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Abstract

We study the classical and quantum Euclidean wormholes for a flat Friedmann-
Robertson-Walker universe with a perfect fluid including an ordinary matter source plus
a source playing the role of a decaying cosmological term. It is shown that classical Eu-
clidean wormholes exist for this model provided the strong energy condition is satisfied.
Moreover, unlike the model adopted by Kim and Page in which quantum wormholes are
incompatible with a cosmological constant, we show in the present model that quantum
wormholes are compatible with a perfect fluid source including a decaying cosmological
term.
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1 Introduction

Wormholes are usually considered as Euclidean metrics that consist of two large regions con-
nected by a narrow throat. On the other hand, two kinds of wormholes, namely macroscopic
and microscopic, are known. Macroscopic wormholes may provide the mechanism for black
hole evaporation [1], while microscopic wormholes seem to play an important role in vanishing
cosmological constant Λ [2]-[5]. One possible solution to the cosmological constant problem
is that wormhole solutions can lead Λ to become a dynamical variable with a distribution
function P (Λ) [3]. This function is peaked with the Baum-Coleman-Hawking factor [3], [6], [7]

P (Λ) ∼ exp(1/Λ),

so predicting Λ → 0. Wormholes have been studied mainly as instantons, namely solutions of
the classical Euclidean field equations. In general, Euclidean wormholes can represent quantum
tunneling between different topologies. These are saddle points in the path integral and form
the basis in a semiclassical treatment, if one makes the dilute wormhole approximation of
neglecting the interaction between the ends of different wormholes joining on the same large
region [8].

It is well-known that real wormhole like solutions occur only for certain special kinds of
matter that allow the Ricci tensor to have negative eigenvalues. These do not include pure
Einstein gravity, or minimally coupled scalar fields (unless they are pure imaginary). But they
include an antisymmetric tensor field whose field equations in four dimensions are equivalent to
those of a scalar field [2]. There are also Yang-Mills solutions, however, in general do not seem
to be local minima of the action [9]. Therefore, it is not clear that they really contribute to
the semiclassical approximation. On the other hand, there are Yang-Mills solutions which are
local minima of the action, but they exist only when the Yang-Mills field is not coupled to any
fields in the fundamental representation [10]. Some solutions for matter content corresponding
to N = 4 SU(N) super Yang-Mills theory have also been obtained [11]. Recently, traversable
wormholes coupled to nonlinear electrodynamics are also obtained [12].

The non existence of instantons, for general matter sources, not only makes it difficult to
believe that wormholes are the mechanism for black hole evaporation but also casts doubt
on whether wormholes are the reason why the cosmological constant is zero. Due to limited
known classical wormhole solutions, Hawking and page advocated a different approach in which
wormholes were regarded, not as solutions of the classical Euclidean field equations, but as
solutions of the quantum mechanical Wheeler-DeWitt equation [8]. These wave functions have
to obey certain boundary conditions in order that they represent wormholes. The boundary
conditions seem to be that the wave function is exponentially damped for large tree geometries,
and is regular in some suitable way when the tree-geometry collapses to zero.

Therefore, an open and interesting problem is whether Euclidean classical and quantum
wormholes can occur for fairly general matter sources. Classical and quantum wormholes with
perfect fluids and scalar fields have already been studied [13]. To the author’s knowledge, the
study of Λ-decaying cosmology in this framework has not received attention. In the present
work, we shall consider a Λ-decaying cosmology and study its classical and quantum wormhole
solutions.
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2 Classical wormholes

We consider a Friedmann-Robertson-Walker (FRW) universe

ds2 = −dt2 + a2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]

, (1)

where a(t) is the scale factor and k = 0, +1 and −1 accounts for flat, closed and open universes,
respectively. This metric evolves according to the Einstein equation 1

Rµν −
1

2
gµνR = Tµν , (2)

where we take the energy momentum tensor Tµν to be perfect fluid

Tµν = diag(−ρ, p, p, p). (3)

The time-time and space-space components of the Einstein equation (2) leads respectively to

ȧ2

a2
+

k

a2
=

ρ

3
, (4)

2
ä

a
+

ȧ2

a2
+

k

a2
= −p. (5)

where Eq.(4) is the Friedmann equation. Combining Eqs.(4) and (5) we obtain the acceleration
equation

ä

a
= −1

6
(ρ + 3p). (6)

There is also a conservation equation ∇µT
µν = 0 whose time component gives the fluid equation

ρ̇ + 3
ȧ

a
(ρ + p) = 0. (7)

By analytic continuation t → it, the Friedmann equation can be written in Euclidean form

ȧ2

a2
=

k

a2
− ρ

3
, (8)

whereas the Euclidean form of the fluid equation (7) has the same Lorentzian form.
In FRW models, wormholes are typically described by a constraint equation of the form

ȧ2

a2
=

1

a2
− const

an
, (9)

where the derivative is with respect to the Euclidean time. In order to have an asymptotically
Euclidean wormhole it is necessary that ȧ2 remains positive at large a and this requires n > 2.
This wormhole represents two separate asymptotically Euclidean regions joined together by a

1We have used the units where 8πG = c = 1.
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throat with the finite size a0 at which ȧ = 0. For example, n = 4 and n = 6 account for the
wormholes corresponding to the conformal scalar field and axion, respectively2

Carlini and Mijic have introduced some possible wormhole solutions by analytic contin-
uation of closed (k = 1) FRW universes [13]. In fact, for a perfect fluid equation of state
p = (γ − 1)ρ, recollapsing closed universes require that the strong energy condition be satis-
fied, namely γ > 2/3. The continuation of this theory to the Euclidean domain then gives rise
to wormhole solutions satisfying the strong energy condition.

Contrary to the model of Carlini and Mijic for closed FRW universes with the usual equation
of state and ordinary matter source, we assume a flat FRW universe with a perfect fluid source
combined of ordinary matter and a source evolving with the scale factor

ρ = ρm + ρv =
(

ρ0

a3γ
− Λ0

a2

)

. (11)

The first term is the ordinary matter density (with the constant ρ0 > 0) and the second term
is a density playing the role of a decaying cosmological term (with the constant Λ0 > 0). In
fact, there are strong observational motivation for considering models in which k = 0 and
Λ decreases as Λ ∼ R−m ( m is a parameter). For 0 ≤ m < 3 [14], the effect of decaying
cosmological term on the cosmic microwave background anisotropy is studied and the angular
power spectrum for different values of m and density parameter Ωm0 is computed. Models
with Ωm0 ≥ 0.2 and m ≥ 1.6 are shown to be in good agreement with data. For m = 2
[15], it is shown that in the early universe Λ could be several tens of orders bigger than its
present value, but not big enough disturbing the physics in the radiation-dominant epoch in
the standard cosmology. In the matter-dominant epoch such a varying Λ shifts the three
space curvature parameter k by a constant which changes the standard cosmology predictions
reconciling observations with the inflationary scenario. Such a vanishing cosmological term
also leads to present creation of matter with a rate comparable to that in the steady-state
cosmology [15].

Substitution for ρ and k in eq.(8) leads to

ȧ2

a2
=

1

3

(

Λ0

a2
− ρ0

a3γ

)

. (12)

By defining R =
√

3
Λ0

a we obtain

Ṙ2

R2
=

1

R2
− α0

R3γ
, (13)

2The typical solution of Eq.(9) is obtained, using the conformal time dt = adτ , as [16]

a
n/2−1 ∼ (Const)1/2 cosh

[

n − 2

2
τ

]

. (10)

For example, the conformal scalar field (n = 4) leads to the typical wormhole shape

a ∼ cosh(τ).
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with the constant
α0 =

ρ0

( 3
Λ0

)3γ/2
. (14)

This equation has the form of the constraint (9) describing an Euclidean wormhole with the
correspondence 3γ = n. Therefore, classical Euclidean wormholes are possible for the combined
source (11) with any γ > 2

3
.

Now, we have to determine the equation of state. To this end, we substitute for ρ from
Eq.(11) in the conservation equation (7) and obtain the following equation of state

p = pm + pv

= ρm(γ − 1) − 1

3
ρv, (15)

where the first term describes the standard equation of state for ordinary matter and the
second term accounts for equation of state for the Λ-decaying source. It is easy to show that
γ > 2

3
leads the strong energy condition to hold for the total pressure p and total density ρ.

3 Quantum Wormholes

The number of known classical wormholes is so limited. It casts doubt on whether wormholes
are important, only in the very restricted class of theories, in which the matter content al-
lows wormhole instantons? To resolve this problem, Hawking and Page advocated a different
approach and considered that solutions of the Wheeler-DeWitt equation could more gener-
ally represent the wormholes [8]. They realized that for the mini superspace models one may
consider metrics of the Euclidean Friedmann form

ds2 = N2(t)dt2 + a2(t)dΩ2
3. (16)

If N is imaginary, this is the Lorentzian metric, and if N is real, it is the metric of an Euclidean
wormhole. However, solutions of the Wheeler-DeWitt equation are independent of the lapse
function N and t. So, they can be interpreted either as Friedmann universe, or as wormholes
according to the appropriate boundary conditions. The boundary conditions for wormholes
seems to be that the wave functions should decay exponentially for large scale factor a, so as
to represent Euclidean space, and that they be regular in some suitable way as a → 0, so that
no singularities are present.

The quantum mechanical version of Eq.(13) is given by [17]

(

R2 d2

dR2
+ qR

d

da
+ α0R

6−3γ − R4

)

Ψ(R) = 0, (17)

where q represents part of the factor ordering ambiguities. We set q = 0 and study the potential
to get some idea as to when a Euclidean domain occurs at large a by considering the sign of
the potential

U(R) = α0R
4−3γ − R2, (18)
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in the equation
[

d2

dR2
+ U(R)

]

Ψ(R) = 0. (19)

For positive potential U(R) > 0, oscillating solutions occur which represent Lotentzian metrics.
On the contrary, for negative potential U(R) < 0, wormhole solutions can occur which are
asymptotically Euclidean at large R. The potential is negative for γ > 2/3 ( in the case of
positive energy density ρ0 ) which is the same strong energy condition that is obtained by
Carlini and Mijic for the occurrence of classical wormhole solutions. Therefore, wormholes
obeying the Hawking-Page boundary condition at large R, occur when the strong energy
condition γ > 2/3 is valid for the source (11). In other words, perfect fluid sources violating the
strong energy condition are incompatible with wormholes obeying the Hawking-Page boundary
condition. The presence of any matter source with γ < 2/3 will eventually dominate for large
R and prevent the asymptotically Euclidean wormholes to occur.

Asymptotically Euclidean property of the wave function is not sufficient to make it a
wormhole. It also requires regularity for small R. In order to realize this, we can ignore R4

term in Eq.(17) as R → 0, when γ > 2/3. In this case, the Wheeler-DeWitt equation (17) (for
γ 6= 2) simplifies to a Bessel differential equation with solution

Ψ(R) ≃ R(1−q)/2

[

c1Jν

(

2
√

α0

3(2 − γ)
R3−3γ/2

)

+ c2Yν

(

2
√

α0

3(2 − γ)
R3−3γ/2

)]

, (20)

where use has been made of ν ≡ (1−q)/3(2−γ). The wormhole boundary condition at R → 0
is satisfied for the Bessel function of the J kind.

In the particular case γ = 2, the solution of Eq.(17) with q = 1 is a linear combination
of Bessel functions J±i

√
α0/2(ia2/2) which oscillates an infinite number of times at R → 0 and

therefore can not satisfy the required regularity condition for a quantum wormhole.
On the other hand, in the case of γ = 4/3 which represents radiation ( or equivalently, that

of a conformally coupled scalar field ) dominated FRW ansatz, Eq.(17) for q = 0 is written as
(

d2

dR2
+ α0 − R2

)

Ψ(R) = 0, (21)

which is in the form of a parabolic equation with solution in terms of confluent hypergeometric
functions [18]

Ψ(R) ≃ exp(−R2/2)[c3 1F1(
1

4
(1 − α0); 1/2; R2) + c4 1F1(

1

4
(3 − α0); 3/2; R2)]. (22)

For example, for c3 = 0 with α0 = (35, 55), and c4 = 0 with α0 = (25, 37), we obtain regular
oscillations at R → 0, and Euclidean regimes for large R, see Figs.1, 2, 3, 4.

Therefore, Hawking-Page boundary conditions are satisfied for some special values of α0

and so we have a spectrum of wormholes. Considering Eq.(14) it turns out that for a given
equation of state γ, the existence of quantum wormholes depends on the special values of ρo

and Λ0. In other words the spectrum of wormholes depends on the spectrum of ρo and Λ0.
We notice that there is no such constraint on the values of ρo and Λ0 for the occurrence of
classical wormholes.
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Conclusion

The classical and quantum Euclidean wormhole solutions have been studied for a flat Friedmann-
Robertson-Walker metric coupled with a perfect fluid combined of an ordinary matter source
and a source playing the role of a decaying cosmological term. Kim and Page had already
found that the quantum wormholes are incompatible with a cosmological constant. We have
shown here that classical and quantum Euclidean wormholes exist for the case of a perfect
fluid source including a decaying cosmological term.
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Figure captions

Figure 1. A quantum wormhole solution for the case γ = 4/3 with c3 = 0 and α0 = 35.

Figure 2. A quantum wormhole solution for the case γ = 4/3 with c3 = 0 and α0 = 55.

Figure 3. A quantum wormhole solution for the case γ = 4/3 with c4 = 0 and α0 = 25.

Figure 4. A quantum wormhole solution for the case γ = 4/3 with c4 = 0 and α0 = 37.
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