
Polynomial Division and Greatest Common Divisors

Com S 477/577

Sep 2, 2003

Let u(x) and v(x) be two polynomials such that v(x) 6= 0 and deg(u) ≥ deg(v). Suppose all the
coefficients are real (or rational). Then there exists a quotient polynomial q(x) and a remainder
polynomial r(x) such that

u(x) = q(x)v(x) + r(x), deg(r) < deg(v). (1)

It is easy to see that there is at most one pair of polynomials (q(x), r(x)) satisfying (1); for if
(q1(x), r1(x)) and (q2(x), r2(x)) both satisfy the relation with respect to the same polynomial u(x)
and v(x), then q1(x)v(x)+r1(x) = q2(x)v(x)+r2(x), so (q1(x)− q2(x))v(x) = r2(x)−r1(x). Now if
q1(x)− q2(x) is nonzero, we have deg((q1− q2) · v) = deg(q1− q2)+ deg(v) ≥ deg(v) > deg(r2− r1),
a contradiction; hence q1(x)− q2(x) = 0 and r1(x) = r2(x).

Given its uniqueness, we denote q(x) = ⌊u(x)
v(x) ⌋, analogous to the quotient in integer division.

Obviously, r(x) = u(x)− v(x)⌊u(x)
v(x) ⌋.

Let

u(x) = umxm + · · ·+ u1x + u0,

v(x) = vnxn + · · ·+ v1x + v0,

where vn 6= 0 and m ≥ n ≥ 0, the following procedure finds the polynomials

q(x) = qm−nxm−n + · · ·+ q0,

r(x) = rn−1x
n−1 + · · ·+ r0

that satisfy (1).

Polynomial-Divide

(

u(x), v(x)
)

1 m← deg(u)
2 n← deg(v)
3 for k = m− n downto 0
4 qk ← un+k/vn

5 for j = n + k − 1 downto k
6 uj ← uj − qkvj−k

7 (rn−1, . . . , r0)← (un−1, . . . , u0)

For example, let u(x) = 3x3− 5x2 + 10x + 8 and v(x) = x2 + 2x− 3. Then the for loop of lines
3–6 goes through two iterations and yields q(x) = 3x− 11 and r(x) = 41x− 25.

1



It is not difficult to see that the number of arithmetic operations involved in polynomial division
is O((m−n+1)n) if the procedure Polynomial-Divide is used. In the next section, we will describe

an algorithm that computes the quotient ⌊u(x)
v(x) ⌋ in time O(n lg n) if m is on the order n. Later on

we will introduce a fast algorithm that computes the greatest common divisor of u(x) and v(x).

1 A Fast Division Algorithm

Let u(x) = umxm + · · ·+u1x+u0 and v(x) = vnxn + · · ·+v1x+v0 be two polynomials of degrees m

and n, respectively. Suppose we are to compute q(x) = ⌊u(x)
v(x) ⌋. First, let us transform the division

below:

u(x)

v(x)
=

umxm + · · ·+ u1x + u0

vnxn + · · ·+ v1x + v0

=
(

um +
um−1

x
+ · · · +

u0

xm

) xm

vnxn + · · ·+ v1x + v0

=
(

um +
um−1

x
+ · · · +

u0

xm

)

(

s(x) +
t(x)

vnxn + · · ·+ v1x + v0

)

, deg(t) < n.

So s(x) and t(x) are the quotient and remainder of xm divided by v(x), respectively. Now, q(x) =

⌊u(x)
v(x) ⌋ is completely determined by the product of um + um−1

x + · · · + u0

xm
with s(x). Suppose s(x)

is already computed, then we simply multiply u(x) with s(x), throw away all terms of degree less
than m, and scale the resulting polynomial by x−m. The result will be q(x). For multiplication,
we use FFT which costs time O(m lg m), or O(n lg n) if m is on the order of n.

But how do we compute s(x) =
⌊

xm

v(x)

⌋

efficiently? Note that we can “scale” polynomials by

multiplying and dividing by powers of x easily. So we assume that v(x) is of degree n = 2l − 1 for

some integer l. If not, we multiply both u(x) and v(x) by x2⌈log
n+1
2

⌉−1−n.
Given that the degree n of v(x) is now one less than some perfect power of 2, we look at how

to find the reciprocal s(x) of v(x), which is defined to be
⌊

x2n

v(x)

⌋

. If m ≤ 2n, to obtain
⌊

u(x)
v(x)

⌋

, we

multiply s(x) with u(x), discard all terms of degree less than 2n in the product polynomial, and
finally, scale the resulting polynomial by x−2n. If m > 2n, then we obtain

⌊

u(x)

v(x)

⌋

=

⌊

u(x)

x2n

(

s(x) +
t(x)

v(x)

)⌋

, deg(t) < n

=

⌊

u(x)s(x)

x2n

⌋

+

⌊

u(x)t(x)

x2nv(x)

⌋

=

⌊

u(x)s(x)

x2n

⌋

+

⌊⌊

u(x)t(x)

x2n

⌋/

v(x)

⌋

.

To obtain the first term in the last equation above, we compute the product u(x)s(x), trim off
all terms of degree less than 2n, and then scale by x−2n. To obtain

⌊

u(x)t(x)/x2n
⌋

, we compute
the product u(x)t(x) and carry out the same trimming and scaling steps. Then we end up with
another division problem involving the new dividend

⌊

u(x)t(x)/x2n
⌋

and the divisor v(x), where
the reciprocal of v(x) can be used again. The degree of the dividend has reduced by at least n + 1
since deg(t) ≤ n − 1. The quotient of this second division will be added to the quotient obtained

2



in the first division. And so on. As long as m is on the order of n, the procedure will terminate
after a constant number of divisions.

In computing the quotient, all the multiplications can be carried out by FFT and cost O(n lg n)
together. The running time of the algorithm then depends on how fast the reciprocal can be
computed.

The procedure Reciprocal below takes as input a polynomial p(x) =
∑k−1

i=0 aix
i, where ak−1 6=

0 and k is a power of 2. It computes ⌊x2k−2/p(x)⌋.

Reciprocal

(

k−1
∑

i=0

aix
i

)

1 if k = 1
2 then return 1/a0

3 else q(x)← Reciprocal





k−1
∑

i=k/2

aix
i−k/2





4 r(x)← 2q(x)x(3/2)k−2 −
(

q(x)
)2
(

k−1
∑

i=0

aix
i

)

5 return

⌊

r(x)

xk−2

⌋

Example 1. Let us compute ⌊x14/p(x)⌋, where

p(x) = x7 − x6 + x5 + 2x4 − x3 − 3x2 + x + 4.

Here k = 8. In line 3 of the procedure Reciprocal, a recursive call is made to compute the reciprocal of
x3 − x2 + x + 2. You may verify that the recursive call returns

q(x) =

⌊

x6

x3 − x2 + x + 2

⌋

= x3 + x2 − 3.

Line 4 yields

r(x) = 2q(x)x10 − (q(x))2p(x)

= x13 + x12 − 3x10 − 4x9 + 3x8 + 15x7 + 12x6 − 42x5 − 34x4 + 39x3 + 51x2 − 9x− 36.

Then at line 5, the result is

s(x) = x7 + x6 − 3x4 − 4x3 + 3x2 + 15x + 12.

You may verify that s(x)p(x) is x14 plus a polynomial of degree 6.

Theorem 1 The procedure Reciprocal correctly computes the reciprocal of a polynomial.

Proof By induction on k, for k a power of 2. Namely, we prove that if s(x) = Reciprocal(p(x)),
and deg(p(x)) = k− 1, then s(x)p(x) = x2k−2 + t(x), where deg(t(x)) < k− 1. The base case k = 1
is trivial, since p(x) = a0, s(x) = 1/a0, and t(x) need not exist.

3



For the inductive step, let p(x) = p1(x)xk/2 +p2(x), where deg(p1) = k
2 −1 and deg(p2) ≤

k
2 −1.

By the inductive hypothesis, if s1(x) = Reciprocal(p1(x)), then

s1p1 = xk−2 + t1(x), (2)

where deg(t1) < k
2 − 1. Line 4 of the procedure computes

r(x) = 2s1x
(3/2)k−2 − s2

1

(

p1x
k/2 + p2

)

. (3)

In order for the output
⌊

r(x)/xk−2
⌋

to be the reciprocal of p(x), r(x)p(x)/xk−2 must be x2k−2 plus
some terms of degree less than xk−1. So it suffices to show that r(x)p(x) is x3k−4 plus terms of
degree less than 2k − 3.

By (3) and the fact that p = p1x
k/2 + p2, we have

r · p = 2s1p1x
2k−2 + 2s1p2x

(3/2)k−2 −
(

s1p1x
k/2 + s1p2

)2

= 2
(

xk−2 + t1

)

x2k−2 + 2s1p2x
(3/2)k−2 −

(

(xk−2 + t1)x
k/2 + s1p2

)2
, substitute (2) in

= 2x3k−4 + 2t1x
2k−2 + 2s1p2x

(3/2)k−2 − x3k−4 − 2x(3/2)k−2
(

t1x
k/2 + s1p2

)

−
(

t1x
k/2 + s1p2

)2

= x3k−4 −
(

t1x
k/2 + s1p2

)2
.

Since deg(t1) ≤
k
2 − 2, deg(s1) = k

2 − 1, and deg(p2) ≤
k
2 − 1, the term

(

t1x
k/2 + s1p2

)2
is of degree

at most 2k − 4.

Let T (k) be the running time the procedure Reciprocal on
∑k−1

i=0 aix
i. Then line 3 takes time

T (k/2). Line 4 can be executed in time O(k lg k) using FFT. So we set up the recurrence

T (k) = T

(

k

2

)

+ O(k lg k),

which has the solution O(k lg k).
Based on all the above, we have arrived at the following conclusion.

Theorem 2 Let u(x) = umxm + · · · u1x + u0 and v(x) = vnxn + · · · v1x + v0 be two polynomials
of degrees m and n, respectively, such that m ≥ n and m = Θ(n). Then the quotient q(x) =
⌊u(x)/v(x)⌋ and the remainder r(x) = u(x)− q(x)v(x) can be computed in time O(n lg n).

2 The Euclidean Algorithm

Let a0 and a1 be two positive integers. The greatest common divisor of a0 and a1, often denoted
by gcd(a0, a1), divides both a0 and a1, and is divided by every divisor of both a0 and a1. Euclid’s
algorithm obtains gcd(a0, a1) by repeatedly computing ai+1 = ai−1 − qiai, for 1 ≤ i < k, where
qi = ⌊ai−1/ai⌋.

Example 2. Let a0 = 501 and a1 = 111. Then Euclid’s algorithm generates the following:

501 = 4 · 111 + 57,

111 = 1 · 57 + 54,

57 = 1 · 54 + 3,

54 = 18 · 3.

4



Since the last division results in a remainder of zero, gcd(501, 111) = 3. Meanwhile, we can trace back the
computation, starting from the second to last division:

3 = 57− 54

= 57− (111− 57)

= 2 · 57− 111

= 2 · (501− 4 · 111)− 111

= 2 · 501− 9 · 111.

In this way we find integers x = 2 and y = −9 such that

a0x + a1y = gcd(a0, a1).

Euclid’s algorithm can be extended to find not only the greatest common divisor of a0 and a1,
but also integers x and y such that a0x + a1y = gcd(a0, a1). The algorithm is as follows.

Extended-Euclid(a0, a1)
1 x0 ← 1
2 y0 ← 0
3 x1 ← 0
4 y1 ← 1
5 i← 1
6 while ai does not divide ai−1

7 q ← ⌊ai−1/ai⌋
8 ai+1 ← ai−1 − qai

9 xi+1 ← xi−1 − qxi

10 yi+1 ← yi−1 − qyi

11 i← i + 1

Example 3. For the previous example, we obtain the following values for the ai’s, xi’s, and yi’s.

i ai xi yi

0 501 1 0
1 111 0 1
2 57 1 −4
3 54 −1 5
4 3 2 −9

Let us use induction to show that in the procedure Extended-Euclid

a0xi + a1yi = ai.

Apparently, the equation holds for i = 0 and i = 1 by lines 1–4 of the procedure. Assume that it
holds for i− 1 and i. Then xi+1 = xi−1 − qxi by line 9 and yi+1 = yi−1 − qyi by line 10. Thus

a0xi+1 + a1yi+1 = a0xi−1 + a1yi−1 − q(a0xi + a1yi).

5



By the induction hypothesis and the above equation, we have

a0xi+1 + a1yi+1 = ai−1 − qai

= ai+1, by line 8.

Next, we introduce some notation that will be useful in the development of the greatest common
divisor algorithm for polynomials. Let a0 and a1 be integers with remainder sequence a0, a1, . . . , ak.
For 1 ≤ i ≤ k let qi = ⌊ai−1/ai⌋. We define, for 0 ≤ i ≤ j ≤ k, the matrix

R
(a0,a1)
ij = Rij =



















(

1 0
0 1

)

, if i = j;

(

0 1
1 −qj

)

·

(

0 1
1 −qj−1

)

· · ·

(

0 1
1 −qi+1

)

, if i < j.

Example 4. Let a0 = 501 and a1 = 111 with remainder sequences 501, 111, 57, 54, 3 and quotients qi, for
1 ≤ i ≤ 4, given by 4, 1, 1, 18. Then

R03 =

(

0 1
1 −1

)

·

(

0 1
1 −1

)

·

(

0 1
1 −4

)

=

(

−1 5
2 −9

)

.

For i < j < k we have
(

aj

aj+1

)

=

(

0 1
1 −qj

)

·

(

aj−1

aj

)

...

=

(

0 1
1 −qj

)

· · ·

(

0 1
1 −qi+1

)(

ai

ai+1

)

= Rij

(

ai

ai+1

)

.

In particular,

R0j

(

a0

a1

)

=

(

aj

aj+1

)

.

Namely, we can use R0j to directly obtain the jth and (j + 1)-th remainders in the remainder
sequence of (a0, a1).

Finally, we use induction to show that

R0j =

(

xj yj

xj+1 yj+1

)

, for 0 ≤ j ≤ k.

The equation apparently holds when j = 0. Suppose it holds for some j. Then

R0,j+1 =

(

0 1
1 −qj+1

)

R0j

=

(

0 1
1 −qj+1

)(

xj yj

xj+1 yj+1

)

=

(

xj+1 yj+1

xj+2 yj+2

)

, by lines 9 and 10 in Extended-Euclid.

6



3 The Procedure HGCD

Let a0(x) and a1(x) be two polynomials whose greatest common divisor we wish to compute. As-
sume deg(a1(x)) < deg(a0(x)). If their degrees are the same, replace them by a0 and a0 modulo a1,
or simply, a0 mod a1.

For polynomials over a field the greatest common divisor is unique only up to multiplication by
a constant. That is, if g(x) divides a0(x) and a1(x) and any other divisor of these two polynomials
also divides g(x), then cg(x) also has this property for any constant c 6= 0. We shall be satisfied
with finding any one greatest common divisor.1

The GCD algorithm will employ a divide-and-conquer strategy. We will first design an algorithm
that obtains the last term in the remainder sequence whose degree is more than deg(a0)/2. Let
al(i) be the remainder in the sequence whose degree is greater than i but whose following remainder
al(i)+1 has degree at most i. Since deg(ai) ≤ deg(ai−1) − 1 for all i ≥ 1, it follows that if a0 is of
degree n, then l(i) ≤ n− i− 1.

The quotient of two polynomials of degree d1 and d2, with d1 > d2, has degree d1 − d2. It
depends only on the leading min{d1 − d2 + 1, d2} terms of the divisor and the leading d1 − d2 + 1
terms of the dividend. This is because the total number of shifts in carrying out the division is
d1 − d2. Only the leading d1 − d2 + 1 terms of the divisor will have its multiples subtracted from
the leading d1 − d2 + 1 terms of the dividend to determine the quotient.

Using the above principle, we now introduce a recursive procedure HGCD (half GCD) which
takes a0 and a1, with n = deg(a0) > deg(a1), and produces the matrix R0j , where j = l(n/2).
Afterward, we can easily obtain aj = R0ja0 as the last term in the remainder sequence whose
degree exceeds deg(a0)/2.

HGCD(a0, a1)
1 if deg(a1) ≤ deg(a0)/2

2 then return

(

1 0
0 1

)

3 else m← ⌊deg(a0)/2⌋
4 let a0 = b0x

m + c0, where deg(c0) < m;
5 let a1 = b1x

m + c1, where deg(c1) < m.
6 R← HGCD(b0, b1)

7

(

d
e

)

← R

(

a0

a1

)

8 f ← d mod e

9 let e = g0x
⌊m/2⌋ + h0, where deg(h0) < ⌊m/2⌋;

10 let f = g1x
⌊m/2⌋ + h1, where deg(h1) < ⌊m/2⌋.

11 S ← HGCD(g0, g1)
12 q ← ⌊d/e⌋

13 return S ·

(

0 1
1 −q

)

· R

1To insure uniqueness we could insist that the greatest common divisor be monic, that is, its leading term has

coefficient 1.

7



In lines 4–5, b0 and b1 are the leading terms of a0 and a1, respectively. We have deg(b0) =
⌈deg(a0)/2⌉ and deg(b0) − deg(b1) = deg(a0) − deg(a1). In lines 7–8, d, e, and f are successive
terms in the remainder sequence generated from a0 and a1. As we will see, d is the last term of
degree greater than ⌈3m/2⌉ in the remainder sequence of a0 and a1; so e and f have degrees at
most ⌈3m/2⌉, that is, 3

4 deg(a0). Also g0 and g1 are each of degree at most m + 1.

Example 5. Let us first illustrate the execution of the procedure HGCD on the following polynomials:

p1(x) = x5 + x4 + x3 + x2 + x + 1,

p2(x) = x4 − 2x3 + 3x2 − x− 7.

Suppose we attempt to compute HGCD(p1, p2); hence a1 = p1 and a2 = p2. At lines 3–5, we have m = 2
and

b0 = x3 + x2 + x + 1,

c0 = x + 1,

b1 = x2 − 2x + 3,

c1 = −x− 7.

At line 6, HGCD(b0, b1) is called and returns the value

R =

(

0 1
1 −(x + 3)

)

as we may check. Next, at lines 7–8, we compute

d = x4 − 2x3 + 3x2 − x− 7,

e = 4x3 − 7x2 + 11x + 22,

f = −
3

16
x2 −

93

16
x−

45

8
.

Since ⌊m/2⌋ = 1, the execution of lines 9–10 yields

g0 = 4x2 − 7x + 11,

h0 = 22,

g1 = −
3

16
x−

93

16
,

h1 = −
45

8
.

Thus at line 11, the recursive call HGCD(g0, g1) sets

S =

(

1 0
0 1

)

.

At line 12, the quotient q(x) is found to be 1

4
x− 1

16
. So at line 13, we have the result

T =

(

1 0
0 1

)(

0 1
1 −(1

4
x− 1

16
)

)(

0 1
1 −(x + 3)

)

=

(

1 −(x + 3)
−(1

4
x− 1

16
) 1

4
x2 + 11

16
x + 13

16

)

.

8



Note that

T

(

p1

p2

)

=

(

e
f

)

,

which is correct since in the remainder sequence for p1 and p2, e is the last polynomial whose degree exceeds

half that of p1.

Let us consider the matrix R computed at line 6 of HGCD. Presumably Rb0 is the last polyno-

mial of degree greater than ⌈m/2⌉ in the remainder sequence for b0 and b1; that is, R = R
(b0,b1)
0,l(⌈m/2⌉).

Yet, on line 7, we use R as if it were the matrix R
(a0,a1)
0,l(⌈3m/2⌉) to obtain d and e, where d is the last

term of degree greater than ⌈3m/2⌉ in the remainder sequence of a0 and a1. We must show that

R = R
(b0,b1)
0,l(⌈m/2⌉) = R

(a0,a1)
0,l(⌈3m/2⌉).

Similarly, we must show that S, computed on line 11, plays the role assigned to it on line 13. That
is,

S = R
(g0,g1)
0,l(⌈m/2⌉) = R

(e,f)
0,l(m).

Lemma 3 Consider the following two polynomials:

f(x) = f1(x)xk + f2(x),

g(x) = g1(x)xk + g2(x),

where deg(f) ≥ deg(g), deg(f2) < k, and deg(g2) < k. Let

f(x) = q(x)g(x) + r(x),

f1(x) = q1(x)g1(x) + r1(x),

where deg(r) < deg(g) and deg(r1) < deg(g1). If k ≤ 2 deg(g) − deg(f), namely, deg(g1) ≥
1
2deg(f1), then

(a) q(x) = q1(x);

(b) r(x) and r1(x)xk agree in all terms of degree k + deg(f)− deg(g) or higher.

Proof Consider dividing f(x) by g(x) using the ordinary division algorithm which divides the
first term of f(x) by the first term of g(x) to get the first term of the quotient. The first term of the
quotient is multiplied by g(x) and subtracted from f(x) and so on. The first deg(g)−k+1 terms of
the quotient produced only involve the leading deg(g)−k+1 terms of g(x), that is, terms of degree
k or higher; thus they do not depend on g2(x). Meanwhile, the quotient has degree deg(f)−deg(g)
and thus deg(f)−deg(g)+1 terms. Therefore if deg(f)−deg(g)+1 ≤ deg(g)− k +1, the quotient
does not depend on g2(x). But this follows from that k ≤ 2 deg(g)−deg(f). Similarly, the quotient
involves only the leading deg(f)−deg(g)+1 terms of f(x). So if deg(f)−deg(g)+1 ≤ deg(f)−k+1,
the quotient does not depend on f2(x) since deg(f2) < k. But the condition deg(f)− deg(g) + 1 ≤
deg(f)− k + 1 follows from that k ≤ 2deg(g) − deg(f) and deg(f) > deg(g). Therefore q(x) does
not depend on f1(x) or g1(x) and part (a) follows.

To prove part (b), observe that the division requires deg(f) − deg(g) shifts of g(x) (that is,
successive subtractions of products of g(x) with terms xdeg(f)−deg(g), . . . , x, 1 scaled by constants).

9



So g2(x) must be shifted the same number of times. Since it has at most k terms, only deg(f) −
deg(g) + k of the remainder resulting from the division of f(x) by g(x) are affected by g2(x).
In other words, the remainder terms of degree deg(f) − deg(g) + k or higher do not depend on
g2(x). Similarly, terms of the remainder of degree k or greater do not depend on f2(x). But
deg(f)− deg(g) + k > k. Thus r(x) and r1(x)xk agree in all terms of degree deg(f)− deg(g) + k
or higher.

Lemma 4 Let f(x) = f1(x)xk + f2(x) and g(x) = g1(x)xk + g2(x), where deg(g) < deg(f) = n,
deg(f2) < k, and deg(g2) < k. Then the quotients of the remainder sequences for (f, g) and (f1, g1)
agree at least until the latter sequence reaches a remainder of degree no more than deg(f1)/2. In
other words, we have

R
(f,g)
0,l(⌈(n+k)/2⌉) = R

(f1,g1)
0,l(⌈(n−k)/2⌉).

Proof Lemma 3 assumes that the quotients agree, and in the remainder sequences for (f, g) and
(f1, g1) a sufficient number of higher order terms agree. Use the fact that f1 is of degree n− k.

The next theorem establishes that the procedure HGCD generates all terms in the remainder
sequence that have degree greater than n

2 .

Theorem 5 Let a0(x) and a1(x) be polynomials with deg(a0) = n and deg(a1) < n. Then
HGCD(a0, a1) = R0,l(n/2).

Proof We use induction on n. By Lemma 4, R computed on line 6 in the procedure HGCD is

R
(b0,b1)
0,l(⌈m/2⌉) = R

(a0,a1)
0,l(⌈3m/2⌉).

Namely, R
(a0

a1

)

produces the last term in the remainder sequence that has degree greater than
⌈3m/2⌉. Note that g0 and g1 on lines 9–10 have degrees at most 2⌈m/2⌉. Lemma 4 also guarantees
that the S computed on line 11 is

R
(g0,g1)
0,l(⌈m/2⌉) = R

(a0,a1)
l(⌈3m/2⌉)+1, l(m).

And q computed on line 12 yields the matrix

(

0 1
1 −q

)

= R
(a0,a1)
l(⌈3m/2⌉), l(⌈3m/2⌉)+1.

Roughly speaking, to compute R
(a0,a1)
0,n/2 , the recursive calls to HGCD calculate R

(a0,a1)
0,3n/4 , R

(a0,a1)
3n/4,5n/8,

R5n/8,9n/16, . . ., in the order. The lower indices of these R matrices given here are not exact as they
are indeed not consecutive. Every two adjacent matrices in the sequence is joined together by the

matrix

(

0 1
1 −q

)

on line 13.

Now let us analyze the running time of the procedure HGCD. Let T (n) be the time for HGCD

on inputs of degree at most n. The recursive calls on lines 6 and 11 each takes time at most T (n/2).

10



The most expensive of the other operations are the multiplications on line 7 and the divisions on
lines 8 and 12, which can be performed in time O(n lg n) using FFT. Thus we have the recurrence

T (n) ≤ 2T

(

n

2

)

+ O(n lg n).

The solution is T (n) = O(n lg2 n).

4 A Fast Algorithm for Polynomial GCD’s

The algorithm for greatest common divisors uses the procedure HGCD to calculate R0,n/2, then
R0,3n/4, then R0,7n/8, and so on, where n is the degree of the input.

GCD(a0, a1)
1 if a1 divides a0

2 then return a1

3 else R← HGCD(a0, a1)

4

(

b0

b1

)

← R

(

a0

a1

)

5 if b1 divides b0

6 then return b1

7 else c← b0 mod b1

8 return GCD(b1, c)

Example 6. Let us continue Example 5. There p1(x) = x5+x4+x3+x2+1 and p2(x) = x4−2x3+3x2−x−7.
We already found

HGCD(p1, p2) =

(

1 −(x + 3)
−(1

4
x− 1

16
) 1

4
x2 + 11

16
x + 13

16

)

.

Thus we compute b0 = 4x3 − 7x2 + 11x + 22 and b1 = − 3

16
x2 − 93

16
x− 45

8
at line 4. We find that b1 does not

divide b0. At line 7, we find
b0 mod b1 = 3952x + 3952.

Since the latter divides − 3

16
x2 − 93

16
x − 45

8
, the call to GCD at line 8 terminates at line 2 and produces

3952x + 3952 as an answer. Of course, x + 1 is also a greatest common divisor of p1 and p2.

Let T (n) be the running time of the procedure GCD on input polynomials of degree n. Since
deg(b1) ≤ deg(a0)/2, so the recursive call of GCD on line 8 takes time T (n/2). The divisions and
multiplications on lines 1, 4, 5, 6 together require time O(n lg n). The call to HGCD takes time
O(n lg2 n). Therefore we arrive at the following recurrence

T (n) ≤ T
(n

2

)

+ O(n lg n) + O(n lg2 n).

Thus the greatest common divisor of two polynomials of degree at most n can be computed in
O(n lg2 n) time.

11



References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] D. E. Knuth. Seminumerical Algorithms, vol. 2 of The Art of Computer Programming, 3rd
edition. Addison-Wesley, 1998.

12


