
58

Document
convergence
in an interactive
formatting
system

by Donald D. Chamberlin

One of the most complex aspects of document
formatting is the processing of references to
remote objects such as headings and figures. In
the case of a forward reference to an object that
occurs later in the document, two formatting
passes are usually needed before the document
converges to a stable state. Some documents
require more than two passes to converge, and
cases are known of documents that never
converge but oscillate between two unstable
states. This paper describes the techniques
used for resolving references and detecting
document convergence by the Interactive
Composition and Editing Facility, Version 2
(ICEF2). lCEF2 is an interactive formatting
system that allows users to move about in a
document, editing and reformatting pages. The
concepts of formatting pass and document
convergence are discussed in the context of
interactive formatting. A description is given of
the lCEF2 data store, a small relational database
manager with special features for detecting
document convergence. A sample KEF2 style
definition is discussed to illustrate how lCEF2
deals with document elements whose
appearance depends on their location on the
page.

@Copyright 1987 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

Introduction
A document formatter is a computer program that helps
users to prepare documents for printing by performing tasks
that are tedious to do manually, such as hyphenation and
justification of text. Document formatters can be classified
by various criteria [I] , including their degree of interactivity
and the types of formatting functions they provide.

Most formatting systems designed before 1980 process an
input or “source” document, containing unformatted text
and “markup,” and generate a formatted output document,
usually without interacting with a human user. The markup
contained in the source document may consist of low-level
commands that direct the system to use a specific font, start
a new page, etc. Alternatively, the markup may consist of
higher-level “tags” that label objects such as chapter
headings, footnotes, examples, and lists, leaving the detailed
appearance of these objects up to a “style definition” that is
external to the document. Systems that accept descriptive
tags and process them according to an external style
definition are called “generic markup” systems. Since generic
markup deals with the logical structure of the document
rather than with its physical appearance, systems of this type
are able to provide many advantages such as device
independence and enforcement of style standards. Well-
known examples of generic markup-type systems include
IBMs Generalized Markup Language [2] and Brian Reid‘s
Scribe@ [31.

may encounter a command or tag that cannot be fully
processed with the data currently available-for example, a
reference to a figure that has not yet been encountered. Most
systems respond to this situation by making some reasonable
assumption about the missing information-perhaps

During the processing of a document, a formatting system

DONALD D. CHAMBERLIN IBM J. RES. DEVELOP, VOL. 31 NO, I JANUARY 1987

replacing it with a symbolic name-and continuing to
format the remainder of the document. When the system
reaches the end of the document, additional formatting
passes may be called for if the document has not yet been
completely formatted. Each pass makes use of the
information gathered about the contents of the document
during previous passes. We say that a document has
“converged” at the end of a pass if additional passes (in the
absence of user editing) would not result in any changes to
the content or format of the document.

Markuptype systems often provide facilities for preserving
information from one pass to the next, and for controlling
the number of passes. Typical of these facilities are the
@Label, @Ref, and @PageRef commands of Scribe [4]. An
@Label command may be used anywhere in a document to
associate a symbolic name with the current section number
and page number. The user can then cause the saved section
number and page number to be inserted at any other place
in the document by invoking the @Ref and @PageRef
commands with the correct symbolic name. An @Ref or
@PageRef command that is encountered before its matching
@Label command is called a “forward reference.” When a
document is formatted for the first time, forward references
are resolved by printing the symbolic name in place of the
missing section or page number. When the end of the
document is reached, all the section and page numbers
accumulated during the formatting run are saved, with their
symbolic names, in an “auxiliary” file keyed to the name of
the document. On later formatting runs, the information in
the auxiliary file is used to resolve forward references. Scribe
performs one formatting pass each time it is invoked, and
leaves it up to the user to determine whether the document
has converged or whether additional passes are needed.

Similar facilities for saving information in an external file
during the processing of a document are provided by
Donald Knuth’s TEX’” system [5] and by IBM’s Document
Composition Facility (DCF) [2]. In TEX, commands named
\write and \read are used in macros for storing computed
data in an auxiliary file and retrieving them later. In DCF,
an option called “SYSVAR W” causes the system to write all
data needed to resolve references into an auxiliary file, and a
“SYSVAR R” option causes the system to read these data
from a named file at the beginning of a session. DCF also
provides a user-specifiable option called “TWOPASS” that
forces the formatter to make two formatting passes over the
document, preserving reference information from one pass
to the next. However, neither TEX nor DCF provides any
built-in facilities for determining whether a document has
converged at the end of a pass.

workstations and fast, high-resolution graphic displays has
made it possible for document-formatting systems to become
much more interactive. Interactive formatters usually
provide one or both of the following properties:

In the last few years, the emergence of intelligent

IBM J. RES. DEVELOP, VOL. 31 NO, I JANUARY 1987

1. Systems that provide the user with a formatted display
that accurately represents fonts, line breaks, and
pagination are usually called “What You See Is What
You Get,” or “WYSIWYG,” systems. A true WYSIWYG
system supports an interactive interface that allows the
user to reformat and examine portions of the document
on the display without reformatting the entire document.
By giving the user a quick way to see the effects of a
change in its local context, WYSIWYG systems have the
potential to improve user productivity and save much of
the paper and computing resources that would be used in
repeated reformatting of the entire document.

2. Ben Shneiderman has coined the term “direct
manipulation” [6] to describe text-editing systems that
allow users to perform insertions, deletions, and other
operations directly on the formatted page rather than on
a separate “markup” representation of the document. In a
direct-manipulation system, each user-initiated action
takes effect immediately on the formatted page and
provides direct visual feedback. By allowing the user to
interact with the document itself rather than with an
abstract command language, direct-manipulation systems
have the potentialmto reduce learning time and to make
formatting systems more accessible to unsophisticated
users.

The concepts of WYSIWYG and direct manipulation were
pioneered by the Alto personal computer at the Xerox Palo
Alto Research Center [7] and by the Etude system at MIT
[SI. Commercial systems based on these ideas include
Apple’s MacWrite’” [9] , the Xerox Star [lo], Interleaf ”,
Texet@, Xyvision@, and others [1 11. Related research projects
in academic environments include the Lara editor at ETH
(Swiss Federal Institute of Technology) [121 and the Andrew
system at Carnegie-Mellon University [131.

While many systems provide both the WYSIWYG and
direct-manipulation properties, it is not necessary that these
properties always go together. For example, a word processor
might support a direct-manipulation interface on a personal
computer display using simple monospaced fonts and fixed
line spacing; the document might then be reformatted using
typographic fonts for printing. Such a direct-manipulation
system would lack the WYSIWYG property because the
display could not be used to make decisions about line and
page breaks in the printed document. Conversely, a system
could present the user with an accurate display of the
document to be printed, but could require editing changes to
be made on a markup representation of the document rather
than directly on the formatted page. Such a system might be
considered a WYSIWYG system without a direct-
manipulation feature.

edited always exists in a formatted state. Rather than starting
at the beginning of the document and proceeding to the end,

In a direct-manipulation system, the document being

DONALD D. CHAMBERLIN

the system must be able to apply editing changes to the
middle of a formatted document, incrementally reformatting
the local area where the change occurred. In principle, a
small editing change might have widespread and complex
effects on a document. For example, deleting a figure might
affect other figure numbers, the list of illustrations, and
many figure references throughout the document. However,
most existing direct-manipulation systems have a relatively
simple document model in which editing changes simply
ripple forward until they reach a natural boundary such as
the end of a paragraph or section. Developing direct-
manipulation techniques based on more complex document
models raises interesting questions of document convergence
and is a fruitful area for research.

60

1

Document convergence in lCEF2
IBM’s Interactive Composition and Editing Facility, Version
2 (ICEF2) [14, 151 is an attempt to combine the advantages
of a WYSIWYG display with the device independence and
complex processing provided by generic markup. KEF2 is
based on an experimental formatting system named Janus,
which was described in an earlier paper [161. ICEF2 is a
generic-markup system that employs the Generalized
Markup Language (GML) for marking up source
documents. The GML “tags” in the source document are
interpreted according to an external style definition
consisting of “tag routines” written in a high-level structured
programming language [171. However, unlike most generic-
markup systems, ICEF2 does not format an entire document
without user intervention. Instead, ICEF2 presents two views
of the document to the user: the source view, consisting of
unformatted text and GML tags, and the formatted view,
consisting of pages of formatted text in typographic fonts,
just as they will appear when printed. Depending on the type
of terminal in use, the user can see these two views
simultaneously on two displays, or can switch from one view
to the other on a single display. The user can page forward
or backward in either view, and the system automatically
moves the other view to a consistent position in the
document.

By displaying formatted pages to the user, ICEF2 provides
the direct visual feedback of a WYSIWYG system. However,
when the user wishes to make editing changes to the
document, the changes are not applied directly to the
formatted pages, but to the markup from which these pages
are derived. The system then reformats the pages that were
affected by the changes. The user can apply a series of
editing changes to the markup view and then call for
reformatting of the affected pages by invoking the command
SHOW. The system automatically determines which pages
require reformatting. One page is the smallest unit of
reformatting supported by ICEF2. Because the ICEF2 user
applies editing operations to the markup view rather than to
the formatted view, ICEF2 is not a “direct-manipulation”

system. However, ICEF2 is much more interactive than
typical generic-markup systems because it allows a user to
move about in the document, applying editing changes and
reformatting pages incrementally.

In order to support single-page reformatting, KEF2 saves
a “stub” file in secondary storage just before beginning the
formatting of each page. The stub contains the complete
formatting state at the beginning of the page. ICEF2 also
saves each complete formatted page in secondary storage.
The stub files permit the system to resume formatting at the
beginning of any page in the document that it has previously
visited. When editing changes are applied to a page, the
formatter reformats the page, beginning with its stub. In
general, reformatting a page may cause text to ripple
forward, affecting the contents of the following pages.
Therefore, ICEF2 maintains a “Safe Mark,” which is defined
as the most advanced stub in the document that is still
valid-i.e., has not been affected by editing changes. Any
change applied to the text or markup of a document moves
the Safe Mark back to the page on which the change
occurred (unless the Safe Mark is already on an earlier page).
If the user asks to see a formatted page that precedes the Safe
Mark, it can be displayed immediately without reformatting.
If the user asks to see a formatted page that falls after the
Safe Mark, ICEF2 begins at the Safe Mark and formats
forward to the desired page. During this process, new stubs
are created and the Safe Mark is advanced.

When ICEF2 encounters a GML tag that cannot be fully
processed with currently available information-for
example, a forward reference to a figure-it simply
substitutes a ?for the unavailable data. For example, a figure
reference may appear as Fig. ? on page ?. During the course
of editing and formatting, the missing objects will be
encountered and the question marks will gradually
disappear. When the user wishes to ensure that the
document is in final form, he may use the PERFECT
command, which forces the system to do as much work as
necessary to resolve all references, propagate all ripple
effects, and prepare the document for final printing. After
the PERFECT command, the Safe Mark is at the end of the
document, and any page may be viewed in its final form
without reformatting. Of course, if editing changes are
applied after a PERFECT command, the Safe Mark moves
back to the edited page, and another PERFECT command is
needed before the document is ready for printing.

Like other markup-type systems, ICEF2 saves information
accumulated about a document during formatting in an
external file called the “data store,” which persists from one
ICEF2 session to another. Each document has its own data
store. By using information in the data store, ICEF2 may be
able to resolve a reference or generate a table of contents
based on information accumulated in a previous session. Of
course, if the document is edited, the information in the data
store may become obsolete and need to be updated.

X N A L D D. C ’HAMBERLIN IBM J. RES. DEVELOP. \. ‘OL. 31 NO. I JANUARY 1987

The Reference Tag:
:figref id=’bicycle’.

The Antecedent Tag:
:fig id=’bicycle’.

In an interactive system such as ICEF2, the concept of a
“pass” is not straightforward, since the user and the system
alternate in editing and reformatting portions of the
document. During a session, the Safe Mark may advance
and retreat many times as changes are applied to various
pages. In the ICEF2 environment, we define a “pass” as any
sequence of editing and formatting actions that advances the
Safe Mark from the beginning of the document to the end of
the document. An ICEF2 pass may involve repeated editing
and reformatting of various portions of the document. As a
result, individual items of information in the data store, such
as the number of the page on which a particular figure is
placed, may be updated multiple times during a pass. Figure
1 illustrates the difference between the concept of a “pass” in
a batch-type system and the equivalent concept in ICEF2.

In the ICEF2 environment, it would be inappropriate to
expect the user to specify in advance how many passes are
required to format a document, since this number depends
on the editing actions that occur during the ICEF2 session.
Therefore, KEF2 automatically determines the number of
passes that are required. When the user invokes the
PERFECT command, the system begins formatting at the
Safe Mark and completes the current pass. It then examines
the data store for the document to determine whether the
document has converged. The KEF2 data store has some
special features designed to detect convergence of the
document. If, at the end of a pass, the document has not yet
converged, ICEF2 performs additional passes, up to a user-
controlled limit, until convergence is achieved. These
system-initiated passes always start at the beginning of the
document and are performed without user intervention.

The remainder of this paper examines the mechanisms
used in the ICEF2 data store to detect convergence and
considers some specific cases of documents and style
definitions that interact to provoke multiple passes.

Multiple-pass documents
The need for more than one formatting pass is typically
caused by references in the document. A reference is a tag
that requires, for its processing, data supplied by another tag.
We refer to the tag that supplies the missing data as the

I I

I 1‘2\

antecedent of the reference. If the reference occurs in the
document after its antecedent, we call it a backward
reference; if the reference occurs before its antecedent, we
call it a forward reference. A reference tag and its antecedent
are typically linked together by matching id attributes, as in
Example 1.

If the antecedent tag is encountered first in the document,
its processing generates and stores the data needed for
processing of the reference tag: for example, the facts that the
figure with id= bicycle is Figure 5 and is located on page
2 1. When the reference tag is encountered, these data are
used to resolve the reference into a character string such as
Figure 5 on page 21.

In the case of a forward reference, however, the reference
is encountered before the antecedent. In such a case, ICEF2
looks for the figure-placement data associated with
id= bicycle and, failing to find them, substitutes a
question mark for each missing data item, resulting in the
following resolution for the reference tag: Figure ? on page ?.
The fact that data are missing does not, in itself, trigger an
additional pass through the document, since the antecedent
may simply be missing due to an error. If the antecedent tag
is encountered later in the document, it stores the figure
number and page number for id= bicycle in the data 61

30NALD D. CHAMBERLIN IBM J . RES. DEVELOP. VOL. 1 / I NO. I JANUARY 1987 I

First Pass:
Reference resolves to Fig. ? on page ?.

Second Pass:
Reference resolves to Fig. 27 on page 153.
Growth of the reference string ripples forward,
causing the antecedent figure to move to page 154.

Third Pass:
Reference resolves to Fig. 27 on page 154.
Antecedent remains on page 154.
Document has converged.

g A three-pass document.

store. A second pass is then required because a data item was
missing and later inserted in the database during the current
pass.

A similar case may be caused by a user who is scanning
through a document, examining pages and editing them.
When a forward reference tag is encountered, the data for its
resolution may be available from previous passes through
the document, and the reference may be resolved to the
string Figure 5 on page 21. Subsequently, the user may apply
editing changes (e.g., inserting additional figures) that cause
the antecedent to be renumbered as Figure 7 and moved to
page 35. When the antecedent tag is encountered, it updates
its placement data in the data store. In this case, an
additional pass is triggered by the fact that data are read and
later changed.

Another case calling for multiple passes can be caused by
deletion of material from a document during the editing and
formatting process. Suppose that a “Table of Contents” tag,
near the beginning of the document, examines the data
stored by all the “Heading” tags during previous passes and
generates a table ofvontents listing all the headings in the
document. Then suppose that the user, during processing of
the document, deletes a block of material containing one or
more headings. The deletion of the heading tags does not in
itself affect the data store; indeed, since the missing tags will
never be encountered, the data associated with these tags will
remain unchanged until the end of the pass. Nevertheless,
another formatting pass is necessary to recompute the Table
of Contents and remove the now-deleted headings; the need
for another pass is triggered by the fact that certain data
items were read and never written in the current pass. This
case requires some special handling, in that some
mechanism is needed to remove the never-written items from
the data store before the beginning of the next formatting

62

I

pass.

the data store during formatting of a document: reference
In summary, there are two types of tags that interact with

tags, which read data out of the store, and antecedent tags,
which write data into the store. At the end of a pass through
the document, an additional pass is called for if one of the
following conditions has occurred during the pass just
completed:

1. A data item is found to be missing and is later inserted.
2. A data item is read and later changed.
3. A data item is read but never written.

Nonconverging documents
It is obvious from the above discussion that two-pass
documents are quite commonplace; in fact, any document
containing a forward reference requires at least two passes to
converge. Three passes are needed if the resolution of the
reference during the second pass causes the reference string
to grow longer, and this change ripples forward to affect the
placement of the antecedent, as in Example 2.

Since the program that processes a GML tag can perform
any desired computation, it is easy to contrive an example of
a document that never converges, no matter how many
formatting passes are made. As such an example, consider a
GML tag that simply counts passes, printing the number of
each pass and storing it in the data store. A document
containing such a tag would be a trivial example of a
nonconverging document, since each formatting pass would
read and then update the pass number in the data store.

Apart from contrived examples such as the one above,
nonconverging documents are relatively rare, but at least one
example is known of a “naturally occumng” document that
fails to converge, oscillating instead between two unstable
states on successive passes. The document uses the “Starter
Set” of GML tags [2, 151. The nonconverging property of the
document is triggered by the following rules for processing
the Starter Set tags:

The “paragraph” tag, : p., is processed in such a way that
one line of a paragraph is never placed on a page by itself
(unless the paragraph consists of only one line). This is
called the “Widow Prevention Rule.”
The “figure” tag, :fig., identifies a figure by an “ i d
attribute. Processing of this tag causes the figure number
to be incremented and the figure to be placed at the top
of the next available page after the occurrence of the tag.
In order to be placed at the top of a page, the figure is
allowed to “float” out of sequence with respect to the
surrounding text. (Various other placement options are
supported by this tag, but the option described here is the
default and was used in the document of interest.)
The “figure reference” tag, :figref., has a “refid” attribute
that matches the “id” attribute of the antecedent
:fig. tag. The resolution of the : figref. tag proceeds as
follows:
a. If the figure reference is on the same page as its

X)NALD D. < ZHAMBERLIN IBM J. RES. I DEVELOP. VOL. 31 NO. I J ANUARY I

Page 1 1

I

(text)

I I

Page 1 1

(text)

This paragraph contains
a reference to Fig. 5
on page 12.

This paragraph contains
a reference to Fig. 5.

Page 12

Figure 5

. ." . ".

1 Example of an oscillating document: (a) Document state after odd-numbered passes; (b) document state after even-numbered passes.

IBM 1. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

63

DONALD D. CHAMBERLIN

64

(. . . misc. text. . . .)
: f i g i d = ’ a b c ’ .
(. . . contents of figure . . .)
: e f i g .

This paragraph confains a re ference t o
: p .

: f i g r e f r e f i d = ’ a b c . .

Markup for document shown in Figure 2.

Style
definition

Source
document

u store

The formatting process in ICEF2.

antecedent figure, it resolves to Figure X (using the
correct figure number for X).

b. If the figure reference is not on the same page as its
antecedent figure, it resolves to Figure X on page Y
(using the correct figure number and page number).

On the basis of the above rules, we can now explain the
behavior of the oscillating document. The two unstable
states of the document are illustrated in Figure 2. The
document contains the markup shown in Example 3.

On the first formatting pass, the figure “floats” ahead of
the figure reference, which is resolved to Figure ?on page ?.
The figure is placed at the top of page 12. The figure
reference occurs at the bottom of page 1 1 in a three-line
paragraph; but there is not room for three lines at the
bottom of page I 1, and the Widow Prevention Rule forces
the entire paragraph to page 12, just below the figure.

the :figref. tag routine fetches the figure number and page
On the second (and all even-numbered) formatting passes,

number of the antecedent from the data store, and notices
that the reference is on the same page as the antecedent.
Therefore the reference is shortened to Fzgure 5. This
shortens the paragraph containing the reference to two lines
and allows it to fit on page 1 1.

formatting passes, the : figref. tag routine fetches the figure
number and page number of the antecedent, and notices
that the reference is not on the same page as the antecedent.
Therefore the reference is expanded to Figure 5 on page 12.
This lengthens the paragraph containing the reference to
three lines, and the Widow Prevention Rule moves the
three-line paragraph to page 12.

the one in this example, it will perform passes up to a limit
that can be controlled by the user (the default limit is two
passes). The system will then inform the user that the
document failed to converge after the given number of
passes and will report the line number of the reference tag
responsible for the nonconvergence.

On the third (and all subsequent odd-numbered)

If KEF2 is presented with an oscillating document such as

The lCEF2 data store
The process by which KEF2 formats a document is shown
in Figure 3. The user can interact with the source document
by using an editor (this interaction is not shown in the
figure). When the user issues the SHOW or PERFECT
command, ICEF2 reloads its internal state from the
appropriate stub and begins formatting. It takes lines from
the source file, beginning at the point corresponding to the
selected stub. GML tags found in the source text are
interpreted by “tag routines” in an external “style
definition.” Some sample style definitions are provided with
ICEF2, and additional styles may be defined by the user.
During the process of formatting the document, a tag
routine can invoke certain commands that save information
in the ICEF2 data store for use by later passes, or recall
information saved previously.

The ICEF2 data store is maintained by a small, special-
purpose relational database system called the Data Manager.
The design of the Data Manager is based on the following
assumptions:

The amount of data to be stored for each document is
small.
All data items to be stored are of character-string type.
Ordering of data is important (e.g., the chapter headings in
the table of contents should appear in the proper order).
Retrieval of data is done in simple ways (e g , by simple
key-matching).
The Data Manager should incorporate the notion of a
“pass” through the document and provide special
mechanisms to detect changes that occur from one pass to
another.

DONALD D. CHAMBERLIN IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

64

(. . . misc. text. . . .)
: f i g i d = ’ a b c ’ .
(. . . contents of figure . . .)
: e f i g .

This paragraph confains a re ference t o
: p .

: f i g r e f r e f i d = ’ a b c . .

Markup for document shown in Figure 2.

Style
definition

Source
document

u store

The formatting process in ICEF2.

antecedent figure, it resolves to Figure X (using the
correct figure number for X).

b. If the figure reference is not on the same page as its
antecedent figure, it resolves to Figure X on page Y
(using the correct figure number and page number).

On the basis of the above rules, we can now explain the
behavior of the oscillating document. The two unstable
states of the document are illustrated in Figure 2. The
document contains the markup shown in Example 3.

On the first formatting pass, the figure “floats” ahead of
the figure reference, which is resolved to Figure ?on page ?.
The figure is placed at the top of page 12. The figure
reference occurs at the bottom of page 1 1 in a three-line
paragraph; but there is not room for three lines at the
bottom of page I 1, and the Widow Prevention Rule forces
the entire paragraph to page 12, just below the figure.

the :figref. tag routine fetches the figure number and page
On the second (and all even-numbered) formatting passes,

number of the antecedent from the data store, and notices
that the reference is on the same page as the antecedent.
Therefore the reference is shortened to Fzgure 5. This
shortens the paragraph containing the reference to two lines
and allows it to fit on page 1 1.

formatting passes, the : figref. tag routine fetches the figure
number and page number of the antecedent, and notices
that the reference is not on the same page as the antecedent.
Therefore the reference is expanded to Figure 5 on page 12.
This lengthens the paragraph containing the reference to
three lines, and the Widow Prevention Rule moves the
three-line paragraph to page 12.

the one in this example, it will perform passes up to a limit
that can be controlled by the user (the default limit is two
passes). The system will then inform the user that the
document failed to converge after the given number of
passes and will report the line number of the reference tag
responsible for the nonconvergence.

On the third (and all subsequent odd-numbered)

If KEF2 is presented with an oscillating document such as

The lCEF2 data store
The process by which KEF2 formats a document is shown
in Figure 3. The user can interact with the source document
by using an editor (this interaction is not shown in the
figure). When the user issues the SHOW or PERFECT
command, ICEF2 reloads its internal state from the
appropriate stub and begins formatting. It takes lines from
the source file, beginning at the point corresponding to the
selected stub. GML tags found in the source text are
interpreted by “tag routines” in an external “style
definition.” Some sample style definitions are provided with
ICEF2, and additional styles may be defined by the user.
During the process of formatting the document, a tag
routine can invoke certain commands that save information
in the ICEF2 data store for use by later passes, or recall
information saved previously.

The ICEF2 data store is maintained by a small, special-
purpose relational database system called the Data Manager.
The design of the Data Manager is based on the following
assumptions:

The amount of data to be stored for each document is
small.
All data items to be stored are of character-string type.
Ordering of data is important (e.g., the chapter headings in
the table of contents should appear in the proper order).
Retrieval of data is done in simple ways (e g , by simple
key-matching).
The Data Manager should incorporate the notion of a
“pass” through the document and provide special
mechanisms to detect changes that occur from one pass to
another.

DONALD D. CHAMBERLIN IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

Because the amount of data to be stored is small and fast
access is desirable, the data store for a given document is
kept in main memory during the processing of the
document. At the end of the ICEF2 session, the data store is
written out to a disk file keyed to the name of the document.

The data store is a collection of tables. Each table is an
ordered list of tuples containing data values (“fields”). Each
table has a name, but fields are not named. At any point in
time, each table may have one of its tuples designated as
“current” (or the “current” tuple for a table may be
undefined).

is shown in Figure 4. The linked list of TABLE structures
contains an entry for each table in the data store, including
the name of the table, its number of fields, and a pointer to
its first and current tuples. Each table has its own linked list
of TUPLE structures that in turn contain pointers to the
actual data values. The TABLE and TUPLE structures and the
data values are all held in dynamic storage. Each tuple has
three special flags (READ, WRITE, and CHANGE) that record
whether the tuple has been read, written, or changed during
the current pass. Each TABLE has a special flag called
NOMORE that records the event that a search for a tuple in
this table was unsuccessful during the current pass. Global
static pointers called ANCHOR and LASTTABLE point to the
first and last tables in the linked list, respectively.

In addition to the TABLE and TUPLE structures, the data
store also has a static variable called WARNING, which serves
as an indicator that one of the following events has occurred
during a pass:

The main-memory data structure for the KEF2 data store

1. A search for a tuple is unsuccessful (this sets the NOMORE

flag for the table involved), and a tuple is later inserted in
that table.

2. A tuple is read and later changed.
3. At the end of a pass it is discovered that a tuple was read

but not written.

Actions during a formatting pass
When a formatting pass begins, the overall WARNING flag for
the data store, the NOMORE flag for each table, and the READ,

WRITE, and CHANGE flags for each tuple in the data store are
all turned off. During a pass, the tag routines that interpret
the various tags encountered in the document may interact
with the database using the following commands:

1. DBFETCH and DBNEXT: These commands are used to
retrieve from the data store a tuple containing values that
match certain key values. The tag routine provides the
name of the table to be searched, indicates which fields
are to be used as search keys, and provides a value for
each key field. The key fields are not fixed properties of
the table, but may be changed from one retrieval

command to the next. DBFETCH searches the given
table sequentially, beginning with the first tuple, returning
the first tuple found that matches the given key values
and making this tuple the “current” tuple for the table.
DBNEXT behaves in exactly the same way as DBFETCH
except that its search begins with the “current” tuple of
the table rather than with the first tuple. If the tag routine
specifies no key fields, DBFETCH unconditionally
returns the first tuple, and DBNEXT unconditionally
returns the “next” tuple and advances the current tuple
pointer.

DBNEXT command, the data manager turns on its READ

flag, indicating that the tuple was read during the current
pass. If a DBFETCH or DBNEXT command fails to find
a tuple matching the given keys, the data manager turns
on the NOMORE flag for the given table, indicating that a
search for data in that table was unsuccessful. If no table
currently exists with the given name, an empty table is
created with this name, and its NOMORE flag is turned on.
The fact that the search was unsuccessful is indicated to
the calling tag routine by a return code.

An interesting special case occurs when a tag routine
needs to retrieve all the tuples from a given table, as in
fetching information on all the headings in the document
to format a table of contents. Such a tag routine will
make a call to DBFETCH with no key fields, followed by
repeated calls to DBNEXT with no keys until a return
code indicates that the table is exhausted. The last
DBNEXT call always turns on the NOMORE flag for the
table, since the retrieval attempt was unsuccessful (even
though no search keys were provided). Any subsequent
insertion of tuples into this table (caused, for example, by
creation of a new heading in the document) will turn on
the WARNING flag of the data store and force an
additional formatting pass.

update information in an existing tuple of the data store
or to create a new tuple. The calling tag routine names a
table and provides a set of data values for a tuple of that
table. The caller also indicates which of these values are
to be considered “key fields.” The DBSTORE command
searches the given table for the first existing tuple whose
stored values match the key fields provided. If such a
tuple is found, its remaining fields are updated with the
data values given by the DBSTORE command. If no
tuple is found to match the given keys, a new tuple
having the given keys and data values is inserted into the
table. If no table currently exists with the given name, a
new table is created with this name, and a tuple having
the given keys and data values is inserted into it. It is
important to note that key fields are not static properties
of a table. A tuple may be inserted into a table by one key
field and later retrieved by matching a different field.

When a tuple is retrieved by a DBFETCH or

2. DBSTORE: This command is used by a tag routine to

65

IBM J . RES. DEVELOP. VOL. 31 NO. I JANUARY 1987 DONALD D. CHAMBERLIN

WARNING ANCHOR LASITABLE

66

I

TABLE structures:

NAME NFIELDS FIRSTTUPLE CURRENT NOMORE NEXTTAB

‘T2’ 3 ‘0’ nil

I

TUPLE structures:

CHANGE D(l ... 10)

nil ‘ I ’ ‘0’
‘O’ I i l i l i l I I I I I I I

nil ‘0’ ‘ I ’ ‘ 0 ’
I l l
I \ \

The ordering among the tuples of a table is controlled
by the values of their fields, taken from left to right,
folded to uppercase (this folding is for sorting purposes
only, and does not affect the stored values). All fields
participate in the ordering, not just key fields. As the
values of a tuple are updated, the tuple may change its
position in the table. If a tuple is the “current” tuple of a
table when its position changes, it remains “current.”

DBSTORE always turns on the WRITE flag of the
affected tuple, and, if the actual values of the tuple are
changed, its CHANGE flag is turned on also. In addition, if
the CHANGE flag is turned on and the READ flag was
already on for this tuple, DBSTORE turns on the global
WARNING flag of the data store. This records the fact that
a data value was read and later updated in this pass
through the document. The global WARNING flag is also

X N A L D D. CHAMBERLIN IBM J. RES, DEVELOP. VOL. 31 NO. I JANUARY 1987

turned on if a new tuple is inserted into a table whose
NOMORE flag is already on, indicating that data were
added that might have affected the outcome of an earlier
unsuccessful search.

Actions at the end of a pass
At the end of a formatting pass, flags indicate which tuples
in the data store were read, written, and changed during the
pass. In addition, the global WARNING flag for the data store
is turned on if any tuple was read and later changed during
the pass, or if data were inserted into a table that had
previously been searched unsuccessfully.

at the end of each pass by the KEF2 data store:
The following sequence of events is triggered automatically

I . A “garbage-collection” scan is made of the entire data
store, in which all tuples whose WRITE flags are turned off
are deleted from the store. Since these tuples were not
written during a complete pass through the document,
they represent “dead” data which are no longer relevant.
If any tuple deleted by this mechanism is found to have
its READ flag turned on, the global WARNING flag is turned
on, indicating that some “dead” data were retrieved by a
tag routine during this pass.

2. After the “garbage-collection” step, the global WARNING

flag is examined. If the WARNING flag is still turned off,
the document has converged during the pass just
completed, formatting is complete, and control is
returned to the user. However, if the WARNING flag is
turned on, the document has failed to converge during
this pass. In this case, if the user-controlled limit on
number of passes has been reached, control is returned to
the user with a warning message. If the pass limit has not
been reached, ICEF2 begins another formatting pass at
the beginning of the document. Before beginning the next
pass, it turns off the global WARNING flag, all the table
NOMORE flags, and the READ, WRITE, and CHANGE flags for
all the tuples.

At present, each pass initiated by ICEF2 begins on the first
page of a document. In principle, however, a minor
optimization is possible: It could be recorded in the “ s t u b
of each page whether any data store references (DBSTORE,
DBFETCH, or DBNEXT) were made during processing of
the page. Each pass could then begin on the first page
containing such a reference. Pages at the beginning of a
document that do not in any way reference the data store
will never change from one pass to the next and need not be
reformatted.

Saving the data store in secondary storage
During an KEF2 session, the data store is held in main
memory for quick access. A more permanent version of the
data store for each document is kept in secondary storage in

order to record information about the document between
formatting sessions. The content of the main-memory data
store is saved in a persistent file whenever the user issues a
SAVE or FILE command. The file format of the data store
closely mirrors its main memory structure, except that the
various flags are not saved since their values are not
meaningful from one formatting session to another.

Example
This section describes a simple scenario that illustrates how
the ICEF2 data store is used in resolving heading references
and producing a table of contents. The scenario is somewhat
oversimplified (for example, it ignores the facts that headings
may occur in multiple levels and may be numbered).

following GML tags:
Suppose that a document contains, among others, the

: toc.
Meaning: generate a table of contents.

(. . . various intervening materials . . .)

: hdref id= trains .
Meaning: generate a reference to the heading whose id is

trains .

(. . . various intervening materials . . .)

: hl id= trains .Early Steam Locomotives
Meaning: generate a heading with an id of ’ trains ’ ,
containing the text Early Steam Locomotives.

Suppose further that the various tag routines that deal
with headings have a convention of sharing information by
means of a table named HEADS. Each heading is represented
by one tuple in the HEADS table, which records its id, its text,
and its page number. At the end of a previous formatting
session, ICEF2 saved in secondary storage a HEADS table
containing a tuple indicating that id= ’ trains corresponds
to a heading on page 20 with text Early Steam Locomotives.

The following sequence of events might take place in a
new ICEF2 session:

1. At the beginning of the session, the data store is loaded
into main memory, its flags are reset, and the Safe Mark
is set to the beginning of the document.

2. The user asks to see page 10 of the formatted document.
The system begins formatting at the beginning of the
document and proceeds toward the desired page. The
: toc. tag is encountered first, and it reads the entire
contents of the HEADS table and uses it to format the
Table of Contents. By fetching all the tuples in the HEADS

table and attempting to fetch more, the : toc. tag turns on
the READ flags of all these tuples and also the NOMORE flag
for the HEADS table. 67

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987 DONALD D. CHAMBERLIN

68

3. The : hdref id= trains I . tag is encountered next. It
fetches the trains tuple from the HEADS table by using
id= I trains I as a key, and uses the information to format
a heading reference that looks like “Early Steam
Locomotives”on page 20. The READ flag for the trains
tuple would be turned on by this operation if it were not
already on.

4. Page 10 is displayed to the user. While viewing this page
the user inserts a new heading, using the following GML
tag:

: h l id= boats .Paddlewheel Steamboats

The user requests that page 10 be redisplayed, which
causes the new heading tag to be processed, and a new
tuple is inserted into the HEADS table, indicating that the
id boats refers to a heading with text Paddlewheel
Steamboats on page 10. Insertion of this new tuple into
HEADS causes the global WARNING flag of the data store to
be turned on, because an insertion has been made into a
table whose NOMORE flag was on.

5. The user asks to see page 25 of the formatted document.
The system resumes formatting on page 10 and proceeds
forward; on page 22 it encounters the tag
: h l id= trains .Early Steam Locomotives. While
processing this tag, the system updates the HEADS tuple
with id= trains in the data store, changing its page
number from 20 to 22. The WRITE and CHANGE flags for
this tuple are turned on. Since the READ flag was already
on for this tuple, the global WARNING flag for the data
store would be turned on by this operation if it were not
on already. Formatting continues to page 25, which is
displayed.

6. The user issues the PERFECT command, causing the
system to continue formatting the document until it
converges. The system formats from page 25 to the end of
the document. Since the global WARNING flag is turned
on, an additional pass is needed. All data store flags are
turned off before the second pass begins.

the system reads all the tuples from the HEADS table and
generates a table of contents listing the boats heading on
page IO and the trains heading on page 22. The tag
: hdref id= trains . causes the trains tuple to be fetched
by its id, and generates the reference “Early Steam
Locomotives” on page 22.

8. As the : h l . tags are encountered for the two headings,
they turn on the WRITE flags for their respective tuples,
but not the CHANGE flags because the values stored in the
tuples have not changed.

9. At the end of the second pass, all the tuples in HEADS

have their WRITE flags on and their CHANGE flags OR the
global WARNING flag is off, and the document has
converged.

7. On the second pass, when the : toc. tag is encountered,

DONALD D. CHAMBERLIN

Storing page numbers
One of the most frequent uses of the KEF2 data store is by
tag routines wishing to record the page number on which
some item occurs. By convention, if a tag routine calls
DBSTORE to store a tuple in which some field has the value
&&&, that value will be replaced by the current page
number when the tuple is stored. When the value is
subsequently retrieved by DBFETCH or DBNEXT, it will be
a character string containing a page number such as 37 or iv.
This convention is made possible by cooperation between
two ICEF2 components called the Formatter and the Packer,
described below.

An interesting special case occurs when a tag routine
wishes to discover the page number on which its own
contents will be placed. For example, a “figure reference” tag
needs to know its own page number as well as the page
number of the figure it refers to, since processing of the
figure reference depends on whether these pages are the same
or different. In this sense, the figure reference tag has two
antecedents: itself, and the figure tag with a matching id
attribute.

At the time when a tag routine is executing, the page on
which its contents will be placed is not yet known. This is
because of a feature of the ICEF2 architecture illustrated by
Figure 5, a more detailed version of Figure 3. An ICEF2
style definition consists of three independent parts: the
Syntax, the Tag Routines, and the Page Templates. These
three parts of the style definition furnish instructions to three
internal KEF2 components called the Parser, the Formatter,
and the Packer. The Syntax is simply a list of the valid tags
in the document and their nesting rules, and it enables the
Parser to recognize the tags and find their scopes. The Tag
Routines are small Pascal procedures that process the
individual tags, calling the Formatter to perform various
functions such as justifying lines. The Tag Routines and the
Formatter do not produce a complete formatted page, but
instead generate a long column of justified text called the
“galley.” This galley is then sent to the Packer, which
arranges the lines of text on pages according to rules in the
Page Templates. This clean separation of the style definition
into three independent parts has the advantage that each of
the three parts is greatly simplified. For example, the tag
routines do not contain any code for managing page
properties such as margins or gutters, since all page
properties are specified in the Page Templates.

The Formatter and the Packer communicate only by
means of the galley. Since the galley is produced before
pagination occurs, an individual tag routine can discover its
own page number only by storing &&& in the data store and
retrieving it on a subsequent pass. When a tag routine calls
the Data Manager with a DBSTORE command to store a
tuple containing &&&, the DBSTORE command is passed
along to the Packer in the galley along with the current line
of text. The Packer then replaces the &&& with the current

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

La61 A Y V n N V C I ‘ O N It ‘1OA ‘d013423a ‘S3Y ‘l yV9l

69

\ I 7

70

(* G l o b a l v a r i a b l e s *)
v a r c u r r e n t p a g e : s t r i n g (5) ; (* page number o f c u r r e n t page *)
v a r f i r s t w o r d : s t r i n g (2 0) ; (* f i r s t word on c u r r e n t page *)

t a g d i c t ;
(* I n v o k e t h i s t a g r o u t i n e a t t h e b e g i n n i n g o f t h e document *)
beg in

cu r ren tpage := ' I ; (* I n i t i a l i z e g l o b a l v a r i a b l e s t o n u l l *
f i r s t w o r d := ' I ;

parse(1 ; (* P r o c e y t h e c o n t e n t s o f t h e document *
end; (* end o f DICT t a g r o u t i n e

tag de fn ;
v a r pageno: s t r i n g (5) ; (* page number o f t h i s t a g *)
v a r w o r d : s t r i n g (2 0) ; (* w o r d d e f i n e d b y t h i s t a g *)
v a r r e t c o d e : i n t e g e r ; (* r e t u r n code f rom da ta s to re *)

beg in

(* o b t a i n t h e w o r d t o b e d e f i n e d f r o m t h e t a g a t t r i b u t e *)
word := a r g v a l ('word ') ;

(* c a l l t h e d a t a s t ? r e t o f i v d !helpage number o f t h i s word *)
db fe tch2 (re t code , DEFTABLE , KD , word, pageno);
i f r e t c o d e 1=0 then pageno := ' 0 ' ; (* word not found *)
(* pageno now conta ins the page number o f t h i s word,

(* I f t h i s i s t h e f i r s t word on a new page, update FIRSTWORD *)
i f pageno -= c u r r e n t p a g e t h e n f i r s t w o r d := word;
cu r ren tpage := pageno;

(* Open a box and p r i n t t h e w o r d i n it *)
command ('BOX HINGES=lL' 1; (* One 1 i n e o f space around box *)
command ('FORMAT WEIGHT=BOLD'); (* Use b o l d f a c e t y p e *)
l i t e r a l (word I I ' 1; (* Put the word i n t h e box *)
command (' FORMAT PREVIOUS') ; (**Return t o n o n - b o l d t y p e *)
(* Note the word-box i s s t i l l open 1

(* S t o r e t h e page nymber o f $hi: wyrd i n th: d a t a s t o r e *)
dbs to re2 (re t code , DEFTABLE , KD , word, & & & I) ;

(* Crea te a f i x tu re box , assuming t h i s i s t he l as t word on t he page *)
command ('BOX NAME=TOPFIX PLACEMENT=FIXTURE WIDTH=6I ' 1;
command ('FORMAT WEIGHT=BOLD'); (* Use bo ld f ace t ype *)
(* W r i t e t h e f i r s t word and the current word i n t h e f i x t u r e box *)
l i t e r a l (f i r s t w o r d I I ' - ' I I word);
command (' FORMAT PREVIOUS ' 1 ; (* R e t u r n t o n o n - b o l d t y p e *)
command (' ENDBOX ; (* C l o s e t h e f i x t u r e box *)

(* Now fill t h e w o r d - b o x w i t h t h e r e s t o f t h e d e f i n i t i o n *)
parse(1 ;
command (' ENDBOX) ; (* Close the word-box *)
(* The word-box may. be packed p a r t l y on one page and p a r t l y on

t h e n e x t . The f i x t u r e - b o x will t a k e e f f e c t 0: t h e f i r s t
page t h a t con ta ins any pa r t o f t he word -box . 1

i f known -- e l s e z e r o *)

end; (* end o f DEFN t a g r o u t i n e *)

DONALD D. CHAMBERLIN IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 198

printed is the last fixture-box encountered before the end of
the page.

In our dictionary example, we define a fixture called
TOPFIX to be printed at the top of each page. Each :defn tag
routine updates the contents of the fixture-box. Each : defn
tag routine assumes that its word is the last word to occur on
the page; for the actual last word on the page, this
assumption is true and the fixture-box is actually printed.
Therefore, each : defn tag routine needs to write two words
in the fixture-box: the first word on the current page, and its
own word. The first word on the current page is stored in a
global variable called FIRSTWORD. Each :defn tag routine
fetches its own page number from the data store and
compares it with the page number fetched by the previous
: defn; if the page numbers are different, the current word is
the first word on a page, and it is stored in FIRSTWORD and
used by all subsequent occurrences of :defn until a new page
number is encountered.

The actual tag routine for the : defn tag is shown in
Example 4. Also shown in the same example is a fragment
of a : dict tag routine, which must be invoked at the
beginning of the dictionary to initialize certain global
variables. A detailed explanation of the various KEF2
commands invoked by the sample tag routines can be found
in the KEF2 Installation and Style DeJner’s Guide [171.

Because of the interactions between the Formatter and the
Packer, formatting the dictionary based on these tags is a
two-pass process. In the first pass, the page numbers
associated with the various words are unknown. In the
second pass, the tag routines are able to detect the first word
on each page and format the fixture at the top of the page
correctly.

Summary
This paper has described the mechanism of detecting
document convergence in ICEF2, a formatter that permits
users to reformat and display one page at a time. ICEF2
processes documents marked up with descriptive “tags”
using the Generalized Markup Language. We have discussed
in detail the handling of “reference” tags, the processing of
which is dependent on information supplied by other tags.
The formatting of a document containing such tags in
general requires at least two passes, and in some cases results
in an oscillating condition that can never be perfectly
formatted.

ICEF2 permits tag-processing routines to share
information by means of a simple relational database
manager that has special features to detect when additional
passes are needed to complete the formatting of a document.
Information accumulated in the ICEF2 data store persists
from one pass to the next and is saved in a file between
ICEF2 sessions.

A case of particular interest to an ICEF2 style definer is a
tag whose processing is dependent on its own page number.

IBM J. RES. DEVELOP. VOL. 31 NO. I JANUARY 1987

Because of the strong separation between justification (line-
building) and pagination (page-building) in the ICEF2
system, the handling of such a tag becomes a two-pass
process in which the current page number is communicated
via the ICEF2 data store.

Limitations of the KEF2 design include the facts that the
smallest unit of reformatting is a page, and when an
additional pass is called for, the entire document is
reformatted. A promising area for further research is the
design of a system that places much tighter bounds on the
amount of processing required to achieve document
convergence after an editing change. For example, if a
change is made in a heading, it should be possible to find all
the parts of the document (references, table of contents, etc.)
that are impacted by the change and to reformat these parts
locally without making a pass over the entire document.

Acknowledgments
The Interactive Composition and Editing Facility Version 2,
IBM Program No. 5798-DTD, was developed at the IBM
Almaden Research Center. In addition to the author, the
following individuals were responsible for the design and
implementation of this product: Olivier Bertrand, Jakob
Gonczarowski, Michael J. Goodfellow, Daniel Mahoney,
Mamata Misra, Dieter Paris, Carol H. Thompson,
Stephen J. P. Todd, Bradford W. Wade, Daniel L. Weller,
and Mitch Zolliker.

References and notes
I . R. Furuta, J. Scofield, and A. Shaw, “Document Formatting

Systems: Survey, Concepts, and Issues,” Comput. Sum. 14,
NO. 3,417-472 (1982).

2. Document Composition Facility: Generalized Markup Language
Starter Set Reference, Order No. SH20-9187, 1985; available
through IBM branch offices.

3. B. K. Reid, “Scribe: A Document Specification Language and Its
Compiler,” Ph.D. dissertation, Carnegie-Mellon University,
Pittsburgh, PA, October 1980. Available as Technical Report
CMU-CS-81-100. Scribe is a registered trademark of Unilogic
Ltd., Pittsburgh, PA.

4. B. K. Reid and J. H. Walker, Scribe Introductory User’s
Manual, Second Edition, Carnegie-Mellon University,
Pittsburgh, PA, 1979.

5 . D. E. Knuth, The TEXbook, Addison-Wesley Publishing Co.,
Reading, MA, 1984. TEX is a trademark of the American
Mathematical Society.

(1983).
Programming Languages,” IEEE Computer 16, No. 8, 57-69

7. C. P. Thacker, E. M. McCreight, B. W. Lampson, R. F. Sproull,
and D. R. Bogs, “Alto: A Personal Computer,” Computer
Structures: Principles and Examples, D. P. Siewiorek, C. G. Bell,
and A. Newell, Eds., McGraw-Hill Book Co., Inc., New York,
1982, pp. 549-572.

8. M. Hammer, R. Ikon, T. Anderson, E. Gilbert, M. Good,
B. Niamir, L. Rosenstein, and S. Schoichet, “The
Implementation of Etude, an Integrated and Interactive
Document Production System,” SIGPLAN Notices 16, No. 6,
137-146 (1981).

9. MacWrite is a trademark of Apple Computer, Inc., Cupertino,
CA.

IO. J. Seybold, “The Xerox Professional Workstation,” The Seybold
Report 10, No. 16, 16-3-16-18 (1981).

6. B. Shneiderman, “Direct Manipulation: A Step Beyond

DONALD D. CHAMBERLIN

1 1. J. Seybold and D. Stivison, “Interactive Page Makeup,” The
Seybold Report on Publishing Systems 13, No. 14, 14-3-14-25
(1984). Interleaf is a trademark of Interleaf, Inc., Cambridge,
MA; Texet is a registered trademark of Texet, Inc., Cambridge,
MA; Xyvision is a registered trademark of Xyvision, Inc.,
Woburn, MA.

12. J. Gutknecht, “Concepts of the Text Editor Lara,” Commun.

13. J. H. Moms, M. Satyanarayanan, M. H. Conner, J. H. Howard,
D. S. H. Rosenthal, and F. D. Smith, “Andrew: A Distributed
Personal Computing Environment,” Commun. ACM 29, No. 3,

ACM 28, NO. 9,942-960 (1985).

184-201 (1986).
14. Interactive Composition and Editing Facility Version 2:

Availability Notice, Order No. (3320-0798, 1985; available
through IBM branch offices.

15. Interactive Composition and Editing Facility Version 2: User’s
Guide, Order No. SH20-6724, 1985; available through IBM
branch offices.

J. C. King, D. R. Slutz, S. J. P. Todd, and B. W. Wade,
“JANUS: An Interactive Document Formatter Based on
Declarative Tags,” IBM Syst. J. 21, No. 3, 250-27 1 (1982).

17. Interactive Composition and Editing Facility Version 2:
Installation and Style Dejner’s Guide, Order No. SH20-6723,
1985; available through IBM branch offices.

16. D. D. Chamberlin, 0. P. Bertrand, M. J. Goodfellow,

Received November 6, 1985; accepted for publication July 7,
I986

72

M)NALD D. CHAMBERLIN

Donald D. Chamberlin IBMAlmaden Research Center, 650
Harry Road, San Jose, California 95120. Dr. Chamberlin is a
Research Staff Member in the Computer Science Department
at Almaden Research Center. He joined IBM in 197 1 at the
T. J. Watson Research Center in Yorktown Heights. During his
career with IBM he has worked on operating systems, relational
database management systems, and document-formatting systems.
He has received an IBM Outstanding Innovation Award for
development of the SQL database language, and an Outstanding
Technical Achievement Award for his work on the KEF document-
formatting system. Dr. Chamberlin received a B.S. degree from
Harvey Mudd College, Claremont, California, in 1966, and a Ph.D.
in electrical engineering from Stanford University, California, in
1971.

IBM J . RES. I 3EVELOP. VOL. 31 NO. I JANUARY 1987

