
The PipeWire multimedia framework
and its potential in AGL

George Kiagiadakis,
Senior Software Engineer

2

What is PipeWire
● Initial idea: PulseAudio for video

● Now: generic multimedia daemon

– Video capture server
● Camera and other video sources (ex. gnome-shell screencast)

– PulseAudio and Jack (pro-audio) replacement
● Borrowing ideas also from CoreAudio, AudioFlinger, and others...

3

Architecture

4

Architecture
● Multi-process, graph based processing

● External session/policy management (unlike PulseAudio)
– Nothing happens automatically inside the daemon

– Per-desktop/distro implementations can exist

● External applications can be device providers

● Real-time ultra low-latency (pro-audio) and standard high

latency (typical desktop)

6

Processing Efficiency
● Zero-copy with modern linux kernel APIs (memfd, dmabuf)

– Buffers passed around with file descriptors

– memfd: shared CPU buffer
● Kernel ensures only the destination process can modify the buffer

– dmabuf: shared hardware (GPU/VPU) buffer
● Processing happens in dedicated hardware, the CPU does not need to copy

data on the CPU-accessible RAM

7

Processing Efficiency (continued...)
● Plugins based on SPA (Simple Plugin API)

– Header-only C library with zero dependencies

– Extremely lightweight data structures

– “Like GStreamer, but not so heavy! - Wim Taymans”

● Much lower CPU usage than PulseAudio
– PulseAudio CPU skyrockets on low latency, even on a powerful i7

– PipeWire CPU will happily stay low at any latency and any load

8

CPU Usage Statistics
Playback of a 24bit 96kHz 5.1 channel file, downmixed to 3.1 and resampled to 48kHz

21.33 ms 1.33 ms 2 clients @ 800 MHz

0.7

2.3
2.7

6

% CPU

● Measurements:

– 21.33 ms (1024 samples / buffer)

– 1.33 ms (64 samples / buffer)

– 1.33 ms with 2 clients

– 1.33 ms with CPU pinned @ 800 MHz

● Measurements on

Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

● Comparatively, on 1.33 ms, PulseAudio

uses 100% CPU and fails (underruns)

9

Power Efficiency
● eventfd to wake up the processes and schedule the graph

● Devices can be put to sleep when unused
– Like PulseAudio does

– Unlike ALSA or Jack

10

Security
● Fine-grained access controls per client

– Clients are not able to list other nodes or connect to them until the

session manager approves

– Each client can be made to see an entirely different graph“ ”

● Sandbox / Container support (flatpak,)…
– Sandbox portal requests a fd from PipeWire and asks the session manager for

specific permissions

11

Standard Desktop:

With sandbox:

Security

12

Compatibility
● Provides replacement compatibility libraries for:

– PulseAudio (libpulse.so.0)

– Jack (libjack.so.0)

– Pulse & Jack applications can natively work with PW without recompilation

● ALSA plugin for ALSA-only clients

● LADSPA & LV2 plugins supported, apart from SPA

● Native API via UNIX Socket (D-Bus available; extensible)

13

Behavior
● PulseAudio is nasty with crash handling

– Restarts automatically

● PipeWire doesn’t inherit this behavior
– The service is meant to be started & restarted by systemd, using socket activation

– It is up to the session/policy manager to restore connections, if necessary

14

ALSA UCM
● PipeWire wants to use ALSA UCM (Use Case Manager) to

configure sound cards
– Allows dynamic reconfiguration of ports

– Allows power on/off on parts of the sound hardware

– Hides ALSA controls complexity

● Open to discussion on improving it or making it optional

● Currently not implemented (in TODO list)

15

Who is behind this
● Author: Wim Taymans

– Well-known old GStreamer developer (since the very early days) & ex-maintainer

– Sponsored by: Red Hat

● Embraced by PulseAudio developers
– Seen as the next generation of PulseAudio

– PulseAudio will eventually be phased out

● Welcomed by ALSA and Jack developers

16

PipeWire in AGL

17

The idea

18

Why ?
● Stick to a (to-be) widely used & widely tested audio system

– Implemented, maintained and supported by PulseAudio & GStreamer experts

● Provide flexibility for vendors to implement certain

processing in hardware
– by SPA plugins or external device providers

– without having to implement a full-blown replacement for the 4A softmixer

– without writing AGL-specific software

19

Why ?
● Provide more advanced capabilities for free

– Advanced mixing configurations

– Dynamic audio routing

– Lower latency for applications that require it

– Software effect plugins (echo canceler, equalizer, you name it...)

– Standard Linux Bluetooth audio implementation (from PulseAudio)

– Airplay, DLNA

– RTP streaming to other car nodes with synchronization

20

Why ?
● Extend device arbitration to non-audio devices

– Video capture devices (ex. camera for video calls)

– Hardware encoders / decoders

– Media-based sensors (ex. camera for AI)

21

Why ?
● Zero-copy, processing & power efficiency

– Current 4A softmixer requires copying buffers back and forth through the kernel:

app ALSA loop device softmixer real ALSA device→ → →

– AVIRT solves that, but unnecessarily introduces AGL-specific kernel code

22

Why ?
● Better security on the audio connection

– Currently applications can just open an ALSA device without asking the 4A HL

– SMACK will allow it if the application is labeled to be capable of opening this device

(ex. multimedia application opening the multimedia sound device)“ ”

– In PipeWire, the session/policy manager will be the one to make the final decision

– We can arbitrate access to the socket via a binding-like mechanism

● Also solves the problem of media frameworks not being aware of the AGL

security mechanisms and 4A

23

Why ?
● Avoid using complicated ALSA plugins

– Old, ugly codebase

– Hard to use and therefore hard to maintain a softmixer that works well“ ”

– Limited functionality

– Not as efficient

24

Proposal
● Do a minimal demo

– The least modifications required to get PipeWire to provide the audio backend

● Work with upstream
– Provide missing bits in PipeWire

– Decouple functionality from PulseAudio and make it available

– Ensure that all AGL specific requirements are supported as early as possible

25

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

