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Figure 1: From left to right: Image rendered with original lightmap, zoom-in on the rendering using original texture, using
DXT1, using ETC2 and finally using the proposed method.

Abstract
Light maps have long been a popular technique for visually rich real-time rendering in games. They typically
contain smooth color gradients which current low bit rate texture compression techniques, such as DXT1 and
ETC2, do not handle well. The application writer must therefore choose between doubling the bit rate by choosing
a codec such as BC7, or accept the compression artifacts, neither of which is desirable. The situation is aggravated
by the recent popularity of radiosity normal maps, where three light maps plus a normal map are used for each
surface. We present a new texture compression algorithm targeting smoothly varying textures, such as the light
maps used in radiosity normal mapping. On high-resolution light map data from real games, the proposed method
shows quality improvements of 0.7 dB in PSNR over ETC2, and 2.8 dB over DXT1, for the same bit rate. As a side
effect, our codec can also compress many standard images (not light maps) with better quality than DXT1/ETC2.

Categories and Subject Descriptors (according to ACM
CCS): Data [E.4]: Coding and Information Theory—Data
compaction and compression;

1. Introduction

Texture compression [BAC96, KSKS96, TK96] continues to
be a very important technology in real-time rendering due
to lower bandwidth consumption and less memory usage. At
the same time, compute power increases at a much faster
pace than DRAM latency and bandwidth [Owe05], making
techniques like texture compression potentially even more
important in the future.

Light maps have been used to increase realism of lighting
in real-time rendering for a long time. Since lighting often
changes quite slowly, a low-resolution light map can often

be combined with a (repeated) high resolution texture in or-
der to create a convincing effect. However, if sharp shad-
ows are desired, a higher resolution must be used in the light
map, and this will increase the need for texture compres-
sion. The situation is aggravated by higher quality render-
ing techniques, such as radiosity normal mapping (RNM)
[McT04, MMG06, Gre07], since they in effect need three
or more light maps per object. Examples include Valve’s
Source engine (e.g., Half-life 2) [McT04] and Mirror’s Edge
& Medal of Honor by DICE/EA [LH09]. Sometimes about
300 MB of (compressed) RNM textures are needed for a sin-
gle level in a game, which puts pressure even on high-end
graphics cards. In general, the RNM techniques precompute
three light maps (each for a different normal direction), and
at render time, a linear combination of these light maps is
computed per pixel based on the direction on the normal.
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The normal is typically accessed through a high-resolution,
repeated normal map.

As can be seen in Figure 1, the industry standard, DXT1,
fails to compress blocks with smoothly varying content with
sufficient quality. Both DXT1 [INH99] and ETC1 [SAM05]
work by using a small color palette that the pixels can choose
color from. Since they are designed to handle quite arbitrary
texture content, neighboring pixels are allowed to choose
palette entries completely different from each other. This
flexibility is expensive in terms of bits, and therefore the
number of possible colors in the block must be restricted.
For instance, DXT1 can only display four different colors
within a 4× 4 block, and ETC1 can display four different
colors within a 4× 2 block. Apparently, this is not enough
for slowly varying textures such as light maps from radios-
ity normal maps. It should be noted that ETC2 [SP07] has a
special mode for planar content in a block, but that too does
not give enough flexibility for light maps.

This paper proposes a new texture compression algorithm
to solve this problem. Instead of allowing neighboring pixels
to obtain completely different colors, we exploit the spatial
redundancy in the data by letting the position of the pixel in
the block control the interpolation between two base colors.
To allow for edges, a non-linear function is used to produce
the interpolation value. This makes it possible to give unique
colors to every pixel of a 4× 4 block. For “non-smooth”
blocks, we propose using a variant of ETC2 as a fallback.

2. Previous Work

In this section we review the most relevant previous work,
which in our case leaves out all the work on alpha map com-
pression, high dynamic range (HDR) texture compression,
and lossless compression.

In 1996, the first three papers about texture compres-
sion were published [BAC96, KSKS96, TK96]. Beers et
al. [BAC96] present a texture compression scheme based
on vector quantization (VQ) which can compress down to
two bits per pixel (bpp). They compress 2×2 RGB888 pix-
els (12 bytes) at a time using a code book of 256 entries,
thus achieving a compression ratio of 12:1. The main issue
with VQ based schemes is that they create memory indirec-
tion; the decompression hardware must fetch the index from
memory before it knows from where in the code book to
fetch data. This creates extra latency that can be hard to hide.
To reach sufficient quality, one optimized code book is typi-
cally needed for each texture, which makes it harder to cache
the code books.

The Talisman architecture [TK96] uses a discrete cosine
transform (DCT) codec, but this has seen little use. We
speculate that this has to do with the steps following the
DCT, which typically include run-length coding and Huff-
man coding. Both these steps are serial in nature, and can-
not be decoded in a fixed number of steps. These are fea-

tures that are seldomly desired in a hardware decompressor
for graphics. Also, often the hardware decompressor is lo-
cated after the texture cache, and hence, the decompressor
only needs to decompress a single pixel, which also does
not fit well with Huffman & run-length decoding; if the
last pixel is requested, all previous pixels must anyway be
decoded. Finally, Huffman coding produces variable length
data, whereas most texture compression systems use a fixed
rate in order to preserve random access. You could also
imagine a DCT-based scheme where we avoid Huffman &
run-length decoding in order to solve this problem, but that
would reduce the compression ratio, and more importantly,
each DCT coefficient would still affect every pixel to be de-
coded, making decompression times long. Hence, it seems
that DCT-based codecs are not well-suited for hardware tex-
ture compression, but in other contexts, such as video com-
pression, they work very well.

Delp et al. describe an gray scale image compression sys-
tem called block truncation coding (BTC) [DM79], where
the image is divided into 4× 4 blocks. Two gray scale val-
ues are stored per block, and each pixel within the block
has a bit indicating whether it should use the first or second
color. By storing colors instead of gray scale values, Camp-
bell et al. extend this system to color under the name color
cell compression (CCC) [CDF∗86]. Knittel et al. [KSKS96]
develop a hardware decompressor for CCC and use it for tex-
ture compression (as opposed to image compression). The
S3TC texture compression system by Iourcha et al. [INH99]
can be seen as an extension of CCC; two base colors are
still stored per block (in RGB565), but two additional colors
per block are created by interpolation of the first two, creat-
ing a palette of four colors. Each pixel then uses two bits to
choose from the four colors, with a considerable increase in
quality as a result. In total 64 bits are used for a block, giving
4 bits per pixel (bpp). S3TC is now the de facto standard on
computers and game consoles under the name DXT1.

Fenney [Fen03] also stores two colors per block, but uses
the colors of neighboring blocks: The first color is used to-
gether with the first colors of the neighboring blocks to bi-
linearly interpolate the color over the area of the block. This
way a smooth gradient can be obtained. The second color
is treated similarly, creating two layers of color. Finally two
bits per pixel are used to blend between these two layers,
producing the final pixel color. Fenney present both a 4 bpp
and a 2 bpp variant of the codec.

The ETC scheme [SAM05] also uses 4× 4 blocks, and
compress down to 4 bpp. Otherwise the approach is rather
different. One color is chosen per 2× 4 pixel block. The
color of the second block is either encoded separately or dif-
ferentially, where the latter allows for higher chrominance
precision. Each block also encodes a table index, where each
entry has four values of the form: {−b,−a,+a,+b}. Each
pixel uses two bits to point into this table entry. The value
from the table is added to all three color components, and
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Figure 2: Left: 4× 4 pixels with a very regular pixel pat-
tern. Right: illustration of how a profile function is used to
describe the content of the pixel block to the left. Note how
the profile function is merely a function of x, and then ex-
truded in the y-direction.

can hence be viewed as a luminance modification. ETC is
standardized in OpenGL ES as an OES extension. By using
invalid combinations in the ETC format, Ström and Petters-
son [SP07] manage to squeeze in three more modes in ETC.
This new format, called ETC2, is better at handling chromi-
nance edges, and has a special mode for planar transitions.

Recently, new codecs with higher bit rates have been
introduced, such as Microsoft’s BC7 (called BPTC in
OpenGL [BPT]) which operates at 8 bpp. However, faced
with the prospect of doubling storage and bandwidth re-
quirements, game developers may choose the imperfect
quality of 4 bpp systems instead.

One technique in the field of image analysis and percep-
tion is to represent an image as a summation of a small num-
ber of oriented functions [OF96, DV03]. Our technique also
uses oriented functions, but represents the blocks using only
one function per block, not using a summation of functions.

3. Compression using Smooth Functions

In this paper, we focus on the compression of smooth light
maps, and a general observation is that they often contain
rather little information, while at the same time, each pixel
in the block can have a unique color, even if the differences
are not always that big. Another observation is that many
blocks are directional, i.e., they contain more information
in one direction (across an edge) than in the other direction
(along an edge).

We start by describing the algorithm for gray scale light
maps using a very simple example, illustrated in Figure 2.
We have divided the image into blocks of 4× 4 pixels, and
are concentrating on one block. The x-coordinate of each
pixel is used to evaluate a function, here called profile func-
tion, and the result is used as the gray shade for the pixel.
Thus, a single profile function is sufficient to describe the
gray scale content of the entire block. However, more flex-
ibility is needed to be able to accurately represent a large
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Figure 3: Left: Two orthogonal directions are placed in a
block of 4× 4 pixels, so that the block varies maximally
along the first direction, and minimally along the second.
Right: A typical function that can be used to describe the
variation along the first direction.
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Figure 4: Illustration of the decoding of the block. The edge
line is positioned in the block and each pixel computes its
signed distance to the edge. This in turn is fed into a smooth
profile function in order to compute the value of the pixel.

number of blocks. For example, a key parameter is to be able
to rotate the profile function in the xy-plane.

Hence, the core idea of our research is to encode the ori-
entation of an edge in each pixel block, and then specify a
profile across the edge using a function with a small number
of parameters.

To enable orientation and translation, we first establish
two orthogonal directions in the block, and an origin. Here,
we would like to arrange the directions so that the gray
scale varies maximally along the first direction, and mini-
mally along the other direction. The “origin” is placed in
the lower left corner of the block. An example is shown
to the left in Figure 3. Mathematically, this can be done
by fitting a line, a1x+ b1y+ c1 = 0, so that the “normal,”
(a1,b1), of the line coincides with the first direction. Note
that the subscript is used to distinguish it from other lines.
By normalizing the equation so that a2

1 + b2
1 = 1, we can

compute the distance, d1, from any point, (px, py), to the
line by simply inserting the point into the line equation:
d1 = d1(px, py) = a1 px +b1 py + c1. This distance is signed
meaning that it is negative on one side of the line and posi-
tive on the other. See Figure 4 for an illustration of the edge
line and the signed distances from the pixel centers to this
line.

Next, we use a scalar-valued profile function, f (d1), to
represent the variation inside the block. Since d1 will be
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constant for points on a line parallel with the second direc-
tion, f (d1) and hence the gray scale value of the block will
also be constant in that direction. Points along the other di-
rection will give rise to a varying d1, and hence different
gray scale values, f (d1). Using the line definition above, we
obtain the gray scale value in a pixel, (px, py), as f (d1) =
f (a1 px +b1 py + c1).

The profile function, f (d1), can be a function going from
dark to bright, such as the one depicted to the right in Fig-
ure 3. This works well for blocks where there is an edge in
the block. It could also be a function going from dark, bright
and then dark again. Such a function would be better suited
for blocks depicting a white line on a black background.

3.1. Extension to Color

A naïve way of extending our method to color would be to
duplicate the above-mentioned procedure three times, i.e.,
once for each color component. However, that would cost
too many bits, and would not exploit the fact that the color
channels often are well correlated. Instead of directly cal-
culating the grayscale value using the function f (d1), we
use it to calculate an interpolation factor, i = f (d1), where
i ∈ [0,1]. We then use this interpolation factor to interpolate
between two different colors, cA and cB, which are represen-
tative for the block. The interpolation is then done as:

c(px, py) = (1− i)cA + icB, (1)

where i = f (d1) = f (a1 px +b1 py +c1). As can be seen, the
same interpolation factor, i, is used for all three color chan-
nels. So far, we only need to store the colors cA and cB, the
line equation (for instance using the constants a1, b1, c1),
and indicate which function, f , was used for calculating the
interpolation factor in order to decompress a block.

3.2. Second Direction Tilt

Up to this point, we have assumed that all the variation
is across the edge, i.e., in the first direction. The variation
along the edge, i.e., in the second direction (see Figure 3), is
often non-negligible in practice and needs to be represented
in our model as well. Most of the bits will be allocated for the
placement of the edges and for the variation across the edge,
and hence, we need to limit the number of bits describing
the variation in the second direction. We have found that a
simple linear variation, i.e., a slope, along the edge does a
decent job. This slope is described with a single parameter,
γ, which is the same for all three color components, i.e., a
linear luminance variation. An additional term, γd2, is added
to each component of the color:

c(px, py) = (1− i)cA + icB + γd2(1,1,1), (2)

where d2 = a2 px + b2 py + c2 is the signed distance from
the pixel, (px, py), to a line orthogonal to the first line, and

(1,1,1) is the maximum color. The line equation for this sec-
ond line is a2x+b2y+ c2 = 0, where:

(a2,b2,c2) = (−b1,a1,−0.5(a1 +b1)). (3)

This means that the direction of the first line is rotated by
90 degrees, and that the translation, c2, is computed so that
the line goes through the origin (0.5,0.5) of the pixel block.
This new term gives us the opportunity to add a luminance
tilt along the edge, as illustrated in Figure 6d.

3.3. Profile Functions

We currently use four different profile functions, fi(d1), i ∈
{1,2,3,4}, as shown in Figure 5, and we pick the profile
function that best suits the content of each pixel block. All
four functions are based on the simple smoothstep function,
s(d), shown below in pseudo-code:

x = d/w //scale by width, w
x+ = 0.5 //center function around origin

x = clamp(x,0,1) //clamp between 0 to 1
return 3x2 −2x3 //evaluate smoothstep

Note that a width parameter, w, is used to control how
rapidly the smoothstep function should increase. A small
value will give rise to a sharp edge, whereas a large value
will create a smooth transition. The value 0.5 is added so
that the function is centered around d = 0.0

Figure 5a shows a function we call the symmetric single,
which is the basic smoothstep function, f1 = s(d) with a
width parameter to control the shape. Figure 5b shows the
asymmetric single function, f2, where the smoothstep func-
tion also is used. However, two different width values are
used here; one to the left of the y-axis, and one to the right.
Figure 5c shows the asymmetric double function, f3, which
uses two “concatenated” smoothstep functions (hence the
name ’double’), again using different widths on either side of
the y-axis. In contrast to the two previous profile functions,
this function uses three colors for the interpolation calcula-
tion. A third color is used at d1 = 0, and to save storage this
color is not a separate color but instead generated as the av-
erage of the other two and scaled with a scale factor.

The fourth function is different since it adds another
smoothstep in an arbitrary direction, d3 = a3 px +b3 py + c3,
and multiplies two smoothstep functions, s(·), together:

f4(d1,d3) = s(d1)s(d3). (4)

Hence, each smoothstep uses its own line equation, but they
also use their own widths. The scalar value, f4(d1,d3) ∈
[0,1], is used as an interpolation factor in exactly the same
way as for the other functions. See Figure 5d for an example.
As can be seen, this gives us the ability to represent various
smooth corners in a block. Since the fourth function is al-
ready two-dimensional, no second direction tilt is needed.

Our choice of profile functions is the result of a combina-
tion of reasoning and trial and error, therefore it may seem
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Figure 5: The four functions used to fit the color variation.
a) symmetric single, b) asymmetric single, c) asymmetric
double, and d) corner, which is the multiplication of two
smoothstep functions along two different directions.

a bit arbitrary. We started out with the assumption that the
single symmetric function should capture smooth and sharp
edges well, which turned out to be true. We then tried over
20 different functions, and picked the ones that gave the best
results. In retrospect, it is clear that the asymmetric single
captures blocks containing discontinuous edges, and that the
asymmetric double can capture a smooth line inside a block,
as mentioned earlier. The corner function captures corners,
which often occurs in light maps.

3.4. Fallback method

While many blocks will compress well using the above ap-
proach, there will be others that do not have any directional
structure, or any structure at all. For such blocks, we use
a variant of ETC2 as a fall-back coder [SP07]. One bit per
block will therefore be used to indicate whether profile func-
tions should be used, or the ETC2 variant should be used. To
preserve a bit rate of 64 bits per block, we need to steal one
bit from the ETC2 codec. This is done by disabling the indi-
vidual mode in ETC2, which frees up the diff-bit. Thus, 63
bits are left to compress the block using profile functions.

3.5. Function Parameters, Quantization, and Encoding

In this section, we will describe, in detail, all the parame-
ters of our codec, how they are quantized and encoded. Our
codec can use either of the four profile functions in Figure 5,
and hence, two bits are needed to select profile function. This
leaves 63− 2 = 61 bits to encode the parameters for the se-
lected profile function.

In Figure 6, a visualization of the key parameters for sym-
metric single are shown. There are the two end-point col-
ors, ColorA (cA) & ColorB (cB), and line placement pa-

(a) (b)

(c) (d)

Figure 6: Illustration of the function parameters of the sym-
metric single smoothstep function: a) two end-point colors,
b) rotation and translation, c) width, and d) slope.

rameters, consisting of orientation, θ1, and translation, c1.
The line equation then becomes: a1x+ b1y+ c1 = 0, where
a1 = cosθ1 and b1 = sinθ1. As we have seen earlier, this
line is used to place the profile function in its best possible
location. Furthermore, Figure 6c shows the function width,
which determines how rapidly the function rises (see the
width parameter, w, in Section 3.3). The effect of the width
can be seen in Figure 5a. Finally, Figure 6d shows the second
direction tilt parameter, γ, described in Section 3.2. This im-
proves image quality in that it often reduces block artifacts.

The bit distribution varies depending on the choice of pro-
file function. We chose a starting distribution for each func-
tion and then iteratively optimized them over a small train-
ing image. The final bit distributions for our parameters in
the four smoothstep-based profiles are listed in Table 1. The
symmetric single uses 3 · 6 bits per color, five bits for its
width, w, seven bits for its orientation angle, θ1, seven bits
for its translation, c1, and six bits for its tilt parameter, γ.

Compared to the symmetric single, the only new parame-
ter for the asymmetric single is that it has two widths, w1
and w2, instead of only one. The asymmetric double has
an additional parameter, called the scale factor, m. As men-
tioned briefly in Section 3.3, this factor is used to compute
the color in the “middle” of the asymmetric double function.
The color is computed as: cmid = m(cA + cB)/2. Finally, the
corner codec uses two line equations, also described in Sec-
tion 3.3, and hence encodes two orientation, θ1 and θ3, and
two translations, c1 and c3.

All of the parameters used are viewed as floating point
values, with individual ranges as shown in Table 2. The
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Number of bits SSingle ASingle ADouble Corner
ColorA (cA) 666 565 555 555
ColorB (cB) 666 565 555 555
Function widths (w1w2) 5- 44 55 44
Rotations (θ1θ3) 7- 8- 6- 66
Translations (c1c3) 7- 9- 6- 56
Scale factor (m) - - 5 -
Second direction tilt (γ) 6 4 4 -
Total 61 61 61 61

Table 1: Bit distribution for the four modes; symmetric sin-
gle (SSingle), asymmetric single (ASingle), asymmetric dou-
ble (ADouble), and corner smoothstep mode.

Parameter min float max float
value value

Color components 0 255
Function widths (w1&w2) 0.005 5
Rotations (θ1&θ3) 0◦ 180◦

Translations (c1&c3) -2 +2
Scale factor (m) 0 2
Second direction tilt (γ) -16 +16

Table 2: This table shows the valid range for each parameter
before quantization. The minimum values are the same after
quantization, but the maximum values are slightly smaller
depending on the number of bits used.

stored bits are treated as fixed point representations, with
the decimal point placed to achieve a similar range as in the
floating point domain. For example, in the 6-bit second di-
rection tilt used in the symmetric single mode, the decimal
point is before the least significant bit, giving a range of -16
to +15.5. In the other modes which use 4 bits for the sec-
ond direction tilt, a zero is inserted after the last of the four
bits to get a 5-bit integer value, which will be in the range
of -16 to +14. There are two exceptions to this rule: first, the
bits representing the color components are repeated which
ensures we are always able to represent both extreme points
0 and 255. Second, the width parameters use a non-linear
quantization, which in the 5-bit case is:

w = 0.005× (1000
1
31 )q (5)

where q is the stored value. In the four-bit case, the equation
is slightly altered to get a similar range of values:

w = 0.005× (1000
1
31 )2q (6)

4. Compression algorithm

Compression is done in two iteration stages, the first with
the parameters in the floating point domain and the second,
after parameter quantization, in the fixed point domain. We
use cyclic coordinate search [BSS93] to minimize the error
function, i.e., for each coordinate (i.e., parameter, such as

the width) we approximate the gradient with respect to that
parameter, and go a step in the opposite direction.

However, if the error function changes very rapidly, a
small step size is necessary in order to be guaranteed a lower
error in the new point. This small step may be smaller than
what it is possible to step in the quantized domain. To solve
that problem, we do the first round of optimization using
floating point arithmetic. After a global minimum has been
found, and cyclic coordinate search is no longer fruitful, we
quantize the values and do a second round of optimization in
the quantized domain. This is necessary since we will not be
able to reach the floating point position exactly when quan-
tizing it, so we must try a number of quantized positions
around that point.

For each 4×4 pixel block the following is performed:

1. Find the direction of the maximum variation. This is rep-
resented as the rotation angle, θ.

2. Use this rotation for initial orientation of the function.
3. For initial ColorA (cA) and ColorB (cB), we use the “min”

and “max”- colors along the maximum variation line.
4. Iteratively search over the entire floating-point parameter

space (ColorA, ColorB, rotation, offset, width and slope)
using cyclic coordinate search to minimize the image er-
ror.

5. Quantize all parameters.
6. Perform a second iterative search of the quantized param-

eters.
7. Choose the mode/function with the smallest error.
8. Pack into 64 bits.

To ensure a “somewhat” exhaustive search of the possible
parameter space, we ran 200 iterations of the floating point
parameter search and 6 iterations of the fixed point param-
eter search. This is of course a trade-off between compres-
sion time and performance. However, performance did not
improve much above 200 float / 6 fixed iterations. Our com-
pression algorithm compresses an image with 192×192 pix-
els in about 50 seconds. This is done with a multi-threaded
implementation on a MacPro with dual Intel quad core CPUs
at 2.26 GHz. Early on, we implemented the encoder in
OpenCL on an NVIDIA GPU and managed to get a speed
up factor of 42× compared to a single-threaded CPU ver-
sion. However, we decided to focus our programming efforts
on a multi-threaded CPU implementation, since the OpenCL
tools for debugging and profiling were rudimentary at best
(Mac OSX 10.6.1/2).

5. Decompression algorithm

The decompressor is much simpler and faster. It is designed
to have low complexity in order to ensure inexpensive hard-
ware implementation. To decompress a single pixel in a 4×4
block, the following is done:

1. The rotation angle, θ, and offset parameter, c, are used
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Figure 7: Hardware design for a symmetric single decom-
pression unit. Linear interpolation is replaced with a LERP
unit as shown in the lower right of the diagram. Three lookup
tables are used for sin/cos, 1

width and smoothfunc evaluation.

to reconstruct the edge line, ax+ by+ c = 0, where a =
cos(θ) and b = sin(θ).

2. For the pixel (x,y), calculate a signed distance, d = ax+
by+ c. See Figure 4.

3. An interpolation value, i, is calculated using the selected
base function, i = f (d), i ∈ [0,1].

4. i is then used to interpolate between ColorA and ColorB.
5. Finally, the slope parameter is used to add a luminance

ramp (along the edge line) to the output color.

For example, in the symmetric single case, Step 3 uses
the smoothstep function, s(d), as shown in Section 3.3. For
Step 5 the distance from the orthogonal line must be first
calculated using an orthogonal line equation. This orthogo-
nal distance is multiplied by a scaling factor to vary the color
along the edge line.

5.1. Fixed function decompression algorithm

We have implemented a fixed function version of the de-
compressor algorithm. This decompressor uses the functions
shown above with only fixed point addition and multiplica-
tion with 7 bits precision up until the final lerp, addition and
clamp, and several lookup tables for the more complex func-
tions. A possible hardware design is shown in Figure 7.

The scaling of the width of the smoothstep function re-
quires a division. We replace this division with a lookup of

1
width and a multiplication. The width value is represented
with 3 bits of integer and 7 bits of fractional precision.

The sin and cos used in computing the coefficients a and b
from the rotation angle parameter θ in Step 1 are stored in a
lookup table with 128 entries and 7 bits per entry for values
ranging from 0 to 180 degrees.

We approximate the smoothstep equation, 3x2−2x3, with
a piecewise linear function stored in a lookup table. This ta-
ble only stores the region between 0.5 and 1 since the func-

Original PVRTC Our
Figure 8: PVRTC handles smooth transitions well due to its
bilinear interpolation. Instead, compression artifacts mani-
fest themselves in other parts of the textures, as shown above.

tion is symmetrical. We then split the 0.5 to 1 region in half
recursively to create 8 segments and store the end point val-
ues in a table with 7 bits of precision. When decoding we
find the segment by counting the number of leading zeros
and then interpolate the endpoints from the lookup table.

We have performed a rough hardware complexity esti-
mate, using estimates such as 2.2 gates per bit of a MUX
and 4.4 gates per bit of an ADD, where one gate equals a
2-input NAND. The result was a gate count somewhere be-
tween 4000 and 5000 for our decoder, including the ETC2
fallback. This is roughly 4 times the size of the ETC2 de-
coder and 5 times the size of a DXT1 decoder estimated in a
similar manner.

6. Results

We have tested our algorithms on radiosity normal maps
(RNMs) from two real games, namely Mirror’s Edge and
Medal of Honor from DICE/EA. While our main target is
smooth light maps, we also wanted to test the hypothesis
that our codec can also be used as a more generic texture
compression method. Therefore, we also used the 64 regular
textures which were used for evaluating ETC2 [SP07]. We
have compared our results against DXT1 and ETC2 for all
of the test sets. For DXT1 we used The Compressonator ver-
sion 1.50.1731, and for ETC2 exhaustive compression was
used. In both cases, error weights of (1,1,1) were used to
maximize PSNR. We contemplated also comparing to the 4
bpp version of PVRTC [Fen03], especially since its use of
bilinear interpolation handles smooth transitions well. Un-
fortunately, compression artifacts creep up in other places
instead as shown in Figure 8, and on the Mirror’s Edge test
set, it was 1.9 dB lower than DXT1 when compressed us-
ing PVRTexTool Version 3.7. For these reasons, we have ex-
cluded PVRTC from our results.

In the following subsections, we first present the results
for Mirror’s Edge, which is followed by Medal of Honor’s
results. In Section 6.3, we present results for the 64 regular
(non-light map) textures used to evaluate ETC2 and also a
test done with a set of 24 regular photos from Kodak. Finally,
we show zoomed-in crops of some textures in Figure 16.
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Our ETC2 DXT1 Our ETC2
47.090272 45.250185 43.893217 1.2707296424285 1.9411623568973 2.6531307971481 Image 0

Image set 0 47.181199 45.438668 44.045369 1.2444013135607 1.8587182403567 2.5617896155592 Image 1
47.170420 45.220212 43.885651 1.2474936994504 1.9546056997611 2.6577569400225 Image 2

42.132179 41.294763 39.088049 3.9798111174425 4.8261860596976 8.0218670669905 Image 5
Image set 1 41.084472 40.210445 38.122552 5.0656264502979 6.1949222611057 10.019018092634 Image 6

40.909949 39.966006 37.742149 5.2733362040882 6.553597438348 10.936175244234 Image 7

38.433202 37.878156 35.495277 9.3273905338558 10.598996795938 18.346476158996 Image 10
Image set 2 38.156404 37.647072 35.249535 9.9412263176028 11.178233077837 19.414529085878 Image 11

38.163563 37.642631 35.216250 9.9248524938573 11.189669539847 19.563896693052 Image 12

46.273267 45.133646 43.573700 1.5337467690678 1.9939568733773 2.8556853980269 Image 15
Image set 3 46.148405 44.871438 43.230163 1.5784828251544 2.1180517203636 3.0907513020148 Image 16

46.138688 44.940781 43.451282 1.5820185111869 2.0845017346531 2.9373260768859 Image 17

36.405053 36.284226 33.604389 14.879045123991 15.298813868739 28.355771033789 Image 18
Image set 4 36.009619 35.976070 33.192189 16.297405101902 16.423789149207 31.178948227886 Image 19

36.643816 36.532227 33.785034 14.083116141561 14.449661084296 27.20050460671 Image 20

53.109288 51.272681 50.409616 0.3177982935341 0.4850787624007 0.5917234229678 Image 21
Image set 5 53.292434 51.440642 50.505841 0.3046750989623 0.4666767458606 0.578757005421 Image 22

52.207347 50.241091 49.270998 0.3911520951893 0.6151361651596 0.7690960145818 Image 23

40.141008 38.740802 38.125596 6.2947655720503 8.6896075115978 10.011998154148 Image 24
Image set 6 40.467090 38.951793 38.189133 5.8394421570931 8.2775356691372 9.866589525799 Image 25

40.024666 38.587916 37.740354 6.4656733630463 9.0009585316898 10.940696253067 Image 26

48.988720 47.231265 46.417174 0.8207452176936 1.2301380748894 1.4837576149866 Image 27
Image set 7 52.041456 50.134620 49.541656 0.4063822783814 0.6304031301097 0.7226279592367 Image 28

50.266459 48.343216 47.649747 0.6115535068004 0.9522670578462 1.1171350060035 Image 29

4.9450362428416 5.7921944812131 9.4115003040016

all 41.189108819199 40.502372253757 38.394215002662
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Results - Mirror’s Edge Test set

Figure 9: Texture compression results using a test set of 24 radiosity normal maps from the game Mirror’s Edge. Our method
is 0.7dB better than ETC2 and 2.8 dB better than DXT1 when all 24 results are combined together.

Figure 10: Original light maps from Mirror’s Edge, used for
training our algorithm. Images courtesy of Electronic Arts.

6.1. Mirror’s Edge

During the development of our algorithm (including bit dis-
tribution, profile function selection, quantization, and more),
we used nine representative crops from the game Mirror’s
Edge as a training set. These are shown in Figure 10, and for
all our results, these images were excluded in order to avoid
biasing the result. The remaining RNM images from Mir-
ror’s Edge were used to form a larger test set of 24 RNMs.

The results are shown in Figure 9. The combined PSNR
results for this set are 41.2 dB, 40.5 dB and 38.4 dB for our
method, ETC2, and DXT1, respectively. Our method consis-
tently performs better than ETC2 and DXT1 for this entire
test set. A few resulting images (with zoomed-in crops) from
this test set are shown in the top two rows of Figure 16. It is
interesting to note that for the images with lowest PSNR, the
improvement from our algorithm is almost zero compared
to ETC2. The reason for this is that when ETC2 and DXT1
perform poorly, the image content is usually rather noisy, in
which case our codec has little chance of improving quality.

We also generated mipmapped versions of these 24 RNMs
to investigate how our method behaves with low-pass fil-
tered and lower resolution versions of the RNMs. The re-

MIP0 MIP1 MIP2 MIP3

Our ETC2 DXT1 Our ETC2 DXT1 Our ETC2 DXT1 Our ETC2 DXT1

Image 0 47.090272 1.27 45.250185 1.94 43.893217 2.65 44.214709 2.46 42.511129 3.65 40.712797 5.52 41.249413 4.88 39.693477 6.98 37.871984 10.61 37.525992 11.49 36.917496 13.22 34.496177 23.09 Image 0

Image 1 47.181199 1.24 45.438668 1.86 44.045369 2.56 43.971792 2.61 42.647247 3.53 40.869103 5.32 41.137712 5.00 39.858524 6.72 37.845901 10.68 37.214078 12.35 36.715491 13.85 34.682278 22.12 Image 1

Image 2 47.170420 1.25 45.220212 1.95 43.885651 2.66 44.113131 2.52 42.519255 3.64 40.651713 5.60 41.113088 5.03 39.785412 6.83 37.832677 10.71 37.595358 11.31 37.067179 12.78 34.513710 23.00 Image 2

Image 5 42.132179 4.0 41.294763 4.8 39.088049 8.0 37.977899 10.4 37.766262 10.9 35.161873 19.8 35.190839 19.7 35.262551 19.4 32.569868 36.0 33.506528 29.0 33.696999 27.8 31.065777 50.9 Image 5

Image 6 41.084472 5 40.210445 6 38.122552 10 36.815337 14 36.670172 14 34.027374 26 33.719088 28 33.892960 27 31.027716 51 31.893975 42 32.250548 39 29.422610 74 Image 6

Image 7 40.909949 5.3 39.966006 6.6 37.742149 10.9 36.505641 14.5 36.311198 15.2 33.712531 27.7 33.395927 29.8 33.537797 28.8 30.840332 53.6 31.846659 42.5 32.091798 40.2 29.591964 71.4 Image 7

Image 10 38.433202 9.3 37.878156 10.6 35.495277 18.3 34.481315 23.2 34.358759 23.8 32.077274 40.3 31.942637 41.6 32.161226 39.5 29.651383 70.5 30.158102 62.7 30.367136 59.8 28.410601 93.8 Image 10

Image 11 38.156404 9.9 37.647072 11.2 35.249535 19.4 34.036581 25.7 33.978128 26.0 31.596821 45.0 31.636843 44.6 31.806765 42.9 29.415603 74.4 29.630656 70.8 29.936015 66.0 27.875193 106.1 Image 11

Image 12 38.163563 9.9 37.642631 11.2 35.216250 19.6 34.063882 25.5 33.997803 25.9 31.687143 44.1 31.618757 44.8 31.858259 42.4 29.297638 76.4 29.656577 70.4 29.896701 66.6 27.946320 104.3 Image 12

Image 15 46.273267 1.53 45.133646 1.99 43.573700 2.86 43.486058 2.91 42.604606 3.57 40.593299 5.67 40.452321 5.86 39.887146 6.67 37.573756 11.37 38.004805 10.29 37.679590 11.09 35.243118 19.44 Image 15

Image 16 46.148405 1.58 44.871438 2.12 43.230163 3.09 43.301400 3.04 42.313630 3.82 40.052702 6.42 40.323468 6.04 39.561621 7.19 37.066821 12.78 37.580784 11.35 37.137821 12.57 34.496414 23.09 Image 16

Image 17 46.138688 1.6 44.940781 2.1 43.451282 2.9 43.259586 3.1 42.355431 3.8 40.338387 6.0 40.190353 6.2 39.515667 7.3 37.457725 11.7 37.641949 11.2 37.207287 12.4 35.014597 20.5 Image 17

Image 18 36.405053 14.9 36.284226 15.3 33.604389 28.4 34.260824 24.4 34.385141 23.7 31.831427 42.7 33.080954 32.0 33.209694 31.1 30.721172 55.1 32.487244 36.7 32.749679 34.5 30.469749 58.4 Image 18

Image 19 36.009619 16.3 35.976070 16.4 33.192189 31.2 33.829237 26.9 33.954948 26.2 31.364873 47.5 32.563319 36.0 32.711395 34.8 30.295468 60.7 31.983171 41.2 32.179998 39.4 29.932748 66.0 Image 19

Image 20 36.643816 14.1 36.532227 14.4 33.785034 27.2 34.455266 23.3 34.516257 23.0 31.947768 41.5 33.171972 31.3 33.309174 30.4 30.908749 52.7 32.672799 35.1 32.939946 33.0 30.562905 57.1 Image 20

Image 21 53.109222 0.318 51.272681 0.485 50.409616 0.592 50.884399 0.530 49.220135 0.778 47.501027 1.156 47.669956 1.112 46.578192 1.430 43.545870 2.874 44.519468 2.297 43.581710 2.850 39.796053 6.815 Image 21

Image 22 53.292434 0.305 51.440642 0.467 50.505841 0.579 50.827463 0.537 49.249587 0.773 47.165911 1.249 47.686795 1.108 46.728509 1.381 42.868738 3.359 44.599329 2.255 43.998682 2.589 39.808205 6.796 Image 22

Image 23 52.207347 0.391 50.241091 0.615 49.270998 0.769 49.807191 0.680 48.023876 1.025 46.237148 1.547 46.409255 1.486 45.107281 2.006 42.092354 4.016 43.440690 2.944 42.237451 3.885 39.313333 7.616 Image 23

Image 24 40.141008 6.3 38.740802 8.7 38.125596 10.0 35.646068 17.7 34.868869 21.2 34.021950 25.8 32.867699 33.6 32.591706 35.8 31.341974 47.7 31.785517 43.1 31.671801 44.2 30.320699 60.4 Image 24

Image 25 40.467090 5.8 38.951793 8.3 38.189133 9.9 35.485638 18.4 34.632872 22.4 33.748027 27.4 32.494569 36.6 32.246792 38.8 30.726907 55.0 31.714714 43.8 31.532033 45.7 30.174472 62.5 Image 25

Image 26 40.024666 6.5 38.587916 9.0 37.740354 10.9 35.008049 20.5 34.255238 24.4 33.276917 30.6 32.094333 40.1 31.821613 42.7 30.466553 58.4 31.639487 44.6 31.485299 46.2 30.099996 63.5 Image 26

Image 27 48.988720 0.82 47.231265 1.23 46.417174 1.48 45.962200 1.65 44.629925 2.24 43.279767 3.06 42.344180 3.79 41.518368 4.58 39.668755 7.02 38.827310 8.52 38.354181 9.50 36.393393 14.92 Image 27

Image 28 52.041456 0.406 50.134620 0.630 49.541656 0.723 49.642092 0.706 47.895415 1.056 47.026303 1.290 46.495736 1.457 45.271918 1.931 44.136743 2.508 43.757927 2.737 42.580196 3.590 41.379894 4.733 Image 28

Image 29 50.266459 0.61 48.343216 0.95 47.649747 1.12 47.388864 1.19 45.809767 1.71 44.866082 2.12 44.047123 2.56 43.102161 3.18 41.601080 4.50 40.802447 5.41 40.072965 6.39 38.810932 8.55 Image 29

4.945 5.7922 9.4115 11.0806 11.9253 19.292 19.261 19.551 32.666 27.25283 26.94769 43.72229

41.189 40.502 38.394 37.6852 37.3661 35.277 35.284 35.219 32.99 33.77669 33.82559 31.72378

Our ETC2 DXT1 Our ETC2 DXT1
MIP0 41.189108642465 40.502372253757 38.394215002662 MIP level 0 41.2 40.5 38.4
MIP1 37.68518018513 37.366100722332 35.277037155057 MIP level 1 37.7 37.4 35.3
MIP2 35.283966585922 35.219108435313 32.989781665715 MIP level 2 35.3 35.2 33.0
MIP3 33.776687060868 33.825588555231 31.723775064576 MIP level 3 33.8 33.8 31.7
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Results - Mirror’s Edge Test Set - Mipmaps

Figure 11: Results for the mipmapped versions of the 24
image test set from Mirror’s Edge. Note that mipmap level 0
is the full resolution.

sults are shown in Figure 11. With decreasing resolution,
ETC2 gradually approaches our method and in the lowest
mipmap level, ETC2 is slightly ahead. This is expected since
the smooth areas get smaller the lower the resolution, and the
texture becomes gradually more noisy.

6.2. Medal of Honor

We compressed a set of 36 RNMs from the recent game
Medal of Honor from EA. The combined PSNR results were
37.06 dB, 37.01 dB, and 34.15 dB for our method, ETC2,
and DXT1, respectively. As can be seen, our method was
only insignificantly better than ETC2 for this test set. In fact,
in 8 out of 36 images, the performance of our method was
lower than ETC2. Those images contain large numbers of
very small light maps baked into a large texture, as shown in
Figure 12. If we remove all light maps containing any sub-
textures smaller than or equal to 16× 16 pixels, the relative
PSNR result changes: our method now has a 0.53 dB advan-
tage over ETC2 and 3.05 dB over DXT1. Thus, the Medal
of Honor test set clearly shows that our method is only im-
proving quality for relatively large textures, i.e., bigger than
16×16 pixels. This is not surprising given the nature of our
method, which depends on exploiting smooth structures.

Even for the textures where the proposed coder is worse
than ETC2, it is hard to spot flaws visually. This may be
because the textures are very small and quite noisy, and dif-
ficult for a human eye to understand what is the “correct”
structure. To give a feeling for the worst case, we automati-
cally found the 16× 16 block which gave the worst perfor-
mance relative ETC2, and it is depicted in Figure 13. Note
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Figure 12: An example where our method performs rather
poorly from the Medal of Honor test set. This light map was
used for radiosity normal mapping in the game.

Original ETC2 Our
Figure 13: This shows the 16× 16 block where our method
performed the worst (PSNR wise) compared to ETC2. This
is part of the texture in Figure 12 from Medal of Honor.

that it is only in blocks where the individual mode is chosen
that ETC2 can be at an advantage over the proposed codec,
since the latter includes a subset of ETC2.

6.3. Regular Textures and Photos

We also tested our method using the same set of regular tex-
ture as used in the evaluation of ETC2 [SP07]. This test set
is a broad mixture of photos, game textures, and some com-
puter generated images. While our algorithm was not de-
signed with such diverse textures in mind, it was still 0.34 dB
better than ETC2, and 1.25 dB better than DXT1 for the full
resolution. The performance for the mipmapped versions
was similar to our previous mipmap results, but at the highest
level (smallest texture), ETC2 performed slightly better. The
combined results for the full resolution and the mipmapped
versions are illustrated in Figure 14. A few zoomed in exam-
ples from this test set are shown in Figure 16.

To compare against publicly available data, we tried our
method on the Kodak data set http://r0k.us/graphics/kodak/.
The results are shown in Figure 15.

7. Conclusion

We have presented a new codec for texture compression. It is
based on parameterized smooth profile functions, with a sub-
set of ETC2 as a fallback for noisy blocks. Our method often
generates images with much higher quality than competing
algorithms for light maps, and as a positive side effect, our
codec also increases the image quality on regular images.
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0.3367618 1.25402
Regular test set Regular test set Regular test setRegular test set Regular test setRegular test set Regular test setRegular test set Regular test setRegular test set Regular test setRegular test set

Mip0 Mip1 Mip2 Mip3 (L3) Mip4 (L4) Mip5 (L5) Mip6 (L6)
Our ETC2 DXT1 Our ETC2 DXT1 Our ETC2 DXT1 Our ETC2 DXT1 Our ETC2 DXT1 Our ETC2 DXT1 Our ETC2 DXT1

mse mse mse mse mse mse mse mse mse mse mse mse mse mse mse mse mse mse mse mse mse
Total 34.381398 34.044636 33.127382 33.143790 32.867564 31.964933 31.985636 31.752660 30.825108 30.641310 30.517723 29.389330 29.262847 29.220203 27.936171 27.983924 27.993589 26.582484 26.512049 26.584706 25.072705

Image 0 48.902418 0.84 45.202377 1.96 43.951795 2.62 46.876747 1.33 43.616607 2.83 41.915419 4.18 42.086786 4.02 40.121881 6.32 38.419251 9.36 37.490699 11.59 36.690527 13.93 33.976315 26.03 34.073837 25.45 33.882848 26.59 31.273445 48.50 31.313211 48.06 31.308271 48.11 28.644980 88.83 30.079620 63.84 30.098082 63.57 28.484574 92.18
Image 1 36.153563 15.77 35.587812 17.96 35.967056 16.46 35.931993 16.59 35.104664 20.07 35.269767 19.32 34.766978 21.70 33.935325 26.28 33.940052 26.25 32.952052 32.95 32.425998 37.19 32.230374 38.91 30.387297 59.48 30.046949 64.33 29.571560 71.77 28.354699 94.98 28.339898 95.30 27.740176 109.41 27.576662 113.61 27.576662 113.61 27.453394 116.88
Image 2 33.711003 27.67 33.553492 28.69 33.832501 26.90 35.256595 19.38 35.001163 20.56 35.134027 19.94 35.769223 17.22 35.554429 18.10 35.417013 18.68 35.695518 17.52 35.547750 18.13 35.416597 18.68 35.918683 16.64 35.880371 16.79 35.579650 17.99 36.219104 15.53 36.219104 15.53 35.820331 17.02 37.269802 12.19 37.269802 12.19 37.026309 12.90
Image 3 38.871990 8.43 37.625224 11.23 37.994537 10.32 36.728983 13.81 35.892191 16.74 35.995722 16.35 35.030856 20.42 34.525924 22.93 34.460338 23.28 32.945911 33.00 32.875832 33.53 32.206920 39.12 31.546683 45.54 31.579682 45.20 30.963029 52.09 30.778891 54.35 30.647005 56.02 30.844835 53.53 30.649327 55.99 30.649327 55.99 31.853306 42.44
Image 4 36.261268 15.38 36.258772 15.39 35.183286 19.71 36.699804 13.90 36.680819 13.96 35.779421 17.18 37.169875 12.48 37.176084 12.46 36.253077 15.41 37.468521 11.65 37.465033 11.66 36.843491 13.45 38.000455 10.30 37.976104 10.36 37.617896 11.25 38.572699 9.03 38.563943 9.05 38.218774 9.80 38.336932 9.54 38.336932 9.54 37.474929 11.63
Image 5 34.235431 24.52 33.995474 25.91 35.262864 19.36 32.285957 38.41 32.271770 38.54 33.439958 29.45 31.239730 48.88 31.295058 48.26 32.335256 37.98 30.376727 59.62 30.449933 58.63 31.256324 48.69 29.246917 77.34 29.446518 73.86 29.997866 65.06 28.477280 92.33 28.477280 92.33 29.422697 74.27 27.916757 105.05 27.986867 103.37 30.048905 64.30
Image 6 39.535441 7.24 39.298442 7.64 37.202667 12.38 38.382810 9.44 38.308641 9.60 35.465637 18.47 37.210402 12.36 37.227485 12.31 34.190017 24.78 35.340608 19.01 35.491262 18.36 32.172660 39.43 32.865106 33.62 33.299687 30.42 30.268314 61.13 31.412232 46.97 31.421511 46.87 29.734289 69.13 32.475769 36.77 32.537723 36.25 30.266025 61.16
Image 7 40.230683 6.17 39.665694 7.02 39.517755 7.27 38.785742 8.60 38.385906 9.43 38.003889 10.30 37.637554 11.20 37.284676 12.15 36.647396 14.07 35.974704 16.43 35.841601 16.94 34.931188 20.89 34.422953 23.48 34.314283 24.08 33.619568 28.26 33.244268 30.81 33.242250 30.82 32.624699 35.53 34.798011 21.54 34.798011 21.54 34.095666 25.32
Image 8 36.347433 15.08 35.423289 18.65 35.100152 20.09 34.051250 25.58 33.605233 28.35 33.018577 32.45 32.218640 39.01 32.108227 40.02 31.184300 49.51 30.649731 55.99 30.737599 54.87 29.396683 74.72 29.629145 70.82 29.644483 70.57 27.981427 103.50 30.464855 58.42 30.507457 57.85 29.233557 77.58 31.113595 50.32 31.113595 50.32 29.997844 65.06
Image 9 34.638548 22.35 34.370153 23.77 33.148401 31.49 33.235273 30.87 33.244406 30.81 31.773380 43.23 32.823594 33.94 32.909001 33.28 31.381491 47.31 32.817844 33.99 32.784982 34.24 31.211322 49.20 32.962017 32.88 32.950122 32.97 31.438495 46.69 32.915779 33.23 32.915779 33.23 31.845052 42.52 33.375454 29.89 33.375454 29.89 32.906090 33.30
Image 10 26.790224 136.16 26.239316 154.58 26.172409 156.98 25.505445 183.04 25.257344 193.80 24.821233 214.27 24.983993 206.39 24.878915 211.44 24.190632 247.75 24.430494 234.44 24.360966 238.22 23.446744 294.04 23.688942 278.09 23.705506 277.03 22.677829 350.99 23.408478 296.64 23.383331 298.36 22.761473 344.30 25.493457 183.54 25.493457 183.54 24.642180 223.29
Image 11 39.744805 6.90 38.886925 8.40 37.478907 11.62 37.008629 12.95 36.473509 14.65 34.880574 21.14 34.171465 24.88 33.859598 26.74 32.257496 38.67 31.407600 47.02 31.355030 47.60 29.792600 68.21 29.308331 76.25 29.480759 73.28 27.795532 108.03 27.999632 103.07 28.073448 101.33 26.941589 131.50 27.727377 109.73 27.727377 109.73 26.898925 132.80
Image 12 32.664767 35.20 32.285879 38.41 31.207100 49.25 30.865550 53.28 30.632744 56.21 29.610497 71.13 29.599742 71.30 29.490961 73.11 28.581874 90.13 28.607687 89.60 28.525722 91.31 27.570457 113.77 27.710610 110.16 27.703775 110.33 26.619414 141.62 26.830064 134.92 26.972056 130.58 25.374361 188.64 24.298542 241.67 24.321064 240.42 23.089069 319.28
Image 13 39.156151 7.90 37.889146 10.57 37.373494 11.91 36.254054 15.41 35.860817 16.87 35.561461 18.07 34.854837 21.26 34.728981 21.89 34.425787 23.47 33.919897 26.37 33.600237 28.38 32.607297 35.67 31.960315 41.40 30.341476 60.11 29.471067 73.45 25.558738 180.80 24.225960 245.74 22.981558 327.28 18.942831 829.46 19.065181 806.42 17.123796 1260.96
Image 14 38.801331 8.57 38.026021 10.24 37.700666 11.04 36.734431 13.79 35.156040 19.84 35.033327 20.41 33.581850 28.50 31.668792 44.28 31.583654 45.16 29.173121 78.66 28.160925 99.31 27.745321 109.28 24.677768 221.46 24.461305 232.78 23.795585 271.35 20.922301 525.84 20.922301 525.84 20.052125 642.49 20.182185 623.54 20.182185 623.54 19.458093 736.67
Image 15 33.350634 30.06 33.257969 30.71 31.655358 44.42 31.871257 42.26 31.660211 44.37 30.522675 57.65 30.650288 55.98 30.403078 59.26 29.450052 73.80 29.304921 76.31 29.075954 80.44 28.353731 95.00 28.075039 101.29 27.980936 103.51 26.551766 143.85 27.133476 125.82 27.019343 129.17 26.052301 161.38 22.681214 350.72 23.483487 291.56 21.416905 469.23
Image 16 40.508264 5.78 39.957814 6.57 39.628405 7.08 39.236809 7.75 38.155819 9.94 38.426731 9.34 37.595468 11.31 36.262876 15.37 36.902421 13.27 35.077720 20.20 34.003954 25.86 34.311452 24.10 31.834790 42.62 30.428950 58.91 29.672942 70.11 29.407951 74.52 28.436620 93.20 27.733513 109.58 25.553393 181.03 25.016245 204.86 24.675433 221.58
Image 17 33.251480 30.76 33.156650 31.44 32.971277 32.81 32.889143 33.43 32.864663 33.62 32.821435 33.96 32.875943 33.53 32.884403 33.47 32.994318 32.63 32.944304 33.01 32.721479 34.75 32.553547 36.12 32.241925 38.81 31.847813 42.49 30.474569 58.29 30.507555 57.85 30.312409 60.51 28.683407 88.05 28.906631 83.64 29.448585 73.83 26.197673 156.07
Image 18 40.329357 6.03 39.596080 7.14 37.615330 11.26 38.358055 9.49 37.959874 10.40 36.062288 16.10 36.567350 14.33 36.422677 14.82 34.184088 24.81 34.469418 23.23 34.749538 21.78 32.239230 38.83 33.217323 31.00 33.570912 28.58 31.269686 48.54 33.249227 30.77 33.785863 27.20 30.628975 56.26 36.196948 15.61 36.196948 15.61 33.361099 29.99
Image 19 32.800114 34.12 32.251585 38.72 32.530551 36.31 33.355961 30.03 32.426433 37.19 32.801019 34.12 33.136859 31.58 31.341477 47.75 31.944146 41.56 29.719186 69.37 28.877862 84.20 28.562963 90.53 26.803936 135.73 26.540361 144.23 26.071106 160.68 25.351907 189.62 25.353548 189.55 25.535873 181.76 26.594719 142.43 26.594719 142.43 26.421925 148.21
Image 20 33.491188 29.10 33.261329 30.69 32.437358 37.10 33.426875 29.54 33.178373 31.28 32.463350 36.88 33.409096 29.66 33.073421 32.04 32.183731 39.33 31.950059 41.50 31.925560 41.74 30.443812 58.71 30.322420 60.37 30.540104 57.42 29.043894 81.04 28.914413 83.49 29.379814 75.01 27.152259 125.27 28.880746 84.14 29.893752 66.64 25.903368 167.01
Image 21 35.476138 18.43 34.870563 21.18 33.820358 26.98 33.025338 32.40 32.619976 35.57 31.572857 45.27 30.837750 53.62 30.681440 55.58 29.386064 74.90 28.671478 88.29 28.677739 88.17 27.095241 126.93 26.883283 133.28 26.969924 130.64 25.682365 175.73 25.474182 184.36 25.971173 164.42 24.017150 257.85 25.158215 198.27 25.395245 187.74 24.344270 239.14
Image 22 32.902354 33.33 32.969426 32.82 31.319470 47.99 31.532991 45.69 31.631324 44.66 30.142577 62.92 30.437278 58.80 30.558251 57.18 29.084837 80.28 29.301287 76.38 29.415992 74.38 27.721812 109.88 27.840931 106.90 28.190417 98.64 26.126606 158.64 27.525301 114.96 27.577558 113.59 25.641880 177.37 27.110077 126.49 27.128175 125.97 25.961588 164.79
Image 23 36.793294 13.61 36.282609 15.30 35.381598 18.83 34.632020 22.38 34.364381 23.80 33.350501 30.06 33.304541 30.38 33.134255 31.60 31.955489 41.45 31.658791 44.38 31.205744 49.26 29.818045 67.81 30.278873 60.98 30.089152 63.70 28.120721 100.23 28.234672 97.64 28.327396 95.57 27.439868 117.24 26.152831 157.69 26.223694 155.14 25.694998 175.22
Image 24 30.515941 57.74 30.651035 55.97 28.867085 84.41 28.176248 98.96 28.293921 96.31 26.847941 134.37 26.377919 149.72 26.384312 149.50 25.231628 194.95 25.327177 190.71 25.367401 188.95 24.198936 247.28 24.625055 224.17 24.729727 218.83 23.542277 287.64 24.703956 220.13 24.703956 220.13 23.889392 265.55 23.419186 295.91 23.419186 295.91 22.435297 371.15
Image 25 29.730680 69.19 29.914716 66.31 28.470591 92.47 30.137621 63.00 30.207759 61.99 28.992411 82.00 31.326989 47.91 31.377449 47.35 30.150939 62.80 32.217503 39.02 32.317055 38.14 31.195446 49.38 32.618178 35.58 32.517763 36.42 31.792570 43.04 33.764498 27.33 33.314959 30.31 32.735763 34.63 30.872283 53.19 30.872283 53.19 30.127357 63.15
Image 26 34.950828 20.80 34.705590 22.00 34.025259 25.74 33.988881 25.95 33.733564 27.52 33.001777 32.58 32.472922 36.79 32.287348 38.40 31.413594 46.96 30.792204 54.18 30.798033 54.11 29.752107 68.84 29.428220 74.18 29.528886 72.48 28.302219 96.13 28.391531 94.17 28.418335 93.59 27.254847 122.35 29.595659 71.37 29.595659 71.37 28.317054 95.80
Image 27 35.441209 18.58 35.432866 18.61 33.818314 26.99 34.681740 22.13 34.716558 21.95 33.127735 31.65 33.811923 27.03 33.862890 26.72 32.499650 36.57 33.623760 28.23 33.586524 28.47 32.114978 39.96 35.670796 17.62 35.488684 18.37 33.975908 26.03 37.308000 12.09 36.993110 12.99 34.722285 21.92 34.938875 20.85 34.948648 20.81 31.576118 45.23
Image 28 34.527819 22.92 33.935290 26.28 34.332773 23.98 33.188951 31.20 32.775896 34.32 32.728624 34.69 31.265347 48.59 31.033961 51.25 30.593975 56.71 29.229035 77.66 29.220101 77.82 28.444990 93.02 28.322650 95.68 28.365489 94.74 27.445575 117.09 27.763912 108.82 28.244181 97.42 26.085471 160.15 26.470112 146.58 26.658873 140.34 24.540160 228.59
Image 29 31.875789 42.22 31.888625 42.09 30.892806 52.94 32.639983 35.41 32.706045 34.87 31.546759 45.54 32.985484 32.70 33.105073 31.81 31.537863 45.63 32.558413 36.08 32.578946 35.91 30.889379 52.98 31.472295 46.33 31.428514 46.80 30.135626 63.03 30.433512 58.85 30.102977 63.50 28.412539 93.72 30.189410 62.25 30.189410 62.25 28.951757 82.78
Image 30 36.145709 15.79 35.835861 16.96 35.891446 16.75 36.763597 13.70 36.292157 15.27 35.574714 18.01 36.809087 13.56 36.184976 15.65 35.267887 19.33 35.955000 16.50 35.628220 17.79 33.914713 26.40 34.477289 23.19 34.434165 23.42 31.734357 43.62 33.304896 30.38 32.794943 34.17 30.606118 56.55 34.126143 25.15 33.660031 27.99 32.972479 32.80
Image 31 24.490859 231.20 24.472229 232.20 23.568695 285.90 24.549408 228.11 24.522124 229.55 23.358821 300.05 25.029779 204.22 24.983537 206.41 23.972027 260.54 25.785484 171.61 25.732261 173.72 25.079112 201.92 27.147274 125.42 27.102261 126.72 26.323179 151.62 28.028699 102.38 28.394234 94.11 26.100290 159.61 27.320182 120.52 27.321121 120.49 24.179543 248.39
Image 32 38.420123 9.36 36.410638 14.86 36.616232 14.17 36.295819 15.26 34.663371 22.22 34.305305 24.13 32.569870 35.98 31.901430 41.97 30.834327 53.66 28.826634 85.20 28.758196 86.55 27.269141 121.95 25.370758 188.80 25.497117 183.39 23.339117 301.42 23.716819 276.31 23.882561 265.96 21.830115 426.65 22.515256 364.38 22.599372 357.39 21.150569 498.91
Image 33 34.661830 22.23 34.601071 22.54 33.172308 31.32 34.912329 20.98 34.951465 20.79 33.552359 28.70 35.377939 18.85 35.505948 18.30 33.688330 27.81 34.793665 21.56 34.988801 20.62 32.353478 37.82 33.282895 30.53 33.422101 29.57 30.129842 63.11 32.858970 33.67 32.986295 32.69 31.306391 48.13 33.139806 31.56 33.279655 30.56 31.499293 46.04
Image 34 41.822945 4.27 40.787967 5.42 39.655798 7.04 40.300298 6.07 39.127101 7.95 37.252849 12.24 37.850450 10.67 36.824463 13.51 34.727128 21.90 34.853457 21.27 34.595569 22.57 32.190363 39.27 33.514386 28.95 33.468095 29.26 30.482871 58.18 31.445100 46.62 32.314258 38.16 28.308327 95.99 27.972231 103.72 29.289461 76.58 25.150465 198.62
Image 35 35.099357 20.10 33.769748 27.30 32.857811 33.67 31.537013 45.64 30.716751 55.13 29.610090 71.13 28.515455 91.52 28.216911 98.04 26.262062 153.77 25.834715 169.67 25.813746 170.49 23.868290 266.84 23.826695 269.41 23.897139 265.07 21.849902 424.71 22.659662 352.46 23.091550 319.10 20.638797 561.31 21.583976 451.53 21.607786 449.06 19.867963 670.32
Image 36 35.564108 18.06 35.560378 18.07 33.713290 27.65 33.472100 29.23 33.498876 29.05 32.027934 40.76 32.815354 34.01 32.835450 33.85 31.635396 44.62 32.481713 36.72 32.487444 36.67 31.337896 47.78 30.880955 53.09 31.581246 45.18 28.943124 82.94 29.950986 65.76 29.947634 65.81 27.761730 108.87 31.010975 51.52 31.042259 51.15 26.101921 159.55
Image 37 38.107622 10.05 37.435440 11.74 35.790941 17.14 35.082101 20.18 34.922425 20.93 33.188029 31.21 32.997688 32.61 33.027080 32.39 31.176092 49.60 31.992392 41.10 32.048589 40.57 30.496914 57.99 31.931423 41.68 31.932984 41.67 30.552234 57.26 31.806916 42.89 31.914362 41.85 30.920065 52.61 32.991140 32.66 32.991140 32.66 30.981659 51.87
Image 38 34.683110 22.12 32.962583 32.87 32.910711 33.27 31.085998 50.64 30.446880 58.67 30.371939 59.69 29.654762 70.41 29.428690 74.17 29.199376 78.19 29.193323 78.30 29.082594 80.32 28.669225 88.34 29.035633 81.19 28.965510 82.51 28.579419 90.19 27.358071 119.47 27.281552 121.60 26.673928 139.86 25.852204 168.99 25.933267 165.86 24.666866 222.02
Image 39 34.313114 24.09 33.883359 26.59 32.768946 34.37 31.592745 45.06 31.344940 47.71 30.304625 60.62 29.307375 76.27 29.166752 78.78 28.246318 97.38 27.615199 112.61 27.583075 113.44 26.630076 141.28 26.472466 146.50 26.551216 143.87 25.353317 189.56 24.254843 244.12 24.770847 216.77 22.696753 349.47 22.488398 366.64 22.531800 362.99 20.337282 601.66
Image 40 40.620754 5.64 40.200597 6.21 39.998173 6.51 38.533154 9.12 38.218192 9.80 38.159306 9.93 37.030038 12.88 36.569175 14.33 37.140697 12.56 35.771567 17.22 35.290262 19.23 36.165454 15.72 34.348528 23.89 34.142083 25.05 34.818073 21.44 33.791481 27.16 33.486785 29.13 33.227414 30.93 31.238085 48.90 30.454994 58.56 28.989081 82.07
Image 41 39.551468 7.21 38.886657 8.40 37.710242 11.02 36.592495 14.25 36.399594 14.90 35.366593 18.90 34.804677 21.51 34.857747 21.25 33.812835 27.03 33.836306 26.88 33.889937 26.55 32.735201 34.64 32.975325 32.78 33.001022 32.58 31.302487 48.18 31.629323 44.68 31.866384 42.31 29.919884 66.24 29.409241 74.50 29.409241 74.50 28.454739 92.81
Image 42 38.362766 9.48 37.210644 12.36 35.767434 17.23 34.978790 20.66 34.307848 24.12 33.108282 31.79 31.988617 41.14 31.691358 44.05 30.692227 55.44 29.825844 67.69 29.714736 69.44 28.542324 90.96 28.244007 97.43 28.244123 97.42 27.292832 121.28 27.705479 110.29 27.705479 110.29 26.707944 138.77 28.465231 92.59 28.465231 92.59 26.757328 137.20
Image 43 44.984921 2.06 43.444882 2.94 42.087415 4.02 41.346746 4.77 39.168368 7.87 38.881657 8.41 37.349865 11.97 34.985009 20.63 35.385582 18.82 33.007731 32.53 31.729036 43.67 31.561905 45.38 29.649253 70.49 29.180469 78.53 28.433391 93.27 26.869726 133.69 26.888547 133.11 24.529413 229.16 24.875348 211.61 24.875348 211.61 21.553673 454.69
Image 44 35.247614 19.42 34.640647 22.34 33.557313 28.66 32.357308 37.79 32.031838 40.73 31.055528 50.99 29.833261 67.57 29.818440 67.80 28.668896 88.35 28.000459 103.05 28.129687 100.03 26.816359 135.35 26.951265 131.21 27.088683 127.12 25.932023 165.91 26.366424 150.12 26.390675 149.28 25.601136 179.05 26.018096 162.66 26.018096 162.66 24.825186 214.07
Image 45 46.514860 1.45 44.684030 2.21 43.972134 2.61 44.078106 2.54 42.045949 4.06 41.661541 4.44 41.294190 4.83 39.718468 6.94 39.620314 7.10 38.782976 8.61 37.542891 11.45 37.522688 11.50 36.506315 14.54 35.499546 18.33 35.559348 18.08 34.374167 23.75 33.990868 25.94 32.290320 38.37 29.816039 67.84 29.564081 71.89 28.643007 88.88
Image 46 40.895710 5.29 39.145892 7.92 37.982635 10.35 37.355010 11.96 36.274857 15.33 35.039549 20.38 34.024051 25.74 33.515952 28.94 32.258906 38.65 31.919196 41.80 31.395973 47.15 30.569588 57.03 29.866428 67.06 29.849027 67.33 28.734750 87.02 27.414284 117.94 27.393763 118.50 26.580410 142.90 24.951911 207.92 24.977005 206.72 24.483828 231.58
Image 47 36.276602 15.33 35.490839 18.37 33.979570 26.01 33.201375 31.11 32.830317 33.89 31.221500 49.08 30.611622 56.48 30.603336 56.59 29.000930 81.84 28.255572 97.17 28.507016 91.70 26.388164 149.37 26.263517 153.72 26.608528 141.98 24.412426 235.42 25.175992 197.46 25.278044 192.88 23.575277 285.46 24.010225 258.26 24.163998 249.28 22.464035 368.70
Image 48 42.944352 3.30 40.736058 5.49 40.027282 6.46 39.209493 7.80 36.775592 13.66 36.887439 13.31 35.025852 20.44 33.299507 30.42 33.277062 30.58 30.625327 56.31 30.198691 62.12 29.618947 70.99 27.393059 118.52 27.494031 115.79 26.147777 157.87 25.563589 180.60 25.747140 173.13 24.281308 242.63 23.990999 259.41 24.086387 253.77 23.084042 319.65
Image 49 38.226975 9.78 38.077148 10.12 36.621459 14.16 37.173575 12.47 36.912913 13.24 35.837838 16.95 36.555149 14.37 36.208273 15.57 35.385493 18.82 35.568194 18.04 35.344012 19.00 34.611052 22.49 34.238797 24.50 34.078505 25.42 32.990881 32.66 33.578587 28.52 33.439682 29.45 32.087924 40.21 33.014058 32.48 33.027309 32.39 32.699828 34.92
Image 50 33.422591 29.57 33.356079 30.02 31.949784 41.51 31.145622 49.95 31.128592 50.14 30.118237 63.28 29.603312 71.24 29.600285 71.29 28.840184 84.93 28.492806 92.00 28.588968 89.99 27.671242 111.16 27.374099 119.03 27.329059 120.27 26.429772 147.95 26.749957 137.43 26.661896 140.25 26.187720 156.43 25.043604 203.57 25.295200 192.11 24.669414 221.89
Image 51 36.395546 14.91 35.966590 16.46 34.452402 23.33 34.486147 23.15 34.208461 24.67 32.530731 36.31 33.238997 30.84 33.163618 31.38 31.421898 46.87 32.588652 35.83 32.632484 35.47 30.922571 52.58 32.928818 33.13 32.888466 33.44 31.573837 45.26 33.390235 29.79 33.390235 29.79 31.956459 41.44 33.500588 29.04 33.500588 29.04 31.535801 45.66
Image 52 34.004550 25.86 33.662592 27.98 32.370365 37.67 31.530177 45.72 31.443953 46.63 30.370531 59.71 30.181015 62.37 30.125158 63.18 29.041019 81.09 28.863676 84.47 28.971103 82.41 27.329330 120.27 27.060383 127.95 26.976811 130.44 25.500572 183.24 24.930017 208.97 24.923338 209.29 22.058474 404.79 23.880457 266.09 23.887263 265.68 21.275485 484.77
Image 53 33.882178 26.60 33.416610 29.61 32.510429 36.48 30.529828 57.56 30.169044 62.54 29.776311 68.46 28.214687 98.09 27.980616 103.52 27.668281 111.24 26.558326 143.63 26.467909 146.65 25.986703 163.84 25.590269 179.50 25.543393 181.44 24.993765 205.92 25.135969 199.29 25.153483 198.49 24.418609 235.08 23.183751 312.40 23.183751 312.40 21.163373 497.44
Image 54 43.012823 3.25 41.731748 4.36 41.604766 4.49 40.561657 5.71 39.327995 7.59 39.578529 7.17 38.373601 9.46 37.321913 12.05 37.929467 10.47 36.342317 15.10 35.233993 19.48 36.021357 16.25 33.447032 29.40 32.452532 36.97 33.146172 31.51 30.334895 60.20 29.850182 67.31 29.828059 67.65 26.825288 135.07 26.825288 135.07 27.045823 128.38
Image 55 29.804205 68.02 29.865874 67.06 28.017817 102.64 31.305930 48.14 31.225529 49.04 29.732168 69.16 32.347350 37.87 32.322610 38.09 31.053687 51.02 33.337569 30.15 33.209122 31.06 32.000991 41.02 33.479464 29.18 33.479464 29.18 33.048752 32.23 33.683933 27.84 33.095060 31.88 32.745079 34.56 32.081459 40.27 32.081459 40.27 28.957226 82.67
Image 56 41.730613 4.37 41.292972 4.83 41.329173 4.79 40.736991 5.49 40.186930 6.23 40.315121 6.05 40.222354 6.18 39.169532 7.87 39.475633 7.34 38.990623 8.20 37.855158 10.66 38.404310 9.39 37.237917 12.28 36.648168 14.07 36.841836 13.46 35.576822 18.01 35.560521 18.07 35.264812 19.35 32.544593 36.19 31.991395 41.11 32.778918 34.29
Image 57 32.534936 36.27 32.181978 39.34 31.323634 47.94 32.331659 38.01 32.152777 39.61 31.305388 48.14 32.992556 32.65 32.848231 33.75 32.133768 39.78 32.753494 34.49 32.752664 34.50 31.643639 44.54 33.174981 31.30 33.111319 31.76 31.370182 47.43 33.794814 27.14 33.762636 27.34 32.210454 39.09 33.171460 31.33 33.182303 31.25 30.904721 52.80
Image 58 35.110719 20.05 34.870852 21.18 34.406245 23.58 33.539158 28.78 33.506190 29.00 32.961875 32.88 33.014418 32.48 33.015544 32.47 32.442758 37.05 33.286589 30.51 33.286253 30.51 32.819446 33.97 34.004350 25.86 34.004350 25.86 33.487756 29.13 35.053170 20.31 35.053170 20.31 34.896241 21.06 35.252553 19.40 35.252553 19.40 35.235100 19.48
Image 59 38.756325 8.66 37.711869 11.01 37.025450 12.90 36.066974 16.08 35.425204 18.64 34.562098 22.74 33.968284 26.08 33.602603 28.37 32.982270 32.72 32.620593 35.56 32.421629 37.23 32.042043 40.63 32.208067 39.11 32.149185 39.64 32.116924 39.94 32.245169 38.78 32.245169 38.78 32.577528 35.92 32.865526 33.61 32.699828 34.92 33.098431 31.86
Image 60 37.029899 12.89 36.536733 14.43 35.485447 18.39 34.449404 23.34 33.963743 26.10 33.614285 28.29 32.552016 36.13 32.056657 40.50 32.080735 40.27 30.682064 55.57 30.341934 60.10 30.332330 60.23 29.561172 71.94 29.195581 78.26 28.788730 85.94 28.936549 83.07 28.296091 96.27 27.652936 111.63 25.878519 167.97 25.751127 172.97 25.392354 187.86
Image 61 33.976869 26.03 33.943583 26.23 32.061662 40.45 32.306483 38.23 32.371082 37.67 30.602133 56.61 30.505683 57.88 30.599138 56.65 28.988735 82.07 29.346506 75.58 29.479091 73.31 27.715759 110.03 28.939222 83.02 29.036574 81.18 27.119688 126.22 28.653519 88.66 28.770263 86.31 27.122926 126.12 28.577083 90.23 28.577083 90.23 26.349731 150.70
Image 62 41.983270 4.12 40.479032 5.82 36.632938 14.12 37.054837 12.81 36.419095 14.83 34.930049 20.90 35.553931 18.10 34.774951 21.66 32.568360 36.00 32.538942 36.24 32.783785 34.25 27.809302 107.68 30.291363 60.81 29.897127 66.58 26.767521 136.88 28.843406 84.87 28.862638 84.49 25.453893 185.22 25.468511 184.60 25.468511 184.60 24.884014 211.19
Image 63 38.205402 9.83 38.013478 10.27 37.274505 12.18 37.517506 11.52 37.093072 12.70 36.781337 13.64 36.490957 14.59 35.660753 17.66 35.770167 17.22 34.563336 22.74 33.515986 28.94 34.004678 25.86 32.263766 38.61 31.470983 46.34 31.818533 42.78 30.197684 62.13 29.713153 69.46 28.818689 85.35 26.945504 131.38 26.945504 131.38 25.534442 181.82

23.710493 25.6222 31.647699 31.528358006 33.598814 41.3606229 41.1639271 43.4324571 53.7736601 56.0982507 57.7175786 74.8423445 77.0540842 77.8144118 104.583526 103.43988 103.209922 142.834105 145.169513 142.761067 202.213383
34.381398 34.0446 33.127382 33.143790075 32.867564 31.9649329 31.9856356 31.7526596 30.8251076 30.6413104 30.5177226 29.3893298 29.262847 29.2202032 27.9361708 27.9839235 27.9935891 26.5824844 26.5120494 26.5847058 25.0727047

Our ETC2 DXT1
Full resolution 34.4 34.0 33.1
MIP level 1 33.1 32.9 32.0
MIP level 2 32.0 31.8 30.8
MIP level 3 30.6 30.5 29.4
MIP level 4 29.3 29.2 27.9
MIP level 5 28.0 28.0 26.6
MIP level 6 26.5 26.6 25.1
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Figure 14: Results from the regular test set of 64 texture
images. Our method is 0.34 dB better than ETC2 and 1.25
dB better than DXT1 for the full resolution. The results for
the mipmapped versions are in here as well.

Figure 15: Results from a public test set of 24 photos from
Kodak. Combining the results from all 24 photos, our method
is 0.24 dB better than ETC2 and 1.65 dB better than DXT1.
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