertwinings” on an F��×μ-prime-strip [cf. the
discussion of [Alien], §3.11, (v); [IUTchIII], Remark 3.9.5, (viii), (ix); [IUTchIII],
Remark 3.12.2, (ii)]:

(ItwOut) This terminology refers to the treatment of the F��×μ-prime-strip ac-
cording to (InOut), relative to the functorial algorithm for constructing
the q-pilot F��×μ-prime-strip [in the case of the “q-intertwining”] or
the Θ-pilot F��×μ-prime-strip [in the case of the “Θ-intertwining”] from
some Θ±ellNF- or D-Θ±ellNF-Hodge theater.

In any situation in which one considers a construction from the point of view
of (UdOut) — that is to say, as a construction that produces “underlying data”
[i.e., “output data”] from “original data” [i.e., “input data”]

input data � output data

|| ||
original data underlying data

— it is natural to consider the issue of descent to [a functorial algorithm in] the
underlying data of a functorial algorithm in the original data. Here, we say that

a functorial algorithm Φ in the original data descends to a functorial
algorithm Ψ in the underlying data if there exists a functorial isomorphism

Φ
∼→ Ψ|original data

between Φ and the restriction of Ψ, i.e., relative to the given construction
original data � underlying data.

That is to say, roughly speaking, to say that the functorial algorithm Φ in the
original data descends to the underlying data means, in essence, that although the
construction constituted by Φ depends, a priori, on the “finer” original data, in
fact, up to natural isomorphism, it only depends on the “coarser” underlying data.
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Perhaps the most fundamental example of this phenomenon of descent, in the
context of inter-universal Teichmüller theory, is the following [cf. the notational
conventions of [IUTchI], Definition 3.1, (e), (f)]:

· The topological multiplicative monoid determined by the topological ring
given by [the union with {0} of] O�(ΠX) [cf. [Alien], Example 2.12.3,
(iii)] — that is to say, a construction that, a priori, from the point of view
of [AbsTopIII], Theorem 1.9; [AbsTopIII], Corollary 1.10, is a functorial
algorithm in the topological group

ΠX

[i.e., “Πv”, from the point of view (sQGOut)] — in fact descends [cf.
the discussion at the beginning of [Alien], §2.12; the discussion of [Alien],
Example 2.12.3, (i)], relative to passage to the underlying quotient group
discussed in (SQGOut), to a functorial algorithm in the topological group

Gk

[i.e., “Gv”, from the point of view (sQGOut)].

Finally, we remark that often, in inter-universal Teichmüller theory, the out-
put data of the functorial algorithm Φ of the above discussion is regarded “stack-
theoretically”. That is to say, the output data is not a single “set-theoretic object”,
but rather a collection [which is not necessarily a set!] of set-theoretic objects
linked by uniquely determined poly-isomorphisms of some sort. Typically, this sort
of situation arises when one applies (ExtInd2) — cf. the discussion of (NSsQ) in
§3.8. The most central example of this phenomenon in inter-universal Teichmüller
theory is the multiradial algorithm — and, especially, the portion of the multi-
radial algorithm that involves the log-Kummer correspondence and closely related
operations of Galois evaluation — which plays the role of

exhibiting the Frobenius-like Θ-pilot as one possibility within a collec-
tion of possibilities constructed via anabelian algorithms from étale-like
data

[cf. the discussion at the end of §3.6, as well as the discussion of §3.10, §3.11, be-
low]. That is to say, the log-Kummer correspondence and closely related operations
of Galois evaluation exhibit the Frobenius-like Θ-pilot as one possibility within a
collection of possibilities constructed via anabelian algorithms from étale-like data
not in a set-theoretic sense [i.e., one possibility/element contained in a set of
possibilities], but rather in a “stack-theoretic sense”, in accordance with various
applications of (ExtInd2) [cf. the discussion at the end of §3.6], i.e., as

one possibility, up to isomorphism, within some [not necessarily set-
theoretic!] collection of possibilities.

As discussed in (LVsQ) in §3.8, one arrives at a set-theoretic situation — i.e., one
possibility/element contained in a set of possibilities — only after one obtains a
“closed loop”, which allows one to pass to a “coarse/set-theoretic (sub)quotient” by
taking the log-volume.
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§3.10. Detailed description of the chain of logical AND relations

We begin the present §3.10 with the following well-known and, in some sense,
essentially tautological observation: Just as every form of data — i.e., ranging from
text files and webpages to audiovisual data — that can be processed by a computer
can, ultimately, be expressed as a [perhaps very long!] chain of “0’s” and “1’s”, the
well-known functional completeness, in the sense of propositional calculus, of the
collection of Boolean operators consisting of logical AND “∧”, logical OR “∨”, and
negation “¬” motivates the point of view that one can, in principle, express

the essential logical structure of any mathematical argument or
theory in terms of elementary logical relations, i.e., such as logical
AND “∧”, logical OR “∨”, and negation “¬”.

Indeed, it is precisely this point of view that formed the central motivation and
conceptual starting point of the exposition given in the present paper.

From the point of view of the correspondence with the terminology and modes
of expression that actually appear in [IUTchI-III] and [Alien], the representation
given in the present paper in terms of elementary logical relations, i.e., such as
logical AND “∧” and logical OR “∨”, may be understood as follows:

· Logical AND “∧” corresponds to such terms as

· simultaneous execution and

· gluing

[cf. [IUTchIII], Remark 3.11.1, (ii); [IUTchIII], Remark 3.12.2, (ii), (citw),
(fitw); the final portion of [Alien], §3.7, (i); [Alien], §3.11, (iv)].
· Logical OR “∨” corresponds to such terms as

· indeterminacies,

· poly-morphisms, and

· projection/(sub)quotient/splitting

[cf. §3.7; the title of [IUTchIII]; [IUTchIII], Remark 3.9.5, (xiii), (ix);
[Alien], §3.11, (v); [Alien], §4.1, (iv)].

The essential logical structure of inter-universal Teichmüller theory summa-
rized in (∧(∨)-Chn)

A ∧B = A ∧ (B1 ∨B2 ∨ . . . )

=⇒ A ∧ (B1 ∨B2 ∨ . . . ∨B′
1 ∨B′

2 ∨ . . . )

=⇒ A ∧ (B1 ∨B2 ∨ . . . ∨B′
1 ∨B′

2 ∨ . . . ∨B′′
1 ∨B′′

2 ∨ . . . )

...

[cf. the discussion of §3.6, §3.7] may then be understood as consisting of the fol-
lowing steps:
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(Stp1) log-Kummer-correspondence and Galois evaluation: This step con-
sists of

exhibiting the Frobenius-like Θ-pilot at the lattice point (0, 0)
of the log-theta-lattice — i.e., the data that gives rise to the
F��×μ-prime-strip that appears in the domain of the Θ-link
— as one possibility within a collection of possibilities con-
structed via anabelian algorithms from holomorphic [relative to
the 0-column] étale-like data.

In this context, it is perhaps worth mentioning that it is a logical tautology
that the content of the above display may, equivalently, be phrased as
follows: this step consists of

the negation “¬” of the assertion of the nonexistence of the
Frobenius-like Θ-pilot at the lattice point (0, 0) of the log-
theta-lattice — i.e., the data that gives rise to the F��×μ-prime-
strip that appears in the domain of the Θ-link — within the col-
lection of possibilities constructed via certain anabelian algo-
rithms from holomorphic [relative to the 0-column] étale-like
data

[cf. also the discussion of (RcnLb) below]. At the level of labels of lat-
tice points of the log-theta-lattice, this step corresponds to the descent
operation

(0, 0) � (0, ◦)
[cf. the discussion at the end of §3.6; the discussion at the end of §3.9;
[IUTchIII], Remark 3.9.5, (viii), (sQ1), (sQ2); [IUTchIII], Theorem 3.11,
(ii), (iii)]. Finally, we recall that this step already involves the introduction
of the (Ind3) indeterminacy.

(Stp2) Introduction of (Ind1): This step consists of observing that

the anabelian construction algorithms of (Stp1) in fact descend
to — i.e., are equivalent to algorithms that only require as in-
put data the weaker data constituted by [cf. the discussion of
“descent” in §3.9] — the associated mono-analytic étale-like
data, i.e., in the notation of (sQGOut), the “Gv’s”.

At the level of labels of lattice points of the log-theta-lattice, this step
corresponds to the descent operation

(0, ◦) � (0, ◦)�

[cf. [IUTchIII], Remark 3.9.5, (viii), (sQ1), (sQ2); [IUTchIII], Theorem
3.11, (i), as well as the references to [IUTchIII], Theorem 3.11, (i), in
[IUTchIII], Theorem 3.11, (iii)]. Finally, we recall that this step involves
the introduction of the (Ind1) indeterminacy.

(Stp3) Introduction of (Ind2): This step consists of observing that
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the anabelian construction algorithms of (Stp2) in fact descend
to — i.e., are equivalent to algorithms that only require as in-
put data the weaker data constituted by [cf. the discussion of
“descent” in §3.9] — the associated mono-analytic Frobenius-

like data, i.e., in the notation of (MnOut), the “Gv � O×μ

Fv
’s”.

[That is to say, one constructs log-shells, for instance, as submonoids of

“O×μ

Fv
”, as opposed to subquotients of “Gv”.] At the level of labels of

lattice points of the log-theta-lattice, this step corresponds to the descent
operation

(0, ◦)� � (0, 0)�

[cf. [IUTchIII], Remark 3.9.5, (viii), (sQ1), (sQ2); [IUTchIII], Theorem
3.11, (i), as well as the references to [IUTchIII], Theorem 3.11, (i), in
[IUTchIII], Theorem 3.11, (iii)]. Since the Θ-link may be thought of as a
sort of equivalence of labels

(0, 0)� ⇐⇒ (1, 0)�

— i.e., corresponding to the full poly-isomorphism of F��×μ-prime-strips
constituted by the Θ-link — this descent operation means that the algo-
rithm under consideration may be regarded as an algorithm whose input
data is the mono-analytic Frobenius-like data (1, 0)� arising from the
codomain of the Θ-link. Finally, we recall that this step involves the
introduction of the (Ind2) indeterminacy and plays the important role
of

isolating the log-link indeterminacies in the domain [i.e., the
(Ind3) indeterminacy of (Stp1)] and the codomain [i.e., the log-
shift adjustment discussed in (Stp7) below] of the Θ-link from
one another

[cf. the discussion of [IUTchIII], Remark 3.9.5, (vii), (Ob7-2); [Alien],
§3.6, (iv)]. Here, we recall [cf. the discussion of the final portion of [Alien],
§3.3, (ii)] that these log-link indeterminacies on either side of the Θ-link
may be understood, in the context of the discussion of (InfH) in §3.3, as
corresponding to the copies “C×” on either side of the double coset space
“C×\GL+

2 (R)/C
×”.

(Stp4) Passage to the holomorphic hull: The passage from the collection of
possible regions that appear in the output data of (Stp3) to the collection
of regions contained in the holomorphic hull — relative to the 1-column
of the log-theta-lattice — of the union of possible regions of the output
data of (Stp3) [cf. [IUTchIII], Remark 3.9.5, (vi); [IUTchIII], Remark
3.9.5, (vii), (Ob5); [IUTchIII], Remark 3.9.5, (viii), (sQ3)] is a simple,
straighforward application of (ExtInd1), that is to say, of increasing the
set of possibilities [i.e., of “∨’s”]. The purpose of this step, together with
(Stp5) below, is to pass from arbitrary regions to regions corresponding
to arithmetic vector bundles [cf. [IUTchIII], Remark 3.9.5, (vii), (Ob1),
(Ob2)].
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(Stp5) Passage to hull-approximants: This step consists of passing from the
collection of arbitrary regions contained the holomorphic hull of (Stp4) to
hull-approximants, i.e., regions that have the same global log-volume
as the original “arbitrary regions”, but which correspond to arithmetic
vector bundles [cf. [IUTchIII], Remark 3.9.5, (vii), (Ob6); [IUTchIII],
Remark 3.9.5, (viii), (sQ3)]. This operation does not affect the logical
“∧/∨” structure of the algorithm since this operation of passing to hull-
approximants does

not affect the collection of possible value group portions —
i.e., “F��-prime-strips” — of F��×μ-prime-strips determined
by forming the log-volume of these regions

[cf. the discussion of [IUTchIII], Remark 2.4.2; the discussion of (IPL) in
[IUTchIII], Remark 3.11.1, (iii)].

(Stp6) Passage to a suitable positive rational tensor power of the de-
terminant: This step consists of passing from the [regions corresponding
to] arithmetic vector bundles obtained in (Stp4), (Stp5) to a suitable tensor
power root of a tensor power of the determinant arithmetic line bundle of
such an arithmetic vector bundle [cf. [IUTchIII], Remark 3.9.5, (vii),
(Ob3), (Ob4); [IUTchIII], Remark 3.9.5, (viii), (sQ3)]. Just as in the case
of (Stp5), this operation does not affect the logical “∧/∨” structure of the
algorithm since this operation of passing to a suitable positive rational
tensor power of the determinant does

not affect the collection of possible value group portions —
i.e., “F��-prime-strips” — of F��×μ-prime-strips determined
by forming the log-volume of these regions

[cf. the discussion of [IUTchIII], Remark 2.4.2; the discussion of (IPL) in
[IUTchIII], Remark 3.11.1, (iii)].

(Stp7) Log-shift adjustment: The arithmetic line bundles that appear in
(Stp6) occur with respect to the arithmetic holomorphic structure — i.e.,
in effect, ring structure — at the label (1, 1) of the log-theta-lattice, i.e.,
at a label vertically shifted by +1 relative to the label (1, 0) that forms the
codomain of the Θ-link [cf. the discussion of [IUTchIII], Remark 3.9.5,
(vii), (Ob8); [IUTchIII], Remark 3.9.5, (viii), (sQ4)]. That is to say, by
applying the algorithm discussed in (Stp1) ∼ (Stp6) at each lattice point
(1,m) [where m ∈ Z] of the 1-column of the log-theta-lattice, we obtain
algorithms with input data at (1,m) and output data at (1,m+1) — cf. the
diagonal arrows of the diagram shown below. In particular, the totality of
all of these diagonal arrows may be thought of a sort of endomorphism
of the 1-column of the log-theta-lattice, i.e., an algorithm whose input
data is the 1-column of the log-theta-lattice, and whose output data
lies in the same 1-column of the log-theta-lattice. Put another way, we
obtain a closed loop [cf. the discussion of [IUTchIII], Remark 3.9.5, (ix);
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[Alien], §3.11, (v)].

1-
column

1-
column

...
...

• •�⏐⏐log ↗
�⏐⏐log

• •�⏐⏐log ↗
�⏐⏐log

• •�⏐⏐log ↗
�⏐⏐log

• •
...

...

(Stp8) Passage to log-volumes: The closed loop of (Stp7) implies that the
crucial logical AND “∧” relation carefully maintained throughout the
execution of (Stp1) ∼ (Stp7) yields, upon taking the log-volume, a

logical AND “∧” relationship between the original q-pilot
input F��-prime-strip and a certain algorithmically constructed
collection of possible output F��-prime-strips within the
same container, i.e., some copy of the real numbers “R”

[cf. [IUTchIII], Remark 3.9.5, (vii), (Ob9); [IUTchIII], Remark 3.9.5,
(viii), (sQ5); [IUTchIII], Remark 3.9.5, (ix); the discussion of Substeps
(xi-d), (xi-e) of the proof of [IUTchIII], Corollary 3.12; the discussion
of [IUTchIII], Remark 3.12.2, (ii); [Alien], §3.11, (v)]. The inequality
in the statement of [IUTchIII], Corollary 3.12, then follows as a formal
consequence [cf. the discussion of Substeps (xi-f), (xi-g) of the proof of
[IUTchIII], Corollary 3.12].

§3.11. The central importance of the log-Kummer correspondence

In the context of the discussion of §3.10, it is important to recall that, whereas
(Stp2) ∼ (Stp8) are technically trivial in the sense that they concern operations
that are very elementary and only require a few lines to describe, the log-Kummer
correspondence and Galois evaluation operations that comprise (Stp1) depend
on the highly nontrivial theory of [EtTh] and [AbsTopIII]. Moreover, the technical
description of these operations that comprise (Stp1) occupies the bulk of [IUTchI-
III]. The central importance of (Stp1) may also be seen in the subordinate nature
of (Ind1), (Ind2) [which occur in (Stp2), (Stp3)] relative to (Ind3) [which occurs in
(Stp1)], i.e., in the sense that
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(Ind3>1+2) once one constructs the output of the multiradial representation of
the Θ-pilot [cf. [IUTchIII], Theorem 3.11, (ii)] via tensor-packets of log-
shells in such a way that each local portion of this output is stable with
respect to the indeterminacy (Ind3), these local portions of the output are
automatically stable with respect to the indeterminacies (Ind1), (Ind2) [cf.
[IUTchIII], Theorem 3.11, (i)].

Finally, we observe that this property (Ind3>1+2) is strongly reminiscent of the
discussion of (CnfInd1+2) and (CnfInd3) in §3.5.

One way to understand the content of the operations of (Stp1) is as follows.
These operations may be regarded as a sort of

(logORInd) saturation of the Frobenius-like Θ-pilot at the lattice point (0, 0)
of the log-theta-lattice — i.e., which is linked, via the Θ-link, to the
Frobenius-like q-pilot at (0, 1) — with respect to all of the possibil-
ities that occur in the 0-column of the log-theta-lattice, i.e., all of the
possibilities that arise from a possible confusion between the domain and
codomain of the log-links in the 0-column [cf. the description of (Stp1)].

In this sense, the content of (Stp1) is formally reminiscent of the “(NeuORInd)”
that appeared in the discussion of §3.4, i.e., which may be understood as a sort of

(ΘORInd) saturation of the Frobenius-like Θ-pilot at the lattice point (0, 0) of
the log-theta-lattice with respect to all of the possibilities— i.e., “Θ-plt”,
“q-plt” [cf. (NeuORInd2)] — that arise from a possible confusion between
the domain and codomain of the Θ-link joining the lattice points (0, 0)
and (0, 1).

On the other hand, whereas, as observed in the discussion at the end of §3.4,
(ΘORInd) yields a meaningless/useless situation that does not give rise to any in-
teresting mathematical consequences, (logORInd), by contrast, is a highly potent
technical device that forms the technical core of inter-universal Teichmüller
theory.

The stark contrast between the potency of (logORInd) and the utterly mean-
ingless nature of (ΘORInd) is highly reminiscent of the central role played, in
Example 3.3.2, (iv), by invariance with respect to

ι =

(
0 1

−1 0

)
∈ C× ⊆ GL+

2 (R)

[where we recall from (InfH) that C× corresponds to the log-link!], which lies
in stark contrast to the utterly meaningless nature of considering invariance with
respect to dilations

(
λ 0
0 1

) ∈ GL+
2 (R) [where we recall from (InfH) that such dilations

correspond to the Θ-link].

One way to witness the potency of (logORInd) is as follows. Recall that the
Θ-link, by definition [cf. [IUTchIII], Definition 3.8, (ii)], consists of

· a dilation applied to the local value group portions of the ring structures
in its domain and codomain, coupled with
· a full poly-isomorphism — which preserves log-volumes, hence is non-
dilating! — between the local “O×μ’s”, i.e., the local unit group portions,
of these ring structures.
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By contrast, the log-links in the 0-column of the log-theta-lattice have the effect
of “juggling/rotating/permuting” the local value group portions and local unit group
portions of the ring structures that appear in this 0-column [cf., e.g., the discussion
of [Alien], Example 2.12.3, (v)]. From this point of view, the tautologically vertically
coric — i.e., invariant with respect to the application of the log-link! — nature of
the output data of (logORInd) is already somewhat “shocking” in nature. That is
to say, the tautologically vertically coric nature of this output data of (logORInd)
suggests that

(Di/NDi) this output data already exhibits some sort of equivalence, up to per-
haps some sort of mild discrepancy, between the dilated and non-dilated
portions of the Θ-link.

Such an equivalence already strongly suggests that some sort of bound on heights
should follow as a formal consequence, i.e., in the style of the classical argument
that implies the isogeny invariance of heights of elliptic curves [cf. the discussion
of [Alien], §2.3, §2.4].

Finally, we conclude by emphasizing that, in inter-universal Teichmüller theory,

(DltLb) ultimately one does want to find some way in which to delete/eliminate
the distinct labels on the Θ- and q-pilot objects [i.e., “Θ-plt” and “q-plt”]
in the domain and codomain of the Θ-link

[cf. the discussion of (AOL4), (AOΘ4) in §3.4], that is to say, not via the naive,
simple-minded approach of (ΘORInd) [i.e., (NeuORInd2) in the discussion of §3.4],
but rather via the indirect approach of applying descent operations

(0, 0)
(Stp1)� (0, ◦) (Stp2)� (0, ◦)� (Stp3)� (0, 0)�

(Stp3)⇐⇒ (1, 0)�

as discussed in (Stp1) ∼ (Stp8) of §3.10, i.e., an approach that centers around
(logORInd). This approach is based on the various anabelian reconstruction al-
gorithms discussed in (Stp1) ∼ (Stp3), which allow one to exhibit the Frobenius-
like Θ-pilot object at (0, 0) as one possibility among some broader collection of
possibilities that arise from the introduction of various types of indeterminacy. In
this context, we observe [cf. the discussion of (ExtInd2), (NSsQ) at the end of §3.9]
that since such anabelian reconstruction algorithms only reconstruct various types
of mathematical objects [i.e., monoids/pseudo-monoids/mono-theta environments,
etc.] not “set-theoretically on the nose”, so to speak, but rather up to [a typically
essentially unique, if one allows for suitable indeterminacies] isomorphism, it is not
immediately clear

(RcnLb) in what sense such anabelian reconstruction algorithms yield a recon-
struction of the crucial labels — i.e., such as “(0, 0)” — that underlie
the crucial logical AND “∧” structure discussed in §3.4 [cf., especially,
(AOL1), (AOΘ1)].

The point here is that indeed such anabelian reconstruction algorithms are not
capable of reconstructing such labels “set-theoretically on the nose”.

On the other hand, in this context, it is important to recall the essential
substantive content of the various labels involved:
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(HolFrLb) (0, 0): The holomorphic Frobenius-like data labeled by (0, 0) con-
sists of various monoids/pseudo-monoids/mono-theta environments, etc.,
regarded as abstract monoids/pseudo-monoids/mono-theta environments,
etc., i.e., as objects that are not equipped with the auxiliary data of how
they might have been reconstructed via anabelian algorithms from holo-
morphic étale-like data labeled (0, ◦) [cf. the discussion of (UdOut), (In-
Out), (PSOut), (ItwOut) in §3.9]. In particular, such monoids/pseudo-
monoids/mono-theta environments, etc., are not invariant with respect
to the “juggling/rotating/permuting” of local value group portions and lo-
cal unit group portions effected by the log-links in the 0-column of the
log-theta-lattice, but rather correspond to a temporary cessation [cf.
the label (0, 0) as opposed to the label (0, ◦)!] of this operation of jug-
gling/rotation/permutation.

(MnAlyLb) (0, 0)�: The mono-analytic Frobenius-like data labeled by (0, 0)�

consists of the F��×μ-prime-strip determined by the Frobenius-like Θ-
pilot at (0, 0), regarded as an abstract F��×μ-prime-strip [cf. the discus-
sion of (UdOut), (InOut), (PSOut), (ItwOut) in §3.9]. Thus, the transition
of labels

(0, 0) � (0, 0)�

consists of an operation of forgetting some sort of auxiliary structure [cf.
the discussion of (UdOut) in §3.9]. Here, we recall that this construction
of the F��×μ-prime-strip determined by the Frobenius-like Θ-pilot at
(0, 0) is technically possible precisely because of the “temporary cessation”
discussed above [cf. the discussion of the definition of the Θ-link in [Alien],
§3.3, (ii), as well as in §3.3 of the present paper].

Thus, the nontrivial substantive content of the anabelian reconstruction algorithms
of (Stp1) ∼ (Stp3) — and hence of the descent operations

(0, 0)
(Stp1) ∼ (Stp3)� (0, 0)�

that result from these anabelian reconstruction algorithms — consists of statements
to the effect that

(FrgInv) the operation of forgetting discussed in (MnAlyLb) can in fact, if one
allows for suitable indeterminacies, be inverted.

It is precisely this invertibility (FrgInv), up to suitable indeterminacies, of the
operation of forgetting discussed in (MnAlyLb), together with the fact that

(GluDt) the only data appearing in the reconstruction algorithms [i.e., in the
0-column] that is glued [cf. the discussion of [IUTchIII], Remark 3.11.1,
(ii); the final portion of [Alien], §3.7, (i)] to data in the 1-column is the
F��×μ-prime-strip labeled (0, 0)�,

that ensures that the descent operations discussed above do indeed preserve the
crucial logical AND “∧” relations discussed in §3.4, §3.6, §3.7, §3.10, i.e., even
though the reconstruction algorithms underlying these descent operations do not
yield reconstructions of the various labels “(0, 0)”, etc., “set-theoretically on the
nose”.
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[Dsc2018] Webpage “March 2018 Discussions on IUTeich”, available at the following
URL: http://www.kurims.kyoto-u.ac.jp/~motizuki/IUTch-discussions-

2018-03.html

[SGA1] A. Grothendieck et al., Revêtement étales et groupe fondamental, Séminaire
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