Polynomial Division and Greatest Common Divisors

Com S 477/577

Sep 2, 2003

Let $u(x)$ and $v(x)$ be two polynomials such that $v(x) \neq 0$ and $\operatorname{deg}(u) \geq \operatorname{deg}(v)$. Suppose all the coefficients are real (or rational). Then there exists a quotient polynomial $q(x)$ and a remainder polynomial $r(x)$ such that

$$
\begin{equation*}
u(x)=q(x) v(x)+r(x), \quad \operatorname{deg}(r)<\operatorname{deg}(v) . \tag{1}
\end{equation*}
$$

It is easy to see that there is at most one pair of polynomials $(q(x), r(x))$ satisfying (1); for if $\left(q_{1}(x), r_{1}(x)\right)$ and $\left(q_{2}(x), r_{2}(x)\right)$ both satisfy the relation with respect to the same polynomial $u(x)$ and $v(x)$, then $q_{1}(x) v(x)+r_{1}(x)=q_{2}(x) v(x)+r_{2}(x)$, so $\left(q_{1}(x)-q_{2}(x)\right) v(x)=r_{2}(x)-r_{1}(x)$. Now if $q_{1}(x)-q_{2}(x)$ is nonzero, we have $\operatorname{deg}\left(\left(q_{1}-q_{2}\right) \cdot v\right)=\operatorname{deg}\left(q_{1}-q_{2}\right)+\operatorname{deg}(v) \geq \operatorname{deg}(v)>\operatorname{deg}\left(r_{2}-r_{1}\right)$, a contradiction; hence $q_{1}(x)-q_{2}(x)=0$ and $r_{1}(x)=r_{2}(x)$.

Given its uniqueness, we denote $q(x)=\left\lfloor\frac{u(x)}{v(x)}\right\rfloor$, analogous to the quotient in integer division. Obviously, $r(x)=u(x)-v(x)\left\lfloor\frac{u(x)}{v(x)}\right\rfloor$.

Let

$$
\begin{aligned}
u(x) & =u_{m} x^{m}+\cdots+u_{1} x+u_{0}, \\
v(x) & =v_{n} x^{n}+\cdots+v_{1} x+v_{0},
\end{aligned}
$$

where $v_{n} \neq 0$ and $m \geq n \geq 0$, the following procedure finds the polynomials

$$
\begin{aligned}
& q(x)=q_{m-n} x^{m-n}+\cdots+q_{0} \\
& r(x)=r_{n-1} x^{n-1}+\cdots+r_{0}
\end{aligned}
$$

that satisfy (1).

$$
\begin{aligned}
& \text { Polynomial-Divide }(u(x), v(x)) \\
& m \leftarrow \operatorname{deg}(u) \\
& n \leftarrow \operatorname{deg}(v) \\
& \text { for } k=m-n \text { downto } 0 \\
& 4 \quad q_{k} \leftarrow u_{n+k} / v_{n} \\
& 5 \quad \text { for } j=n+k-1 \text { downto } k \\
& 6 \quad u_{j} \leftarrow u_{j}-q_{k} v_{j-k} \\
& 7 \quad\left(r_{n-1}, \ldots, r_{0}\right) \leftarrow\left(u_{n-1}, \ldots, u_{0}\right)
\end{aligned}
$$

For example, let $u(x)=3 x^{3}-5 x^{2}+10 x+8$ and $v(x)=x^{2}+2 x-3$. Then the for loop of lines 3-6 goes through two iterations and yields $q(x)=3 x-11$ and $r(x)=41 x-25$.

It is not difficult to see that the number of arithmetic operations involved in polynomial division is $O((m-n+1) n)$ if the procedure Polynomial-Divide is used. In the next section, we will describe an algorithm that computes the quotient $\left\lfloor\frac{u(x)}{v(x)}\right\rfloor$ in time $O(n \lg n)$ if m is on the order n. Later on we will introduce a fast algorithm that computes the greatest common divisor of $u(x)$ and $v(x)$.

1 A Fast Division Algorithm

Let $u(x)=u_{m} x^{m}+\cdots+u_{1} x+u_{0}$ and $v(x)=v_{n} x^{n}+\cdots+v_{1} x+v_{0}$ be two polynomials of degrees m and n, respectively. Suppose we are to compute $q(x)=\left\lfloor\frac{u(x)}{v(x)}\right\rfloor$. First, let us transform the division below:

$$
\begin{aligned}
\frac{u(x)}{v(x)} & =\frac{u_{m} x^{m}+\cdots+u_{1} x+u_{0}}{v_{n} x^{n}+\cdots+v_{1} x+v_{0}} \\
& =\left(u_{m}+\frac{u_{m-1}}{x}+\cdots+\frac{u_{0}}{x^{m}}\right) \frac{x^{m}}{v_{n} x^{n}+\cdots+v_{1} x+v_{0}} \\
& =\left(u_{m}+\frac{u_{m-1}}{x}+\cdots+\frac{u_{0}}{x^{m}}\right)\left(s(x)+\frac{t(x)}{v_{n} x^{n}+\cdots+v_{1} x+v_{0}}\right), \quad \operatorname{deg}(t)<n .
\end{aligned}
$$

So $s(x)$ and $t(x)$ are the quotient and remainder of x^{m} divided by $v(x)$, respectively. Now, $q(x)=$ $\left\lfloor\frac{u(x)}{v(x)}\right\rfloor$ is completely determined by the product of $u_{m}+\frac{u_{m-1}}{x}+\cdots+\frac{u_{0}}{x^{m}}$ with $s(x)$. Suppose $s(x)$ is already computed, then we simply multiply $u(x)$ with $s(x)$, throw away all terms of degree less than m, and scale the resulting polynomial by x^{-m}. The result will be $q(x)$. For multiplication, we use FFT which costs time $O(m \lg m)$, or $O(n \lg n)$ if m is on the order of n.

But how do we compute $s(x)=\left\lfloor\frac{x^{m}}{v(x)}\right\rfloor$ efficiently? Note that we can "scale" polynomials by multiplying and dividing by powers of x easily. So we assume that $v(x)$ is of degree $n=2^{l}-1$ for some integer l. If not, we multiply both $u(x)$ and $v(x)$ by $x^{2^{\left[\log _{2}^{n+1}\right]}-1-n}$.

Given that the degree n of $v(x)$ is now one less than some perfect power of 2 , we look at how to find the reciprocal $s(x)$ of $v(x)$, which is defined to be $\left\lfloor\frac{x^{2 n}}{v(x)}\right\rfloor$. If $m \leq 2 n$, to obtain $\left\lfloor\frac{u(x)}{v(x)}\right\rfloor$, we multiply $s(x)$ with $u(x)$, discard all terms of degree less than $2 n$ in the product polynomial, and finally, scale the resulting polynomial by $x^{-2 n}$. If $m>2 n$, then we obtain

$$
\begin{array}{rlr}
\left\lfloor\frac{u(x)}{v(x)}\right\rfloor & =\left\lfloor\frac{u(x)}{x^{2 n}}\left(s(x)+\frac{t(x)}{v(x)}\right)\right\rfloor, \quad \operatorname{deg}(t)<n \\
& =\left\lfloor\frac{u(x) s(x)}{x^{2 n}}\right\rfloor+\left\lfloor\frac{u(x) t(x)}{x^{2 n} v(x)}\right\rfloor \\
& =\left\lfloor\frac{u(x) s(x)}{x^{2 n}}\right\rfloor+\left\lfloor\left\lfloor\frac{u(x) t(x)}{x^{2 n}}\right\rfloor / v(x)\right\rfloor .
\end{array}
$$

To obtain the first term in the last equation above, we compute the product $u(x) s(x)$, trim off all terms of degree less than $2 n$, and then scale by $x^{-2 n}$. To obtain $\left\lfloor u(x) t(x) / x^{2 n}\right\rfloor$, we compute the product $u(x) t(x)$ and carry out the same trimming and scaling steps. Then we end up with another division problem involving the new dividend $\left\lfloor u(x) t(x) / x^{2 n}\right\rfloor$ and the divisor $v(x)$, where the reciprocal of $v(x)$ can be used again. The degree of the dividend has reduced by at least $n+1$ since $\operatorname{deg}(t) \leq n-1$. The quotient of this second division will be added to the quotient obtained
in the first division. And so on. As long as m is on the order of n, the procedure will terminate after a constant number of divisions.

In computing the quotient, all the multiplications can be carried out by FFT and cost $O(n \lg n)$ together. The running time of the algorithm then depends on how fast the reciprocal can be computed.

The procedure Reciprocal below takes as input a polynomial $p(x)=\sum_{i=0}^{k-1} a_{i} x^{i}$, where $a_{k-1} \neq$ 0 and k is a power of 2 . It computes $\left\lfloor x^{2 k-2} / p(x)\right\rfloor$.

$$
\begin{aligned}
& \text { RECIPROCAL }\left(\sum_{i=0}^{k-1} a_{i} x^{i}\right) \\
& 1 \text { if } k=1 \\
& 2 \quad \text { then return } 1 / a_{0} \\
& 3 \quad \text { else } q(x) \leftarrow \text { RECIPROCAL }\left(\sum_{i=k / 2}^{k-1} a_{i} x^{i-k / 2}\right) \\
& 4
\end{aligned} \quad r(x) \leftarrow 2 q(x) x^{(3 / 2) k-2}-(q(x))^{2}\left(\sum_{i=0}^{k-1} a_{i} x^{i}\right) .
$$

Example 1. Let us compute $\left\lfloor x^{14} / p(x)\right\rfloor$, where

$$
p(x)=x^{7}-x^{6}+x^{5}+2 x^{4}-x^{3}-3 x^{2}+x+4 .
$$

Here $k=8$. In line 3 of the procedure Reciprocal, a recursive call is made to compute the reciprocal of $x^{3}-x^{2}+x+2$. You may verify that the recursive call returns

$$
\begin{aligned}
q(x) & =\left\lfloor\frac{x^{6}}{x^{3}-x^{2}+x+2}\right\rfloor \\
& =x^{3}+x^{2}-3 .
\end{aligned}
$$

Line 4 yields

$$
\begin{aligned}
r(x) & =2 q(x) x^{10}-(q(x))^{2} p(x) \\
& =x^{13}+x^{12}-3 x^{10}-4 x^{9}+3 x^{8}+15 x^{7}+12 x^{6}-42 x^{5}-34 x^{4}+39 x^{3}+51 x^{2}-9 x-36 .
\end{aligned}
$$

Then at line 5 , the result is

$$
s(x)=x^{7}+x^{6}-3 x^{4}-4 x^{3}+3 x^{2}+15 x+12 .
$$

You may verify that $s(x) p(x)$ is x^{14} plus a polynomial of degree 6 .
Theorem 1 The procedure REciprocal correctly computes the reciprocal of a polynomial.
Proof By induction on k, for k a power of 2. Namely, we prove that if $s(x)=\operatorname{Reciprocal}(p(x))$, and $\operatorname{deg}(p(x))=k-1$, then $s(x) p(x)=x^{2 k-2}+t(x)$, where $\operatorname{deg}(t(x))<k-1$. The base case $k=1$ is trivial, since $p(x)=a_{0}, s(x)=1 / a_{0}$, and $t(x)$ need not exist.

For the inductive step, let $p(x)=p_{1}(x) x^{k / 2}+p_{2}(x)$, where $\operatorname{deg}\left(p_{1}\right)=\frac{k}{2}-1$ and $\operatorname{deg}\left(p_{2}\right) \leq \frac{k}{2}-1$. By the inductive hypothesis, if $s_{1}(x)=\operatorname{Reciprocal}\left(p_{1}(x)\right)$, then

$$
\begin{equation*}
s_{1} p_{1}=x^{k-2}+t_{1}(x), \tag{2}
\end{equation*}
$$

where $\operatorname{deg}\left(t_{1}\right)<\frac{k}{2}-1$. Line 4 of the procedure computes

$$
\begin{equation*}
r(x)=2 s_{1} x^{(3 / 2) k-2}-s_{1}^{2}\left(p_{1} x^{k / 2}+p_{2}\right) . \tag{3}
\end{equation*}
$$

In order for the output $\left\lfloor r(x) / x^{k-2}\right\rfloor$ to be the reciprocal of $p(x), r(x) p(x) / x^{k-2}$ must be $x^{2 k-2}$ plus some terms of degree less than x^{k-1}. So it suffices to show that $r(x) p(x)$ is $x^{3 k-4}$ plus terms of degree less than $2 k-3$.

By (3) and the fact that $p=p_{1} x^{k / 2}+p_{2}$, we have

$$
\begin{aligned}
r \cdot p & =2 s_{1} p_{1} x^{2 k-2}+2 s_{1} p_{2} x^{(3 / 2) k-2}-\left(s_{1} p_{1} x^{k / 2}+s_{1} p_{2}\right)^{2} \\
& =2\left(x^{k-2}+t_{1}\right) x^{2 k-2}+2 s_{1} p_{2} x^{(3 / 2) k-2}-\left(\left(x^{k-2}+t_{1}\right) x^{k / 2}+s_{1} p_{2}\right)^{2}, \quad \text { substitute (2) in } \\
& =2 x^{3 k-4}+2 t_{1} x^{2 k-2}+2 s_{1} p_{2} x^{(3 / 2) k-2}-x^{3 k-4}-2 x^{(3 / 2) k-2}\left(t_{1} x^{k / 2}+s_{1} p_{2}\right)-\left(t_{1} x^{k / 2}+s_{1} p_{2}\right)^{2} \\
& =x^{3 k-4}-\left(t_{1} x^{k / 2}+s_{1} p_{2}\right)^{2} .
\end{aligned}
$$

Since $\operatorname{deg}\left(t_{1}\right) \leq \frac{k}{2}-2, \operatorname{deg}\left(s_{1}\right)=\frac{k}{2}-1$, and $\operatorname{deg}\left(p_{2}\right) \leq \frac{k}{2}-1$, the term $\left(t_{1} x^{k / 2}+s_{1} p_{2}\right)^{2}$ is of degree at most $2 k-4$.

Let $T(k)$ be the running time the procedure Reciprocal on $\sum_{i=0}^{k-1} a_{i} x^{i}$. Then line 3 takes time $T(k / 2)$. Line 4 can be executed in time $O(k \lg k)$ using FFT. So we set up the recurrence

$$
T(k)=T\left(\frac{k}{2}\right)+O(k \lg k)
$$

which has the solution $O(k \lg k)$.
Based on all the above, we have arrived at the following conclusion.
Theorem 2 Let $u(x)=u_{m} x^{m}+\cdots u_{1} x+u_{0}$ and $v(x)=v_{n} x^{n}+\cdots v_{1} x+v_{0}$ be two polynomials of degrees m and n, respectively, such that $m \geq n$ and $m=\Theta(n)$. Then the quotient $q(x)=$ $\lfloor u(x) / v(x)\rfloor$ and the remainder $r(x)=u(x)-q(x) v(x)$ can be computed in time $O(n \lg n)$.

2 The Euclidean Algorithm

Let a_{0} and a_{1} be two positive integers. The greatest common divisor of a_{0} and a_{1}, often denoted by $\operatorname{gcd}\left(a_{0}, a_{1}\right)$, divides both a_{0} and a_{1}, and is divided by every divisor of both a_{0} and a_{1}. Euclid's algorithm obtains $\operatorname{gcd}\left(a_{0}, a_{1}\right)$ by repeatedly computing $a_{i+1}=a_{i-1}-q_{i} a_{i}$, for $1 \leq i<k$, where $q_{i}=\left\lfloor a_{i-1} / a_{i}\right\rfloor$.

Example 2. Let $a_{0}=501$ and $a_{1}=111$. Then Euclid's algorithm generates the following:

$$
\begin{aligned}
501 & =4 \cdot 111+57 \\
111 & =1 \cdot 57+54 \\
57 & =1 \cdot 54+3 \\
54 & =18 \cdot 3
\end{aligned}
$$

Since the last division results in a remainder of zero, $\operatorname{gcd}(501,111)=3$. Meanwhile, we can trace back the computation, starting from the second to last division:

$$
\begin{aligned}
3 & =57-54 \\
& =57-(111-57) \\
& =2 \cdot 57-111 \\
& =2 \cdot(501-4 \cdot 111)-111 \\
& =2 \cdot 501-9 \cdot 111
\end{aligned}
$$

In this way we find integers $x=2$ and $y=-9$ such that

$$
a_{0} x+a_{1} y=\operatorname{gcd}\left(a_{0}, a_{1}\right)
$$

Euclid's algorithm can be extended to find not only the greatest common divisor of a_{0} and a_{1}, but also integers x and y such that $a_{0} x+a_{1} y=\operatorname{gcd}\left(a_{0}, a_{1}\right)$. The algorithm is as follows.

```
\(\operatorname{Extended}-\operatorname{Euclid}\left(a_{0}, a_{1}\right)\)
\(x_{0} \leftarrow 1\)
\(y_{0} \leftarrow 0\)
\(x_{1} \leftarrow 0\)
\(y_{1} \leftarrow 1\)
\(i \leftarrow 1\)
while \(a_{i}\) does not divide \(a_{i-1}\)
    \(q \leftarrow\left\lfloor a_{i-1} / a_{i}\right\rfloor\)
    \(a_{i+1} \leftarrow a_{i-1}-q a_{i}\)
    \(x_{i+1} \leftarrow x_{i-1}-q x_{i}\)
    \(y_{i+1} \leftarrow y_{i-1}-q y_{i}\)
    \(i \leftarrow i+1\)
```

Example 3. For the previous example, we obtain the following values for the a_{i} 's, $x_{i}{ }^{\prime}$'s, and y_{i} 's.

i	a_{i}	x_{i}	y_{i}
0	501	1	0
1	111	0	1
2	57	1	-4
3	54	-1	5
4	3	2	-9

Let us use induction to show that in the procedure ExTENDED-EUCLID

$$
a_{0} x_{i}+a_{1} y_{i}=a_{i}
$$

Apparently, the equation holds for $i=0$ and $i=1$ by lines $1-4$ of the procedure. Assume that it holds for $i-1$ and i. Then $x_{i+1}=x_{i-1}-q x_{i}$ by line 9 and $y_{i+1}=y_{i-1}-q y_{i}$ by line 10 . Thus

$$
a_{0} x_{i+1}+a_{1} y_{i+1}=a_{0} x_{i-1}+a_{1} y_{i-1}-q\left(a_{0} x_{i}+a_{1} y_{i}\right)
$$

By the induction hypothesis and the above equation, we have

$$
\begin{aligned}
a_{0} x_{i+1}+a_{1} y_{i+1} & =a_{i-1}-q a_{i} \\
& =a_{i+1}, \quad \text { by line } 8
\end{aligned}
$$

Next, we introduce some notation that will be useful in the development of the greatest common divisor algorithm for polynomials. Let a_{0} and a_{1} be integers with remainder sequence $a_{0}, a_{1}, \ldots, a_{k}$. For $1 \leq i \leq k$ let $q_{i}=\left\lfloor a_{i-1} / a_{i}\right\rfloor$. We define, for $0 \leq i \leq j \leq k$, the matrix

$$
R_{i j}^{\left(a_{0}, a_{1}\right)}=R_{i j}= \begin{cases}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), & \text { if } i=j \\
\left(\begin{array}{rr}
0 & 1 \\
1 & -q_{j}
\end{array}\right) \cdot\left(\begin{array}{rr}
0 & 1 \\
1 & -q_{j-1}
\end{array}\right) \cdots\left(\begin{array}{rr}
0 & 1 \\
1 & -q_{i+1}
\end{array}\right), & \text { if } i<j\end{cases}
$$

Example 4. Let $a_{0}=501$ and $a_{1}=111$ with remainder sequences $501,111,57,54,3$ and quotients q_{i}, for $1 \leq i \leq 4$, given by $4,1,1,18$. Then

$$
\begin{aligned}
R_{03} & =\left(\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{rr}
0 & 1 \\
1 & -4
\end{array}\right) \\
& =\left(\begin{array}{rr}
-1 & 5 \\
2 & -9
\end{array}\right) .
\end{aligned}
$$

For $i<j<k$ we have

$$
\begin{aligned}
\binom{a_{j}}{a_{j+1}} & =\left(\begin{array}{rr}
0 & 1 \\
1 & -q_{j}
\end{array}\right) \cdot\binom{a_{j-1}}{a_{j}} \\
& \vdots \\
& =\left(\begin{array}{rr}
0 & 1 \\
1 & -q_{j}
\end{array}\right) \cdots\left(\begin{array}{rr}
0 & 1 \\
1 & -q_{i+1}
\end{array}\right)\binom{a_{i}}{a_{i+1}} \\
& =R_{i j}\binom{a_{i}}{a_{i+1}}
\end{aligned}
$$

In particular,

$$
R_{0 j}\binom{a_{0}}{a_{1}}=\binom{a_{j}}{a_{j+1}}
$$

Namely, we can use $R_{0 j}$ to directly obtain the j th and $(j+1)$-th remainders in the remainder sequence of $\left(a_{0}, a_{1}\right)$.

Finally, we use induction to show that

$$
R_{0 j}=\left(\begin{array}{cc}
x_{j} & y_{j} \\
x_{j+1} & y_{j+1}
\end{array}\right), \quad \text { for } 0 \leq j \leq k
$$

The equation apparently holds when $j=0$. Suppose it holds for some j. Then

$$
\begin{aligned}
R_{0, j+1} & =\left(\begin{array}{cc}
0 & 1 \\
1 & -q_{j+1}
\end{array}\right) R_{0 j} \\
& =\left(\begin{array}{cc}
0 & 1 \\
1 & -q_{j+1}
\end{array}\right)\left(\begin{array}{cc}
x_{j} & y_{j} \\
x_{j+1} & y_{j+1}
\end{array}\right) \\
& =\left(\begin{array}{ll}
x_{j+1} & y_{j+1} \\
x_{j+2} & y_{j+2}
\end{array}\right), \quad \text { by lines } 9 \text { and } 10 \text { in Extended-EucLid. }
\end{aligned}
$$

3 The Procedure HGCD

Let $a_{0}(x)$ and $a_{1}(x)$ be two polynomials whose greatest common divisor we wish to compute. Assume $\operatorname{deg}\left(a_{1}(x)\right)<\operatorname{deg}\left(a_{0}(x)\right)$. If their degrees are the same, replace them by a_{0} and a_{0} modulo a_{1}, or simply, $a_{0} \bmod a_{1}$.

For polynomials over a field the greatest common divisor is unique only up to multiplication by a constant. That is, if $g(x)$ divides $a_{0}(x)$ and $a_{1}(x)$ and any other divisor of these two polynomials also divides $g(x)$, then $c g(x)$ also has this property for any constant $c \neq 0$. We shall be satisfied with finding any one greatest common divisor. ${ }^{1}$

The GCD algorithm will employ a divide-and-conquer strategy. We will first design an algorithm that obtains the last term in the remainder sequence whose degree is more than $\operatorname{deg}\left(a_{0}\right) / 2$. Let $a_{l(i)}$ be the remainder in the sequence whose degree is greater than i but whose following remainder $a_{l(i)+1}$ has degree at most i. Since $\operatorname{deg}\left(a_{i}\right) \leq \operatorname{deg}\left(a_{i-1}\right)-1$ for all $i \geq 1$, it follows that if a_{0} is of degree n, then $l(i) \leq n-i-1$.

The quotient of two polynomials of degree d_{1} and d_{2}, with $d_{1}>d_{2}$, has degree $d_{1}-d_{2}$. It depends only on the leading $\min \left\{d_{1}-d_{2}+1, d_{2}\right\}$ terms of the divisor and the leading $d_{1}-d_{2}+1$ terms of the dividend. This is because the total number of shifts in carrying out the division is $d_{1}-d_{2}$. Only the leading $d_{1}-d_{2}+1$ terms of the divisor will have its multiples subtracted from the leading $d_{1}-d_{2}+1$ terms of the dividend to determine the quotient.

Using the above principle, we now introduce a recursive procedure HGCD (half GCD) which takes a_{0} and a_{1}, with $n=\operatorname{deg}\left(a_{0}\right)>\operatorname{deg}\left(a_{1}\right)$, and produces the matrix $R_{0 j}$, where $j=l(n / 2)$. Afterward, we can easily obtain $a_{j}=R_{0 j} a_{0}$ as the last term in the remainder sequence whose degree exceeds $\operatorname{deg}\left(a_{0}\right) / 2$.
$\operatorname{HGCD}\left(a_{0}, a_{1}\right)$
$1 \quad$ if $\operatorname{deg}\left(a_{1}\right) \leq \operatorname{deg}\left(a_{0}\right) / 2$
2 \quad then return $\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right), ~\left(\begin{array}{ll}\text { else } m \leftarrow\left\lfloor\operatorname{deg}\left(a_{0}\right) / 2\right\rfloor \\ 3 & \text { let } a_{0}=b_{0} x^{m}+c_{0}, \text { where } \operatorname{deg}\left(c_{0}\right)<m ; \\ 4 & \text { let } a_{1}=b_{1} x^{m}+c_{1}, \text { where } \operatorname{deg}\left(c_{1}\right)<m . \\ 5 & R \leftarrow \operatorname{HGCD}\left(b_{0}, b_{1}\right) \\ 6 & \binom{d}{e} \leftarrow R\binom{a_{0}}{a_{1}} \\ 7 & f \leftarrow d \bmod e \\ 8 & \operatorname{let} e=g_{0} x x^{\lfloor m / 2\rfloor}+h_{0}, \text { where } \operatorname{deg}\left(h_{0}\right)<\lfloor m / 2\rfloor ; \\ 9 & \operatorname{let} f=g_{1} x x^{\lfloor m / 2\rfloor}+h_{1}, \text { where } \operatorname{deg}\left(h_{1}\right)<\lfloor m / 2\rfloor . \\ 10 & S \leftarrow \operatorname{HGCD}\left(g_{0}, g_{1}\right) \\ 11 & q \leftarrow\lfloor d / e\rfloor \\ 12 & \text { return } S \cdot\left(\begin{array}{rr}0 & 1 \\ 1 & -q\end{array}\right) \cdot R \\ 13 & \end{array}\right.$

[^0]In lines $4-5, b_{0}$ and b_{1} are the leading terms of a_{0} and a_{1}, respectively. We have $\operatorname{deg}\left(b_{0}\right)=$ $\left\lceil\operatorname{deg}\left(a_{0}\right) / 2\right\rceil$ and $\operatorname{deg}\left(b_{0}\right)-\operatorname{deg}\left(b_{1}\right)=\operatorname{deg}\left(a_{0}\right)-\operatorname{deg}\left(a_{1}\right)$. In lines $7-8, d, e$, and f are successive terms in the remainder sequence generated from a_{0} and a_{1}. As we will see, d is the last term of degree greater than $\lceil 3 \mathrm{~m} / 2\rceil$ in the remainder sequence of a_{0} and a_{1}; so e and f have degrees at most $\lceil 3 m / 2\rceil$, that is, $\frac{3}{4} \operatorname{deg}\left(a_{0}\right)$. Also g_{0} and g_{1} are each of degree at most $m+1$.

Example 5. Let us first illustrate the execution of the procedure HGCD on the following polynomials:

$$
\begin{aligned}
& p_{1}(x)=x^{5}+x^{4}+x^{3}+x^{2}+x+1, \\
& p_{2}(x)=x^{4}-2 x^{3}+3 x^{2}-x-7 .
\end{aligned}
$$

Suppose we attempt to compute $\operatorname{HGCD}\left(p_{1}, p_{2}\right) ;$ hence $a_{1}=p_{1}$ and $a_{2}=p_{2}$. At lines $3-5$, we have $m=2$ and

$$
\begin{aligned}
b_{0} & =x^{3}+x^{2}+x+1, \\
c_{0} & =x+1, \\
b_{1} & =x^{2}-2 x+3, \\
c_{1} & =-x-7 .
\end{aligned}
$$

At line $6, \operatorname{HGCD}\left(b_{0}, b_{1}\right)$ is called and returns the value

$$
R=\left(\begin{array}{cc}
0 & 1 \\
1 & -(x+3)
\end{array}\right)
$$

as we may check. Next, at lines $7-8$, we compute

$$
\begin{aligned}
d & =x^{4}-2 x^{3}+3 x^{2}-x-7 \\
e & =4 x^{3}-7 x^{2}+11 x+22 \\
f & =-\frac{3}{16} x^{2}-\frac{93}{16} x-\frac{45}{8}
\end{aligned}
$$

Since $\lfloor m / 2\rfloor=1$, the execution of lines $9-10$ yields

$$
\begin{aligned}
g_{0} & =4 x^{2}-7 x+11, \\
h_{0} & =22, \\
g_{1} & =-\frac{3}{16} x-\frac{93}{16}, \\
h_{1} & =-\frac{45}{8} .
\end{aligned}
$$

Thus at line 11 , the recursive call $\operatorname{HGCD}\left(g_{0}, g_{1}\right)$ sets

$$
S=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

At line 12 , the quotient $q(x)$ is found to be $\frac{1}{4} x-\frac{1}{16}$. So at line 13 , we have the result

$$
\begin{aligned}
T & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -\left(\frac{1}{4} x-\frac{1}{16}\right)
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -(x+3)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & -(x+3) \\
-\left(\frac{1}{4} x-\frac{1}{16}\right) & \frac{1}{4} x^{2}+\frac{11}{16} x+\frac{13}{16}
\end{array}\right) .
\end{aligned}
$$

Note that

$$
T\binom{p_{1}}{p_{2}}=\binom{e}{f}
$$

which is correct since in the remainder sequence for p_{1} and p_{2}, e is the last polynomial whose degree exceeds half that of p_{1}.

Let us consider the matrix R computed at line 6 of HGCD. Presumably $R b_{0}$ is the last polynomial of degree greater than $\lceil m / 2\rceil$ in the remainder sequence for b_{0} and b_{1}; that is, $R=R_{0, l(\lceil m / 2\rceil)}^{\left(b_{0}, b_{1}\right)}$. Yet, on line 7, we use R as if it were the matrix $R_{0, l(\lceil 3 m / 2\rceil)}^{\left(a_{0}, a_{1}\right)}$ to obtain d and e, where d is the last term of degree greater than $\lceil 3 m / 2\rceil$ in the remainder sequence of a_{0} and a_{1}. We must show that

$$
R=R_{0, l(\lceil m / 2\rceil)}^{\left(b_{0}, b_{1}\right)}=R_{0, l(\lceil 3 m / 2\rceil)}^{\left(a_{0}, a_{1}\right)}
$$

Similarly, we must show that S, computed on line 11 , plays the role assigned to it on line 13 . That is,

$$
S=R_{0, l(\lceil m / 2\rceil)}^{\left(g_{0}, g_{1}\right)}=R_{0, l(m)}^{(e, f)}
$$

Lemma 3 Consider the following two polynomials:

$$
\begin{aligned}
f(x) & =f_{1}(x) x^{k}+f_{2}(x) \\
g(x) & =g_{1}(x) x^{k}+g_{2}(x)
\end{aligned}
$$

where $\operatorname{deg}(f) \geq \operatorname{deg}(g), \operatorname{deg}\left(f_{2}\right)<k$, and $\operatorname{deg}\left(g_{2}\right)<k$. Let

$$
\begin{aligned}
f(x) & =q(x) g(x)+r(x) \\
f_{1}(x) & =q_{1}(x) g_{1}(x)+r_{1}(x)
\end{aligned}
$$

where $\operatorname{deg}(r)<\operatorname{deg}(g)$ and $\operatorname{deg}\left(r_{1}\right)<\operatorname{deg}\left(g_{1}\right)$. If $k \leq 2 \operatorname{deg}(g)-\operatorname{deg}(f)$, namely, $\operatorname{deg}\left(g_{1}\right) \geq$ $\frac{1}{2} \operatorname{deg}\left(f_{1}\right)$, then
(a) $q(x)=q_{1}(x)$;
(b) $r(x)$ and $r_{1}(x) x^{k}$ agree in all terms of degree $k+\operatorname{deg}(f)-\operatorname{deg}(g)$ or higher.

Proof Consider dividing $f(x)$ by $g(x)$ using the ordinary division algorithm which divides the first term of $f(x)$ by the first term of $g(x)$ to get the first term of the quotient. The first term of the quotient is multiplied by $g(x)$ and subtracted from $f(x)$ and so on. The first $\operatorname{deg}(g)-k+1$ terms of the quotient produced only involve the leading $\operatorname{deg}(g)-k+1$ terms of $g(x)$, that is, terms of degree k or higher; thus they do not depend on $g_{2}(x)$. Meanwhile, the quotient has degree $\operatorname{deg}(f)-\operatorname{deg}(g)$ and thus $\operatorname{deg}(f)-\operatorname{deg}(g)+1$ terms. Therefore if $\operatorname{deg}(f)-\operatorname{deg}(g)+1 \leq \operatorname{deg}(g)-k+1$, the quotient does not depend on $g_{2}(x)$. But this follows from that $k \leq 2 \operatorname{deg}(g)-\operatorname{deg}(f)$. Similarly, the quotient involves only the leading $\operatorname{deg}(f)-\operatorname{deg}(g)+1$ terms of $f(x)$. So if $\operatorname{deg}(f)-\operatorname{deg}(g)+1 \leq \operatorname{deg}(f)-k+1$, the quotient does not depend on $f_{2}(x)$ since $\operatorname{deg}\left(f_{2}\right)<k$. But the condition $\operatorname{deg}(f)-\operatorname{deg}(g)+1 \leq$ $\operatorname{deg}(f)-k+1$ follows from that $k \leq 2 \operatorname{deg}(g)-\operatorname{deg}(f)$ and $\operatorname{deg}(f)>\operatorname{deg}(g)$. Therefore $q(x)$ does not depend on $f_{1}(x)$ or $g_{1}(x)$ and part (a) follows.

To prove part (b), observe that the division requires $\operatorname{deg}(f)-\operatorname{deg}(g)$ shifts of $g(x)$ (that is, successive subtractions of products of $g(x)$ with terms $x^{\operatorname{deg}(f)-\operatorname{deg}(g)}, \ldots, x, 1$ scaled by constants).

So $g_{2}(x)$ must be shifted the same number of times. Since it has at most k terms, only $\operatorname{deg}(f)-$ $\operatorname{deg}(g)+k$ of the remainder resulting from the division of $f(x)$ by $g(x)$ are affected by $g_{2}(x)$. In other words, the remainder terms of degree $\operatorname{deg}(f)-\operatorname{deg}(g)+k$ or higher do not depend on $g_{2}(x)$. Similarly, terms of the remainder of degree k or greater do not depend on $f_{2}(x)$. But $\operatorname{deg}(f)-\operatorname{deg}(g)+k>k$. Thus $r(x)$ and $r_{1}(x) x^{k}$ agree in all terms of degree $\operatorname{deg}(f)-\operatorname{deg}(g)+k$ or higher.

Lemma 4 Let $f(x)=f_{1}(x) x^{k}+f_{2}(x)$ and $g(x)=g_{1}(x) x^{k}+g_{2}(x)$, where $\operatorname{deg}(g)<\operatorname{deg}(f)=n$, $\operatorname{deg}\left(f_{2}\right)<k$, and $\operatorname{deg}\left(g_{2}\right)<k$. Then the quotients of the remainder sequences for (f, g) and $\left(f_{1}, g_{1}\right)$ agree at least until the latter sequence reaches a remainder of degree no more than $\operatorname{deg}\left(f_{1}\right) / 2$. In other words, we have

$$
R_{0, l(\lceil(n+k) / 2\rceil)}^{(f, g)}=R_{0, l(\lceil(n-k) / 2\rceil)}^{\left(f_{1}, g_{1}\right)}
$$

Proof Lemma 3 assumes that the quotients agree, and in the remainder sequences for (f, g) and $\left(f_{1}, g_{1}\right)$ a sufficient number of higher order terms agree. Use the fact that f_{1} is of degree $n-k$.

The next theorem establishes that the procedure HGCD generates all terms in the remainder sequence that have degree greater than $\frac{n}{2}$.

Theorem 5 Let $a_{0}(x)$ and $a_{1}(x)$ be polynomials with $\operatorname{deg}\left(a_{0}\right)=n$ and $\operatorname{deg}\left(a_{1}\right)<n$. Then $\operatorname{HGCD}\left(a_{0}, a_{1}\right)=R_{0, l(n / 2)}$.

Proof We use induction on n. By Lemma $4, R$ computed on line 6 in the procedure HGCD is

$$
R_{0, l(\lceil m / 2\rceil)}^{\left(b_{0}, b_{1}\right)}=R_{0, l(\lceil 3 m / 2\rceil)}^{\left(a_{0}, a_{1}\right)} .
$$

Namely, $R\binom{a_{0}}{a_{1}}$ produces the last term in the remainder sequence that has degree greater than $\lceil 3 m / 2\rceil$. Note that g_{0} and g_{1} on lines $9-10$ have degrees at most $2\lceil m / 2\rceil$. Lemma 4 also guarantees that the S computed on line 11 is

$$
R_{0, l(\lceil m / 2\rceil)}^{\left(g_{0}, g_{1}\right)}=R_{l(\lceil 3 m / 2\rceil)+1, l(m)}^{\left(a_{0}, a_{1}\right)} .
$$

And q computed on line 12 yields the matrix

$$
\left(\begin{array}{rr}
0 & 1 \\
1 & -q
\end{array}\right)=R_{l([3 m / 2\rceil), l([3 m / 2\rceil)+1}^{\left(a_{0}, a_{1}\right)} .
$$

Roughly speaking, to compute $R_{0, n / 2}^{\left(a_{0}, a_{1}\right)}$, the recursive calls to HGCD calculate $R_{0,3 n / 4}^{\left(a_{0}, a_{1}\right)}, R_{3 n / 4,5 n / 8}^{\left(a_{0}, a_{1}\right)}$, $R_{5 n / 8,9 n / 16}, \ldots$, in the order. The lower indices of these R matrices given here are not exact as they are indeed not consecutive. Every two adjacent matrices in the sequence is joined together by the matrix $\left(\begin{array}{rr}0 & 1 \\ 1 & -q\end{array}\right)$ on line 13 .

Now let us analyze the running time of the procedure HGCD. Let $T(n)$ be the time for HGCD on inputs of degree at most n. The recursive calls on lines 6 and 11 each takes time at most $T(n / 2)$.

The most expensive of the other operations are the multiplications on line 7 and the divisions on lines 8 and 12, which can be performed in time $O(n \lg n)$ using FFT. Thus we have the recurrence

$$
T(n) \leq 2 T\binom{n}{2}+O(n \lg n)
$$

The solution is $T(n)=O\left(n \lg ^{2} n\right)$.

4 A Fast Algorithm for Polynomial GCD's

The algorithm for greatest common divisors uses the procedure HGCD to calculate $R_{0, n / 2}$, then $R_{0,3 n / 4}$, then $R_{0,7 n / 8}$, and so on, where n is the degree of the input.

$\operatorname{GCD}\left(a_{0}, a_{1}\right)$	
1	if a_{1} divides a_{0}
2	then return a_{1}
3	else $R \leftarrow \operatorname{HGCD}\left(a_{0}, a_{1}\right)$
4	$\binom{b_{0}}{b_{1}} \leftarrow R\binom{a_{0}}{a_{1}}$
5	if b_{1} divides b_{0}
6	then return b_{1}
7	else $c \leftarrow b_{0} \bmod b_{1}$
8	return $\operatorname{GCD}\left(b_{1}, c\right)$

Example 6. Let us continue Example 5. There $p_{1}(x)=x^{5}+x^{4}+x^{3}+x^{2}+1$ and $p_{2}(x)=x^{4}-2 x^{3}+3 x^{2}-x-7$. We already found

$$
\operatorname{HGCD}\left(p_{1}, p_{2}\right)=\left(\begin{array}{cc}
1 & -(x+3) \\
-\left(\frac{1}{4} x-\frac{1}{16}\right) & \frac{1}{4} x^{2}+\frac{11}{16} x+\frac{13}{16}
\end{array}\right) .
$$

Thus we compute $b_{0}=4 x^{3}-7 x^{2}+11 x+22$ and $b_{1}=-\frac{3}{16} x^{2}-\frac{93}{16} x-\frac{45}{8}$ at line 4 . We find that b_{1} does not divide b_{0}. At line 7 , we find

$$
b_{0} \bmod b_{1}=3952 x+3952 .
$$

Since the latter divides $-\frac{3}{16} x^{2}-\frac{93}{16} x-\frac{45}{8}$, the call to GCD at line 8 terminates at line 2 and produces $3952 x+3952$ as an answer. Of course, $x+1$ is also a greatest common divisor of p_{1} and p_{2}.

Let $T(n)$ be the running time of the procedure GCD on input polynomials of degree n. Since $\operatorname{deg}\left(b_{1}\right) \leq \operatorname{deg}\left(a_{0}\right) / 2$, so the recursive call of GCD on line 8 takes time $T(n / 2)$. The divisions and multiplications on lines $1,4,5,6$ together require time $O(n \lg n)$. The call to HGCD takes time $O\left(n \lg ^{2} n\right)$. Therefore we arrive at the following recurrence

$$
T(n) \leq T\left(\frac{n}{2}\right)+O(n \lg n)+O\left(n \lg ^{2} n\right)
$$

Thus the greatest common divisor of two polynomials of degree at most n can be computed in $O\left(n \lg ^{2} n\right)$ time.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1974.
[2] D. E. Knuth. Seminumerical Algorithms, vol. 2 of The Art of Computer Programming, 3rd edition. Addison-Wesley, 1998.

[^0]: ${ }^{1}$ To insure uniqueness we could insist that the greatest common divisor be monic, that is, its leading term has coefficient 1.

