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ABSTRACT Multispectral images have lower spatial resolution than RGB images. It is difficult to obtain
multispectral images with both high spatial resolution and high spectral resolution because of expensive
capture setup and sophisticated acquisition processes. In this paper, we propose a deep neural network
structure based on U-Net to convert ordinary RGB images into multispectral images with high spectral
resolution. Our variant U-Net neural network structure not only preserves detailed features of RGB images,
but also promotes the fusion of different feature scales, enhancing the quality of multispectral image
generation. Apart from the training stage, our proposed method does not require low-resolution multispectral
images, as do some earlier learning-based methods; multispectral images can be obtained using only the
corresponding RGB high-resolution images. We also employ the Inception block to achieve richer image
features and the feature loss function to optimize the non-local features. Our proposed algorithm achieves
state-of-the-art visual effects and quantitative measurements such as RMSE and rRMSE on several different
public datasets.

INDEX TERMS Convolutional neural networks, multispectral image, U-Net.

I. INTRODUCTION
Becausemultispectral images havemore spectral information
than RGB images, spectral analysis is an important research
method in the natural sciences. It plays an important role in
geological research [1], cultural heritage protection [2], [3],
and astronomical research [4]. Spectral technology can detect
the physical structure and chemical composition of measured
objects. It can also be used for qualitative and quantitative
analysis of detected objects as well as for positioning anal-
ysis. At present, multispectral and hyperspectral techniques
play an important role in remote sensing technology [5], agri-
cultural production research [6], geology [7], astronomy [8],
and earth science [9]. In computer vision, multispectral or
hyperspectral images provide more spectral information ref-
erences for image classification and detection [10]. Further-
more, research on dimensionality reduction for hyperspectral
images has been conducted, which aids better analysis of
the spectral information required in applications [11], [12].
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Light-field imaging devices have been developed for tradi-
tional modeling of spectral and polarimetric radiance [13].

The application of multispectral technology in the field of
computer science is still in its infancy because multispectral
images are much lower in spatial resolution than RGB images
and they are expensive and complicated to produce. It is
difficult to rapidly obtain low-cost images with high spatial
resolution and high spectral resolution.

The research conducted onmultispectral image reconstruc-
tion is broadly divided into two categories based on the
input-image type:

(1) Interpolation or super-resolution with low-spectral-
resolution multispectral image with the help of RGB image
priors: Low-resolution multispectral images are the primary
input, and RGB images are used for optimization [14], [15].
This type aims to increase the resolution of multispectral
images to better utilize spectral information. Because it is
difficult to obtain available multispectral images, the second
type of research, explained next, is more common.

(2) Multispectral image generation using learning-based
methods from only RGB images: This type aims to generate
high-resolution multispectral images from available RGB
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FIGURE 1. The pipeline of our CNN method. The network has two primary parts: the variant U-Net converts RGB images to multispectral
images (not depicted explicitly in this figure, but explained completely in the network structure section); the loss function is comprised of
pixel-wise loss and feature loss to measure local and non-local similarities between the output image and reference image.

images [16]–[18], and [19]. Our proposed work belongs
to the second type of research; RGB images are the only
input images required for multispectral image reconstruction.
Researchers extracted spectral information fromRGB images
and recovered the spectra over a wide range. Because of
the lack of spectral information from RGB images, learning-
based methods are required to train some mapping func-
tions between RGB and multispectral images from existing
datasets.

In recent years, deep learning [20] has shown promis-
ing results in many visual tasks such as image classifica-
tion [21], object detection [22], and image segmentation [23].
The convolutional neural network (CNN) can describe the
detailed features of images effectively and learn through
millions of characteristic parameters. It can also remove the
shortcomings of human experience and better restore the
geometric information of the image. Furthermore, recently,
the use of deep convolutional neural networks to reconstruct
multispectral images from RGB images has emerged promi-
nently [14], [22], [24], and [25].

The neural network used in our study is based on the U-Net
semantic segmentation network [26]. The first advantage of

using this network is the ability to utilize the features of
different dimensions that the U-Net structure can extract,
thus depicting low-dimensional features while retaining the
original high-dimensional features and improving the quality
of multispectral images. The second advantage is that we can
avoid expensive multispectral acquisition equipment while
still achieving expansion from RGB three-channel images to
decade- or hundred-channel spectral images (8 channels in
this paper).

Additionally, the original U-Net converts information such
as image segmentation and depth estimation to equal or
lower dimensions well. Because the generation of multi-
spectral images is the conversion of low-dimensional data
to high-dimensional data, it is inefficient to use the exist-
ing U-Net structure directly for describing the multi-channel
spectral information of multispectral images. To solve this
problem, we improve U-Net so that some convolutional lay-
ers can better learn the transformation between RGB images
and multispectral images. The pipeline used in our method is
depicted in Figure 1. The image of the stuffed toys is from
the CAVE [27] multispectral dataset. The input is an RGB
image and multispectral images (usually 400 nm – 700 nm in
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the visible light range) are the output. In the training phase,
we use a pixel-wise loss function to compute the distance
between the result images and reference images, enhanced
by image super-resolution. We also introduce the feature loss
function [28] computed by VGG16 to obtain a more detailed
performance of the resulting images. The variant U-Net we
obtain by modifying the original U-Net is more suitable for
the generation of high-channel images.

The next section of this paper explains the related work
of generating multispectral image technology from RGB
images. The third section introduces our variant U-Net deep
neural network structure and optimizationmethod. The fourth
section presents our experimental results on different datasets
and a comparison with two existing learning-based methods.
The fifth section is a summary of this paper.

II. RELATED WORK
We divide the multispectral image reconstruction problem
into two parts according to the input-image type. In the first
type, a combination of high-resolution RGB images and low-
resolution multispectral images is used (i.e., interpolation
problem), and in the second type, only high-resolution RGB
images are used (i.e., generation problem).

A. USE OF BOTH RGB AND LOW-RESOLUTION
MULTISPECTRAL IMAGES
In [29], the researchers proposed the use of the sparse matrix
decomposition method to extract features of high-resolution
RGB images and low-resolution multispectral images. They
used PCA extraction basis functions to reconstruct high-
resolution multispectral images, but the calculations required
by such methods are lengthy; an image usually takes hours
to calculate. Reference [30] simplifies the calculations in
matrix decomposition to obtain multispectral video data.
References [21] and [31] used linear interpolation to com-
bine high-resolution RGB images with multispectral images
to improve the resolution of multispectral images, but they
did not fully utilize the corresponding spectral information
contained in RGB images. This can cause distortion of the
spectrum through rough estimation and inaccurate spectral
restoration.

In [14], [15], and [32], low-resolution multispectral images
are processed with super-resolution (upsampled). Then a
low-resolution to high-resolution corresponding dictionary is
constructed by using sparse coding to optimize the upsam-
pling process to solve the problem of spectral distortion.
The resulting dictionary reflects the results of a typical map-
ping between a small number of RGB image blocks and
multispectral image blocks. This process is equivalent to
extracting a set of basis functions in the mapping relationship.
High-resolution multispectral images are recovered by apply-
ing a set of basis functions for a linear combination that may
experience some estimation and approximation errors. Ref-
erence [33] used an autoencoder to generate high-resolution
multispectral images, but also encountered the disadvantage

of employing extra low-resolution multispectral images and
a detail map of each spectral band.

The aforementioned methods use both low-resolution mul-
tispectral images and high-resolution RGB images as input
sources to improve the spatial resolution of low-resolution
multispectral images. However, current research is shifting
its focus toward multispectral image generation from only
RGB images (except the training phase in the learning meth-
ods) because initially acquiring low-resolution multispectral
images is difficult. Our method avoids the inconvenience of
using low-resolution multispectral images by using the spec-
tral information contained in the RGB image itself, extracting
multi-scale features through deep learning, and recovering
information on multiple spectral channels. Thus, we obtain
multispectral images with the same high-resolution as RGB
images.

B. USE OF ONLY RGB IMAGES
An RGB image is the combination of irradiance information
collected from the three broad spectral bands of red, green,
and blue. RGB images span a greater bandwidth than mul-
tispectral images, and they also store considerable spectral
information. In this study, we propose to recover multispec-
tral information using only these three broad bands of infor-
mation in RGB images. Whether the test data uses only RGB
images or both RGB and low-resolution multispectral images
when restoringmultispectral information, establishing amap-
ping relationship of RGB/multispectral image pairs is a key
issue. More researchers are attempting to avoid the use of
multispectral devices and study methods that only use RGB
images to recover spectral information; dictionary learning
and neural network-basedmethods are the twomainmethods.

Mapping from RGB images to multiple spectral images
requires pre-training or prior knowledge of spectral statis-
tics. Some of the work extracts the typical color in the
RGB/multispectral image pair, or the principal component,
from the sample to construct a dictionary. Such a dic-
tionary can have hundreds of atomic data (atoms) and,
through linear combinations, can fit the test data, such
as [17]–[19], [22], [34], and [35].

Reference [17] reimplemented the work of [22], building
dictionaries via K-SVD [36] and orthogonal matching pursuit
(OMP) [37], and proposed a shallow learnedmethod to recon-
struct hyperspectral images (also called A+ method). The
results indicate that the performance was comparable with
the deep learning-based method presented in [38]. In [18], the
radial basis function network was used to establish a mapping
between camera-specific RGB values and scene reflectance
spectra from a single RGB image captured by a camera
with a known spectral response. Reference [39] proposes a
nonlinear mapping between RGB and hyperspectral image
pairs using class-based back propagation neural networks,
and it delivers state-of-the-art performance.

Dictionaries are essential tools for obtaining mapping rela-
tionships, and the construction of dictionaries is an empirical
problem. The quantity of atomic data varies from human
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FIGURE 2. Our variant U-net network structure. The network consists of three parts: downsampling, upsampling and feature concatenation.
We turn conventional convolution into Inception block (detailed in the next figure) to better produce the generation of high-dimensional images.
Each rectangle represents a feature map, the number above it represents the number of feature channels.

experience. For multispectral data with large spectral bands
and spectral resolutions, an empirical dictionary may not be
complete and applicable.

Recently proposed methods based on deep learning of
multispectral image reconstruction, including those presented
in [14], [22], [24], [25], [38], [40] and [41], were studied.
Reference [38] proposed the use of the Densenet struc-
ture [39] to map the end-to-end relationship between
RGB images and corresponding multispectral images. The
Densenet structure makes the connections between layers
more compact, reducing the occurrence of the vanishing
gradient problem and over-fitting, but increasing the num-
ber of learning parameters and calculations. Reference [41]
proposes a moderately deep redundant-network-structure
(Residual Block) CNN network to learn the correspondence
between RGB and multispectral images [42]. The aim was
to fuse features from different dimensions to obtain some
accurate restoration with no pooling layer. Thus, high-level
and low-level features alias together to a certain degree by
ignoring some important features that implicitly impact the
training results. Our convolutional layer will only concatenate
same feature scales, reducing the computational complexity.

The deep neural network-based training method we pro-
pose in this paper obscures the mapping relationship of
RGB/multispectral images in the neural network parameters,
and thus avoids the limitation of artificial settings (such as the
PCA function). This makes the deep U-Net neural network
superior to the dictionary learning method. It also offers
a more complete description of the mapping relationship

between RGB and multispectral images. Our simpler, more
accurate method only requires high-resolution RGB images.
Using the U-Net structure, after downsampling or upsam-
pling, same-scale feature maps are connected instead of
added, which preserves the independence and richness of
each feature map and also avoids the vanishing gradient prob-
lem during the gradient descent process. The convergence
result is achieved through the variant U-Net architecture.

In the next section, we specifically describe the variant
U-net architecture and then discuss some experimental results
on visual and quantitative comparisons between the work
of [38] and [41] and the classic methods of [17] and [39].

III. VARIANT U-NET DEEP NEURAL NETWORK
We propose a deep neural network as well as loss function
to generate more fine-grained multispectral images. We first
describe the composition of the proposed variant U-Net
neural network structure, and then introduce the loss func-
tion used in the training phase, focusing on improvements
made.

A. NETWORK STRUCTURE
1) DOWNSAMPLING AND UPSAMPLING
The proposed network structure shown in Figure 2 is based on
the original U-Net [26]. In addition to the vanilla convolution
in the original U-Net, the encoder structure is superimposed
on two Inception blocks [43] (with padding, using an acti-
vation function pReLU in each convolution layer) and max-
pooling layer alternately, and the decoder is the combination
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FIGURE 3. Inception block illustration. The output layer concatenates
different convolutions with different receptive fields (convolution
kernels) to merge features with multiple scales.

of an upsampling layer and Inception blocks. The 1 × 1
convolutional layer completes the output channel of the entire
network (8 channels or 8 bands in this paper).

The Inception block is the concatenation of convolutional
layers with different receptive fields, as depicted in Figure 3.
The introduction of the Inception block increases the width
of the network and improves the generalization ability of the
original U-Net. Compared to the original U-Net, more non-
linearity is introduced through the 1 × 1 convolutional layer
of the Inception block. The entire network can characterize
the image features more powerfully, and the complexity of
the network is also controlled within a reasonable range.

The input image is a 3-channel RGB image of 512 × 512
pixels, and the output image is 8-channel image of the same
resolution. The boundary of the image is lost during the con-
volution process in the original U-Net. However, in this study,
we add a padding operation to each convolutional layer so that
the size of the output image is unchanged. The result of each
upsampling layer is linked to the feature map of the pooled
layer of the corresponding scale for the next step (shown by
the slender arrow in Figure 2). The 1× 1 convolution is used
in the last layer to simplify the calculation and reduce the
dimensions of the parameters.

2) FEATURE CONCATENATION
After four maxpooling operations, the features of different
scales from high dimension to low dimension can be pre-
served. Such feature maps are connected with the upscaled
feature maps of the same scale to enhance the generalization
ability of the model by merging local and non-local features.
After feature fusion of multiple scales, the number of spectral
bands is extended and end-to-end training is achieved.

B. LOSS FUNCTION
Our loss function consists of two parts. We combine the L1
distance function and the feature loss function to define the
loss function of the entire network. We encountered difficulty
in tuning the Euclidean regularization, which led to over-
smoothness. The L1 loss function, as a first-order distance

function, can supervise the pixel response in the space and
spectral domains more strongly than the L2 loss function. The
feature loss function constrains the integrity of the image in
a non-local manner.

1) PIXEL-WISE LOSS
The L1 function calculates the average Manhattan distance
between the result feature map and the label image. L1 is a
common loss function in training tasks and has a beneficial
effect on the overall convergence of the model. The L1 func-
tion can be written as follows:

lL1 =
1

WHC

∑
i,j,k

∥∥F ′ (i, j, k)− F(i, j, k)∥∥ , (1)

where W , H , and C represent the width, height, and number
of channels of the image, respectively; i, j, and k represent
the index of the pixels in the image, F′(i, j, k) represents the
pixel value in the k-th feature map, and F(i, j, k) represents
the corresponding pixel value in the label image. We use the
L1 function instead of the L2 function, which calculates the
Euclidean distance, to reduce the influence of outliers after
root-mean square error computation.

2) FEATURE LOSS
We also introduce feature loss functions to constrain
high-level image feature representations [28]. We measure
the feature loss function to encourage similar activations of
the output image and ground truth image. The feature loss
is computed through a VGG16 pre-trained network on the
ImageNet dataset [44], [45] after the output image is recon-
structed. We used the pre-trained parameters as the initial
settings and retrained them in different frequency bands.
We describe the feature loss function as follows:

lf =
1

WHC

∑∥∥G (F ′)− G(F)∥∥ , (2)

where G(F′) represents the activation of the output image
F′ through the VGG16 pre-trained network, and the other
notations remain the same in as in (1).

3) LOSS FUNCTION
Therefore, the total loss function can be expressed as a linear
combination of the L1 and feature loss functions as follows:

L = lL1 + αlf , (3)

where α is the weight parameter. Such a loss function not only
enables the training to converge, but also preserves the details
in the image.

IV. EXPERIMENTAL RESULTS
In our experiment, we first introduce the training dataset
and evaluation methods used. Then, we display a visual
and quantitative comparison of the result image by several
methods.
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A. IMPLEMENTATION DETAILS
The proposed network is implemented in Tensorflow and
an Adam optimizer [46] with Nesterov moment [47], [48].
We trained the network for 2000 epochs with a learning rate
of 0.002 for the first 500 epochs and reduced by 0.5 every 500
epochs. The training and testing datasets were split as 80%
and 20%. The testing images never enter the training process.
PReLU activation functions are applied with a slope of 0.2 in
the negative axis. Furthermore, the proposed structure utilizes
batch normalization and a 50% dropout to tackle the overfit-
ting problems. To create more training data, the input images
were augmented via flips and rotations. We trained and tested
the network on the Ubuntu 16.04 platform with Intel Xeon
E5-2630 40-core 2.20 GHz CPU and Quadro M6000 GPU
with 24 GB RAM.

We compared the CNN methods in the above platform.
We implemented and trained the network in [38] with the
same parameters as those in their paper for 400 epochs,
an initial learning rate of 0.002, and a 50% dropout. Further,
we trained the network in [41] with the same Adam optimizer
as that in their study, an initial learning rate of 0.0005, and a
momentum of 0.93.

B. DATASET AND EVALUATION METHOD
We used two public multispectral datasets, CAVE [27] and
ICVL [22], for training, and compared the results qualita-
tively and quantitatively with two recent studies that used
CNN networks for training [38], [41] and other classic
methods.

CAVE dataset contained 32 scenes each composed of
a 400 nm to 700 nm multispectral image measured in 10 nm
increments and its corresponding RGB image. The total num-
ber of bands was 31, and images were captured by Apogee
Alte U260 cooled CCD camera with a 16-bit PNG format
output. The resolutions of the RGB image and its correspond-
ing spectral image are 512× 512. Eight bands were selected
on average from the multispectral image for training (i.e., the
network output channel number is 8).

The ICVL dataset contains 201 images and corresponding
spectral bands from 400 nm to 1000 nm at roughly 1.25 nm
increments with 1392 × 1300 resolution. The images were
captured by a Specim PS Kappa DX4 camera. ICVL also
provides a downsampled version of 31 bands from 400 nm
to 700 nm in 10 nm increments.

To quantify the spectral images, we chose three commonly
used quality metrics to measure errors: root mean square
error (RMSE), relative root mean square error (rRMSE), and
peak signal-to-noise ratio (PSNR). The smaller the RMSE
and rRMSE and the greater the PSNR, the better the image
quality. The RMSE unit is the difference between two pixels.
The rRMSE is a normalized measure describing the pixel
similarity of two images. The PSNR unit is dB, describing
the difference between the image and noise. Although there
are different definitions of RMSE and rRMSE, we use the fol-
lowing formulas, where n is the total number of pixels in the

image, with element-wise subtraction. MAX is the maximum
pixel value of an image, that is, 255 (8 bits) in our experiment.
Other notations are the same as those in the previous section.
We also use the spectral angle mapper (SAM) indicator to
measure the performance of each method from the original
papers.

RMSE =

√
1
n

∑
(F ′ − F)2 (4)

rRMSE =

√
1
n

∑ (F ′ − F)2

F2 (5)

PSNR = 10 log10 (
MAX2

RMSE2 ) (6)

C. RESULTS
1) CAVE DATASET
The number of images in the training set was 27, and the
number in the test set was 5. We flipped and rotated the train-
ing images four times to quadruple the number of images.
Figure. 4 shows the difference in visual effects between our
proposed method and the comparison methods. The first col-
umn is the ground truth (GT) image, the next three columns
are the result images of different methods, and the last three
columns are the respective error maps between the result and
GT image of the various methods. We take into account three
scenes (stuffed toys, thread spools, and sponges) in three rows
and compare the output spectral images (440 nm) and the
error maps of our method and the two other learning-based
methods. We see better visual effects in the error maps as
smooth pixels increase and outliers decrease. We display
the red region at the bottom-right corner of every image
to highlight the amplification effect. Using the error map,
we can see that ourmethod results in pixel values around zero,
which means our output is closer to the ground truth image.
Can’s method is smooth but, due to the lack of efficiency
in its use of conventional convolution blocks, it results in
higher error map values. Our experimental results indicate
that at some short wavelengths (near 400 nm), some image
edge positions (specifically, dark areas) are significantly erro-
neous. Although there may be unsuitable places, our strategy
is to arrange the network structure and optimization methods
(including hyperparameters such as learning rate and batch
size) such that the overall loss of the network is minimized.

In Table 1, we use some image quality metrics to evaluate
the average difference between the 8-bit result image and the
ground truth test image. Our method exhibits better behavior
in terms of three quantitative metrics, except SAM. Galliani’s
and A+ method obtain more artifacts, resulting in a high
RMSE and rRMSE. Can’s method obtains a good visual
effect but a larger variance than ours in pixel values. Han’s
method [39] (CBPNN) and our method achieved similar
results in terms of RMSE and rRMSE, but RMSE is reduced
0.21 and rRMSE is reduced 0.016 by our method. However,
SAM is reduced 1.8 in Han’s method, and we took the second
place. We achieved the best result in PSNR than the other
methods.
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FIGURE 4. Visual comparison of result images and error maps of Can [41], Galliani [38] and our method in 440 nm w.r.t 8-bit image. Three different
scenes are displayed in three rows. Ground truth is in the first column, then the spectral result image of Can’s, Galliani’s and our method, then the error
maps of three methods, respectively. The red region is amplified in the bottom right corner.

FIGURE 5. Visual comparison of result images and error maps of Can [41], Galliani [38] and our method in four non-consecutive spectral bands w.r.t 8-bit
image. We display four different spectral bands (480 nm, 520 nm, 560 nm, 600 nm) in four rows. Ground truth is in the first column, then the spectral
result images of Can’s, Galliani’s and our method, then the error maps of three methods, respectively. The red region is amplified in the bottom left corner.

2) ICVL DATASET
We resize the training and testing images into 1024× 1024
resolution for more convenient convolution. We take out
five images for the testing procedure and ignore data

augmentation preprocessing. Notably, flipping and rotating
the training images like we did to the CAVE dataset did
not improve the study results, but significantly increased the
training time. Our proposed network’s output channel is 8,
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FIGURE 6. Visual comparison of resulting images and error maps of A+ [17] and our method in four non-consecutive
spectral bands with respect to 8-bit image. We display four different spectral bands (480, 520, 560, and 600 nm) in
four rows. Ground truth is presented in the first column; the spectral result images of A+ and our method are
presented in the second and third columns; the error maps of three methods are presented in fourth and fifth
columns. The last row presents the average PSNRs of the spectral images.

FIGURE 7. Spectral reflectance of the ground truth (red) and the reconstructed results with our method (blue) on some
typical pixels of the CAVE (the first row) and ICVL (the second row) datasets.

as mentioned above, but we may modify it to the number of
bands if needed as well. Figure 5 demonstrates the difference
in visual effects between the comparison methods and ours.
We take into account four different spectral bands (480 nm,
520 nm, 560 nm, and 600 nm) in four rows in the same
scene to see how effective the network is in dealing with
different spectra. We also amplified the red region to see the
details in the spectral images and error maps. From the error
map, we can see a better effect on the edge of the flowers

in Can’s and our method, while in Galliani’s method there is
slightly lower clarity in the same location. Figure 6 presents
a visual comparison of A+ [17] and our method; from the
reconstructed images, it is clear that the error ranges are
almost equivalent, but our average PSNR is slightly higher
because of smoother textures.

In Table 2, we compute the image quality metrics to com-
pare the average difference between the result image and
the ground truth image in 8-bit. Our method exhibits better
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TABLE 1. Error measurement in CAVE dataset on 8-bit image.

TABLE 2. Error measurement in ICVL dataset on 8-bit image.

results in both visual and quantitative comparisons, except in
terms of SAM where only inferior to the CBPNN method.
We improved the RMSE metric and the rRMSE metric by
5% and the PSNR metric by 6%. Learning-based methods
can extract features from different spectral bands well if they
can handle multiple dimensions and scales of spectral images
with the proper model and dataset. Furthermore, results indi-
cate that our method can handle spectral image generation
with different spectral bands.

Figure 7 presents the reconstructed spectral reflectance
of our method and ground truth in both CAVE (first row)
and ICVL (second row) datasets in some typical pixels. Our
spectra fit the ground truth well in the eight band scale. Some
of the curves, such as CAVE data in the first row, fit less
well with the ground truth possibly owing to the insufficient
generalization of training data.

D. FURTHER DISCUSSION
Since deep learning was introduced to generate multispectral
and hyperspectral images, we can obtain large resolution
spectral images more conveniently. However, the effective-
ness of deep learning is highly related to the volume of the
training dataset. Our experiment shows that we can see better
overall visual effects on ICVL results than CAVE results
because the ICVL dataset contains more training images and
complex scenes for the extraction of image features. We cur-
rently focus on the reconstruction of multispectral images,
but we can also expand the bandwidth of hyperspectral scale
with some fine tuning and optimization schemes. Additional
studies should focus on the combination of optical rules and
deep learning abilities.

V. CONCLUSION AND FUTURE WORK
This paper proposes a variant U-Net deep learning neural
network structure to convert an ordinary RGB image into
multispectral images with high spectral resolution. There
are two main contributions of our method: (1) with the
introduction of Inception block, more low-level features are

retained along with high-level features, making the spectral
information recovery of the image more accurate; and (2)
we combine pixel-wise loss and feature loss functions to
better measure local and non-local features. We improve the
original U-Net and eliminate the inconvenience and expense
of using multispectral imaging equipment. Such a network
structure can also be extended to recovermultispectral images
of an arbitrary number of output bands, such as 31 bands
(400 nm to 700 nm, bandwidth of 10 nm), andwe only need to
adjust the number of network output channels to fine-tune it.
We have demonstrated that our variant U-Net deep learning
method has achieved good results in both visual effects and
quantitative analysis, and provides an effectivemethod for the
generation of multispectral images.
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