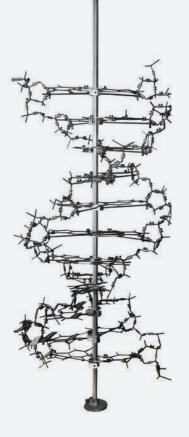


A Brief History of the Cavendish Laboratory


Up until 1874	There was no organised course of study in experimental physics in Cambridge. The outstanding experimental contributions of Isaac Newton, Thomas Young and George Stokes were carried out in their colleges.
1871	The Chancellor of the University, William Cavendish , Seventh Duke of Devonshire, provided £6,300 to meet the costs of building and equipping a physics laboratory, on condition that the Colleges funded a Professorship of Experimental Physics. James Clerk Maxwell appointed the first Cavendish professor.
1874	Maxwell's legacy was the design and equipping of the new Laboratory which opened in this year.
1875–1923	James Dewar elected Jacksonian Professor of Natural Philosophy.
1879	Maxwell was succeeded by John William Strutt, Lord Rayleigh, (Nobel 1904) who was responsible for setting up a systematic course of instruction in experimental physics, as well as Rayleigh scattering, Rayleigh criterion, Rayleigh-Jeans law, Rayleigh- Taylor instability, etc.
1881	Foundation of the Cambridge Scientific Instrument Company by Horace Darwin and Arthur Dew-Smith .
1884	Joseph John (JJ) Thomson succeeded Rayleigh as Cavendish Professor.
1895	The University allowed students from outside Cambridge to study for the degree of BA (research). Among the first generation of physics graduate students were Ernest Rutherford from New Zealand and John Townsend from Dublin.
1896	William Pye, superintendent of the Cavendish workshop, founded the W.G. Pye & Co. Ltd. as a part-time business making scientific instruments. From the 1920s the company became makers of domestic radio and television, television transmitting equipment and electrical products.
1897	The discovery of the electron by JJ Thomson (Nobel 1906).

1898	Rutherford's discovery of the distinction between α and β rays in radioactive decays.
1895–1913	The invention and perfection of the Wilson Cloud chamber by Charles (C.T.R) Wilson (Nobel 1927) . Jacksonian Professor of Natural Philosophy 1925- 1935.
1900	Rutherford's elucidation of nuclear disintegration chains (Nobel 1908 Chemistry).
1901	Owen Richardson (Nobel 1928) discovers the law of thermionic emission.
1911	Charles Barkla (Nobel 1917) discovers the K and L series in X-ray line spectra.
1912–13	William and Lawrence Bragg (Nobel 1915) discover Bragg's law of X-ray diffraction.
1915	Geoffrey (G.I.) Taylor wins the Adams Prize for 'Turbulent Motion in Fluids', a subject he pioneered over the succeeding decades.
1919	JJ Thomson succeeded by Rutherford as Cavendish Professor. The discovery of artificial nuclear transformations induced by α-particles by Rutherford.
1920	Francis Aston (Nobel 1922 Chemistry) discovers the isotopes of the chemical elements.
1924	Edward Appleton (Nobel 1947) determines the height and properties of the ionosphere. Jacksonian Professor of Natural Philosophy (1936-1939).
1925	Patrick Blackett (Nobel 1948) photographs nuclear transformations induced by α -particles with the Wilson Cloud Chamber.
1927	George Thomson (Nobel 1937) demonstrates electron diffraction.
1930	Eryl Wynn-Williams invents the Scale of Two Counter.
1932	James Chadwick (Nobel 1935) discovers the neutron.
1932	John Cockcroft (Nobel 1951) and Ernest Walton (Nobel 1951) carry out the first controlled nuclear disintegrations induced by accelerated high energy particles. Demonstrated for the first time that $E = mc^2$ experimentally. Cockcroft Jacksonian Professor of Natural Philosophy (1939–1946).

1933	Opening of the Mond Laboratory for low temperature physics led by Piotr Kapitsa (Nobel 1978).
1930s	Norman de Bruyne invents glues for use in aircraft structures, including the Mosquito, and founds the Cambridge Aeroplane Construction Co. His Aero Research Company was taken over by the Swiss Ciba-Geigy company in 1948.
1934	First X-ray images of a protein by John Bernal.
1934	Geoffrey Taylor and Egon Orowan independently realise that the plastic deformation of ductile materials can be explained by the theory of dislocations.
1936	Herbert Austin, the car manufacturer, donates $\pounds 250,000$ to build the Austin Wing of the Laboratory. Building completed in 1940 for war work and handed back to the University in 1945.
1937	Kapitsa, having returned to the USSR, and Jack Allen and Don Misener in the Mond Laboratory discover superfluidity in liquid helium.
1938	Lawrence Bragg succeeds Rutherford as Cavendish Professor. The development of X-ray diffraction for the study of the structure of biomolecules and of deformed metals.
1939	Philip Bowden and David Tabor develop the theory of friction, emphasising the importance of surface roughness for bodies in contact. Tabor invents the term tribology .
1945	Dorothy Hodgkin (Nobel 1964, Chemistry), former graduate student of Bernal , determines the structure of penicillin at Oxford University.
1946 onwards	Development of radio astronomy and the implementation of aperture synthesis techniques led by Martin Ryle (Nobel 1974).

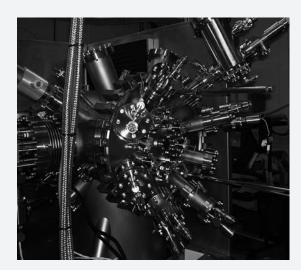
IMAGES, FROM LEFT:

W.H. BRAGG'S X-RAY SPECTROMETER SENT TO HIS SON W.L. BRAGG IN CAMBRIDGE IN 1914.

A CROOKES' RADIOMETER FROM THE 1870s.

WATSON AND CRICK'S HALF-SIZED MODEL OF THE DNA MOLECULE.

WYNN-WILLIAMS' SCALE OF TWO COUNTER.



1946	Ellis Cosslett sets up the electron microscopy group.
1947–1972	Otto Frisch elected Jacksonian Professor of Natural Philosophy.
1948	Formation of the Group organisation of the Laboratory by Bragg with separate groups in nuclear (Frisch), radio (Jack Ratcliffe), low temperature (David Shoenberg), crystallography (Will Taylor), metal (Egon Orowan) and mathematical physics.
1949 onwards	Norman Ramsey (Nobel 1987) at Harvard invents the separated oscillatory fields method leading to its use in the hydrogen maser and other atomic clocks.
1950	Meteorological Section (Thomas Wormell) and Napier Shaw Library transferred from the Observatories to the Cavendish.
1953	The determination of the double-helix structure of the DNA molecule by Francis Crick and James Watson (both Nobel 1962, Physiology or Medicine).
1953	Brian Pippard proposes non-local theories of electromagnetic response in normal metals and superconductors, the latter predating the theory of superconductivity of Bardeen , Cooper and Schrieffer .
1953–7	Jeofry Courtney-Pratt invents image converter high speed photography and the use of image detection techniques in high speed photography.
1954	Bragg succeeded as Cavendish Professor by Nevill Mott (Nobel 1977). Pioneering studies in condensed matter physics, including his work on amorphous semiconductors.
1954	Mott brought John Ziman with him from Bristol to form the Solid State Theory Group, later to become the Theory of Condensed Matter Group.
1956	W.H. (Joe) Vinen and Henry Hall make the experimental discovery of the quantisation of vortex motion in superfluid helium.
1956 onwards	Allan Cormack (Nobel 1979) at University of Cape Town begins investigations of X-ray computer tomography leading to practical CT scanners.
1956	Peter Hirsch and colleagues develop diffraction contrast transmission electron microscopy to study crystal defects following on from Bragg's X-ray microbeam diffraction project.
1956	James Menter makes the first direct observations of crystal lattices by transmission electron microscopy and the first observation of an edge dislocation within such a lattice.
1957	Pippard's experimental determination of the Fermi surface of copper.
1957	Opening of the Mullard Radio Astronomy Observatory at Lord's Bridge.

1957 onwards	Bowden heads the Physics and Chemistry of Solids Group , transferred from Physical Chemistry to the Cavendish: research on solid explosives, friction and lubrication with Tabor , Abe Yoffe and John Field .
1958	John Kendrew determines the structure of myoglobin by high resolution X-ray crystallography.
1959	Max Perutz determines the structure of haemoglobin by high-resolution X-ray crystallography.
1962	Spin-off of the MRC Laboratory of Molecular Biology as a separate department on the Addenbrooks site. Since then, 9 Nobel Prizes, shared by 13 scientists, for key discoveries made in Cambridge: Perutz (Nobel 1962, Chemistry), Kendrew (Nobel 1962, Chemistry), Hodgkin (Nobel 1964, Chemistry), Aaron Klug (Nobel 1982, Chemistry).
1962	Brian Josephson (Nobel 1973) predicts the existence of a supercurrent penetrating through a tunnel barrier, the Josephson effect .
1964	Frisch builds the first version of SWEEPNIK. In 1969, the perfected machine was sold commercially by the spin-out company Laser Scan Limited.
1965 onwards	Mott (Nobel 1977) investigates the properties of amorphous semiconductors. Phil Anderson (Nobel 1977) investigates the electronic structure of magnetic and disordered systems.
1965	First radio images made with the Cambridge One- mile Telescope , the first fully steerable earth-rotation aperture synthesis radio telescope.
1968	Discovery of neutron stars as the parent bodies of pulsars by Jocelyn Bell-Burnell and Anthony Hewish (Nobel 1974).
1971	Pippard appointed successor to Mott as Cavendish Professor. He was Head of Department (1971–1979).
1972–1990	Alan Cook appointed Jacksonian Professor. 1979– 1984 Head of Department.
1972	Inauguration of the Ryle 5-km radio telescope and its first radio images.
1973	Tabor and Jacob Israelachvili measure the van der Waals forces between surfaces with the surface force apparatus (SFA) down to separations of 1.5nm.

1974	Move of Cavendish Laboratory to West Cambridge.
1974	Foundation of Energy Research Group by Richard Eden.
1975	Sam Edwards and Anderson on the theory of spin glasses.
1978	Edwards and Masao Doi on the reptation motion of polymers.
1978	Invention of phaseless aperture synthesis by John Baldwin and Peter Warner.
1980	Archie Howie, Mick Brown and colleagues develop the high angle dark field imaging method in Scanning Transmission Electron Microscopy.
1983	Haroon Ahmed moves from Engineering to the Cavendish to found the Microelectronics Research Centre.
1983	High Energy Physics group participates in the UA2 experiment at CERN which measured precisely the masses of the W and Z bosons.
1984–1995	Edwards appointed Cavendish Professor. Head of Department 1984–1989. Soft condensed matter research leads to the development of major initiatives in biological physics and the physics of medicine.
1984	Formation of Semiconductor Physics Group under Michael Pepper, one of three authors of the 1980 paper that won the Nobel Prize for the quantum Hall effect for Klaus von Klitzing.
1985 to date	Mike Payne author of the first principles total energy pseudo-potential code CASTEP. In 1994, code commercially developed and marketed by Accelrys.
1987	Optoelectronics (OE), Polymer and Colloids (P&C) and parts of the IRC in superconductivity created as separate groups originating from the PCS Group.
1988	Richard Friend's Optoelectronics research group the first to demonstrate the use of semiconducting polymers in the operation of field-effect transistors.
1988	Quantisation of conductance in 1D semiconductor structures discovered by the Semiconductor Physics Group.
1989–1997	Howie: Head of Department.
1989	Opening of the IRC in Superconductivity Building.
1989	The Hitachi Cambridge Laboratory established as an embedded laboratory within the Cavendish.

1989–2000	High Energy Physics Group participate in analysis of LEP data from CERN confirming the standard model with high precision.
1990	The first semiconducting polymer light-emitting diodes by the Optoelectrics Group .
1991–2008	Malcolm Longair, Jacksonian Professor. Head of Department 1997–2005.
1991	Foundation of Toshiba Cambridge Research Centre, now known as the Cambridge Research Laboratory (CRL) of Toshiba Research Europe.
1993	Invention of a probe for the measurment of single electrons in a quantum dot by the Semiconductor Physics Group.
1995-present	Friend elected Cavendish Professor.
1995	The first efficient semiconducting polymer photovoltaic diodes and optically-pumped lasers in the following year by the Optoelectrics Group .
1996	Baldwin and COAST - the first long-baseline optical aperture synthesis interferometer obtains high-resolution images of the surfaces of stars other than our Sun.
1997	Ondrej Krivanek's construction of the first aberration- corrected scanning transmission electron microscope (STEM).
1998	Athene Donald appointed first female Professor of the Physical Sciences in Cambridge.
1998	Gil Lonzarich demonstrates the similarity of the phase diagrams for heavy fermions in CeIn ₃ superconductors near the boundary of magnetism.
1998	Athene Donald begins development of Environmental Scanning Electron Microscopes for the study of wet biological and medical samples.
2000	The first directly-printed polymer transistor circuits by Henning Sirringhaus.
2000	Discovery of superconductivity in the ferromagnet UGe ₂ under applied pressure by the Low Temperature Physics Group.
2000	Development of ONETEP computational codes for very large molecular simulations by Payne and colleagues.
2000–2004	Precise measurements of the angular power-spectrum of the Cosmic Microwave Background Radiation with the Very Small Array by Astrophysics Group .

IMAGES, FROM LEFT: THE FINAL PRODUCTION MODEL OF SWEEPNIK A VECCO MOLECULAR BEAM EPITAXY SYSTEM USED PRIMARILY FOR THZ APPLICATIONS AN ULTRAHIGH VACCUM CHAMBER IN WHICH A SINGLE ION IS TRAPPED IN THE SMALL HORIZONTAL GAP

2001	Pepper becomes Scientific Director of the spin-out company TeraView to exploit advances in Terahetz technology.
2002	Biological Physics developed as a new theoretical and experimental initiative.
2002	Invention of the terahertz quantum cascade laser by Semiconductor Physics Group and the Scuola Normale Superiore, Pisa.
2004	Surface Physics Group: ³ He Spin-Echo Spectroscopy opens up the study of surface dynamics.
2005	Peter Littlewood Head of Department: 2005–2010.
2006	Demonstration of a triggered source of pairs of entangled photons by the Semiconductor Physics Group and Toshiba.
2008	Formation of the Optical Physics (AMOP) Group.
2008	David Mackay's 'Sustainable Energy - Without the Hot Air'.
2008	Opening of Physics of Medicine Building.
2008	High Energy Physics Group's silicon detector system installed in the LHC at CERN.
2008–2013	James Stirling Jacksonian Professor. Head of Department 2011–2013.
2009	Jeremy Baumberg leads the Nanophotonics Group and Cambridge Nano Doctoral Training Centre.
2010	Appointment of Ben Simons to the Hershel Smith Professorship of the Physics of Medicine.
2011	Inauguration of the Winton Programme for the Physics of Sustainability: Friend appointed first director.
2011	Ben Simon's group defines the strategies for homeostatic stem-cell self-renewal in adult tissues.
2012	Use of Bose-Einstein condensation at the AMOP Group at ultra-low temperature in a standing wave optical lattice to simulate and clarify complex phenomena of condensed matter physics.
2012	High Energy Group participates in the discovery of the Higgs boson.
2013	Astrophysics Group participates in analysis of the ESA Planck satellite data in the precise determination of cosmological parameters and tests of the ACDM model.

