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What is PipeWire
● Initial idea: PulseAudio for video

● Now: generic multimedia daemon

– Video capture server
● Camera and other video sources (ex. gnome-shell screencast)

– PulseAudio and Jack (pro-audio) replacement
● Borrowing ideas also from CoreAudio, AudioFlinger, and others...
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Architecture
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Architecture
● Multi-process, graph based processing

● External session/policy management (unlike PulseAudio)
– Nothing happens automatically inside the daemon

– Per-desktop/distro implementations can exist

● External applications can be device providers

● Real-time ultra low-latency (pro-audio) and standard high 

latency (typical desktop)
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Processing Efficiency
● Zero-copy with modern linux kernel APIs (memfd, dmabuf)

– Buffers  passed around with file descriptors

– memfd: shared CPU buffer
● Kernel ensures only the destination process can modify the buffer

– dmabuf: shared hardware (GPU/VPU) buffer
● Processing happens in dedicated hardware, the CPU does not need to copy 

data on the CPU-accessible RAM
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Processing Efficiency (continued...)
● Plugins based on SPA (Simple Plugin API)

– Header-only C library with zero dependencies

– Extremely lightweight data structures

– “Like GStreamer, but not so heavy!  - Wim Taymans”

● Much lower CPU usage than PulseAudio
– PulseAudio CPU skyrockets on low latency, even on a powerful i7

– PipeWire CPU will happily stay low at any latency and any load
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CPU Usage Statistics
Playback of a 24bit 96kHz 5.1 channel file, downmixed to 3.1 and resampled to 48kHz

21.33 ms 1.33 ms 2 clients @ 800 MHz
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% CPU

● Measurements:

– 21.33 ms (1024 samples / buffer)

– 1.33 ms (64 samples / buffer)

– 1.33 ms with 2 clients

– 1.33 ms with CPU pinned @ 800 MHz

● Measurements on 

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

● Comparatively, on 1.33 ms, PulseAudio 

uses 100% CPU and fails (underruns)
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Power Efficiency
● eventfd to wake up the processes and schedule the graph

● Devices can be put to sleep when unused
– Like PulseAudio does

– Unlike ALSA or Jack
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Security
● Fine-grained access controls per client

– Clients are not able to list other nodes or connect to them until the 

session manager approves

– Each client can be made to see  an entirely different graph“ ”

● Sandbox / Container support (flatpak, )…
– Sandbox portal requests a fd from PipeWire and asks the session manager for 

specific permissions
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Standard Desktop:

With sandbox:

Security
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Compatibility
● Provides replacement compatibility libraries for:

– PulseAudio (libpulse.so.0)

– Jack (libjack.so.0)

– Pulse & Jack applications can natively work with PW without recompilation

● ALSA plugin for ALSA-only clients

● LADSPA & LV2 plugins supported, apart from SPA

● Native API via UNIX Socket (D-Bus available; extensible)
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Behavior
● PulseAudio is nasty with crash handling

– Restarts automatically

● PipeWire doesn’t inherit this behavior
– The service is meant to be started & restarted by systemd, using socket activation

– It is up to the session/policy manager to restore connections, if necessary
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ALSA UCM
● PipeWire wants to use ALSA UCM (Use Case Manager) to 

configure sound cards
– Allows dynamic reconfiguration of ports

– Allows power on/off on parts of the sound hardware

– Hides ALSA controls complexity

● Open to discussion on improving it or making it optional

● Currently not implemented (in TODO list)
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Who is behind this
● Author: Wim Taymans

– Well-known old GStreamer developer (since the very early days) & ex-maintainer

– Sponsored by: Red Hat

● Embraced by PulseAudio developers
– Seen as the next generation of PulseAudio

– PulseAudio will eventually be phased out

● Welcomed by ALSA and Jack developers
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PipeWire in AGL
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The idea
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Why ?
● Stick to a (to-be) widely used & widely tested audio system

– Implemented, maintained and supported by PulseAudio & GStreamer experts

● Provide flexibility for vendors to implement certain 

processing in hardware
– by SPA plugins or external device providers

– without having to implement a full-blown replacement for the 4A softmixer

– without writing AGL-specific software
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Why ?
● Provide more advanced capabilities for free

– Advanced mixing configurations

– Dynamic audio routing

– Lower latency for applications that require it

– Software effect plugins (echo canceler, equalizer, you name it...)

– Standard Linux Bluetooth audio implementation (from PulseAudio)

– Airplay, DLNA

– RTP streaming to other car nodes with synchronization
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Why ?
● Extend device arbitration to non-audio devices

– Video capture devices (ex. camera for video calls)

– Hardware encoders / decoders

– Media-based sensors (ex. camera for AI)
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Why ?
● Zero-copy, processing & power efficiency

– Current 4A softmixer requires copying buffers back and forth through the kernel: 

app  ALSA loop device  softmixer  real ALSA device→ → →

– AVIRT solves that, but unnecessarily introduces AGL-specific kernel code
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Why ?
● Better security on the audio connection

– Currently applications can just open an ALSA device without asking the 4A HL

– SMACK will allow it if the application is labeled to be capable of opening this device 

(ex. multimedia application opening the multimedia  sound device)“ ”

– In PipeWire, the session/policy manager will be the one to make the final decision

– We can arbitrate access to the socket via a binding-like mechanism

● Also solves the problem of media frameworks not being aware of the AGL 

security mechanisms and 4A
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Why ?
● Avoid using complicated ALSA plugins

– Old, ugly codebase

– Hard to use and therefore hard to maintain a softmixer  that works well“ ”

– Limited functionality

– Not as efficient
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Proposal
● Do a minimal demo

– The least modifications required to get PipeWire to provide the audio backend

● Work with upstream
– Provide missing bits in PipeWire

– Decouple functionality from PulseAudio and make it available

– Ensure that all AGL specific requirements are supported as early as possible
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Thank you!
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