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Following [l, p. 181, the Abel Sums are taken as defined by 

z&(x, y; p, q) = f  (II) (k + x)~+~ (n - k + A”-“+*. 
k=O 

Here x, y are indeterminates, n is a nonnegative integer, and p, q are arbitrary 
integers. 

The purpose of this note is to show the utility in their evaluation of auxiliary 
sums, here called Associated Abel Sums, and defined by 

F,(x, y; p, q) = i (;lr) (- 1),-I, (k + 4” (n - k + ~1”. 
k=O 

(2) 

Indeed, the two are interrelated by 

A&, Y; P, 4) = f  (;) (n + x + Y)” Fn-k(X, Y  + k; P + n - k 41, (3) 
k=O 

F,z(X, Y;  P, 4) = i (1) (-Ilk (n + x + V>” An-k@, 3’ + k; P - 71, 4). (4) 
k=O 

(3) is verified as follows: 

= i (;) (k + x)~+, (n - k + y)+‘+’ 
k=O 

213 
0097-3165/79/050213-05$02.00/0 

Copyright 0 1979 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



214 GILL KALAI 

= ‘f (k”) (k + x)~+P (n - k + y>” 
k=O 

x ;g (” ; “) 
(- lp-k-j (k + X)-k-j (n + x + y)f 

(- 1)“~“-j (k + x)P++j (n - k + y)” (n + x + y)j 

= i z (1,(” 2) (-I)“-W(k + X)P++j(n - k + y)*(n f x f y)j 

= jt (J (n + x + vY Fdx, Y + 3 P + n -.A 9) 

= L (;I ( n + x + .v)“-j 4(x, n - j + y; p + j, q). 

(4) is verified by 

i. (;) C-1)” (n + X + Y>” ‘%a-k(x, jJ + k; p - n, q) 

= j. (3 (-1)” (n + x + VI” 

x 1:; (” -y “) (j + @I-n+j (n _ j + y)Q+h-k 

= to z t;r 2) (-I)" (n + x + y)" (j + xp-a+i (n - j f y)Q+--k 

?zz i (;) (j + -Wn+j (n - j + Y)" 

n-i n -j x L&o ( k ) (-1)" (n + x + v)" (n - j + yPk-j 

= i. (;) (.i + X)-i-j (n - j +- y)" (- l)n-i (j + x)+j. 

= go (ly.)(--lY-j (j + xP(n -.i + VP. 

Formula (3) is an evaluation of Abel Sums as a linear combination of 
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Associated Abel Sums, whose coefficients are monomials in (n + x + y). 
The next formula gives a simple expression for F&C, y;p, q) in terms of 

difference operators. 

F,(x, y; p, q) = f (i)(- 1Y (k + 4” (n - k + Y)” 
k=O 

(5) 

= f (;)(- l)n-k E,kxJ’E;-kyq 
k=O 

= (Ez - E,)” xpyq = (de - d,)” xpyq 

where E,(E,,) is the shift operator operating on xb), and ~,(LI~) is the 
corresponding difference operator, i.e. 

&f(x, Y> = f(x + 1, Y>> &f(x~ Y> = f(x + 19 Y> - f(x, Y>* 

This implies the instances: 

F-(x, y; p, 0) = Anxp (6) 

F,(x, y; p, 1) = yA”x* - nA”-lxp (7) 

F,(x, y; p, 2) = yzA*xp - n(2y + 1) An-lx9 + 2 (;) A”-2xn. (8) 

From Riordan [l, p. 2031 we have for p > n: 

A”xp = n ! L (4) x”W(j, n) (9) 

where S(j, n) are Stirling numbers of the second kind. 
Thus we have 

A,(x, y; p, 0) = i (;) (n + x + y>“-” Akxp+k. 
k=O 

This implies the instances: (for 0 ,( p < n, Anxp = 0) 

A&x, y; -1, 0) = i (;) (k + ~)~--l (n - k + y)pa-k 
k-0 

= (n + x + y>” x-l. (10 
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which is the original identity of Abel, and 

A.(x, y; -2, 0) = 6) (n + x + y)” AOx-” + (7) (n + x + y)“-1 dlx-1 

-n(n + x + y)“-1 
x(x + 1) 

+ (n + x + v)” 
X2 

(12) 

In general for p > 0 

A,(x, y; -p, 0) = f (3 (n + x + y)"-" LPxk-P 
k=O 

= g; (;) (n + x + y)“-” d’;x”-p. 

(13) 

Thus the number of terms in the sum is bounded for fixed p, (even if 
dkxk-+ is written out as a polynomial in x). 
For p = 0 and p = 1 we obtain 

A,(x, y; 0, 0) = i (;) (n + x + y)” (H - k)! = n! i Co + ;,+ v)k ) 
I;=0 k=O 

(14) 

A.(x, y; 1) 0) = i (Z) (n + s + L’)‘i Lln-fixn-k+l 
k=O 

(15) 

= i (;) (PI + x + y)” (n - k + l)! (x + +). 
&O 

Another evaluation of F&c, y; p, q) for q 3 0, similar to (5), is: 

f-,(x, y; p, q) = f (-- lFk (;) (k + xjp Igo (;) t--k - 9-j (n + .\: + Y)’ 
k=O 

= i (q) C-l)“-’ (n i- x + y)’ i. (1) (-l)+k (k + ,y)ntv-j 

= ,i (g) (-1F 62 + x + v>j F,d.y, 0; p + q - j, 0) 

= ,t (4) (-l)R-’ (n + .Y + 2’)’ Llnx”+j. (16) 
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A&z, y; p, q) = j$o (;) C-l)“-’ (n + .x + VY ‘%z(-% Yi p + 4 - “L 0) 

= J$ (;) (-1)*-j (n + x + Y)’ 

x j* (J (n + x + y)“-” dlzXp+Q--j+~. (17) 

In particular we have for p, q > 0, p + q -=c n: 

WG Y; P, 4) = 0. (18) 

And therefore our evaluation (17) of A,(x, y; - p, q) forp, q > 0, p 3 q is a 
sum in which the number of terms is bounded for fixed p and q. 

Finally we present an example of (4), the inverse of our main identity. For 
O,<p<n 

i. (;) (-1)” (n + x + Y)” ~-k(x, k + Y; P - n, 0) 

= F,(x, y; p, 0) = 0. 

Particularly, for p = n - 1 

j. (1) C-1)” (n + x + Y>” 4-&-, Y + k; --1,O) 

zz? i. (3 (-1)” (n + x + y)” (n + X + y)“-” x-1 = 0. 
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