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ABSTRACT The composition of the human gut microbiome is highly variable, and
this variation has been repeatedly tied to variation in human health. However, the
sources of microbial variation remain unclear, especially early in life. It is particularly
important to understand sources of early life variation in the microbiome because
the state of the microbiome in childhood can influence lifelong health. Here, we
compared the gut microbiomes of children adopted in infancy to those of geneti-
cally unrelated children in the same household and genetically related children
raised in other households. We observed that a shared home environment was the
strongest predictor of overall microbiome similarity. Among those microbial taxa
whose variation was significantly explained by our models, the abundance of a given
taxon was more frequently explained by host genetic similarity (relatedness), while
the presence of a given taxon was more dependent upon a shared home environ-
ment. This suggests that although the home environment may act as a species
source pool for the gut microbiome in childhood, host genetic factors likely drive
variation in microbial abundance once a species colonizes the gut.

IMPORTANCE Our results demonstrate that the early life home environment can sig-
nificantly alter the gut microbiome in childhood, potentially altering health out-
comes or risk for adverse health outcomes. A better understanding of the drivers of
gut microbiome variation during childhood could lead to more effective intervention
strategies for overall health starting in early life.
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The high levels of interindividual variation commonly observed in the human gut
microbiome (1, 2) potentially arise from host genetic and environmental (i.e., non-

host-genetic) factors, as well as their interaction. Potential environmental factors
include local conditions, such as variation in hygiene and diet across households. Many
epidemiological studies have attempted to identify the relative contributions of host
genetic and environmental factors to variation in the human gut microbiome, includ-
ing factors such as age or life stage (3–5), geographic region (4, 6), or diet (7, 8).
However, these factors are often at least partially confounded. For example, studies
comparing gut microbiome compositions across geographic regions are important for
understanding broad patterns in host-associated microbial diversity; however, human
populations are often genetically and culturally stratified across sample locations, lead-
ing to unresolvable confounds in genetic and lifestyle-associated factors. Additionally,
foundational work in twin cohorts has estimated the overall heritability of the micro-
biome and identified several heritable taxa by utilizing genetically informed study
designs (9–11), but twins reared together during childhood are both related and share
a home environment, inextricably linking genetic relatedness and environmental
similarity.
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We used a sibling adoption study design as a tool to determine the relative impact
of host genetic relatedness and shared home environment on the composition of the
gut microbiome of children. This design utilizes factorial combinations of genetic relat-
edness and shared home environment to reduce covariance between these factors,
allowing a more rigorous determination of their relative contributions. We compared
the gut microbiomes of children adopted in infancy to those of genetically unrelated
children in the same household and genetically related children reared in other house-
holds. This design also allowed us to identify ecological patterns in the prevalence and
abundance of individual microbial taxa in the human gut microbiome.

RESULTS
Partitioning variance of whole-community dissimilarity.We assessed the relative

contributions of host genetic similarity, shared home environment, and multiple host
characteristics (sex, age, and body mass index [BMI]) to gut microbiome composition
in a cohort of 74 children (mean age, 11.1 years old) from households across the United
States. Pairwise values of host genetic similarity were estimated using genomic
markers, and pairwise home environment sharing was coded using a binary coding
scheme. A single stool sample was collected from each participant, and the microbial
community was characterized using 16S-based taxonomic identification. We used the
tool “Generalized Dissimilarity Modeling” (GDM [12]) to partition variance in overall
microbiome community dissimilarity based on differences in the relative abundance of
amplicon sequence variants (ASVs; Bray-Curtis dissimilarity) and differences in the pres-
ence/absence of ASVs (Jaccard dissimilarity). Jaccard dissimilarity can be thought of as
the proportion of unshared taxa between two individuals. GDM is an extended form of
matrix regression, used here to determine the proportion of variance in overall micro-
biome community dissimilarity that can be explained by pairwise differences in host
characteristics, genetics, and home environment (shared or not). GDM models
explained 5.15 and 6.19% of total variance in the gut microbial communities among
samples using Bray-Curtis and Jaccard dissimilarity metrics, respectively. Home envi-
ronment, sibling age difference, and human genomic dissimilarity were retained in
both abundance and presence models following permutation-based model selection;
however, a shared rearing environment was the only predictor contributing signifi-
cantly to explainable variance in community-level microbiome composition (Table 1
and Fig. 1). Patterns of explained variance were similar when extremely similar pairs
were excluded from the analyses (see Table S1 in the supplemental material).
Therefore, we can conclude that shared home environment has a detectable influence
on gut microbiome composition in childhood, and although host genetic similarity
and age improved the overall fit of the GDM model, these factors did not significantly
predict microbiome community dissimilarity in this sample of children.

Partitioning variance of ASV abundance or presence. We used a negative bino-
mial or binomial mixed-effects modeling approach (13, 14) to determine the relative
contribution of host genetics and shared home environment to the relative abundance
or presence of each ASV, respectively. To estimate the relative contribution of these

TABLE 1 Generalized dissimilarity model output

Dissimilarity
metric

Total % of
variance
explained Predictor

% of total
variance
explained P value

Bray-Curtis 5.15 Child age (yr) 35.04 0.172
Genetic relatedness (r) 4.97 0.218
Home environment (same/different) 40.67 0.050

Jaccard 6.19 Child age (yr) 28.26 0.166
Genetic relatedness (r) 7.03 0.138
Home environment (same/different) 41.87 0.032
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factors, we included home ID (shared home environment) as a categorical random
effect in each model, as well as marker-based estimates of pairwise genome sharing to
quantify pairwise host genetic similarity. We identified 67 ASVs whose abundance was
significantly explained and 184 ASVs whose presence was significantly explained by ei-
ther host genetic similarity or environmental similarity, out of 1,813 testable ASVs (i.e.,
non-singletons detected in at least two samples; grouped by order in Fig. 2 and in
Table S2 in the supplemental material). Total read counts across individuals ranged
from 7 to 61,350 reads in those ASVs with significant variance components, and these
ASVs were found in 2 to 70 children in the data set (Fig. 2B). Ten ASVs from the
Clostridiales order and 3 ASVs from the Bacteroidales order yielded significant variance
components in both the abundance and presence/absence models.

Broad-scale patterns. Among those ASVs whose variation was significantly
explained by our models, we characterized patterns in explainable variance by testing
if abundance or presence was more frequently explained by host genetic similarity or
shared home environment. We found that genetic similarity explained variance in
abundance more often than a shared home environment, while presence was more
likely explained by a shared home environment (x 2 = 24.303, df = 1, P = 8.231e207).
These findings are consistent with general ecological principles, which posit that the
presence of a species in an ecological community is ultimately due to its availability for
dispersal from a regional “species pool” (here, the local home environment), while its
abundance may be determined through local environmental selection (here, via indi-
vidual host genomic factors).

To determine if the presence or abundance of any bacterial orders was more likely
to be explained by shared genetics and shared home environment, we tallied original
counts of ASVs categorized by order and then used a random permutation test to
determine if any orders were oversampled in our results. (The order was the finest
level or taxonomic organization for which there were no missing data.) Of the ASVs
whose variance could be at least partially explained by host genetics or shared home
environment using the mixed-effects modeling approach, those belonging to the

FIG 1 Gut microbiome community dissimilarity by home environment and genetic relatedness. Shown are
results for Bray-Curtis dissimilarity (left) and Jaccard dissimilarity (right). The relationship of each child pair is
color coded, and observations are clustered by (relationship within) rearing environment. GDM models
detected a significant overall effect of shared environment, and any significant pairwise differences in mean
dissimilarity metric are denoted among (relationship within) rearing environment groups by an asterisk
(adjusted for multiple comparisons and estimated using a Tukey’s honestly significant difference [HSD] test).
For each box plot, all data points are plotted: center line indicates the median, box limits indicate the upper
and lower quartiles, whiskers indicate 1.5� interquartile range, and points beyond whiskers indicate outliers.
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FIG 2 Relative proportion of variance explained by genetics and environment for each significant ASV. (A and C) ASVs whose abundance
(A) or presence (C) can be at least partially explained by host genetics (black; h2) or shared environment (gray; e2). (B) The magnitude of

(Continued on next page)
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Bifidobacteriales order were significantly oversampled in the presence models relative
to a random sampling from their initial prevalence in the data set (based on 9,999
permutations of 184 ASVs randomly selected out of the total of 1,813; P , 0.05).
Bacteria of the Bifidobacteriales order are common members of a healthy gut micro-
biome, especially early in life (4), and play a key role in host metabolism and modu-
lating the growth of other bacteria, including pathogens (15). As the presence of
members of the Bifidobacteriales order is partially predicted by shared genetics and
home environment, and given their important role in host health and microbial com-
munity dynamics, members of this order could represent a promising intervention
target for early life microbiome health.

DISCUSSION

Overall, we were able to explain a relatively small but significant proportion of the
variance in gut microbiome composition in this cohort, using only host genetic similar-
ity and shared home environment as factors. Cross-sectional studies of adult gut micro-
biomes rarely explain more than 15 to 20% of the variance in composition, even when
considering hundreds of factors (although higher levels of variation are often
explained in controlled experimental manipulation of diet or antibiotic use [e.g., see
references 16 and 17]), and adult gut microbiomes are considerably less variable than
those of children (3, 18). For example, a previous study with thousands of participants
and hundreds of environmental variables could explain less than 17% of variation in
gut microbiome composition (19), while with a single metric of shared environment,
we explained more than 6%. This suggests that in childhood, environmental context is
largely determined by local rearing environment, within which children share expo-
sures to the natural and built environments, diet, exercise, and hygiene practices.
Additionally, we observed that variance in the abundance of individual taxa is more of-
ten explained by shared genetics, while the presence of taxa may depend more on
environmental context. Aside from these prominent patterns, we also observed that
the abundance of some taxa appears to be wholly dependent upon shared home envi-
ronment, suggesting that variation in exposure mediated by the rearing environment
may drive patterns in abundance along with host genetic factors. We also observed
that the presence of multiple taxa can be explained wholly by shared genetics and
thus that host genetics may still influence the presence of specific bacteria in the gut,
regardless of dispersal from the immediate environment.

Our study was not designed to identify the exact components of the rearing
environment that contribute to microbiome composition. Future research utilizing
repeated, simultaneous sampling of children and their immediate environments, as
well as detailed dietary and medical surveys, are necessary to further address this
question. Our study also did not consider potential interactions of genetics and
environment, or environments experienced by children other than the home. It
would be interesting to expand on our study to include other common childhood
environments (such as day care centers [20] and schools) or social networks (utiliz-
ing family or peer interaction logging [21]). It is possible that inclusion of such in-
formation could increase the proportion of microbiome variance explained,
approaching the higher levels of variance attributed to shared rearing environment
in controlled experiments involving animals (22–24).

Our study demonstrates that adoption in early infancy can result in a measurable
shift in the composition of the gut microbiome of children, potentially mediated
through the home environment shared with nonrelated siblings. Our results also sug-
gest that the early life home environment may significantly alter the gut microbiome

FIG 2 Legend (Continued)
each variance component estimate relative to how many children’s samples contained that ASV. In the top panel, solid circles represent
abundance models, and in the bottom panel, open circles represent presence/absence models. Although some taxa were rare, many taxa
whose abundance and presence were significantly predicted by a shared genetic background or home were found at medium to high
prevalence in the data set. Alternating ASVs are labeled in panel C. See the supplemental material for full model results.
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in childhood through differential microbial exposure, posing potentially important con-
sequences for health, both during childhood and later in life (25, 26). Understanding the
drivers of gut microbiome variation during childhood could lead to more effective health
intervention strategies early in life.

MATERIALS ANDMETHODS
Study subjects. Participants were part of the Early Growth and Development Study (EGDS [27]) and

its companion study, Early Parenting of Children (EPoCh [28]). Together, these studies include a prospec-
tive adoption cohort of children who were domestically adopted shortly after birth (median age =
2 days; standard deviation [SD] = 12.45 days, range = 0 to 91 days) into an adoptive home (with unre-
lated adoptive parents and siblings), the adoptees’ related siblings who remained living with the birth
parent(s), and additional unrelated siblings living in either study home.

The subsample for this study was recruited by phone to provide a stool sample, a saliva sample
(DNA), and a questionnaire by mail. Participants included 74 children across 26 adoptive and 13 birth
homes (39 total households) with different levels of genetic relatedness residing in the same or different
homes (8 full sibling pairs reared together, 6 full sibling pairs reared apart, 9 half-sibling pairs reared to-
gether, 122 half-sibling pairs reared apart, and 31 nonbiological sibling pairs reared together). All half-
siblings were maternal half-siblings (sharing a mother, but with different fathers). The sample was 49%
male, and children ranged in age from 4.3 to 18.8 years old at the time of stool collection (mean age =
11.1 years, SD = 3.1 years). We observed no differences in sex ratio (x 2 = 1.826, df = 1, P = 0.177), age (t =
20.097, df = 35.736, P = 0.924), or body mass index (BMI [t = 21.897, df = 40.034, P = 0.065]) between
home types in this subsample. Age difference did not vary among sibling types (F = 0.1689, P = 0.845).
Adoptees in this subset were adopted shortly after birth (n = 51, mean = 6.4 days, SD = 10.2 days,
range = 0 to 48 days); however, one child was adopted at 356 days of age. (This child was not a part
of the aforementioned original study sample and was an additional adoptee in an adoptive home
with no related siblings in other homes.) This research received approval by the institutional review
boards at the University of Oregon, all adult participants provided informed consent, and children
provided assent prior to participation.

Microbiome collection and sequencing. Stool samples were collected in the home using the
OMNIgene-gut fecal collection kit (which contains a nucleic acid preservative) following the kit’s instruc-
tions (DNA Genotek; OMR-200) and were returned via standard mail at ambient temperature. Samples
were stored at 220°C upon receipt and transferred to 280°C for long-term storage within 4 weeks of
receipt, until DNA extraction using the MoBio PowerFecal DNA isolation kit. Each sample was amplified
in triplicate using a standard PCR protocol targeting the 16S rRNA variable region V4 (Illumina 515F and
806R). Samples and no-template negative controls were sequenced on the Illumina HiSeq4000 sequenc-
ing platform (paired-end 150-bp reads) with a target sequencing depth of 50,000 reads per sample. All
read clustering and quality filtering was performed in QIIME2 (29) using default settings, and the q2-
dada2 pipeline plug-in (30) was used to call individual amplicon sequence variants (ASVs) at 100%
sequence similarity based on the 16S rRNA variable V4 region (31). Sequencing depth ranged from
39,523 to 73,295 reads per sample. Analyses of quality and a diversity revealed no effect of transporta-
tion or freezing time on overall microbiome Shannon diversity (r = 20.04, P = 0.720) or read quality (r =
20.066, P = 0.560).

We identified a total of 3,629 ASVs in stool samples from this study population. A total of 1,588 ASVs
were unique to a single sample, and 1,692 ASVs were unique to a single home. A total of 104 of these
were shared across stool samples from all children reared in a single shared home environment.
Conversely, 1,785 ASVs were found in stool samples from multiple children across multiple home envi-
ronments. In general, ASVs that were more common across home environments also occurred in more
children in the sample, with variation in prevalence across taxonomic groups (see Fig. S1 in the supple-
mental material). ASVs with fewer than five reads across pooled samples were removed to account for
potential sequencing errors or misalignment, leaving 3,055 ASVs for subsequent analyses. a diversity did
not differ by home type (Shannon diversity in birth versus adoptive homes: t= 0.46901, df = 46.985, P =
0.641).

Genomic sequencing and relatedness estimation. To estimate pairwise relatedness among indi-
viduals in the sample, DNA was collected using the Oragene-Discover saliva kit (DNA Genotek; OGR-
500). DNA was extracted using the DNAdvance genomic DNA isolation kit (Agencourt; A48705), and indi-
viduals were genotyped on the Infinium Global Screening Array-24 v2.0 microarray (Illumina).
Genotypes were called and quality filtered using default settings in GenomeStudio (32). We estimated
pairwise relatedness using three sets of 2,500 randomly selected single nucleotide polymorphism (SNP)
markers from the GSA microarray in the R package related (33). The estimated relatedness values were
highly correlated across all three subsets (r. 0.90 and P , 0.001 for all pairwise correlations), and we
therefore proceeded with the relatedness estimates calculated using one of the three subsets of markers
for subsequent analyses.

Statistics. (i) Partitioning variance of whole-community dissimilarity. Here, we utilized the eco-
logical statistical tool “Generalized Dissimilarity Modeling (GDM)” in the R package gdm (12) as a novel
approach to partitioning variance in the gut microbiome community. This model is an extended form of
matrix regression in which pairwise community dissimilarity is regressed onto multiple matrices quanti-
fying pairwise dissimilarities in predictor measurements across samples. Total deviance explained is cal-
culated relative to an intercept-only model, analogous to the total variance explained by the full model.
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Here, we use Bray-Curtis dissimilarity and Jaccard dissimilarity as b diversity metrics based on ASV
abundance and presence, respectively. The initial full models for each b diversity metric included
pairwise difference in natural log-transformed age, sex (coded as 1 for male and 2 for female), age-
corrected BMI Z-score (calculated from height and weight provided at sampling [34]), and matrices of
genomic dissimilarity (1 2 r) and rearing environment dissimilarity (where same home = 0 and differ-
ent home = 1). Best-fit models were selected based on overall model P value, and the relative impor-
tance of each predictor was assessed using the recommended permutation methods in the gdm
package (12) (999 permutations).

(ii) Partitioning variance of ASV abundance or presence. In order to determine to what extent
variance in abundance and presence of ASVs is explained by genome sharing or a shared home environ-
ment, we expanded existing variance partitioning methods (35, 36) in the R package NBZIMM (13, 14).
ASVs observed in only one child were removed from this analysis since singular observations have no
variance, leaving 1,813 testable ASVs. Each negative binomial (abundance) or binomial (presence) model
included natural log-transformed age in years and sex as fixed effects and natural log-transformed
sequencing depth as an offset term to control for differences in sequencing effort across samples. We
then included home and child ID as random effects in each model, using the pairwise relatedness matrix
as the correlation structure of the “ID” random effect (35), allowing us to partition the residual variance
into that which can be explained by home sharing and genome sharing. We used likelihood ratio testing
in the lmtest package (37) to assess the significance of each variance component in the model as previ-
ously described (35). Any model for which the addition of any variance component resulted in a positive
change in log likelihood and that had a false-discovery rate (FDR [38]) corrected q value greater than
0.05 was retained for further significance testing. From these models, we eliminated any models in
which all variance components were ,0.05 in magnitude to focus our analyses on taxa for which appre-
ciable proportions of variance could be explained. We then used a permutation test to create the null
distribution for each variance component of each model independently and used these distributions to
estimate P values for each variance component (based on 499 permutations). Results are aggregated at
the order level for ease of interpretation, but all variance partitioning models were run on ASV-level
data.

(iii) Assessing broad-scale patterns. We hypothesized that factors affecting ASV abundance and
presence likely arise from different ecological processes. We therefore determined if ASV abundance
and presence were differentially explained by host genetics or shared environment using a x 2 test. We
totaled the number of significant variance components of each type across significant abundance or
presence models and used these values to test for a difference in representation of significant variance
components across model types.

We tested the hypothesis that ASVs of certain taxonomic groups may be overrepresented in the list
of those whose abundance or presence can be significantly explained by host genetics or host environ-
ment by identifying each ASV (n= 1,813) to order and randomly selecting the number of significant
models from this pool over 9,999 permutations. We then compared counts across orders to the
observed counts to determine what proportion of 9,999 random permutations selected the same or
more ASVs from a given order to compute a P value for each order, describing the extremity of the
observed counts relative to random chance. Order was the finest scale of taxonomic organization for
which there were no missing data for any ASVs found in more than one sample.

Data availability. All relevant processed data supporting the findings of this study are available in
the main text or the supplemental material. Unprocessed 16S data are available from the corresponding
author upon reasonable request. All code developed for this work builds upon and implements existing
R resources and will be provided upon request.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, DOCX file, 1.9 MB.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.1 MB.
DATA SET S1, TXT file, 0.1 MB.
DATA SET S2, TXT file, 0.1 MB.
DATA SET S3, TXT file, 0.02 MB.
DATA SET S4, TXT file, 0.01 MB.
DATA SET S5, XLSX file, 0.01 MB.
DATA SET S6, XLSX file, 0.2 MB.
DATA SET S7, XLSX file, 0.2 MB.
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