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1



1 Introduction

The goal of this project is to study and implement the Adaptive Radix Tree (ART),
as proposed by Leis et al. [2]. ART, which is a trie based data structure, achieves its
performance, and space efficiency, by compressing the tree both vertically, i.e., if a node
has no siblings it is merged with its parent, and horizontally, i.e., uses an array which
grows as the number of children increases. Vertical compression reduces the tree height
and horizontal compression decreases a node’s size.

In Section 3 we describe how ART is constructed by applying vertical and horizontal
compression to a trie. Next, we describe the point query procedure, as well as key deletion
in Section 4. Finally, a benchmark of ART, a red-black tree and a hashtable is presented
in Section 5.

2 Background - Tries

A trie [1] is a hierarchical data structure which stores key-value pairs. Tries can answer
both point and range queries efficiently since keys are stored in lexicographic order.
Unlike a comparison-based search tree, a trie does not store keys in nodes. Rather, the
digital representation of a search key is split into partial keys used to index the nodes.
When constructing a trie from a set of keys, all insertion orders result in the same tree.
Tries have no notion of balance and therefore do not require rebalancing operations.

Keys are split into partial keys of s bits each, where s is called span. Inner nodes
have 2s child pointers (possibly null), one for each possible s-bit sequence. During tree
traversal, we descend down to the child node identified by the d-th s-bit partial key of
the search key, where d is the depth of the current node. Using an array of 2s pointers,
this lookup can be done without any additional comparison.

Figures 1a and 1b depict tries storing the 8-bit keys “01000011”, “01000110” and
“01100100” with s ∈ {1, 2}. Nodes with $ are terminator nodes and are used to indicate
the end of a key. Span s is critical for the performance of the trie because s determines
the height of the trie. When a trie’s height increases, performance deteriorates as more
nodes have to be traversed during a search. We observe that by increasing the span,
we decrease the tree height. A trie storing k bit keys has dk

s
e levels of nodes. As a

consequence, point queries, insertions and deletions have O(k) complexity because a trie
cannot have a height greater than the length of keys it stores.

Span s also determines the space consumption of the tree. A node with span s requires
2s pointers. An apparent trade off exists between tree height versus space efficiency
that depends on s. Increasing s yields a decrease in the tree’s height, resulting in faster
lookups because less nodes are traversed. On the other hand, by increasing s, nodes
require to store more child pointers. Every increment in s halves the height of the tree
but doubles the amount of child pointers of each node. Generally, increasing s yields an
increase to the space consumption of a trie.
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(a) s = 1 (b) s = 2

Figure 1: Tries with span s ∈ {1, 2} storing keys “01000011”, “01000110” and “01100100”.

3 Adaptive Radix Tree (ART)

The Adaptive Radix Tree (ART) is a space efficient trie, which achieves its low memory
consumption using vertical and horizontal compression. Using vertical compression, ART
reduces the tree height significantly by merging parent nodes with child nodes under
certain circumstances. Horizontal compression reduces the amount of space required by
each node depending on the number of child nodes.

3.1 Vertical (Prefix) Compression

When storing long keys, chains of nodes start to form where each node only has a single
child. (e.g. the trie in Figure 1a stores “01100100”, we see a chain of five nodes). As
a consequence, space is wasted as many nodes with little actual content are kept and
traversals are slowed down because many nodes are traversed. Space wasting is further
amplified with sparse datasets or a small span.

Morrison introduced Patricia [3]. Patricia is a space-optimized trie in which each node
with no siblings is merged with its parent, i.e., inner nodes are only created if they are
required to distinguish at least two leaf nodes. Doing so, chains caused by long keys
are eliminated, which make tries space-inefficient. Morrison’s Patricia tree is a bitwise
trie, i.e., has a span s = 1, but the technique can be applied to tries with any span,
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although it becomes less effective as span s increases. We refer to this technique as
vertical compression.

Leis et al. mention three approaches to deal with vertical compression:

• Pessimistic: We store an additional variable, called prefix, inside each node. This
variable stores the concatenation of partial keys of descendants that were eliminated
because they had no siblings. During lookup, prefix is compared to the search
key before proceding to the next child. If a mismatch occurs, then the key is not
contained and the search terminates returning null. Figure 2 depicts two tries,
one with and one without vertical compression using the pessimistic approach.
We observe that nodes with no siblings, color coded red, are eliminated and their
partial key is appended to the parent’s prefix (highlighted in gray).

• Optimistic: Only the number of compressed nodes is stored. Lookups skip this
number of partial keys without comparing them to the search key. Full keys are
required to be stored on leaf nodes. When a lookup arrives to a leaf node, its key
must be compared to the search key. In case of a mismatch, the search key is not
contained and the search is terminated returning null.

• Hybrid: We store the number of compressed nodes and a static, fixed-size array in
order to store a part of the compressed path. If the number of compressed nodes
exceeds the size of the array, the optimistic strategy is used instead.
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Figure 2: Tries with span s = 2 storing keys “01000011”, “01000110” and “01100100”.
The trie on the right incorporates (pessimistic) vertical compression. Red nodes
indicate nodes which get eliminated under vertical compression. Gray strings
represent the value of the prefix variable.
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3.2 Horizontal Compression (Adaptive Nodes)

With large values of span s, an excessive amount of space is sacrificed to achieve a smaller
tree height. Larger nodes means space is allocated for pointers which keep references to
child nodes, even if they are unused.

In order to reduce space needed to keep such references, Leis et al. propose Adaptive
Nodes [2], which make use of dynamic data structures instead of static arrays for child
node bookkeeping. Doing so, we allocate less space when the number of children is small
and add more space if required, i.e., more children are added. We refer to this technique
as horizontal compression. Leis et al. fix the span s = 8, i.e., partial keys are 1 byte long
and therefore each node can have up to 28 = 256 children.

When applying horizontal compression, a node is in one of four configurations, de-
pending on the number of child nodes. Each of the four configurations is optimized for
a different amount of children. When keys are inserted/deleted, the nodes are adapted
accordingly. The most compact configuration is called Node4 which can carry up to four
children. In the same manner, we also have Node16, Node48 and Node256. All nodes
have a header which stores the node type, the number of children and the prefix variable,
which contains the compressed path (c.f. Section 3.1).

Type Children Space (bytes)
Node4 2-4 h+ 4 + 4 · 8 = h+ 36
Node16 5-16 h+ 16 + 16 · 8 = h+ 144
Node48 17-48 h+ 256 + 48 · 8 = h+ 640
Node256 49-256 h+ 256 · 8 = h+ 2048

Table 1: Space consumption for each inner node type. h is equal to the size of the header.

We now describe the structure of each of the four configurations. Table 1 shows the
space consumption for each inner node type. Note that h is equal to the header’s size.
Figure 3 illustrates the state of a node for each node type, when storing the partial keys
65 (“01000001”), 82 (“01010010”), 84 (“01010100”) and pointers to their corresponding
child nodes α, β, γ. Note that ∅ represents a null pointer.

A node of type Node4 contains two 4-element arrays, one called “partial keys” and one
called “children”. The “partial keys” array holds partial keys of the child nodes. The
“children” array, holds pointers to the child nodes. Partial keys and pointers are stored at
corresponding positions in their respective arrays and the partial keys are sorted.

A node of type Node16 is structured similarly to Node4, the only difference being the
lengths of the two static arrays, which are 16 each.

An instance of Node48 contains a 256-element array named “indexes” (256 bytes) and
a 48-element array called “children” (48 · 8 bytes). Partial keys are stored implicitly
in “indexes”, i.e., can be indexed with partial key bytes directly. As the name suggests,
“indexes” stores the index of a child node inside the “children” array. 48 is a special value
in the “indexes” array and is used to signal that the partial key does not exist.

Finally, a node of type Node256 contains an array of 256 pointers which can be indexed
with partial key bytes directly. Child nodes can be found with a single lookup.
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Figure 3: When horizontal compression is applied, a node is in one of four configurations,
namely Node4, Node16, Node48 and Node256. Each of the four configurations
is optimized for a different number of child nodes. We store the partial keys
65, 82, 84 and their corresponding child nodes α, β, γ in an instance of each
node type. Note that ∅ represents a null pointer.
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4 Algorithms
We will now describe how two fundamental operations, namely point query and deletion
are implemented in ART. Range queries and insertions are similar and are omitted for
brevity.

Note that our implementation uses single-value leaves (c.f. Leis et al.), i.e., values are
stored using an additional leaf node type, conveniently called Node0, which stores one
value. Node0 is equivalent to a terminator node mentioned in Section 2. Additionally,
we utilize pessimistic vertical compression (c.f. Section 3.1), i.e., each inner node stores
the entire compressed path inside the prefix variable using a variable length partial key
array. We present our implementations below.

4.1 Point Query

The code fragment in Figure 4 shows the implementation of a point query on ART in
C++. Method get accepts a key and its length as an argument and returns a pointer to
the value associated with the given key, or null if the key is not found.

In lines 2-3 we declare and initialize a pointer, cur, which references the current node
during tree traversal, child which references cur’s child and depth, which holds the
depth of the current node. We now enter a loop in which we check if cur references null
during the beginning of each iteration, and if so, the search key is not contained and we
return null.

In lines 5-8 we check if a prefix mismatch occurs. This step is required because of
vertical compression (c.f. Section 3.1). If a prefix mismatch is discovered, null is returned.
Method check prefix is a member of the node class which determines the number of
matching bytes between cur’s prefix and key w.r.t. the current depth, e.g., given a node
with prefix “abbd”, a search key “aaabbbccc” and depth 2, then check prefix returns
3, since the 4-th byte of the prefix (‘d’), does not match the (depth + 4)-th byte of the
search key (‘b’).

Lines 9-12 check for an exact match of the key at the current node. If so, we return the
value of the current node. Finally, we traverse to the next child node. Variable depth

is adjusted according to the number of nodes merged due to vertical compression. We
lookup the next child node, which is assigned to cur. If no such child exists, the search
key does not exist and null is returned.

1 template <class T> T * art<T>::get(const char *key, const int key_len) const {

2 node<T> *cur = root_, **child = nullptr;

3 int depth = 0;

4 while (cur != nullptr) {

5 if (cur->prefix_len_ != cur->check_prefix(key + depth, key_len - depth))

6 /* prefix mismatch */

7 return nullptr;

8 if (cur->prefix_len_ == key_len - depth)

9 /* exact match */

10 return cur->value_;

11 child = cur->find_child(key[depth + cur->prefix_len_]);

12 cur = child != nullptr ? *child : nullptr;

13 depth += cur->prefix_len_ + 1;

14 }

15 return nullptr;

16 }

Figure 4: Point query implemented in C++.
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4.2 Deletion

Figure 5 presents our implementation of key deletion on ART in C++. During deletion,
the leaf node identified by the search key is removed from an inner node, which is shrunk
if necessary. If the leaf to remove only has one sibling, vertical compression is applied.
We assume all leaf nodes are of type Node0.

In lines 3-5, we declare and initialize two pointers, cur and par which reference the
current and parent node during tree traversal. Variable cur partial key holds the
partial key which indexes the current node in the parent’s child lookup table. Variable
depth holds the depth of the current node. We loop until cur references either the right
leaf node or null. In the latter case, the is not contained and null is returned.

Line 12 checks if cur is a leaf node, i.e. the node that contains the search key has been
found. If that is not the case, we continue descending down (lines 57-60). Given cur is a
leaf, one of three cases is possible depending on cur’s siblings:

• If cur has no siblings (lines 18-24), cur must be the root. We delete cur and set
the root to null.

• If cur has one sibling (lines 24-48), vertical compression is applied, effectively
removing both cur and its parent par. During this process, par’s prefix, as well as
the sibling’s partial key, are prepended to the sibling’s prefix.

Lines 26-30 search for cur’s sibling. Next, lines 34-39 assign the concatenation of:
1) par’s prefix, 2) the sibling’s partial key and 3) the sibling’s old prefix, to the
sibling’s new prefix.

Lines 40-45 perform cleanup operations, freeing memory previously allocated by
the sibling’s old prefix, cur, cur’s prefix, par and par’s prefix.

Finally, sibling replaces the parent (line 46).

• If cur has more than one sibling (lines 48-54), we remove cur from its parent par
and shrink par if needed (c.f. Section 3.2).

Finally, the value associated with the search key is returned (in case the method callee
has to free resources).
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1 template <class T> T *art<T>::del(const char *key, const int key_len) {

2 if (root_ == nullptr) { return nullptr; }

3 node<T> **par = nullptr, **cur = &root_;

4 char cur_partial_key;

5 int depth = 0;

6

7 while (cur != nullptr) {

8 if ((**cur).prefix_len_ != (**cur).check_prefix(key + depth, key_len - depth)) {

9 /* prefix mismatch */

10 return nullptr;

11 }

12 if (key_len == depth + (**cur).prefix_len_) {

13 /* exact match */

14 T *value = (**cur).value_;

15 (**cur).value_ = nullptr;

16 int n_siblings = par != nullptr ? (**par).n_children() - 1 : 0;

17

18 if (n_siblings == 0) {

19 /* cur is root */

20 if ((**cur).prefix_ != nullptr) { delete[](**cur).prefix_; }

21 delete (*cur);

22 *cur = nullptr;

23

24 } else if (n_siblings == 1) {

25 /* find sibling and apply vertical compression */

26 char sibling_partial_key = (**par).next_partial_key(0);

27 if (sibling_partial_key == cur_partial_key) {

28 sibling_partial_key = (**par).next_partial_key(cur_partial_key + 1);

29 }

30 node<T> *sibling = *(**par).find_child(sibling_partial_key);

31 char *old_prefix = sibling->prefix_;

32 int old_prefix_len = sibling->prefix_len_;

33 /* compute new prefix of sibling */

34 sibling->prefix_ = new char[(**par).prefix_len_ + 1 + old_prefix_len];

35 sibling->prefix_len_ = (**par).prefix_len_ + 1 + old_prefix_len;

36 std::memcpy(sibling->prefix_, (**par).prefix_, (**par).prefix_len_);

37 sibling->prefix_[(**par).prefix_len_] = sibling_partial_key;

38 std::memcpy(sibling->prefix_ + (**par).prefix_len_ + 1, old_prefix,

39 old_prefix_len);

40 if (old_prefix != nullptr) { delete[] old_prefix; }

41 /* remove cur and par */

42 if ((**cur).prefix_ != nullptr) { delete[](**cur).prefix_; }

43 delete (*cur);

44 if ((**par).prefix_ != nullptr) { delete[](**par).prefix_; }

45 delete (*par);

46 *par = sibling;

47

48 } else if (n_siblings > 1) {

49 /* remove cur */

50 if ((**cur).prefix_ != nullptr) { delete[](**cur).prefix_; }

51 delete (*cur);

52 (**par).del_child(cur_partial_key);

53 if ((**par).is_underfull()) { *par = (**par).shrink(); }

54 }

55 return value;

56 }

57 cur_partial_key = key[depth + (**cur).prefix_len_];

58 depth += (**cur).prefix_len_ + 1;

59 par = cur;

60 cur = (**cur).find_child(cur_partial_key);

61 }

62 return nullptr;

63 }

Figure 5: Key deletion implemented in C++.
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5 Benchmarks

In this section we compare the performance of ART against the two textbook data
structures red-black tree (RBT) and chained hash table (HT). We chose RBT to compete
against ART because, like ART, RBT is a hierarchical data structure with sorted keys,
and supports answering both point and range queries efficiently. HT does answer point
queries faster but lacks support for efficient range queries. We use C++ standard library
containers std::map and std::unordered map1 which are implementations of RBT and
HT, respectively.

Let k be the length of the keys and n be the size of the dataset, then ART, RBT and
HT have an average case complexity of O(k), O(log n) and O(1),2 respectively, for point
queries, insertion and deletion. ART’s and RBT’s big-O complexities are incomparable,
as one depends on the length of the keys and the other on the size of the dataset n. HT,
with an average case complexity of O(1), should outperform ART and RBT.

We first conduct a series of microbenchmarks in order to assess point query, insertion
and deletion performance and then conduct an experiment in order to measure how often
vertical compression is applied on ART.

There are three datasets, i.e., set of keys, used for the benchmarks: a sparse dataset, a
dense dataset and a mixed dataset, called the Dell dataset [4], with sparse and dense
regions. A dataset is dense (sparse) if many (few) keys share common prefixes.

The dataset of size n = 16 million is constructed by drawing n uniformly distributed
64-bit integers. The dense dataset of size n is constructed by picking 64-bit integers from
0 to n− 1 (leading bits are filled with zeroes).

5.1 Microbenchmarks

During the lookup microbenchmark, we execute point queries on an instance of each of
the three data structures (ART, RBT, HT) containing the same n = 16 million keys. The
keys are sparse (i.e., uniformly distributed), 64-bit integers. Each key is queried exactly
once. The insertion microbenchmark inserts the same sixteen million sparse 64-bit keys
used previously. Finally, the deletion microbenchmark, structured similar to the lookup
microbenchmark, attempts to delete every stored key from the data structure.

Figures 6a to 6c show the results of the three microbenchmarks. ART is positioned in
between its competitors in all three microbenchmarks and shows a robust performance.
ART’s performance depends on key length k, but HT does not (constant), which explains
why ART is slower than HT. Although ART’s and RBT’s big-O complexities are incom-
parable as the one depends on the key length k and the other on the size of the dataset
n, ART seems to outperform RBT in practice for point queries, insertion and deletion.

We also observe that ART performs half as fast compared to HT during the lookup
microbenchmark, but is as fast as HT during insertion. We believe this happens because
during insertion, HT occasionally requires a table resize and full rehash.

1https://en.cppreference.com/w/cpp/container
2amortized O(1) during insertion and deletion.
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Figure 6: Lookup, insertion and deletion performance of ART, red-black trees (RBT)
and hashtables (HT) over the sparse dataset.

5.2 Vertical Compression

Vertical compression is an expensive operation, as it involves structural index modifications
when applied. Such structural index modifications can be difficult to implement efficiently
for concurrency control because synchronization of concurrent transactions is required
during such operations [4]. Our last experiment measures how often vertical compression
is applied when we store keys from the sparse, dense and Dell dataset. As mentioned in
Section 3.1, when deleting a node with a single sibling, the sibling is compressed, i.e.,
merged with its parent.

Analogously, when inserting a key, if a leaf is encountered or the search key differs
from the compressed path, expansion is applied, i.e., a new inner node is created above
the current node and the compressed paths are adjusted accordingly. We report only
the number of vertical compressions during deletion, but found that the number of
compressions during deletion equals the number of expansions during insertion.

The number of compressions depends on span s. If s = 1, every node must have
exactly one sibling, and therefore every deletion requires a compression, unless the root
is deleted. ART has a span of s = 8 and we therefore do not expect a compression for
every deletion.

Results should vary depending if keys are sparse or dense. Dense keys yield a higher
node fanout which causes fewer compressions. We therefore expect that having dense
keys implies a smaller number of compressions.

Figures 7a to 7c depict number of vertical compressions over number of transactions
for the sparse, Dell and dense dataset. We observe a linear relation between the two
variables. As expected, dense keys require less compressions compared to sparse keys.
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That is because with the dense dataset, ART nodes have a higher fanout. If a node has
many children, more deletions are required until compression is applied. We also observe
that the Dell dataset lies between the sparse and dense dataset in terms of compressions
per operation but tends towards the dense dataset.
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Figure 7: Number of compressions over number of operations.

6 Future Work

In this project we implemented all basic functionalities of ART, but left potential for
performance improvements.

We plan to optimize ART’s sequential transactional throughput with the help of
extensive profiling (e.g., call history, instructions executed, etc.). Performance can also be
improved by utilizing Single Instruction Multiple Data (SIMD) instructions as mentioned
in [2]. A memory profile analysis would be interesting for the purpose of comparing
ART’s space utilization against red-black trees and hashtables w.r.t. sparse and dense
datasets.

Leis et al. use hybrid vertical compression in their implementation, i.e., only store the 8
first bytes of the compressed path in a static array and the number of compressed nodes.
We use pessimistic vertical compression, which stores the entire compressed path. Their
approach leverages on-CPU caches better compared to the pessimistic approach, but keys
must be stored at leaves and one additional comparison is required when encountering a
leaf node. We want to know how strong we benefit from hybrid vertical compression and
how much it impacts memory consumption.

Finally, our implementation dictates single threaded usage, but we intend to incorporate
concurrency control in order to further increase the transactional throughput of ART
when multiple cores can be utilized.
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