
Journal of Computing and Information Technology 1

Abstract

Transclusions are an advanced technique for the inclusion
of existing content into new documents without the need
to duplicate it. Although originally described in the early
1960s, transclusions have still not been made available to
users and authors on the world wide web.

This paper describes the prototype implementation of a
system that allows users to write articles that may contain
transclusions. The system offers a simple web-based inter-
face where users can compose new articles. With a simple
button the user has the ability to insert a transclusion from
any HTML page available on the world wide web.

While other approaches introduce new markups for the
HTML specification, make use of technologies such as
XML and XLink or employ authoring systems that inter-
nally support transclusions and can generate web pages as
output, this implementation solely relies on the techniques
provided by an HTML-based environment. Therefore
HTML, Javascript, the Document Object Model, CGI
scripts and HTTP are the core technologies utilised in the
prototype.

Keywords: Hypertext, Transclusions, Xanalogical Struc-
ture, Authoring Systems, Publishing Systems, Web-Based
Applications.

1 Introduction

In 1965, Ted Nelson presented “a file structure for the com-
plex, the changing and the indeterminate”, in which he intro-
duced the term hypertext (see [20]). One of the fundamen-
tal concepts in Nelson’s notion of hypertext is a technique

called transclusions. Transclusions allow authors to include
portions of existing documents into their own articles with-
out duplicating them. Basically, a transclusion in document
A is a reference to a portion of the content of a potentially
remote document B that is virtually included into docu-
ment A (see Figure 1).

1.1 Background of Transclusions

Transclusions are designed as complete replacement for all
cut-and-paste mechanisms in use. Nelson argues that cut-
and-paste is not what people actually want to do but that
it is a restriction imposed upon authors by the nature of
paper. Writers actually do not want to make a copy of an
existing document, cut out the piece they want to reuse
and paste it in their document. They want to include the
original content and let readers know what the source and
the context of the quote is (e.g., [21]).

Reference lists at the end of a scientific publication, for in-
stance, are usually not what is intended by writers and de-
sired by readers. They are rather a pragmatic solution to the
problem that both the source and the context of the quota-
tion are lost by copying-and-pasting a portion of content
printed on paper.

What used to be physical restrictions of paper was embraced
by most computing systems in an attempt to resemble the
work environments and common processes in offices (cf.,
[33]). Therefore most current graphical operating systems
make use of metaphors such as a desktop, folders and docu-
ments; a document has to be put in exactly one folder; there
is a clipboard, and content from a different document is
included using copy-and-paste mechanisms (see [23]).

Transclusions in an
HTML-Based Environment†

† This paper was supported by the Styria Professorship for Revolutionary
Media Technologies.

Josef Kolbitsch1 and Hermann Maurer2

1 Graz University of Technology, Austria
2 Institute for Information Systems and Computer Media, Graz University of Technology, Austria

mailto:josef.kolbitsch@tugraz.at
mailto:hmaurer@iicm.edu

Transclusions in an HTML-Based Environment2

1.2 Implications of Transclusions

Transclusions are, however, not only a mere replacement
for copy-and-paste. They assure that the original context
of a quotation is preserved and can provide a visible link to
the source of the transclusion. Ted Nelson’s approach to re-
alising this functionality is based on transpointing windows
(e.g., [22]).

Moreover, authors of documents can be notified when their
articles are transcluded. Thus they can, for instance, find
out about other researchers in the same area. Authors using
transclusions, on the other hand, can be informed automat-
ically about modifications in source documents (see [14]).

Apart from obvious improvements in authoring and pub-
lishing systems, transclusions can also offer a solution to
copyright issues experienced today on the world wide web:
authors include content into their documents by means of
transclusions. Whenever a reader views a transclusion a note
about the rights associated with the transcluded content is
added, and a micropayment is made to the corresponding
owner ([25]). Nelson names this model transcopyright (see
[24]).

1.3 Transclusions and HTML

The Hypertext Markup Language (HTML, [7]) is a rela-
tively simple language for describing platform independent
hypertext pages. In the early stages of its development, the
focus of HTML has been on style and graphical presenta-
tion rather than on functionality and underlying paradigms.
Therefore many innovative ideas such as bidirectional
hyperlinks and issues already known at that time including

broken links were not considered in the implementation
(e.g., [27]).

In principle, transclusions are used in HTML. Designated
markups including , <object> and <embed> incorpo-
rate content such as images, Java applets and animations
into HTML pages by means of linking. Thus, these ele-
ments basically make use of the concept of transclusions.

Transclusions in HTML are very limited, though. Only
certain media such as images can be virtually included,
whereas textual content, in general, cannot be transcluded.
Moreover, the transclusion mechanisms available in HTML
can only be applied to entire documents. Fine-grained
transclusions such as a small spatial selection of an image
are not implemented.

2 Attempts to Implement
Transclusions

Although the idea of transclusions has been proposed some
forty years ago, only a few attempts to implement this ad-
vanced technique have been made. The following sections
give an overview of several notable approaches to the reali-
sation of transclusions.

2.1 Xanadu

Transclusions are an integral part of Xanadu, Ted Nelson’s
original hypertext system (e.g., [21]). Their implementa-
tion relies on a document model, though, that is radically
different from what is widely used today. In Xanadu, docu-
ments (versions) do not contain content but references to
the actual content. Content is both stored and referenced
with the highest granularity possible—on the level of single
characters. All content is retained in content repositories.

Any document is made up of a list of references to content
stored in the system, e.g., a document consists of “characters
124 to 729 and 1276 to 1301 from the repository”. When
content from document B is transcluded into document A,
the corresponding references to the actual content in the
repositories are added to the reference list of document A.

Thus, the creation and retrieval of transclusions in Xanadu
are trivial list operations. Ted Nelson also details a number
of functions related to transclusions and the handling of
situations in which documents are modified or large por-
tions of documents are deleted (e.g., [25]). Basically, these
functions can be seen as more complex list operations.

2.2 Proposal to Amend the HTML
Specification

Since the idea of transclusions is already present in HTML
for media such as images and multimedia animations, a sen-

Riureet in hendit autat, quisi
Inci blaorem dio do do doluptatetum zzrillup-
tat nit, quat dolobore core dignim duisit lum
velenis num dolore eu facinci liquis aliquipit,
venisci psummy numsandigna feu feu fac-
cummolor suscillum velenim aliquat.

Dui te mod modolobor summy nostrud ea
conse tem quismodit esequam, sismolore duisi
eu feugiat, qui bla am velisl irilis nim nissisi
tionsecte magnibh el iliquam, commodolore
ming etum quat veliquatue commolorem quis
ad tat ea conullam eniam at pratem velent atio
essim ad magna commy nonsectet in vullum
veraese vulla aut volor iure conum nit, quissi
tatummo luptat.

Tueros dio eummodi onsequametue do od ta-
tio eu faccum acidunt adit wis adionse consen-
dreet inciliquat ullaore molore tat.

Consequametue do od tatio
Dui te mod modolobor summy nostrud ea
conse tem quismodit esequam, sismolore duisi
eu feugiat, qui bla am velisl irilis nim nissisi
tionsecte magnibh el iliquam, commodolore
ming etum quat veliquatue commolorem quis
ad tat ea conullam eniam at pratem velent atio
essim ad magna commy nonsectet in vullum
veraese vulla aut volor iure conum nit, quissi
tatummo luptat.

Osto odiamet, sim ipit acin velit loreraessim
dolor alisl delis at, commy nonsendre del ul-
put aliquamet utat.

Tin exeraes equamco nsequate dolorperos alisi
bla adiam ipit num dolor ad tie dolobore veni-
am aliscil doluptatet digna at wissequisim ali-
sim irit in henim iustie modo odit praesto do-
lore tem dolorpe riusto commolo rperat. Igna
feuisi tatinis nullan vullum digna faccum

<document>

<heading>Riureet in hendit autat, quisi</heading>

<paragraph>
Inci blaorem dio do do doluptatetum zzrilluptat nit, quat dolobore core dignim
duisit lum velenis num dolore eu facinci liquis aliquipit, venisci psummy
numsandigna feu feu faccummolor suscillum velenim aliquat.

</paragraph>

<transclusion source=“document_B“ start=“pos_X“ length=“Y_chars“ />

<paragraph>
Tueros dio eummodi onsequametue do od tatio eu faccum acidunt adit wis adionse
consendreet inciliquat ullaore molore tat.

</paragraph>

</document>

Document A Document B

Source of Document A

Figure 1. Exemplary transclusion. Part of document B (top
right) is transcluded into document A (top left). Bottom:

the source code of document A does not contain the actual
text of document 2 but only the data required to retrieve it

from the original document.

3Transclusions in an HTML-Based Environment

sible approach to text-based transclusions is to introduce a
new tag that allows users to transclude text. Therefore [28]
suggests an amendment to the HTML specification. A new
markup, <text>, is proposed with the intention to offer an
element of the same significance as or <embed>.

The main attributes of the markup are the URI of the source
document and the start position and length of the text to
be transcluded. The web browser analyses the tag, loads the
source document of the transclusion, extracts the portion
of text given by the attributes of the <text> tag, and inserts
it into the document. Thus, a transclusion is handled in a
similar way as an inline image.

Although the proposal seems rational it has not been ac-
cepted, and no web browser to date has the feature imple-
mented.

2.3 Transclusions with IFrames and
Embedded Objects

The recommendation for HTML 4 includes markups for
inline frames and embedded objects (e.g., [7]). Both inline
frames and embedded objects define areas within a given
HTML document that can be used to display potentially
remote resources. Inline frames can merely contain HTML
pages and images, whereas objects may contain resources of
arbitrary type.

Transcluding document A into document B can, for in-
stance, be achieved by inserting an <object> tag with a ref-
erence to document A into document B ([16]). The capa-
bilities of this technique are rather limited, though. Only
entire documents can be referenced. Moreover, the context
is lost because a link from the document containing the
embedded object to the source of the transclusion is not
provided by these markups. Therefore this approach is not
well suited for realising transclusions.

2.4 XML-Based Transclusions

The Extensible Markup Language, XML, is a flexible lan-
guage for describing documents that contain structured
information (see [31]). In contrast to other markup lan-
guages such as HTML, where both syntax and semantics
are determined, neither a set of tags nor the semantics are
defined in XML. Therefore, XML per se does not contain
a distinct markup for links; a separate linking language is
used instead.

XLink, the XML Linking Language (e.g., [30]), provides a
framework for describing the syntax and semantics of even
complex linking structures between resources. An XLink
link typically contains a number of attributes that describe,
for instance, what resource is to be loaded and when it is to
be displayed.

Three attributes are essential for the implementation of
transclusions using XLink:

• href: the document to be loaded. Set to the source
document of the transclusion;

• actuate: when the resource is to be loaded. When set
to onLoad, the resource is loaded when the document
containing the XLink link is loaded;

• show: in which manner the resource is to be displayed.
When set to embed, the resource is displayed practically
instead of the XLink tag.

The skeleton of the XLink link shown in listing 1 tran-
scludes the entire document source.xml into the document
containing the link at the position of the link. A similar ap-
proach to transclusions in XML is described by [29].

With the XML Pointer Language (XPointer, [32]) fragments
of XML documents can be identified and addressed as well.
Thus, a combination of XML, XLink and XPointer can be
employed to make the use of fine-grained transclusions in
XML-based environments possible (see [16; 15]).

2.5 Recent Projects Involving Transclusions

Currently, several mostly academic projects that experiment
with transclusions exist. The following paragraphs intro-
duce three selected systems.

The University of Nottingham, UK, has proposed a tech-
nology-based learning environment that adapts to its users
(see [19]). The information retained in the system is organ-
ised in small “chunks” that are stored as XML files.

Since the system is adaptive, lessons are not static but as-
sembled dynamically on the basis of a lesson plan. When
a user requests a particular lesson, appropriate chunks of
information are retrieved and included into a virtual docu-
ment by means of transclusion. Thus, the system facilitates
the reuse of small pieces of information for a number of
lessons or for students with various differing standards of
knowledge.

At the University of Bologna, Italy, researchers attempt to
combine existing software products such as the Internet Ex-
plorer and Microsoft Word to offer a collaborative editing
environment for the world wide web (see [3]). The imple-
mented tool, XanaWord, allows users to edit any web page

<my:transclusion

 xmlns:my=“http://www.kolbitsch.org/“

 xmlns:xlink=“http://www.w3.org/1999/xlink“

 xlink:type=“simple“

 xlink:href=“source.xml“

 xlink:actuate=“onLoad“

 xlink:show=“embed“ />

Listing 1: Fragmentary transclusion with XLink.

Transclusions in an HTML-Based Environment4

they view in their web browser—even if they do not have
write permissions for the resource.

Any page displayed in Internet Explorer can be opened with
a word processor such as Microsoft Word, where the user
can make arbitrary changes to the document. When the
user saves the page, only the changes to the original docu-
ment are stored in the XanaWord repository. Whenever a
document is retrieved from the repository, the modifica-
tions made by the user and the content from the original
resource are included in a dynamically generated document
by means of transclusion. Finally, the dynamic document is
sent to the user’s web browser.

The Institute for Information Systems and Computer Me-
dia in Graz, Austria, proposed an environment capable of
handling transclusions in various output document formats
(see [14]). The system includes three components:

• the Latex typesetting system that allows users to create
documents and save them in a number of document
formats including Postscript, PDF and HTML;

• an extension to Latex that allows users to create
transclusions; and

• a Hyperwave Information Server (see [9]) that handles
issues such as linking and versioning.

In the proposed environment users can insert a special
markup that designates a transclusion in Latex documents.
Then, the user has to upload the file to a Hyperwave Infor-
mation Server that extracts links and saves them in a link
database, etc. When the document is requested by a user,
the transclusions and links are inserted into the file saved
on the server. The resulting intermediate file is processed
by Latex in order to generate the requested document for-
mat. Ultimately, the document containing the transclusion
is sent to the client.

3 Implementation

In contrast to several approaches to transclusions illustrated
above, this project does not present a proposal but an actual
implementation of a system that lets users take advantage
of transclusions. It is designed as part of a larger system
that offers communities instruments to work actively with
content from digital libraries and electronic encyclopaedias
(see [12]). Thus, a prototype is implemented offering a tool
for authoring new articles that can contain transclusions. It
is available online at [11].

3.1 Design Goals and Requirements

The environment for creating and retrieving transclusions
aims at facilitating the reuse of information readily available
on the Web—even by novice users. Therefore a number of
design goals have to be taken into consideration:

• ease of use: the tool for making transclusions must be
as easy to use as traditional copy-and-paste mecha-
nisms;

• use of any document on the web: not only documents
from a closed repository but basically any web page
may be the source of a transclusion;

• level of granularity: any portion of text may be
transcluded from a document, from a single character
to the entire content of a page.

Browser plug-ins or special software tools should not be
required. Therefore, this implementation of transclusions
solely relies on technologies available and widely utilised on
the world wide web:

• HTML: transclusions can be made from any HTML
formatted document available on the web. Moreover,
documents containing transclusions are presented to
the reader as traditional HTML documents (see [7]);

• Javascript, DOM: internally, most current web brows-
ers represent HTML pages as trees of objects. The
underlying technology is the Document Object Model
(DOM, [4; 5]). Javascript is used to access individual
objects in the DOM tree of the HTML page to be
transcluded (see [26; 6]) and enables fine-grained
transclusions;

• HTTP: documents containing transclusions are trans-
mitted to the readers using the Hypertext Transport
Protocol (see [8]).

3.2 System Overview

Since the system for creating and retrieving transclusions
consists of a number of components, a brief overview is
given. The following description is made in the order of ac-
tions taken by a user in authoring and reading a document
including transclusions.

Two fundamental actions can be distinguished in the system:
the creation of a transclusion when the article is authored,
and its evaluation when the page containing the transclusion
is to be displayed. When the user wants to create an arti-
cle with a transclusion the web browser presents a frameset
with two frames. One frame contains a conventional area
for authoring HTML content and an additional button for
adding a transclusion. When the user presses this button,
the URL of a page can be entered, and the corresponding
page is loaded through an HTTP proxy application into
the second frame. The user can either transclude content
from this page or can use the second frame to browse to
a different page—again through the HTTP proxy appli-
cation. The document to be transcluded is complemented
with a button that inserts the transclusion into the text area
of the first frame, when pressed. An illustration of the two
frames is given in figure 5.

5Transclusions in an HTML-Based Environment

The user selects the portion of text to be transcluded in the
second frame and presses the button to have the transclusion
actually inserted into the article. The button calls a Javas-
cript function that determines the start and end positions
of the selection made. Together with the URL of the page
in the second frame these values are used to generate an
intermediate markup that is inserted into the article (see
section 3.4).

Once a user has finished authoring an article and chooses
to save the new document, the contents of the text area
including the intermediate transclusion markup are sent to
a CGI script on the server. The server stores the “static” text
and the values provided through the transclusion tag to a
database. In addition to this, metadata on the source of the
transclusion is collected and stored in the database.

Whenever the article containing the transclusion is re-
quested, a second CGI script is invoked. The script re-
trieves the contents of the article and the parameters of the
transclusion tag from the database. The parameters defin-
ing the transclusion are used to load the original page from
its original location. If it is unchanged, the transcluded por-
tion of text is extracted from the original page, combined
with the static text and sent to the web browser of the client
(see Figure 5).

The next section gives a brief introduction to the architec-
ture of the implementation and its components.

3.3 System Architecture

Our implementation of transclusions follows a classic client-
server paradigm. A conventional HTTP server, a relational
database, several server-side CGI programs, a non-transpar-
ent HTTP proxy application and client-side Javascript code
are the main components of the system.

The CGI script “Create and Store” in figure 2 receives the
data submitted by users. It analyses the content of the ar-
ticle, extracts transclusions and stores both content and
transclusions in the internal database of the system (see
section 3.4). The “Extract and Merge” script, on the other
hand, reads the content of an article together with the in-
formation on the transclusion from the database, fetches

the source document of the transclusion, assembles the
complete article and sends it to the user (see section 3.5).

The third CGI script, “Fetch External”, is utilised during
the authoring process for loading the page to be transcluded.
This programme is basically necessary to insert a button
and a small portion of Javascript code into the correspond-
ing page (see section 4.1). It relies on a specialised, non-
transparent proxy application developed for this project.

In the current prototype implementation the relational da-
tabase consists of only two tables. While one table contains
the static content of the article, the other one stores de-
tailed information on the transclusion as well as a rich set of
metadata and a fingerprint of the source document.

3.4 Creating a Transclusion

As explained above, the interface for authoring new articles
consists of a frameset with a frame for writing an article in
an HTML form and a separate frame for displaying the
content to be transcluded (Figure 5). When users wish to
insert a transclusion they select the portion of text with the
pointer device and click on the button provided in the win-
dow.

The button calls a Javascript function which is essentially
the only operation carried out on the client computer. It
accesses the document object model to determine the exact
start and end positions of the selection made by the user

and generates an intermediate tag that is inserted into the
article. The Javascript interface to selections provided by
most browsers is somewhat peculiar in that it determines
these start and end positions in the way the user actually
marked the text. I.e., the anchor of the selection is the posi-
tion where the user clicked to indicate the beginning of the
selection. Then, the user drags the mouse, for instance, to
the end of the selection and releases the mouse button to
denote the end of the selection. The end position is the
focus. In the following paragraphs, anchor and focus are de-
noted by prefixes “a” and “f”.

The syntax of the newly introduced <transclusion> markup
with its seven parameters is rather complex (see listing 2).
This level of detail is required to be able to determine the
exact start and end positions of transclusions, though. Val-
ues in curly braces describe the type of attribute values:

• src: the URL of the document to be transcluded;

������

����������

����������������

����������

�����������������

����������

����������������

�����������

����������

�����������

��������������������������

���������

Figure 2. Overview of the server-side components.

<transclusion src="{url}"
 atag="{tag}" aindex="{int}" aoffset="{int}"
 ftag="{tag}" findex="{int}" foffset="{int}" />

<transclusion src="http://www.kolbitsch.org/about/"
 atag="H1" aindex="1" aoffset="0"
 ftag="P" findex="4" foffset="29" />

Listing 2. Syntax of a intermediate transclusion tag (top)
and an example (bottom).

Transclusions in an HTML-Based Environment6

• atag, ftag: the names of the tags in which the
transclusion starts and ends, e.g., “P” for a paragraph;

• aindex, findex: the index of the tags in which the
transclusion starts and ends, e.g., the seventh para-
graph in the document;

• aoffset, foffset: the offset within the start and end
tags, e.g., the transclusion starts at the second character
of the seventh paragraph in the document.

The exemplary tag shown in listing 2, for instance, de-
scribes a transclusion that starts at the first character of the
second H1 heading and ends at the 30th character of the
fifth paragraph in the given document.

When the article containing the transclusion is saved by
the user, the data is sent to the server, and the “Create and
Store” CGI program is invoked (see Figure 3). It extracts
the transclusion from the article, determines the attributes
of the transclusion and writes the information to the da-
tabase. The <transclusion> markup in the original article
is replaced with a transclusion object that refers to the
transclusion stored in the database.

The source document of the transclusion is not stored in
the internal repository. However, its URL, the creation and
modification dates as well as an MD5 hash value of the
entire page content are retained as fingerprint. These val-
ues are necessary to determine if the source document has
changed when the transclusion is retrieved.

It should be noted that, in contrast to [28], where an
amendment to the HTML specification is suggested, the
<transclusion> markup in this implementation is only
used during the authoring process. It is inserted when the
user makes a transclusion, is evaluated by the system and re-
placed by a transclusion object. When the page containing
the transclusion is to be displayed, the transclusion object is
replaced with the corresponding content from the original

page (see below). Hence, the <transclusion> tag is only vis-
ible within the system but not externally to the user.

3.5 Retrieving a Transclusion

The “logic” of our implementation mainly lies within the
component that retrieves transclusions. Whenever an ar-
ticle is requested, its body is analysed for the presence of
transclusion objects. For each transclusion object the fol-
lowing steps have to be carried out (see also Figure 4):

• resolve the object and retrieve the information on both
the transclusion and on the source document from the
database;

• check if the given URL of the source document can be
loaded;

• if it can be retrieved check if the metadata, i.e., the
creation and modification dates as well as the MD5
hash values, have changed;

• if the fingerprint of the source document is valid,
retrieve the resource and extract the portion of text
determined by the start and end positions of the
transclusion;

• replace the transclusion object in the article with the
transcluded content;

• if any of the operations above fails, insert an apologetic
error message.

Every transclusion is formatted in a way that readers can
distinguish between authentic and transcluded content.
In figure 5, transcluded text is highlighted using a light-
gray background. Transclusions are complemented with a
hyperlink to the original source of the content.

4 Issues Encountered

During the implementation and evaluation of the prototype
a number of difficulties were experienced. A few substantial
issues are addressed in the following sections.

4.1 Javascript Restrictions

As described in section 3.4, our implementation relies on
Javascript code that detects which portions of a document
are selected by the user; when the user presses a button, the
start and end positions of the selection are determined.

Restrictions imposed by the security mechanisms of most
modern web browsers (e.g., [18]) prevent Javascript func-
tions from accessing selections in “foreign” frames and doc-
uments. This means that the button that reads the user’s
selection has to be present in the same frame as the selec-
tion.

������
������������

������

�����������

�����������

���������������

��������������
������������

���������������

�����������

�����������

�������������
��������

�������������������

������������������

����������������

���������������

���������������

�����������

�������������������

����������������

��������������������������

����������

����������������

����������

����������

�����������������

����������������������
����������������

Figure 3. Simplified schematic illustration of the process of
creating a new article containing a transclusion.

7Transclusions in an HTML-Based Environment

Since our premise was that transclusions can be made from
any HTML document on the Web, we have to make sure
that the Javascript code required is inserted in any page
the user wants to transclude. The approach in the current
implementation is to use of a non-transparent proxy ap-
plication. So when users enter the URL of the page they
wish to transclude, the page is not loaded directly by the
web browser but by a CGI script on the server that acts an
HTTP proxy. The CGI script appends the demanded Java-
script code and sends the document to the client.

The proxy application could be omitted if transclusions
were only made in documents from an internal repository
such as an online journal or a content management system.
The system generating the documents could automatically
insert the essential Javascript code when the resource is re-
quested, for example, with a particular parameter.

4.2 Browser Specific Implementation

The function for accessing the user’s selection poses yet
another problem. Different implementations of the corre-
sponding function exist in the various web browsers availa-
ble today. The Mozilla family accesses the selection through
the document.getSelection() method, whereas Internet
Explorer, for instance, uses a dedicated document.selection
object (e.g., [10]).

Due to the use of the document.getSelection() method in
our implementation, the prototype is only compatible with
Mozilla-based browsers. With minor modifications in the
client-side Javascript code, however, the prototype should
work with a wide range of web browsers including Internet
Explorer.

4.3 Modified Documents and Unavailable
Resources

Similar to broken links in web pages, documents that are
modified and resources that become unavailable can pose
a problem for transclusions. One reason for this deficiency
is the use of Uniform Resource Locators on the world wide
web (URLs, [2]).

URLs identify an object and describe its physical location.
Defining the physical location of a document determines
that only one instance of the document may exist at a time.
Different resource identification and allocation mecha-
nisms allow for multiple locations of the same document,
i.e., several instances of the same document may exist in
different physical locations. When a resource with a certain
object identifier is requested, it is retrieved from one of the
locations that retain a copy (e.g., [27]). This can, for in-
stance, be the location with the fastest network connection,
the one with the lowest load, or the one with the shortest
distance.

The design of Xanadu takes a similar approach, in which
a resource may exist in several locations (e.g., [25]). Thus,
when a transclusion is requested and one instance of the
source data becomes unavailable, it is retrieved from an-
other repository containing the same information.

We propose an analogue mechanism that makes use of
the Wayback Machine (e.g., [13]), a very large archive of
currently about forty billion web pages, and local caching.
When a transclusion is requested whose source document
has undergone major changes or has become unavailable,
the Wayback machine is queried for the resource. The query
includes the URL and the creation date of the transclusion
as access date.

Alternatively, a local cache or Google Cache can be em-
ployed. Local caching means that a copy of a resource has to
be made when it is transcluded; the local copy is retained in
an internal repository of the system. In case of local caches,
however, legal issues may arise. [1], for instance, discusses
whether services such as Google Cache are in conflict with
German copyright laws.

Figure 6 illustrates the suggested retrieval strategy for
transclusions: when the original source of a transclusion is
available and has not been changed, it is retrieved from the
original location. Otherwise an attempt is made to load the
page from the Wayback Machine or from a similar cache.
If this attempt fails as well, the user is notified that the
transclusion cannot be made at this time.

5 Discussion

The implementation of transclusions in a purely HTML-
based environment has shown interesting perspectives, and
various aspects need to be investigated in detail and require

������
������������

������

�����������

�����������

���������������

�����������������
������������

���������������

�����������

�����������

�������������
��������

�����������������

������������������

����������������

���������������

���������������

�����������

��������������������������

����������

�����������������

����������

����������������

������������
��������

��������������������������
������������������������������

Figure 4. Handling a request for a page containing a
transclusion (simplification).

Transclusions in an HTML-Based Environment8

further research. A few selected topics are pointed out in the
following sections.

5.1 Robustness

The prototype we presented offers ease of use and relative
overall stability. The robustness, however, can still be im-
proved. Under certain conditions, for example, transclusions
can be imprecise. Content transcluded from a document by
the “Extract and Merge” component can be slightly differ-
ent from what a user originally selected—a few characters
too many or too little are extracted.

An issue that generally affects the robustness of our im-
plementation and demands in-depth analysis is modified
content. The shortcoming partly arises from an optimiza-
tion that improves the system performance. When modifi-
cations in the source document of a transclusion are to be
detected, only the creation and modification dates as well
as the content length in the HTTP header of the resource
are scanned. Some servers do not return these values at all,
though, and a small percentage of hosts return invalid date
values. So if creation and modification dates or the content
length are not available, the entire resource is retrieved and
an MD5 hash value is generated. When the content to be
retrieved is very large, the system load is high or the network
connection is slow, it might take too long to calculate the
hash value. In this case, the process might terminate with a
time-out signal, and the transclusion cannot be made.

As pointed out above, modifications in transclusion sources
are a general problem. Especially dynamic content such as

pages from a content management system or from a digital
library can be critical. In many cases, these documents con-
tain advertisements or other frequently changing informa-
tion such as references to the most recent articles. Although
the actual content of the document is not altered, the
system component that analyses the state of transclusion
sources would detect a modification.

It is desirable to have modifications in documents and their
importance—was only an advertisement changed or has the
meaning of the article changed?—detected automatically.
However, this functionality is presently computationally not
feasible. [14] suggests leaving the decision to the user: de-
spite the modifications the content from the altered source
document is transcluded, and the user has to determine if
the transclusion and the context are still appropriate.

In any case, authors of modified transclusion sources should
be notified that the content they virtually included into
their articles might not be suitable anymore, and that it has
to be reviewed.

5.2 Aspects of the Design

The design of the implementation, the use of a transclusion
object in particular, open up exciting opportunities. Since
the transclusion object is associated directly with the source
document of a transclusion, it is possible to determine
which other articles in the system include content from
the same source. This information indicates that the cor-
responding articles might deal with a similar topic and that
they could be of interest for both authors and readers. More
importantly, this information denotes that the authors of
these articles might work in a similar area. In a scientific
setting, for instance, these authors can be researchers work-
ing on similar projects. Thus, information exchange can be
enabled. From a more general perspective, collaboration
can be fostered and organisational knowledge management
can be facilitated (e.g., [17]).

Therefore we propose a simple function like “Which other
articles transclude the same document?” or “Who else uses the
same document?” that can help readers and writers discover
new information.

This principle can be applied in the “opposite direction” as
well. Authors can easily find out which other articles in the
system transclude the articles they produced. This informa-
tion can basically be used for the same purposes as pointed
out above. Hence, we propose another function that com-
plements every article in the system: “Which articles in the
system transclude this article” or simply put, “Who transcludes
‘us’?”

In a more sophisticated approach, the system could pro-
actively point out resources and authors that are related to
the article being displayed.

Figure 5. Screenshots from a prototype of transclusions in
an HTML-based authoring environment.

9Transclusions in an HTML-Based Environment

5.3 Aspects of the Proxy Application

Our implementation relies on a non-transparent HTTP
proxy application that makes it possible to insert a small
portion of Javascript code into every page the user wishes to

transclude. Although the application was initially intended
for a very specific purpose, its design is so flexible that it a
whole range of other, largely unrelated applications become
feasible.

Blacklisting of words and hyperlinks, highlighting of text
and dynamic insertion of annotations are just a few simple
examples. Advanced techniques may include dynamic ad-
aptation of content, on-the-fly insertion of complementing
information, etc.

These novel ideas need to be explored in detail. A compre-
hensive analysis and an evaluation of early results will be
presented in a forthcoming publication.

6 Conclusion

This paper briefly outlined Ted Nelson’s notion of hypertext
and one of its prime concepts—transclusions. Although
HTML has been influenced by the notion of transclusions

for the inclusion of external objects such as images, they
have not been implemented consistently. Therefore a
number of proposals have been made on how to implement
transclusions with the technologies available today. A few of
the most important approaches have been discussed.

Based merely on the technologies provided by a web-based
environment, we have designed a system that offers users
to author articles that may contain transclusions. A first
prototype utilises plain HTML, Javascript and server-side
components including CGI scripts and a specialised HTTP
proxy application.

Although a number of issues were encountered during the
implementation phase, we have been capable of collecting
valuable results that make us confident that we can enhance
the current prototype and increase its robustness and stabil-
ity.

The innovative design of the transclusion structures as well
as the architecture of system components open up new per-
spectives and can lead to more advanced functionality. Fa-
cilitating information discovery, pro-active dissemination of
related content and the stimulation of community-building
are only a few possibilities among others.

With the infrastructure provided by the proxy application
elaborate functionality such as automatic highlighting of
information, dynamic content adaptation and on-the-fly
insertion of related data can be introduced. This concept
can prove to be beneficial in numerous environments in-
cluding electronic encyclopaedias and digital libraries.

These ideas will be discussed thoroughly in a future paper.

Acknowledgements

The first author would like to thank Edmund Haselwanter
for his valuable input on the Wayback Machine.

References

[1] M. BAHR The Wayback Machine und Google Cache
– eine Verletzung deutschen Urheberrechts?, http://www.
jurpc.de/aufsatz/20020029.htm, (2002) Accessed May
11th, 2005.

[2] T. BERNERS-LEE Universal Resource Identifiers in
WWW. A Unifying Syntax for the Expression of Names
and Addresses of Objects on the Network as Used in the
World-Wide-Web, Request for Comments 1630 (1994).
See also http://www.w3.org/Addressing/rfc1630.txt.

[3] A. DI IORIO and F. VITALI A Xanalogical Collabora-
tive Editing Environment, Proceedings of the Second Inter-
national Workshop of Web Document Analysis (WDA2003),
(2003) Edinburgh, UK, August 2003. See also http://

����

����������

��������

������������

������������

������

������������

������

������������

������

�������������

���������������

���������������

���������

������������

��� �������������

����������������

����

����������

�������������

����������

���������������

���������������

���������

������������

���

��

�������������

��������������������

��

Figure 6: Flow chart of a document retrieval strategy
where the source document of a transclusion can become

unavailable or can be modified.

http://www.jurpc.de/aufsatz/20020029.htm
http://www.jurpc.de/aufsatz/20020029.htm
http://www.w3.org/Addressing/rfc1630.txt
http://www.csc.liv.ac.uk/~wda2003/Papers/Section_III/Paper_11.pdf
http://www.csc.liv.ac.uk/~wda2003/Papers/Section_III/Paper_11.pdf
http://www.csc.liv.ac.uk/~wda2003/Papers/Section_III/Paper_11.pdf
http://www.csc.liv.ac.uk/~wda2003/Papers/Section_III/Paper_11.pdf

Transclusions in an HTML-Based Environment10

www.csc.liv.ac.uk/~wda2003/Papers/Section_III/Paper_
11.pdf.

[4] L. WOOD et al. Document Object Model (DOM)
Level 1 Specification Version 1.0, http://www.w3.org/
TR/1998/REC-DOM-Level-1-19981001/, (1998)
Accessed March 29th, 2005.

[5] P. LE HÉGARET et al. W3C Document Object Model
(DOM), http://www.w3.org/DOM/, (2005) Accessed
March 29th, 2005.

[6] ECMA ECMAScript Language Specification, 3rd Edi-
tion, Standard ECMA-262 (1999). See also http://www.
ecma-international.org/publications/files/ECMA-ST/
Ecma-262.pdf.

[7] D. RAGGETT et al. HTML 4.01 Specification, http://
www.w3.org/TR/html4/, (1999) Accessed April 28th,
2005.

[8] R. FIELDING et al. Hypertext Transfer Protocol –
HTTP/1.1, Request for Comments 2616 (1999). See also
ftp://ftp.isi.edu/in-notes/rfc2616.txt.

[9] Hyperwave, http://www.hyperwave.com/.

[10] P.-P. KOCH, JavaScript – Get selection, http://www.
quirksmode.org/js/selected.html, (2004) Accessed May
10th, 2005.

[11] Transclusions in HTML-Based Environments, http://
www.kolbitsch.org/research/transclusions/.

[12] J. KOLBITSCH and H. MAURER Community
Building around Encyclopaedic Knowledge, (2005) to be
published.

[13] R. KOMAN How the Wayback Machine Works,
http://webservices.xml.com/lpt/a/ws/2002/01/18/brews-
ter.html, (2002) Accessed May 10th, 2005.

[14] H. KROTTMAIER Transcluded Documents: Advan-
tages of Reusing Document Fragments, Proceedings of
the 6th International ICCC/IFIP Conference on Electronic
Publishing (ELPUB2002), (2002) Karlovy Vary, Czech
Republic, pp. 359-367. See also http://hkrott.iicm.edu/
docs/publications/elpub-2002.pdf.

[15] H. KROTTMAIER and D. HELIC Issues of
Transclusions, Proceedings of the World Conference on E-
Learning in Corporate, Government, Healthcare, & Higher
Education (E-Learn 2002), (2002) Montreal, Canada, pp.
1730-1733. See also http://coronet.iicm.edu/denis/pubs/
elearn2002b.pdf.

[16] H. KROTTMAIER and H. MAURER Transclusions
in the 21st Century, Journal of Universal Computer Sci-
ence, 12 (2001), pp. 1125-1136. See also http://www.
jucs.org/jucs_7_12/transclusions_in_the_21st/.

[17] H. MAURER and K. TOCHTERMANN On a New
Powerful Model for Knowledge Management and its
Applications, Journal of Universal Computer Science, 1

(2002), pp. 85-96. See also http://www.jucs.org/jucs_8_
1/on_a_new_powerful/.

[18] MICROSOFT CORPORATION About Cross-Frame
Scripting and Security, http://msdn.microsoft.com/work-
shop/author/om/xframe_scripting_security.asp, (2005)
Accessed May 10th, 2005.

[19] A. MOORE et al. Personally tailored teaching in
WHURLE using conditional translucion, Proceedings of
the Twelfth ACM Conference on Hypertext and Hypermedia,
(2001) Aarhus, Danmark, pp. 163-164.

[20] T. H. NELSON A File Structure for the Complex,
the Changing and the Indeterminate, Proceedings of the
ACM 20th National Conference, (1965) Cleveland, OH,
U.S.A., pp. 84-100.

[21] T. H. NELSON Literary Machines, Mindful Press,
1981.

[22] T. H. NELSON The Heart of Connection: Hypermedia
Unified by Transclusion, Communications of the ACM, 8
(1995), pp. 31-33.

[23] T. H. NELSON Generalized Links, Micropayment
and Transcopyright, http://www.almaden.ibm.com/al-
maden/npuc97/1996/tnelson.htm, (1996) Accessed May
1st, 2003.

[24] T. H. NELSON Transcopyright: Pre-Permission for
Virtual Republishing, http://www.aus.xanadu.com/xa-
nadu/transcopy.html, (1998) Accessed May 3rd, 2005.

[25] T. H. NELSON Xanalogical Structure, Needed Now
More than Ever: Parallel Documents, Deep Links to
Content, Deep Versioning and Deep Re-Use, ACM Com-
puting Surveys, 4es (1999). See also http://xanadu.com.
au/ted/XUsurvey/xuDation.html.

[26] NETSCAPE COMMUNICATIONS JavaScript De-
veloper Central, http://developer.netscape.com/tech/java-
script/, (2004) Accessed February 3rd, 2004.

[27] A. PAM Where World Wide Web Went Wrong, Pro-
ceedings of the AUUG‘95 & Asia-Pacific World Wide Web
‘95 Conference & Exhibition, (1995) Sydney, Australia.
See also http://www.csu.edu.au/special/conference/ap-
www95/papers95/apam/apam.html.

[28] A. PAM Fine-Grained Transclusion in the Hypertext
Markup Language, Internet Draft (1997). See also http://
xanadu.com.au/archive/draft-pam-html-fine-trans-
00.txt.

[29] E. WILDE and D. LOWE XML Linking Language.
In XPath, XLink, XPointer, and XML: A Practical Guide
to Web Hyperlinking and Transclusion (E. WILDE and D.
LOWE), (2002) pp. 169-198. Addison-Wesley Profes-
sional. See also http://searchwebservices.techtarget.com/
searchWebServices/downloads/wilde-lowe_07.pdf.

http://www.csc.liv.ac.uk/~wda2003/Papers/Section_III/Paper_11.pdf
http://www.csc.liv.ac.uk/~wda2003/Papers/Section_III/Paper_11.pdf
http://www.csc.liv.ac.uk/~wda2003/Papers/Section_III/Paper_11.pdf
http://www.csc.liv.ac.uk/~wda2003/Papers/Section_III/Paper_11.pdf
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/DOM/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/
ftp://ftp.isi.edu/in-notes/rfc2616.txt
http://www.hyperwave.com/
http://www.quirksmode.org/js/selected.html
http://www.quirksmode.org/js/selected.html
http://www.kolbitsch.org/research/transclusions/
http://www.kolbitsch.org/research/transclusions/
http://webservices.xml.com/lpt/a/ws/2002/01/18/brewster.html
http://webservices.xml.com/lpt/a/ws/2002/01/18/brewster.html
http://hkrott.iicm.edu/docs/publications/elpub-2002.pdf
http://hkrott.iicm.edu/docs/publications/elpub-2002.pdf
http://coronet.iicm.edu/denis/pubs/elearn2002b.pdf
http://coronet.iicm.edu/denis/pubs/elearn2002b.pdf
http://www.jucs.org/jucs_7_12/transclusions_in_the_21st/
http://www.jucs.org/jucs_7_12/transclusions_in_the_21st/
http://www.jucs.org/jucs_8_1/on_a_new_powerful/
http://www.jucs.org/jucs_8_1/on_a_new_powerful/
http://msdn.microsoft.com/workshop/author/om/xframe_scripting_security.asp
http://msdn.microsoft.com/workshop/author/om/xframe_scripting_security.asp
http://www.almaden.ibm.com/almaden/npuc97/1996/tnelson.htm
http://www.almaden.ibm.com/almaden/npuc97/1996/tnelson.htm
http://www.aus.xanadu.com/xanadu/transcopy.html
http://www.aus.xanadu.com/xanadu/transcopy.html
http://xanadu.com.au/ted/XUsurvey/xuDation.html
http://xanadu.com.au/ted/XUsurvey/xuDation.html
http://developer.netscape.com/tech/javascript/
http://developer.netscape.com/tech/javascript/
http://www.csu.edu.au/special/conference/apwww95/papers95/apam/apam.html
http://www.csu.edu.au/special/conference/apwww95/papers95/apam/apam.html
http://xanadu.com.au/archive/draft-pam-html-fine-trans-00.txt
http://xanadu.com.au/archive/draft-pam-html-fine-trans-00.txt
http://xanadu.com.au/archive/draft-pam-html-fine-trans-00.txt
http://searchwebservices.techtarget.com/searchWebServices/downloads/wilde-lowe_07.pdf
http://searchwebservices.techtarget.com/searchWebServices/downloads/wilde-lowe_07.pdf

11Transclusions in an HTML-Based Environment

[30] S. DEROSE et al. XML Linking Language (XLink)
Version 1.0, http://www.w3.org/TR/xlink/, (2001)
Accessed April 28th, 2005.

[31] W3C Extensible Markup Language (XML), http://
www.w3.org/XML/, (2003) Accessed April 28th, 2005.

[32] S. DEROSE et al. XML Pointer Language (XPointer),
http://www.w3.org/TR/xptr/, (2002) Accessed May 2nd,
2005.

[33] M. YOCOM Mac OS History, http://www.macos.
utah.edu/Documentation/MacOSXClasses/macosxone/
macintosh.html, (2004) Accessed May 3rd, 2005.

Contact address:

Josef Kolbitsch
Graz University of Technology

Steyrergasse 30
8010 Graz, Austria

e-mail: josef.kolbitsch@tugraz.at

Hermann Maurer
Institute for Information Systems and Computer Media

Graz University of Technology
Inffeldgasse 16c

8010 Graz, Austria
e-mail: hmaurer@iicm.edu

JOSEF KOLBITSCH is a PhD student at Graz University of
Technology. His research interests include electronic en-
cyclopaedias, digital libraries and hypermedia.

HERMANN MAURER is professor and dean of the faculty of
computer science at Graz University of Technology. He
is author of some twenty books and more than 600 con-
tributions in various publications. Recently he has also
published “XPERTS”, a series of science fiction novels.

http://www.w3.org/TR/xlink/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/TR/xptr/
http://www.macos.utah.edu/Documentation/MacOSXClasses/macosxone/macintosh.html
http://www.macos.utah.edu/Documentation/MacOSXClasses/macosxone/macintosh.html
http://www.macos.utah.edu/Documentation/MacOSXClasses/macosxone/macintosh.html
mailto:josef.kolbitsch@tugraz.at
mailto:hmaurer@iicm.edu

