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Metabolites are closely related to human disease. The interaction between metabolites
and drugs has drawn increasing attention in the field of pharmacomicrobiomics.
However, only a small portion of the drug-metabolite interactions were experimentally
observed due to the fact that experimental validation is labor-intensive, costly, and time-
consuming. Although a few computational approaches have been proposed to predict
latent associations for various bipartite networks, such as miRNA-disease, drug-target
interaction networks, and so on, to our best knowledge the associations between
drugs and metabolites have not been reported on a large scale. In this study, we
propose a novel algorithm, namely inductive logistic matrix factorization (ILMF) to predict
the latent associations between drugs and metabolites. Specifically, the proposed
ILMF integrates drug–drug interaction, metabolite–metabolite interaction, and drug-
metabolite interaction into this framework, to model the probability that a drug would
interact with a metabolite. Moreover, we exploit inductive matrix completion to guide the
learning of projection matrices U and V that depend on the low-dimensional feature
representation matrices of drugs and metabolites: Fm and Fd. These two matrices
can be obtained by fusing multiple data sources. Thus, FdU and FmV can be viewed
as drug-specific and metabolite-specific latent representations, different from classical
LMF. Furthermore, we utilize the Vicus spectral matrix that reveals the refined local
geometrical structure inherent in the original data to encode the relationships between
drugs and metabolites. Extensive experiments are conducted on a manually curated
“DrugMetaboliteAtlas” dataset. The experimental results show that ILMF can achieve
competitive performance compared with other state-of-the-art approaches, which
demonstrates its effectiveness in predicting potential drug-metabolite associations.

Keywords: logistic matrix factorization, drug-metabolite association, Vicus matrix, human metabolites, graph
regularization
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INTRODUCTION

With the development of metabolomics technology, more
and more metabolites have been identified. This progress
provides unprecedented opportunities to obtain new insights
into the effects of drugs on metabolites. Recently, Liu et al.
(2020) integrated epidemiologic, pharmacologic, genetic, and
gut microbiome data to analyze the relationships between
drugs and metabolites, which provided a trail for targeted
experimental pharmaceutical research to improve drug safety
and efficacy. Exploring the potential drug-metabolite associations
is also a novel route towards pharmacomicrobiomics and
precision medicine. Doestzada et al. (2018) reviewed the complex
interactions between host, intestinal microorganisms and drugs,
and thought that pharmacomicrobiomics would provide an
important foundation for personalized medicine and precision
medicine. The earliest report about interactions between drugs
and metabolites can be dated back to the 1930s with the discovery
of sulphanilamide (Fuller, 1937). The activity of prontosil is
due to the transformation of microbial azoreductases and the
liberation of sulphanilamide. In addition, microbial metabolites
can also inactivate drugs, such as digoxin. A study on Eggerthella
lenta strains in 2013 (Haiser et al., 2013) found that these strains
carried a two-gene cardiac glycoside reductase (cgr) operon
that was transcriptionally activated by digoxin (Doestzada et al.,
2018), and thus resulted in the inactivation of the drug in
cardiovascular treatment.

Identifying drug-metabolite associations not only provides
deep insights into understanding complex interaction
mechanisms among them, but it can also benefit the screening
of chemical compounds for drug development and improve
microbe related therapy. The complex relationship between
drugs, metabolites, and microbes has attracted extensive
attention. However, conventional wet-lab research for verifying
drug-metabolite interactions is generally labor-intensive, costly,
and time-consuming. Computational approaches are a viable
alternative. Shang et al. (2014) found that metabolites in the same
pathway were usually associated with the similar or same disease.
Based on this fact, they proposed a metabolite pathway-based
random walk algorithm to prioritize the candidate disease
metabolites (Shang et al., 2014). Yao et al. (2015) presented an
approach based on global distance similarity to predict and
prioritize disease related metabolites. Ma et al. (2020b) integrated
multiple diseases and metabolite similarity networks to predict
the potential associations between metabolites and diseases.
Long and Luo (2020) used multi-source biomedical data to
construct a three-level heterogeneous network and designed a
novel network embedding representation framework to identify
microbe-drug associations. Specifically, Long et al. (2020)
exploited the conditional random field, graph convolutional
network and a random walk with restart (RWR) to learn the
latent feature representations of drugs and microbes, identifying
some potential drug-microbe associations.

Although these studies have obtained some valuable results,
there are two main limitations to the existing drug-microbe or
metabolite-disease association mining approaches. Firstly, the
accuracy of these methods is still unsatisfactory due to a lack of

sufficient prior information for drugs, microbes, and diseases.
Secondly, the local geometrical structure of nodes is important
in the task of dimensionality deduction and data representation,
which decides the effectiveness and efficiency of algorithms to a
large extent. The algorithms mentioned above did not consider
the local spectral information that resides in the original data,
meaning their performances are not ideal.

In this study, we propose a novel computational approach,
named inductive logistic matrix factorization (ILMF), to
analyze latent drug-metabolite associations. ILMF integrates the
advantages of logistic matrix factorization (LMF; Johnson, 2014;
Liu et al., 2016) and inductive matrix completion (Natarajan
and Dhillon, 2014; Chen et al., 2018) to learn low-dimensional
embedding of drugs and metabolites, and predict the final
interaction probabilities based on the two low-dimensional
representation of drugs and metabolites. Specifically, ILMF first
learns the latent representation of drugs and metabolites via
clusDCA (Cho et al., 2015; Wang et al., 2015), which runs RWR
on each node in each interaction network (e.g., metabolite–
metabolite interaction network or similarity network) to
compute “the diffusion state” of each point, and then utilizes
a singular value decomposition (SVD)-based approach to
obtain the consensus low-dimensional matrix representation for
metabolites and drugs Zm and Zd, respectively. Secondly, based
on Zm and Zd, ILMF exploits LMF to learn two projection
matrices U and V, respectively, so that ZmV and ZdU have
the same semantic space. Finally, a logistic function is used
to predict the probability that a drug would interact with a
metabolite in the same way that LMF does. Nevertheless, in
contrast to LMF, ILMF captures the topological properties of
nodes (i.e., drugs or metabolites) and takes advantage of the idea
of inductive matrix completion (Luo et al., 2017) to generate
the optimal projection of drugs and metabolites. In addition,
ILMF also exploits the local spectral Vicus matrices (Wang B.
et al., 2017) of drugs and metabolites to reveal the refined local
geometrical structure inherent in drug–drug interaction network
and metabolite–metabolite interaction network. An illustrative
example of this pipeline is given in Figure 1, followed by a more
detailed description of ILMF in section “Materials and Methods.”

The contributions of this article are summarized as follows:

1. We propose a novel LMF-based framework, named ILMF,
to predict drug-metabolite associations by integrating
multiple biological networks. To the best of our knowledge,
this is the first work to predict the latent drug-
metabolite associations.

2. ILMF combines the advantages of inductive matrix
completion and the local spectral Vicus matrix of each
interaction network into this framework, and captures
the optimal low-dimensional representation of drugs
and metabolites.

3. We have manually curated a drug-metabolite association
dataset (“DrugMetaboliteAtlas”) by retrieving relevant
literature. This benchmark dataset can be used to
evaluate the performance of various association prediction
algorithms, which facilitates future research in drug-
metabolite association prediction tasks.
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The comprehensive experiments show that the proposed
ILMF algorithm outperforms several state-of-the-art methods
on the curated “DrugMetaboliteAtlas” dataset. In addition, the
prediction ability of ILMF has also been confirmed by retrieving
the latest published literature or information from databases.

MATERIALS AND METHODS

Materials
The “DrugMetaboliteAtlas” dataset was downloaded from the
BBRMI-NL website1 (Liu et al., 2020). It contains 1071
interactions from 87 commonly prescribed drugs and 150
clinically relevant metabolites. After removing drugs lacking
significantly relevant metabolite associations, 42 drugs were
reserved. In addition, we also manually curated the correlations
between drug categories and the correlations between metabolites
in the Rotterdam study (Liu et al., 2020).

Metabolite-microbe associations and metabolite-pathway
associations were also downloaded from literature (Kurilshikov
et al., 2019). The metabolite similarities from each type of
association were computed based on the Gaussian interaction
profile kernel (He et al., 2018; Ma et al., 2020b). After that,
clusDCA (Wang et al., 2015) was used to fuse multiple
drug–drug interaction networks and multiple metabolite–
metabolite interaction networks. Simultaneously, the optimal
low-dimensional matrix representations of metabolites and drugs
Fm, Fd can also be obtained from this fusing process. Then,
the local Vicus spectral matrices of metabolites and drugs V irm,
V ird were computed based on the optimal low-dimensional
matrix representations of metabolites and drugs Fm and Fd,
respectively. Finally, the low-dimensional feature matrices of
drugs and metabolites Fm and Fd, the local spectral matrices Virm

and Vird were used as input of the proposed ILMF algorithm.

Problem Formalization
In this article, the set of drugs is denoted by D = {di}

n
i=1, and the

set of metabolites is denoted by M = {mj}
m
j=1, where, n and m are

the number of drugs and metabolites, respectively. The known
drug-metabolite interactions are represented as a n×m binary
matrix Y ∈ Rn×m, where yij = 1 if a drug di has been observed to
interact with a metabolite mj; otherwise yij = 0.

This study aimed to solve the problem of predicting the
interaction probability of a drug-metabolite interaction pair, and
subsequently rank the candidate drug-metabolite pairs based on
these probabilities in descending order. Thus, the top-ranked
pairs can be viewed as the most relevant interactions.

Metabolite–Metabolite Similarity
There are four metabolite related data sources: metabolite–
metabolite correlation matrix Corm, metabolite-microbial species
association matrix MM, metabolite-pathway association matrix
MP, and drug-metabolite interaction matrix Y. Corm is obtained
from literature (Liu et al., 2020); MM and MP are collected from
literature (Kurilshikov et al., 2019).

1http://bbmri.researchlumc.nl/atlas/

For drug-metabolite association matrix Y, we use the Gaussian
interaction profile kernel (He et al., 2018) to compute the
similarity between any two metabolites. Let the j-th column y.j
of Y denote the interaction profile between metabolite mj and all
drugs. For any two metabolites mi and mj, the similarity between
them can be measured as:

Kmd = exp
(
−γm||y·i − y·j||2

)
. (1)

Where γm is a bandwidth parameter that needs to be normalized
based on a new bandwidth parameter γ′m :

γm = γ
′
m

/(
1
m

m∑
l=1

|y·l|2
)
. (2)

Here, m is the number of metabolites. | · | denotes Frobenius
norm. γ′m is set to be 1 according to the previous study (Wang
F. et al., 2017; He et al., 2018).

The Gaussian profile kernel similarity matrices Kmm and Kmp
can also be computed based on metabolite-microbial species
association matrix MM and metabolite-pathway association
matrix MP, respectively.

Drug–Drug Similarity
There are two drug related data sources: drug–drug correlation
matrix Cord and drug-metabolite interaction matrix Y.
Cord, which were obtained from literature (Liu et al.,
2020). Analogously, the Gaussian interaction profile kernel
similarity matrix Kd between any two drugs can be computed
in the same way.

After obtaining four metabolite–metabolite similarity
matrices and two drug–drug similarity matrices derived
from multiple data sources, we used clusDCA (Cho et al.,
2015; Wang et al., 2015) to fuse these similarity matrices
and finally acquire the optimal low-dimensional matrix
representations of metabolite and drug features Fm and
Fd, respectively.

Inductive Logistic Matrix Factorization
Logistic matrix factorization has been demonstrated to be
effective in the prediction of drug-target interactions (Liu
et al., 2016), metabolite-disease (Ma et al., 2020a), and
personalized recommendations (Hu et al., 2008; Johnson, 2014;
Liu et al., 2014). The main advantage of LMF is that it
assigns higher levels of importance to the observed interaction
pairs than unknown ones. In this study, we apply LMF for
drug-metabolite interaction prediction. LMF maps drugs and
metabolites into a shared low-dimensionality latent semantic
space r � min (m, n). The interaction probability pij of a
drug-metabolite pair

(
di,mj

)
can be modeled as follows:

pij =
exp

(
wih′j

)
1+ exp

(
wih′j

) . (3)

Where wi ∈ R1×r , hj ∈ R1×r are latent representations
of drug di and metabolite mj, respectively. For
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FIGURE 1 | Illustrative example of ILMF for predicting potential drug-metabolite associations. (A) Metabolite–metabolite, metabolite-drug, metabolite-microbe,
metabolite-pathway association matrices, or correlation matrices; (B) Drug-metabolite, drug–drug association, or correlation matrices; (C,D) Based on Gaussian
interaction profile kernel function, metabolite–metabolite similarity matrices, and drug–drug similarity matrices obtained from four metabolite association data and two
drug association data, respectively; (E) The fused metabolite–metabolite similarity matrix by integrating four metabolite-related data with clusDCA; (F) The fused
drug–drug similarity matrix by integrating two drug association data with clusDCA. Then, the local spectral matrix of metabolites (G) And the local spectral matrix of
drugs (H) Can be obtained based on these two fused similarity matrices with Vicus; (I) The drug-metabolite association matrix; (J) The proposed ILMF model. Finally,
ILMF outputs the predicted drug-metabolite interaction probability scores (K). Here, a solid line indicates known associations, a dotted line indicates predicted
drug-metabolite associations obtained from ILMF.

convenience, we further represent the latent vectors of
all drugs and metabolites as matrix form W ∈ Rn×r and
H ∈ Rm×r , respectively.

The observed drug-metabolite interaction pairs are generally
more reliable and important than the unknown interaction
pairs. A higher level of importance was thus assigned to known
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TABLE 1 | The pseudocode of the ILMF algorithm.

Input: The known association matrix Y ; parameters λ, φ, c, K

Output: The projection matrices, U and V

1. Compute metabolite–metabolite similarity matrices Kmd , Kmm, Kmp according
to Eqs 1 and 2, respectively; similarly, compute drug–drug similarity matrices
Kd ;

2. Compute the low-dimensional feature representational matrices of
metabolites and drugs, Fm and Fd using clusDCA (Cho et al., 2015); computing
Vicus spectral matrices of metabolites and drugs, Virm and Vird ;

3. Initialize U and V randomly;

4. For t = 1,. . .. . ., max_iter do

5. Update U and V according to AdaGrad algorithm

6. Until convergence conditions are satisfied

7. End for

8. Return U, V

TABLE 2 | The best performance of all methods on the
“DrugMetaboliteAtlas” dataset.

AUC AUPR F1

DTInet 0.7430 0.2176 0.2951

IMCMDA 0.7913 0.3655 0.4345

GRNMF 0.9272 0.5847 0.5767

ILMF− 0.9223 0.5429 0.5662

ILMF 0.9402 0.6303 0.6052

To ensure a fair comparison, the optimal parameters are selected from the ranges
provided by these corresponding studies. For ILMF− and ILMF, the above results
are obtained when c = 2, φ =1, λ = 8, and r=12.

interaction pairs than unknown ones. According to a previous
study, we set the importance level to be c (c ≥ 1). Eq. 3 can be
written as follows:

p (Y |U,V ) =
∏

1≤i≤n, 1≤j≤m, yij=1

[
p

yij
ij
(
1− pij

)(1−yij)
]c

×

∏
1≤i≤n, 1≤j≤m, yij=0

[
p

yij
ij
(
1− pij

)(1−yij)
]
. (4)

Here, c is the important level parameter used to control the
weight assigned to the observed drug-metabolite pairs. In the next
experiments, we empirically set it to two.

Inspired by the ideas of inductive matrix completion (Jain
and Dhillon, 2013; Zeng et al., 2020) and generalized matrix
factorization (GMF) (Zhang et al., 2020), we designed a
novel ILMF framework, ILMF, to predict the latent interaction
probabilities between drugs and metabolites. In particular, we
used Fd

∈ Rn×k1 and Fm
∈ Rm×k2 derived from clusDCA (see

section “Drug–Drug Similarity”) to guide the learning process of
projection matrices U ∈ Rk1×r and V ∈ Rk2×r , so that the latent
representations of metabolites and drugs W = FdU ∈ Rn×r and
H = FmV ∈ Rm×r can carry compatible and complementary
information from multiple data sources. Thus, in the ILMF
model, Eq. 3 can be rewritten as follows:

pij =
exp

(
Fd

i.UV ′Fm
.j

)
1+ exp

(
Fd

i.UV ′Fm
.j

) . (5)

Where Fd
i. denotes the i-th row of Fd, Fm

.j denotes the j-th column
of Fm. By substituting Eq. 5 into Eq. 4, we estimate the projection
matrices U and V by maximizing the above likelihood function
(Eq. 3), which is equivalent to minimizing the negative logarithm
of Eq. 3. Thus, the objective function of the proposed ILMF
framework can be defined as:

minU,V

n∑
i=1

m∑
m=1

(
1+ cyijyij − yij

)
log

[
1+ exp

(
Fd

i.UV ′Fm
.j

)]
−cyij

(
Fd

i.UV ′Fm
.j

)
. (6)

To avoid overfitting, the L2 regularization is generally imposed
on U and V. Thus, Eq. 6 becomes:

minU,V

n∑
i=1

m∑
m=1

{(
1+ cyij − yij

)
log

[
1+ exp

(
Fd

i.UV ′Fm
.j

)]
−cyij

(
Fd

i.UV ′Fm
.j

)}
+

λ

2
(
|U|2F + |V|

2
F
)
, (7)

Where λ is a regularization parameter used to tradeoff the
balance between reconstruction errors and smooth solutions.

Note that, for new drugs (metabolites) that do not have
any known connections with metabolites (drugs), ILMF can
still predict their potential associations, once we get their
similarity network from other data sources. This is different
from GMF (Zhang et al., 2020). In GMF, the neighborhood
information of nodes was used to generate two feature
matrices, and then they were adaptively updated at each
iteration. In contrast, ILMF fuses multiple similarity networks
to produce the low-dimensional matrix representations of
metabolites and drugs.

Vicus Matrix
As demonstrated in literature (Wang B. et al., 2017), Vicus
has many of the same properties as Laplacian. However,
compared with Laplacian, Vicus can capture the local geometrical
structure that resides within the original data well. The
reason for using Vicus instead of Laplacian is that the local
connection information from neighboring nodes makes the
learned graph more robust to noise and helps to alleviate the
influence of outliers.

Let {x1, x2, . . . , xn} be the set of data points. Corresponding
to xi, vi denotes the i-th vertex in a weighted network P, and
N (i) represents xi ’s neighborhood, not including xi. Here, the
neighborhood size of all nodes is consistent (|Ni|=k, i=1,2,...,n).

Based on the assumption that the cluster label of the i-th data
point can be inferred from its nearest neighborhood N (i), we
first extract a subnetwork Pi = (ViEi) such that Vi=N (i)

⋃
xi. Ei

represents the edges connecting all points in Vi. Using the label
diffusion algorithm (Zhou et al., 2004), a virtual label indicator
vector ck

Vi
can be reconstructed as:

ck
vi
= (1− α) (I − αSi)

−1qk
vi
, 1 ≤ k ≤ C. (8)
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FIGURE 2 | Performance of ILMF on “DrugMetaboliteAtlas” dataset with different values of λ and φ. (A) AUC versus λ and φ; (B) AUPR versus λ and φ.

FIGURE 3 | Performance of ILMF on “DrugMetaboliteAtlas” dataset with different values of c and r. (A) AUC versus c and r; (B) AUPR versus c and r.

Where α ∈ (0, 1) is a constant, C is the number of clusters, qk
Vi

is the scaled cluster indicator of Pi. Si denotes the normalized
transition matrix, i.e., Si (u, t) = Pi (u, t)

/∑K+1
l=1 Pi

(
u, l
)
. cK

Vi
is

a vector including K + 1 elements. Here, q̄k
i=ck

Vi
[K + 1] is the

estimate of how likely it is that node i belongs to the k-th cluster.
The goal is to maximize the concordance between q̄k

i and qk
i .

Let βi ∈ RK+1 be the i-th row of the matrix (1− α) (I − αSi)
−1,

representing label propagation at its terminal state. We set
q̄k

i = βiqk
Vi

. Thus, q̄k
i can be approximated to:

q̄k
i ≈

βi [1 : K] qk
N(i)

1− βi [K + 1]
. (9)

Where βi [1 : K] denotes the first K elements of βi and
βi [K + 1]denotes the (K + 1)-th element in βi.

Next, we used matrix B to represent the linear relationship:
q̄k
≈ Bqk, k = 1, 2, . . . ,C:

Bij =

{
βi[j]

1−βi[K+1] if xj ∈ N (i) and xj is the j−th element in N (i) ;
0 otherwise

(10)

To minimize the difference between q̄k and qk, an objective
function can be defined as follows:

n∑
i=1

C∑
k=1

(
q̄k

i − qk
i

)2
=

C∑
k=1

|q̄k
− qk
|
2
≈

C∑
k=1

|qk
− Bqk

|
2

= Tr
(

QT(I − B)T (I − B)Q
)
. (11)

Here, Tr (•) denotes the trace of a matrix. Setting
Vir = (I − B)T (I − B), we thus obtain the Vicus matrix.
In this study, we propose to exploit the Vicus matrix
as a graph regularization term to enhance the prediction
performance of ILMF.
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Note that each item in the Vicus matrix obtained from
Eq. 11 represents the probability of vertex i having the same
label as vertex j. Encoding the local neighborhood of each
vertex in this way does not only preserve the geometric
attributes of the Laplacian matrix but also improves the
quality of clustering (Nelson et al., 2019). Wang B. et al.
(2017) indicated the Vicus-based spectral clustering approach
outperformed Laplacian-based methods on many biological
tasks, such as single-cell RNA data clustering, recognition of
rare cell populations, the ranking of genes related to cancer
subtypes and so on. Therefore, in this manuscript, we use Vicus
spectral matrix to model fine-grained connections between drugs
and metabolites.

Vicus Regularization Based Inductive
Logistic Matrix Factorization
The final drug-metabolite association prediction model
can be constructed by considering the existing drug-
metabolite links and the local geometrical structure of
drugs and metabolites. By introducing Vicus regularization
into Eq. 7, the proposed ILMF method is formulated as
follows:

minU,V

n∑
i=1

m∑
m=1

{(
1+ cyij − yij

)
log

[
1+ exp

(
Fd

i.UV ′Fm
.j

)]
−cyij

(
Fd

i.UV ′Fm
.j

)}
+

λ

2
(
|U|2F + |V|

2
F
)
+

φ

2

[
tr
((

FmU
)′ Virm (FmU

))
+tr

((
FdV

)′
Vird

(
FdV

))]
. (12)

Where φ is a graph regularization parameter. Virm is the
Vicus matrix of metabolites, and Vird is the Vicus matrix
of drugs. Note that, in this study, we exploit the cosine
similarity of the low-dimensional feature matrix of metabolites
Fm (or drugsFd ) to compute the Vicus matrix Virm or
Vird, respectively.

The optimization problem in Eq. 12 can be solved by
an alternating gradient ascent scheme. In particular, we
adopt the AdaGrad algorithm (Duchi et al., 2011) to
update U and V. Further details can be found in the
study by Liu et al. (2016). Once the projection matrices
U and V have been obtained, the association probability
of any drug-metabolite pair can be predicted by Eq. 5.
However, for many unobserved interaction pairs, the
learned latent representation of drugs and metabolites may
not be accurate since they are only based on unknown
drug-metabolite pairs.

To address this problem, we adopted the practices outlined
in other literature (Ma et al., 2020a). Let N+d ={mi

∣∣∣∑j yij > 0 }

and N+m={mj
∣∣∑

i yij > 0 } denote the sets of observed drugs and
metabolites, respectively. N+d

(
di
)

denotes the set of K nearest
neighbors of di in N+d . Similarly, N+m

(
mj
)

denotes the set of K
nearest neighbors of mj in N+m . We can replace the latent vector

representation of a drug or metabolite with the representations of
its neighbors. Then, for each drug di, the revised w̄i is defined as:

w̄i =

{
wi, if di ∈ N+d

1
Qd

i

∑K
l=1 µ

d
l wl, if di /∈ N+d

. (13)

Where Qd
i =

∑K
l=1 αl−1Sd (di, dldl

)
is a normalized term,

Sd
= cosine

(
Fd, Fd

)
denotes the consensus drug–drug similarity

matrix derived from multiple similarity networks. dl indicates the
l-th neighbor in N+d

(
di
)

sorted in descending order according
to the similarity with di. α ∈ [0, 1] is a decay factor, and
µd

l = αl−1Sd(di, dl) is a weight factor. Similarly, we can also
obtain the optimal latent representation m̄j for each metabolite
mj :

h̄j =

{
hj, if mj ∈ N+m

1
Qm

i

∑K
l=1 µm

l hl, if mj /∈ N+m
. (14)

Where Qm
j =

∑K
l=1 αl−1Sm (mj,ml

)
, Sm

= cosine (Fm, Fm)

indicates the consensus metabolite–metabolite similarity matrix.
ml is the l-th neighbor in N+m

(
mj
)
, which is sorted in descending

order according to similarity with mj. µm
l = αl−1Sm (mj,ml

)
is

a weight factor.
Finally, the interaction probability of a drug-metabolite pair is

redefined as follows:

p̄ij =
exp

(
w̄ih̄′j

)
1+ exp

(
w̄ih̄′j

) . (15)

To demonstrate the flowchart of ILMF, the pseudocode of ILMF
is given in Table 1.

RESULTS AND DISCUSSION

Experimental Settings
Following the previous studies (Zheng et al., 2013; Ding et al.,
2014; Liu et al., 2016; Zhang et al., 2018a,b, 2019, 2020; Ma
et al., 2020a), the performance of various association prediction
methods can be evaluated by performing fivefold cross-validation
(CV). For each method, we perform fivefold CV five times. Then,
we calculate the area under the receiver operating characteristic
curve (AUC), the area under the precision-recall curve (AUPR)
scores in each repetition of CV, and the final AUC and
AUPR scores are obtained by calculating the average over the
five repetitions.

The object of this study is to predict the latent drug-metabolite
associations. For the known drug-metabolite interaction matrix
Y ∈ Rn×m with n drugs and m metabolites, we conduct CV
on randomly selected drug-metabolite pairs. Specifically, we
randomly divide the observed and unobserved interaction pairs
into five equal parts. Then, in each round, one is used as test data,
the remaining entries in Y are used for training. Thus, each of the
five test datasets (or training data) includes the same number of
observed and unobserved interaction pairs.
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TABLE 3 | Top 20 novel associations predicted by ILMF on the “DrugMetaboliteAtlas” dataset.

Rank Drug category Metabolite Score Evidence (ATC/drug name)

1 C_HMG CoA reductase inhibitors-hydrophilic statin TotPG 0.9915 C10AA03 (pravastatin)

2 M_Preparations inhibiting uric acid production L.VLDL.FC 0.9891 M04AA01 (allopurinol)

3 M_Preparations inhibiting uric acid production L.VLDL.P 0.9881 Unconfirmed

4 N_Benzodiazepine derivatives UnsatDeg 0.9755 N03AE01 (clonazepam)

5 C_Angiotensin II antagonists-plain XS.VLDL.FC 0.9687 Unconfirmed

6 C_Low-ceiling diuretics XL.HDL.FC 0.9625 C03AA04 (chlorothiazide)

7 C_Low-ceiling diuretics L.HDL.P 0.9588 C03AA03 (hydrochlorothiazide)

8 C_Low-ceiling diuretics L.HDL.PL 0.9553 Unconfirmed

9 A_Insulins and analogs-fast-acting FALen 0.9525 A10AB019 (insulin)

10 C_Low-ceiling diuretics HDL.C 0.9493 Unconfirmed

11 B_Carbasalate calcium ApoB 0.9419 Unconfirmed

12 C_Low-ceiling diuretics HDL2.C 0.9346 Unconfirmed

13 C_Low-ceiling diuretics UnsatDeg 0.9334 C03AA03 (hydrochlorothiazide)

14 C_Digoxin S.VLDL.PL 0.9247 Unconfirmed

15 C_ACE inhibitors-plain M.HDL.C 0.9240 C09AA01 (captopril)

16 C_HMG CoA reductase inhibitors-hydrophilic statin S.HDL.CE 0.9219 C10AA03 (pravastatin)

17 C_Angiotensin II antagonists-plain L.HDL.TG 0.9212 Unconfirmed

18 C_Fibrates VLDL.D 0.9192 Unconfirmed

19 C_Angiotensin II antagonists-plain PUFA 0.9188 C09CA01-08

20 M_Preparations inhibiting uric acid production XL.VLDL.PL 0.9158 Unconfirmed

TotPG, total phosphoglycerides; L.VLDL.P, concentration of large VLDL particles; L.VLDL.FC, free cholesterol in very large VLDL; UnsatDeg, estimated degree of
unsaturation; XS.VLDL.FC, free cholesterol in very small VLDL; XL.HDL.FC, free cholesterol in very large HDL; L.HDL.P, concentration of large HDL particles; L.HDL.PL,
phospholipids in large HDL; FALen, estimated description of fatty acid chain length- not actual carbon number; HDL.C, total cholesterol in HDL; ApoB, apolipoprotein
B; HDL2.C, total cholesterol in HDL2; S.VLDL.PL, phospholipids in small VLDL; M.HDL.C, total cholesterol in medium HDL; S.HDL.CE, cholesterol esters in small HDL;
L.HDL.TG, triglycerides in large HDL; VLDL.D, mean diameter for VLDL particles; PUFA, polyunsaturated fatty acids; XL.VLDL.PL, phospholipids in very large VLDL; VLDL,
very-low-density lipoprotein; HDL, high-density lipoprotein.

FIGURE 4 | Global view of the predicted drug-metabolite associations. Hierarchical clustering of the ILMF scores between 42 drugs and 150 metabolites. The color
of each cell represents the ILMF score of a drug (row) and a metabolite (column), where red/blue indicates high/low ILMF scores.

Note that we do not consider the other two scenarios for
CV experiments: random rows or columns selected for testing.
It is mainly because the drug-metabolite association matrix is

commonly sparse, and the drug–drug or metabolite–metabolite
similarity information from external sources cannot provide
enough aid for prediction.
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Evaluation Metrics and Competing
Approaches
In this study, the AUC, AUPR, and F1 value are used as
the evaluation metrics. These metrics have been widely used
in various association prediction tasks. To demonstrate the
effectiveness and efficiency of our proposed ILMF algorithm
in predicting drug-metabolite interaction, we compare the
proposed ILMF method with the following several state-of-the-
art approaches, namely, DTInet (Luo et al., 2017), IMCMDA
(Chen et al., 2018) and GRNMF (Xiao et al., 2018). These
approaches were originally designed for DTI prediction or
miRNA-disease association prediction. Furthermore, we can
obtain a variant of ILMF, which learns U and V with the
consensus similarity matrices of drugs and metabolites instead
of their Vicus matrices. Here, we denote this variant as ILMF−,
which has a similar objective function to MNLMF (Ma et al.,
2020a) and NRLMF (Liu et al., 2016).

For all the compared methods above, their performance is
reported with best-tuned parameters.

Experimental Results
In this subsection, we conduct extensive experiments on the
“DrugMetaboliteAtlas” dataset. Table 2 shows the performance
of various algorithms in terms of AUC, AUPR, and F1. In Table 2,
the highest score in each column is shown in bold typeface.

As shown in Table 2, ILMF achieves the best performance
in terms of AUC, AUPR, and F1 on the “DrugMetaboliteAtlas”
dataset. Specifically, compared with the second-best GRNMF
algorithm, the performance of ILMF increases by 1.40, 7.80, and
4.94% in terms of AUC, AUPR, and F1, respectively. Additionally,
the prediction performance of DTInet and IMCMDA is not
satisfactory. We can observe from Table 2 that ILMF outperforms
IMCMDA 18.82, 72.45, and 39.29% in AUC, AUPR, and F1,
respectively. One possible reason is that IMCMDA does not
take advantage of the local geometrical structure that resided
within the original data. For GRNMF, it does not consider the
important level parameter c, for simplicity, it views the known
drug-metabolite pairs and the unobserved drug-metabolite pairs
as equally important in predicting the latent associations between
drugs and metabolites.

By comparing ILMF and ILMF−, we can also further verify
the benefits of using the Vicus matrices of drugs and metabolites,
indicating that exploiting the local structure information of
drugs and metabolites could improve the performance for drug-
metabolite association prediction.

Parameter Analysis
There are several parameters in ILMF that need to be tuned:
the important level parameter c, the dimensionality k1, k2
and r of projection matrices W and H, the regularization
parameters λ and φ. For simplicity, we set k1 = 12 and k2 = 45
empirically. We adopted a grid search strategy to select the
optimal combination from fixed ranges of λ and φ. In this study,
we let λ and φ vary in the range {2−3, 2−2, 2−1, 20, 21, 22, 23

},
r varies in the range {5, 6, 7, 8, 9, 10, 11, 12} and c varies in
the range {2, 3, 4, 5, 6, 7, 8}. We then conducted fivefold CV to

evaluate the performance of ILMF under the combination of
different parameters.

To demonstrate how λ and φ affect the performance of the
proposed ILMF, we fix other parameters and change the values of
λ and φ, respectively. The AUC and AUPR scores are shown in
Figures 2A,B with respect to different combinations of λ and φ .

λ and φ are the parameters controlling the influence of feature
regularization and graph regularization. As Figure 2 shows,
when we fix the values of λ and increase the values of φ, the
AUC scores increase initially and decrease after achieving the
highest performance. These results demonstrate the advantages
of introducing two kinds of regularization terms.

In this study, we also conducted extensive experiments to
demonstrate how c and r affect the performance of ILMF. We
changed the values of c and r in the corresponding ranges with
other parameters fixed. The AUC and AUPR scores are shown
in Figures 3A,B with respect to different combinations of c and
r. We can observe from Figure 3 that for a fixed value of c, the
AUC scores increase as the values of r increase. However, when
we fix the values of r and increase the values of c, the AUC scores
decrease. Similar properties can be seen in terms of AUPR. This
illustrates the importance and necessity of introducing levels of
importance, which are assigned to the observed drug-metabolite
interaction pairs.

PREDICTING NOVEL
DRUG-METABOLITE ASSOCIATIONS

In this section, we evaluate the prediction ability of ILMF
in identifying novel drug-metabolite associations. In our
experiments, the entire dataset is used to train the ILMF model,
and the optimal parameters are used to make a prediction. The
unknown drug-metabolite interaction pairs are ranked based on
the predicted association scores.

Table 3 shows the top 20 novel associations predicted by ILMF
on the “DrugMetaboliteAtlas” dataset. In this table, the fourth
column shows the predicted interaction probabilities of novel
drug-metabolite pairs. For each pair, we retrieval the possible
interaction from HMDB, DrugBank and other databases that
may contain it, and list the corresponding ATC/drug names in
the last column of Table 3. Since only a few databases include
drug-metabolite association information, the fraction of new
drug-metabolite interactions correctly predicted by ILMF may
increase in the future. These promising results, which indicate
that ILMF can successfully identify many novel associations,
demonstrates that it is effective in predicting latent drug-
metabolite associations from a sparse binary matrix.

Note that the proposed ILMF is also effective when a new drug
(or metabolite) without any known related metabolites (or drugs)
is given. Once we have obtained the low-dimensional matrix
representation Fd

new(i) of a new drug or Fd
new(j) of a metabolite,

the interaction scores with known drugs or metabolites can be
calculated by Eq. 15.

We further apply ILMF to detect the relationships between
drugs and metabolites from a global view. ILMF is used
to infer the metabolic potential of 42 drugs and chart the
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FIGURE 5 | The sub-network consists of three drugs and six metabolites.

FIGURE 6 | The sub-network consists of two drugs and seven metabolites.
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metabolic landscape of common drugs. First, we obtain a score
matrix by applying ILMF on the whole “DrugMetaboliteAtlas”
dataset. Then, hierarchical clustering is performed to explore
the unknown relationships between drugs and metabolites
(Figure 4). The scores indicate the interaction relationships
between drugs and metabolites based on metabolic mechanisms.
Therefore, the drugs and metabolites that are grouped may share
metabolic overlaps in terms of pathways or microbial metabolites
association profiles.

In Figure 4 the black circled region shows a module
that consists of three categories of drugs (Antiarrhythmics-
class III, ACE inhibitors-plain, and High-ceiling diuretics) and
six kinds of metabolites (Total cholesterol in HDL2, Total
cholesterol in HDL, Free cholesterol in medium HDL, Total
cholesterol in medium HDL, Total lipids in medium HDL,
and Apolipoprotein A-I). These drugs and metabolites, which
have no associations in the original drug-metabolite association
matrix are identified by the proposed ILMF. The relationships
between these drugs and metabolites have been reported in
some literature. Figure 5 shows the connectivity of this module
by extracting the corresponding rows and columns from the
predicted drug-metabolite scoring matrix. The green circle
denotes the three drugs mentioned above. The pink diamond
denotes six metabolites. Solid lines indicate the true associations
between drugs and metabolites. Dot lines indicate the predicted
associations by ILMF. The values on the lines are the predicted
scores. The bigger the score, the more trustworthy the predicted
drug-metabolite interaction pair. This setting is also applied to
Figure 6.

As shown in Figure 5, Total cholesterol in medium
HDL is highly related to Antiarrhythmics-class III and
ACE inhibitors-plain and the predicted interaction scores
between them are 0.90 and 0.92, respectively. This is
consistent with the fact that high Total cholesterol level
usually leads to other complications, including diabetes,
hyperlipidemia, hypertension, hypothyroidism, choledochus
obstruction, coronary heart disease, atherosclerosis, and
so on (Nelson, 2013). Miyazaki et al. (1999) also reported
that ACE activity was significantly increased in the aorta of
cholesterol-fed monkeys.

Another example is the purple circled region, which contains
two kinds of drugs (Antithrombotic agents-Acetylsalicylic
acid: B01AC06 and Benzothiazepine derivatives: C08DB01)
and seven metabolites (Sphingomyelins, Serum total
cholesterol, Total phosphoglycerides, Esterified cholesterol,
Free cholesterol, 18:2-linoleic acid, and Phospholipids
in very small VLDL). The drugs and metabolites in this
module are also clinically relevant. Figure 6 describes the
heterogeneous interaction network of this module. As Figure 6
indicates, Acetylsalicylic acid is related to Sphingomyelins
(interaction probability is 0.7531). This finding is also
consistent with another previous report by Suwalsky et al.
(2013).

There have also been other biologically meaningful modules
detected by ILMF. In short, the two examples mentioned above
show the potential of the proposed ILMF algorithm in identifying
the unknown associations between drugs and metabolites, which
further demonstrates its effectiveness and efficiency.

CONCLUSION

In this article, we propose a novel drug-metabolite association
prediction method, named ILMF. ILMF could not only combine
multiple-source drug–drug interaction, metabolite–metabolite
interaction, and drug-metabolite association information into
this framework but also take full advantage of the local
geometrical structure inherent in the original data to improve
prediction performance. In addition, we also exploited inductive
matrix completion to guide the learning of projection matrices
U, V based on the low-dimensional feature matrix of drugs
(or metabolites) obtained from external data sources. The
experimental results for the “DrugMetaboliteAtlas” dataset
demonstrate the effectiveness of the proposed ILMF in predicting
potential drug-metabolite associations. Moreover, in the last
section of this study, we examine case studies on predicting novel
drug-metabolite associations, the results of which may provide
some valuable clues to biologists or clinicians.

Despite these promising findings, there are still some
limitations to this proposed ILMF model. While fusing
multiple types of biological data, the chemical structure
information of drugs or metabolites is missing due to
the fact that the initial “DrugMetaboliteAtlas” dataset only
contains vague categories, particularly for metabolites. The low-
dimension feature representation learning algorithm (clusDCA)
is replaceable. More effective graph representation learning
frameworks, such as graph convolution network (GCN), are
expected to be combined with the ILMF framework to
more accurately predict drug-metabolite associations. Lastly,
the predicted drug-metabolite interactions need to be further
validated in practice.

In the future, we will focus on developing new methods to
explore the complex relationships between drugs and microbes,
including the influence of microbes on drug activity or
toxicity and so on.
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