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Deep learning is a computer-based modeling approach, which is made up of many processing layers that are used to understand
the representation of data with several levels of abstraction. This review paper presents the state of the art in deep learning to
highlight the major challenges and contributions in computer vision. This work mainly gives an overview of the current un-
derstanding of deep learning and their approaches in solving traditional artificial intelligence problems. These computational
models enhanced its application in object detection, visual object recognition, speech recognition, face recognition, vision for
driverless cars, virtual assistants, and many other fields such as genomics and drug discovery. Finally, this paper also showcases the

current developments and challenges in training deep neural network.

1. Introduction

There are various tasks like multiplying big numbers or
search operations, which are difficult for human beings to
perform but are easy to perform on computers, and there are
certain tasks like driving or language conversations that are
tough to be performed on the machines. Machine learning is
used to make the computers perform the tasks which can be
done better by the human beings. Machine learning is the
use of computer algorithms, which enables the machine to
learn to access the data automatically with an improved
experience. It has made life easy and has become an essential
tool in many sectors like agriculture, banking, optimization,
robotics, structural health monitoring, etc. It can be used in
devices like cameras for object recognition; image, color; and
pattern recognition; data collection; data sorting; and
translation of speech to text. One of the machine learning
approaches that is dominant in these fields of applications is
deep learning.

Machine learning works similar to that of a new born
baby. There are billions of neurons in the brain, which are
interconnected and are activated when a message is passed to
the brain. For example, when a baby is shown a car, a certain

set of neurons are activated, when the baby is shown another
car of a different model, the same set of neurons with some
additional neurons might be activated, and when the baby is
shown a lion, a different set of neurons will be activated. So,
human beings are trained in their childhood and they learn
things, and during this process the neurons and the paths
connecting them are adjusted. Machine learning also works
like this, where the machine is trained by many examples
that are present in the training data sets and the neural
networks are trained and adjust the paths followed. Then, the
machine is given a new set of inputs and gets outputs. Some
of the real-life examples where this technique is used are
spam filters in Gmail, yahoo, and true caller app that filter
the spam mails, and amazon ALEXA and the recommended
videos that come in our YouTube homepage according to the
type of videos that we watched earlier. Some companies like
TESLA, Apple, and Nissan are working on driverless
technology based on deep learning.

Deep learning is one of the techniques used in machine
learning. Deep learning works on the principle of extracting
features from the raw data by using multiple layers for
identifying different aspects relevant to input data. Deep
learning techniques include convolutional network,
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recurrent neural network, and deep neural network. Deep
learning uses artificial neural network, especially the con-
volutional network. In the past, machine learning use was
limited due to its inability to process the raw input data.
Deep learning has helped in overcoming this limitation, as it
has the ability to operate on large volumes of data and thus
has been an effective and useful technique of machine
learning. Deep learning has also picked up the pace due to
the hardware advancements of computers. A deep experi-
ence in feature extraction was necessary to convert the raw
data into a suitable form so that the subsystem of the ma-
chine can recognize and classify the raw data.

Machine learning performance greatly depends on data
representation. Due to this, much of the time is consumed in
preprocessing design, which makes the algorithms labor
intensive. Representation learning is used to extract only
useful information during data classification by learning
data representation. Feature learning has replaced manual
involvement for data representation and allows the machine
to discover the representations automatically to make it
useful for classification. Representation learning has found
its application in both academic as well as industrial fields.
Representation learning has been used for speech recogni-
tion, language processing [1], and object recognition.
Microsoft created MAVIS in 2012, which is speech-based
feature learning. Deep learning is also used in Deep ar-
chitectures that give the advantage of reusing features and
can also capture higher number of input configurations.
Deep learning uses representation learning by creating
multiple layers of representations. This creates a path
connecting the input and output node, and the depth of the
path influences the representation learning. It indicates the
number of ways in which the different paths can be used. For
example, in image recognition, different layers represent
different aspects like edges, surface, letters, or faces. Here,
each neuron or node in the input layer works on a subtask
and passes the result of the subtask to the hidden layers and
then the hidden layers pass the results of the subsequent
subtasks to the output layer to detect the face, which rep-
resents the final output. Thus, deep learning methods have
reduced human dependence by generating different
methods for extracting features.

Deep learning has provided a breakthrough in the field of
Artificial intelligence, which had limitations in the past
decades. Deep learning has provided methods to classify
millions of images into lesser number of classes, thereby
reducing the error percentage [1]. Scene labeling is used to
label every pixel of the image to categorize the body into the
class it belongs to [2]. Body poses of human beings can be
estimated in the images by using different network com-
binations for modeling joint relationship [3]. Different ar-
chitectures can be used to optimize the computational costs
for deep learning methods for image recognition [4]. Deep
neural networks are trained to effectively reduce the error in
speech recognition tasks [5]. Neural networks have been
implemented successfully in acoustic modeling and for
reducing variations in speech signals [6, 7]. Deep neural
networks evolved where effective algorithms and advance-
ment in the computer technology have made them a
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dominant approach in machine learning and have proved to
be effective for drug discoveries [8]. It has also been useful in
identifying electron or particles in a filtering system and to
solve physics problems [9, 10], neuron reconstruction in
retina [11] for classifying the DNA variants, and improved
prediction of the splicing patterns in tissues [12, 13]. Further
advances have created a unified neural network that can be
used for solving various tasks like answering questions from
a vast range of topics, speech recognition, etc., rather than
using separate networks for specific tasks, thus reducing the
computational costs [14, 15]. They have also been used for
improving the performance of language translation having
very large vocabulary with optimized complexity [16, 17].
Mammone et al. [18] used electroencephalographic [EFG] to
investigate the motor planning activity for decoding motor
preparation phases. They successfully obtained results in the
time-frequency domain by implementing deep learning
phenomena. Yang et al. [19] briefed about the recent de-
velopments on signal processing and machine learning
(SPML) research. Morabito et al. [20] implemented the deep
learning concept based on convolutional neural network
(CNNs) approach and also on autoencoder multilayered
feedforward perceptron for classifying Alzheimer’s disease
patients from mild cognitive impairment and healthy
controls subjects. Li et al. [21] recently used a novel neural
network for wideband spectrograms to detect signals and
classify signal types. Figure 1 illustrates the block diagram for
the basic structure of the convolutional neural network
(CNN) model where convolutional layer and max pooling
layers are the initial phases that are chased by a fully con-
nected layer as the linear discriminator. Deep learning
methods use multiple layers for extracting features from raw
data and do not require human participation. The paper is
organized as follows: an overview of supervised learning and
its developments are described in Section 2. In Section 3, the
technique of backpropagation is shown for training multi-
layer networks. Convolutional networks are explained in
Section 4, and image understanding with deep convolutional
networks are presented in this section. In Section 6, an
overview of deep representations and language processing is
shown. Section 7 describes the recurrent neural networks.
Finally, Section 8 concludes the paper, which summarizes
the current understanding of deep learning and their
challenges in computer vision.

2. Supervised Learning

Supervised learning is a method of learning a function to
map input data which is in the form of a vector to the output
data which is a supervisory signal. It produces a function that
can be used for mapping other examples. Supervised
learning first decides the type of data that should be used for
different training examples. After gathering the data, the
input and outputs are gathered from human experts and the
input data are to be represented in the form of a function,
and its accuracy depends on the way the input feature is
represented so as to signify the object of interest. Then, the
structure of the function and algorithm are determined and
the algorithm is made to run on the gathered data, and the
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FIGURE 1: Block diagram of the basic structure of CNNs model (https://www.mdpi.com/2072-4292/12/9/1444/htm).

parameters are adjusted and the accuracy of the function is
evaluated where it is made to run for different data or ex-
amples. Suppose we want to create a system that classifies the
images of different objects with different categories like fan,
tube light, human being, etc. A large number of images of the
corresponding categories are collected and these images are
shown to the machine, and it produces an output in the form
of vector scores for each image of the particular category
during the training. Here, a function is obtained that gives
the error between the output vector scores obtained after
training and the desired vector scores decided upon before
training. Then, the machine optimizes these parameters and
reduces its error. These optimized parameters are called
weights and are used to define the learned function of the
machine.

The algorithm computes a gradient vector to adjust the
weights used. These gradients are useful for reducing the
error between the vectors by changing the weight vector
according to the gradient vector produced. Here, the
functions are taken as a landscape and the negative gradient
indicates the descent of the landscape and thus reduces the
overall average.

Most of the users use Stochastic Gradient Descent (SGD)
due to its better performance. Stochastic means randomness.
Gradient indicates the slope and gradient descent means the
decrease in the slope. The main objective of a gradient
function is to find the value of the input variable or inde-
pendent variable, which gives minimum value of the ob-
jective function. It is an iterative approach in which a point is
selected first and then this point is updated for every step as
the slope of the function decreases. Gradient descent al-
gorithm is very slow when the number of iterations and data
points are increased, thus making them limited for larger
data sets. Therefore, stochastic gradient descent is used,
which introduces randomness in the algorithm during
selecting the data points. SGD reduces the number of
computations by selecting any one data point at random
during each iteration. The algorithm produces the output,
errors, and gradients for the given input set and then adjusts
the weights until the slope or the gradient descent stops
decreasing. One can get the required accuracy of the training
set without going through all the examples. So, a stochastic

algorithm can find the averaged weights quickly as com-
pared to the optimization techniques [22]. After achieving
the accuracy, the performance of the algorithm is tested on
the test set that has different examples. The performance on
the test set indicates the machine’s ability to give the answers
for a new set of inputs that were not used during the training
of the algorithm.

Linear classifiers are being used in machine learning
applications because they are the fastest when it comes to the
classification speed. Linear classifiers are used to classify the
data into classes, which depend on the linear combination of
the input feature values. These feature values are given as
input to the machine in the form of vectors. The output
obtained is in the form of a function of weight vector and the
input features. The weights are adjusted during the training.
Here, the function value becomes 1 when the product of the
weight vector and the input feature crosses the threshold
value, and the function value becomes zero for the other
values of the dot product of the weight and input feature
vectors. These classifiers separate the data by using hyper-
plane or a plane. For a two-class classification problem, a
linear classifier splits the input space using a hyperplane
where the points of one type are classified on one side of the
hyperplane and the others on the other side of the hyper-
plane [23]. But, linear classifiers are sensitive to problems
where the inputs vary like the variation in the position,
poses, and accent of the speaker. For example, consider a
Siberian tiger and a Bengal tiger, both of whom have very
little variation in their features. If we consider any one breed
at a minute level with a different background, then the
images will be different but when the two different breeds are
placed in the same pose and same background, the linear
classifier cannot differentiate the images and may show that
both of these animals or images belong to the same category
or the same breed. Here, feature extractor becomes im-
portant to remove the confusion while judging the images
that do not vary with respect to the poses or the background.
Kernel methods can make the classifiers more powerful and
can be used for solving nonlinear problems. Kernel methods
are used for pattern analysis and classification [24]. They can
transform raw data into implicit feature vector so that the
feature space of the input data is operated without
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computing the data coordinates in that space. Actually, it
computes the product of the images of the pairs in the data
set and reduces the computational time unlike the higher
computation time obtained in explicit computation. Here,
kernel method converts a linear model into a nonlinear
model. One of the kernel methods is support vector ma-
chine, which uses the algorithm to classify the input; for
example, they classify the tiger into the animal group and
Maruti 800 into the car group. It converts a lower dimension
problem into a higher dimension problem, and then solves it
and gives the output. For example, it converts a 2D problem
into a 3D problem, and the hyperplane used in a 2D problem
to classify the data is converted into a plane, which classifies
the data in the 3D problem. Another kernel method is the
Gaussian process, which uses normal distribution for data
classification. It follows the stochastic process, where the
linear combinations of random variables are normally
distributed. But, this method is sensitive to variations of the
target. They require a large number of examples in the data
set, and this number increases with the increase in the
number of variations [25]. Here, feature extractor becomes
important, as it can be designed conventionally or learned
automatically by using deep learning.

Deep learning architecture is based on the working of
the neural networks present in the human brain. Just like a
cell acts as the basic building block of the human body, a
neuron acts as the heart of the neural network. A neuron
acts as a node which does mathematical operations on the
input to give an output. Neurons are placed in multiple
layers and are stacked together either in parallel or series
combination that give the output after processing the input
from each layer, and when a lot of these layers are stacked, it
forms a deep neural network. The weights act as channels to
transfer the data from one layer to another, then the
subsequent neurons in the hidden layer will be associated
with a number called bias and the bias is added with the
sum of the weighted inputs and this sum is applied to the
activation function, which tells whether the neuron gets
activated or not. Then, the activated neurons pass the
information to the next layer and this follows up to the final
hidden layer and then the neuron activated in the output
layer will represent the corresponding output. Training of
neural network requires Graphical Processing Units (GPU)
that are costly compared to the CPU due to the thousands
of cores present in it. Deep learning architecture depends
on the amount of data and the number of layers required to
produce the output. Therefore, it can take months or hours
depending on the data set.

3. Backpropagation Technique to Train
Multilayer Networks

“Deep learning models are used to reduce the human in-
tervention for extracting data because features designed by
hand requires a lot of hands-on experience and skill in the
domain.” Therefore, a good feature extractor is required,
which can be trained by the multiple layers used in deep
neural networks. The Pandemonium model is used, which
helps in recognizing a pattern that has not been used in the
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data set during the training. Perceptron is a system that
works in a manner that is close to processing in a brain and
hence depends on probabilistic results for their operations
[26, 27]. Backpropagation procedures are very useful to
increase the accuracy of prediction in the neural networks
by finding the gradient descents. The idea of back-prop-
agating errors was proposed by many groups way in back
the 1980s [28-31]. Backpropagation is done to reduce the
error by sending the error back to the input layer to update
the weights, and an activation function like the sigmoidal
function is used to get the results at the nodes of the hidden
and the output layers. Actually, the inputs at the nodes of
the hidden layers are written as the sum of the weighted
inputs and bias. This sum obtained at the node in the
hidden layer is applied to the activation function to get the
output at that particular node in the hidden layer. Then, the
same procedure is applied for the successive hidden layers
and at last, the sum of the weighted inputs and the bias are
fed to the output node and the output at that node is
obtained after applying the activation function. In forward
propagation, the output values obtained are compared with
the target values and when they do not match, the error is
calculated between the target values and the output values
at each node in the output layer. In order to get an optimal
value of the weight for which the error value is the least, the
gradient descent is calculated by starting from the weights
that have maximum error to the weights where the error is
minimized, i.e., starting from the output layer to the input
layer. The summation of the errors found at each node is
calculated and these errors are backpropagated to update
the new weights. The weights are differentiated partially
with respect to errors to give the change in the weights, and
this value is multiplied by the learning rate whose value lies
between 0 and 1, and this product is subtracted from the
previous weights to give the updated weights. The same
procedure is repeated for the precedent hidden layers and
weights and the precedent weights are updated. Again, the
updated weights are used in forward propagation and the
output is compared with the target values, and the errors
are calculated. Again, backpropagation is done to update
the weights, and this process goes on until the total error
obtained at the output is minimized or equal to zero.

Let 8%V be the error term for the (I+1)-st layer in the
network with a cost function J (W, b; x, y) where (W, b) are
the parameters and (x, y) are the training data and label
pairs. If the I-th layer is densely connected to the (I+1)-st
layer, then the error for the I-th layer is computed as

o =((w®)'6).£(=") (1)
and the gradients are

Vo (W,b;x,y) = (5<’“>(a(”)T>, (2)

Vyo ] (W, b; x, y) = 8¢V (3)

If the I-th layer is a convolutional and subsampling layer,
then the error is propagated through as
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80 = upsample((W,il)) 6(”1)) 1z, (4)

where k indexes the filter number and f' (z,gl)) is the de-
rivative of the activation function. The upsample operation
has to propagate the error through the pooling layer by
calculating the error w.r.t to each unit incoming to the
pooling layer. For example, if we have mean pooling, then
upsample simply uniformly distributes the error for a single
pooling unit among the units which feed into it in the
previous layer. In max pooling, the unit which was chosen as
the max receives all the error since very small changes in the
input would perturb the result only through that unit. Fi-
nally, to calculate the gradient w.r.t to the filter maps, we rely
on the border handhng convolution operation again and flip
the error matrix 6k the same way we flip the filters in the
convolutional layer.

Vo  (W,bix,y) = Z( DY xrot90(80,2),  (5)

i=1

Vb,ﬁl)](w’ b;x, y) = Z (615“1))(;,%:’ (6)

a,b

where a) is the input to the I-th layer, and a'V) is the input
image. The operation (g; 1)) * 0 ) is the “valid” convolution
between i-th input in the [-th layer and the error w.r.t. the k-
th filter.

In deep learning, depending on the input, signals are sent
to the neuron and these signals are combined and sent to the
activation functions, and that generates the output. Acti-
vation function adds nonlinear properties to the network.
There are three types of activation functions such as linear,
Heaviside, and sigmoidal function. Out of these, linear
function is known for its simplicity where the bias is linearly
combined with the weighted sum. Heaviside step functions
are conditional functions that are dependent on the con-
ditions and give an output either as 0 or 1 on comparing the
value of the weighted sum with that of a threshold value.
Heaviside functions have real-life applications. For example,
when a hot object is touched by the hand, the skin receptors
in the fingers sense if the temperature is safe for the skin or
not, but as the temperature of that object increases or crosses
a threshold value, the receptors will send a signal to the
neurons and the neurons will produce an action to remove
the hand from the object. So, when the temperature crosses
the threshold value, the function generates output as 1 and as
long as the temperature is below the threshold value, the
output generated will be 0 to indicate safe temperature.
Sigmoid function represents an S-shaped curve and has a
nature similar to the tanh(x) function and is just rescaled and
shifted up. Sigmoid function is solely dependent on the
weighted function and the function is given by 1/(1 +e™")
where “v” is the weighted sum. The value of the sigmoid
function lies between 0 and 1, and the active range of the
weighted sum of values is between —5 and 5, and when any
value of the weighted function beyond this range is given as
an input, the sigmoid function will generate the value as
either 0 or 1 only. As the value of the function lies between 0

and 1, these functions are used for probability prediction.
Sigmoidal functions are used instead of linear functions
because if the value of the weighted function goes beyond the
active range, then the linear model will give the function
value greater than 1 or less than 1 and can no longer be used
to predict probability. The rate of change of the linear
function cannot capture the exact results. For example, if the
weight sum value changes from 0 to 1, there will be a spike in
the value of probability, and this mapping can be captured by
using a sigmoidal curve instead of a linear function, which
gives poor approximation of the results. Nonlinear activa-
tion functions are required to calculate the nonlinear error
gradient to perform the backpropagation strategy to study
the nonlinear complex behavior. So, when data get more
complicated, a nonlinear function becomes appropriate for
classifying the data. Another such nonlinear function that
has become popular is rectified linear unit (ReLU). During
backpropagation, the gradients go on decreasing and vanish
and the information is squeezed. Secondly, sigmoidal
function has very slow convergence and is not zero-centered
and all the gradients become positive, thus making the
optimization harder. Tanh has a value between —1 and 1 and
is thus zero-centric and are preferred over the sigmoids, but
this function also suffers the vanishing gradient problem.
ReLU removes these limitations. The ReLU function is given
as R(z) = max(0, z). Its value becomes 0 when z=0 and
becomes linear with slope of 1 when z is greater than 0.
When compared with tanh, ReLU showed a 6-fold im-
provement in the convergence for image net classification
[1]. They do not require any unsupervised pretraining on
supervised tasks for a large data set [32]. ReLU does not use
expensive operations like sigmoid or tanh and hence learns
faster and avoids the vanishing gradient problem. All deep
learning networks use ReLU for the hidden layers and the
output layers use softmax for classification [1-12].

Back in the 1990s, the researchers were working on small
neural networks that produced least convergence; it was
thought that backpropagation and neural networks were not
useful for speech recognition and computer vision. They
feared that the gradient descent would produce many poor
local minima and that the error minimization would not
reduce. Local minimum is harder to recover for larger neural
networks and also leads to overfitting. But, recent results
show that the local minima is not a problem anymore and
the main problem arises due to the building up of the saddle
points in high dimensions that generates errors around them
and creates a delusion of existence of the local minimum. As
the variables go on increasing, the saddle points also increase
exponentially. For this second order, saddle-free Newton
method is applied for better optimized performance that
skips these saddle points [33, 34].

Deep learning has evolved since 2000. Earlier, the algo-
rithms were limited to only few thousand layers and neurons,
and it was difficult to work on the deep networks that would
have billions of parameters and neurons just like the human
brain has. But, with the advancement in the learning algo-
rithms, this number increased to million parameters for
recognizing handwritten digits [35]. The researcher used a
unsupervised learning algorithm. Unlike supervised learning,



the data here are unlabeled in the training sets and are passed
as an input. Unsupervised learning tries to understand the
structure from the unlabeled data and extracts useful features
from them. Clustering algorithm is one of the unsupervised
learning techniques that analyze the unlabeled data, learn their
structure, and cluster the data into groups that form distinct
clusters, and the data can be labeled using this result [36].
Learning becomes very difficult when there are a large number
of hidden layers and the approximations produced using
variational methods are poor. A fine-tuned generative algo-
rithm produced better results for handwritten numbers [36].
Unsupervised learning is also used in the autoencoder, which
is a neural network. It encodes the input and produces a
reconstructed image after decoding the compressed repre-
sentation into a decompressed representation. It is useful for
learning complex concepts. The objective of an autoencoder is
to reduce the reconstruction loss. Autoencoders are data-
specific and can be used only for the data for which they were
trained and cannot be used for other images or data in the real
world. Each layer of the autoencoder is pretrained [37]. The
researcher created a pseudo code for each trained layer.
Sparsity turns most neurons randomly and this forces the
neural network to learn representations more accurately than
the generalized training data. Learning of sparse features uses a
model that has linear encoder and decoder and an energy code
to minimize the energy and to adjust the parameters of en-
coder and decoder and makes sampling inexpensive and
learning fast [38]. Principal component analysis (PCA) is used
for reducing high-dimensional data into lower dimensional
data, necessary for classification. An effective way for nonlinear
dimensionality reduction is to initialize the weights that help in
transforming high-dimensional data into low-dimensional
code [39]. Unsupervised auto encoders have also been useful
for pedestrian detection, which can avoid accidents and can
revolutionize the future driverless cars [40]. The researcher
used sparse coding algorithm and a predictor function, and
each layer is trained in an unsupervised manner by using the
input representations from the previous layers and the ar-
chitecture is fine-tuned after training of all the layers is
completed.

The first breakthrough for pretraining came after the
advent of Graphics processing units (GPUs), which are
about 10 to 15 times faster than the Central processing units
(CPUs). GPUs are faster in processing compared to CPUs
and are task-specific. Nowadays, GPUs play an important
role in the gaming laptops; for example, a person having a
higher-level processor with no graphic card and a person
having a low-level processor with high-end graphic card. The
latter will be having better gaming performance compared to
the former. GPUs are specific purpose processors that
handle only graphics by means of parallel computing. For
example, a game like GTA SANADREAS has a number of
different things like clouds, people, cars, buildings, etc., that
can be seen. When the game is played, the view of the player
changes as the player moves forward or backward based on
the control keys, and the player is able to see different things
with time. So, for such tasks, the processing needs to be very
fast. The different things visible in the game do not depend
on each other, so the GPU can do parallel processing in
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which each section can control different things at the same
time and thus generate a complete view altogether. Due to
the availability of dedicated GPUs, development in video
rendering and image-processing activities has gained pace
[41]. The rendering process can be done in blocks in which
the image or video can be divided into small blocks and can
be computed in parallel. With the use of GPU, one can
reduce the time of processing in unsupervised learning from
several weeks to few days and hence have created a revo-
lution in neural network. The speech recognition system
generally uses hidden Markov models (HMM) to build a
sequence for the signals, but the feed forward networks are
being used as an alternative to Gaussian mixture models by
taking the window of feature vectors as an input [6, 42]. The
processing capabilities of GPUs and effective algorithms
have led to the development of powerful architecture that
have produced promising results for Large Vocabulary
Speech Recognition (LVSR) for phone recognition by ef-
fectively speeding up the learning process by 30-fold
compared to a normal CPU [43]. By 2012, GPU allows a
large number of examples during pretraining and updating
the parameters effectively for building powerful algorithms
in order to learn good representations of data in quest [44].
Unsupervised learning worked better for the smaller set of
data and prevents overfitting. Pretraining became important
only for training the machine for small data sets during
unsupervised learning.

As the evolution in deep learning started, another net-
work called convolutional neural network (CNN) started to
gain dominance for their ability to train the data easily
compared to other deep networks. These networks are used
predominantly in image recognition by using the stacked
convolutional layers to solve the translational invariance in
the images. These networks have found their application in
recognizing handwritten digits or characters in the docu-
ments like bank checks without involving much of pre-
processing and the input in the form of images, thus
improving the scaling properties and reducing the learning
time [45, 46]. These networks came to the aid of deep
learning when neural networks were not preferred much.

4. Convolutional Networks

Conv net is an artificial neural network (ANN), which is
predominantly used for image analysis due to their ability to
detect patterns and can be used for other applications like data
analysis and classification. Conv net is based on the biological
processing of the brain. The hidden layers in CNN are also
called convolutional networks and hence the network gets the
name. They treat data as special, unlike the other neural
networks where each neuron in the conv net is connected to
the adjacent or closer neurons and all the weights have the
same value. The word convolutional means the filtering of the
data in the network. Each convolutional layer has a number of
filters that are used to detect the pattern. Here, the pattern can
be the edges, corners, objects, and shapes like circles, squares.
These filters are applied to a certain patch in the image. The
data processed by the filter goes to a set of pooling layers
where the patch recognized by the convolutional layer is
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shortened to half and again this goes to the next set of
convolutional and pooling layers where the patches in the
preceding layers are acted upon by the filters and this process
goes on. At the end of the network, the data go to the fully
connected layer and from the multiple sets of output from the
pooling layer the fully connected layer will produce the
images with top probabilities and the image with the top
probability is recognized as the patch or pattern. Due to the
pattern recognition ability, the convolution network is used in
almost all the applications like mobile phone, surveillance
cameras, driverless cars, etc. CNN has two phases, a training
phase and an inference phase. Training phase is one in which
the network is trained by taking a lot of data as input and the
filtered data sets are created by means of back-propagation
and are used for the inference phase. On dwelling deep into
the architecture of convolutional network, the convolutional
layer acts as heart of the network. It has a set of filters which
are applied to the input image and produce different acti-
vation features in the input image, and the inputs are in the
form width x height x depth. The filters are the matrices of any
specific order with the same depth like input image. Here, the
activation filters are generated for the input image, and these
sets of filters are then applied to the inputs for which an
output is generated that has special dimensions as the same as
that of the image and also the depth of it is equal to the
number of activation filters. A stride is used to process the
pixels in the image and is used for reducing the special di-
mensions of the output generated from each convolutional
layer by a factor equal to the assigned stride value. A nonlinear
activation function like ReLU is used in to add nonlinearity in
the linear convolutional layer and reduces the problem of
overfitting. Pooling layer is used to down sample the output
sample obtained from the preceding convolutional network.
Maxpooling is done to reduce the dimensionality of the image
by reducing the number of pixels in the output from the
convolutional layer. The maximum value of a certain region
in the input convolutional network is stored in the output and
then the region is shifted by a factor equal to the filter size and
the maximum value in that region is stored in the output
discarding the lower value pixels and this goes on and thus
reduces the dimension of the input by a factor equal to stride
value. By pooling the computational cost, the memory al-
location is reduced. Finally, the data pass through the network
and reach the final layer called the fully connected layer. The
fully connected layer identifies the final output category and
creates a set of output data and of these output sets, the top
three output data are selected by using probability distri-
bution algorithm and the output with the largest probability
value is selected. Fully connected layers increase the load and
computational cost and hence the recent networks are being
made more convolution-driven networks to balance the ar-
chitecture. In general, we have that

I _ Y
xp= ) x kb, (7)
ieM;
where x! is the output of the current layer, xﬁ’l is the
previous iayer output, k' is the kernel for the present layer,
and b; are biases for the current layer. M; represents a

selection of input maps. For each output map, an additive
bias b is given. However, the input maps will be convolved
with distinct kernels to generate the corresponding output
maps.

Conv networks are similar to the cerebral cells of an
animal that respond to the light rays falling on the eyes. This
study indicates different relationships between different
areas like the visual system with the cortical cells in animals
like monkeys that have advanced visual system compared to
human beings [47, 48]. With the evolution of deep con-
volutional neural networks, the performance of neural
networks produces results comparable to the IT cortex in
visual processing [49]. Conv net has also been applied to
neocognitron network used for pattern recognition, which
uses unsupervised learning and recognizes patterns based on
different shapes and are not sensitive to the position shifts or
shape distortion [50]. Time delay neural networks have been
used for recognition of phonemes and words and achieved
higher recognition rate when compared to recognition
techniques like HMM model [51, 52].

Convolutional networks have evolved a lot starting from
the 1990s using networks for speech recognition, image
recognition to document recognition of bank checks.
Convolutional networks have been preferred over the fully
connected networks for document verification tasks like
handwriting recognition by expanding the training set used
[53]. Conv nets have also been used for face recognition and
detecting multiple faces in a single image and captures the
faces in different poses and variance in scale or translation
[54-56]. Figure 2 describes the working model of basic
structure for convolutional neural network (CNN).

5. Image Understanding with Deep
Convolutional Networks

Conv nets have been dominant in the applications of image
analysis, and document and digits recognition. Recently,
they are also being used in traffic signal recognition, which is
even better than the natural human recognition system.
Furthermore, with the implementation of GPUs, the pre-
processing of data and recognition became faster [57]. They
have been used in biological research to study the cell
structure and embryo development in the body and image
segmentation of brain images [58, 59]. They have been
predominant and reliable in detecting different faces in the
image under the influence of variation in poses, lightning,
facial expressions, and rotations, as shown in Figure 3. With
the improvements in conv nets architecture, the networks
can also be trained for performing multiple tasks like
detecting faces and estimating the poses and the joint lo-
cation of a human body simultaneously for various ranges
and produced more promising results compared to the ones
which are trained to perform one task at a time [60-62].
Further advancements in the field of face recognition have
opened ways for 3D modeling of face after training them on
data sets having images of different identities [63].
Long-range, vision-based systems in the robots have
helped in navigating them through the paths and detecting
the obstacles with ease and are being used in the
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FIGURE 2: CNN architecture (https://towardsdatascience.com/understanding-cnn-convolutional-neural-network-69{d626ee7d4).

A large white bird standing in a forest.

=

A person is standing on a beach
with a surfboard.

A woman is sitting at a table
with a large pizza.

A man wearing a hat and
a hat on a skateboard.

A man is talking on his cell phone
while another man watches.

FIGURE 3: From image to text. Captions generated by a recurrent neural network (RNN) taking, as extra input, the representation extracted
by a deep convolution neural network (CNN) from a test image, with the RNN trained to “translate” high-level representations of images
into captions. When the RNN is given the ability to focus its attention on a different location in the input image (middle and bottom; the
lighter patches were given more attention) as it generates each word (underlined), we found that it exploits this to achieve better ‘translation’
of images into captions (https://casmls.github.io/general/2016/10/16/attention_model.html).

development of autonomous cars for the future with min-
imal involvement of human beings [64, 65]. Companies like
TESLA and NISSAN have started implementing the tech-
nology to produce first self-driving cars. These networks
have also achieved breakthrough in applications of speech
recognition and various language understanding using
unsupervised training of the input data set [7, 14].

Until the invention of ImageNet classification, the ma-
chines were able to train quite a few image data sets with a
rough estimation of around thousand sets, but with imageNet
one can train some millions of images at higher resolution
belonging to thousands of different categories [1]. Earlier the
use of conv net was limited due to the heavy computational cost
for recognizing higher resolution images and problems like
overfitting. But, with advancement in the hardware technology,
use of GPUs and advanced nonlinear activation functions like
ReLU has made the training of the data set quite easier due to
the use of lesser parameters and connections involved in the
network. Techniques like dropout has been effective in re-
ducing the overfitting problem in neural networks by using
smaller weights and improves the performance of the network

for various tasks like image, speech recognition, etc. [66] They
have also been effective in detection and localization tasks by
combining the input low-level features of images with the high-
level features from object detectors by training the network for
a large data set and modifying the previous networks by pre-
tuning them for scarce data sets, which proved to be effective
for classification purposes [67, 68]. Researchers have also
played with the depth of the networks by varying the number of
weight layers to study their effect on the accuracy in image
recognition field [69].

Back in the 1990s, computers were not able to process
data within a reasonable time period due to unavailability
of large storage devices. Until 2010, neural network was
not considered worthy; it gained recognition from 2010
onward when an annual ImageNet competition was held
to decide on the performances of the algorithms pre-
sented by the competitors and their contributions toward
the AT field. The use of activation function like ReLU in
convolutional networks enabled the large networks to
train the data several times faster compared to the ac-
tivation functions like tanh and sigmoid. The GPUs
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enabled the networks to train the data in parallel and
reduced the computational time.

Technical giants like yelp, Pinterest, Facebook, Baidu
Hubspot, IBM, and Salesforce have been using conv net for
image classification, filtering out the spam content, gener-
ating human voices, natural language processing and to
analyze customer relationship during ales process.

Rapid progress in neural networks demands powerful
processors that can be used for a variety of applications. The
networks used to solve the pattern classification problems
accurately have thousands of complex parameters and
connections, and this network needs to be embedded in a
single chip. The network processors like VLSI can perform
thousands of operations like multiplication and addition in
parallel and has allowed to explore new algorithms [70].

6. Deep Representations and Language
Processing

Sparse representations have only one bit on and are not used
for many applications. Classic algorithms are sensitive to
variations in target and proportionally a large number of
training examples are used for different variations thus
making them computationally costly. These representations
are constructed specifically for words. The information in
the word is distributed out in many directions. The in hot
encoding involves the construction of the representation by
fixing the vocabulary length consisting of common words,
and this document is represented by a vector of dimensions
equal to the number of common words that give position for
every word and the value at that position gives the number of
times the word appears in the document. Here, the word is
represented by 1, which gives its coordinate in the docu-
ment. But, this encoding is sensitive to the words that are
antonyms and is insensitive to the meanings of the words
and the way they are related to. Distributed representation
assigns a vector for each word such that words with similar
meanings will have a vector closer and the vector for the
antonym will be far away from these vectors. Distributed
representation is a representation for language that allows
representing words based on their meanings; one can relate
two words that belong to a similar category and can use for
applications like question answering. Here, the meaning of
the word is recognized based on the words that are in
neighborhood with it in any sentence [25]. By means of
probability distribution, the word’s meaning is captured by
seeing the number of occurrences in the vocabulary and the
nearest words used in the context. The deep architecture has
multiple layers consisting of neurons similar to the archi-
tecture of human brain, and parameters required for
probability distributions can be obtained from the power of
the combination of different products [71-73]. The depth of
the architecture can be varied depending on the complexity
of the problem and each layer here gets the number of inputs
equal to the exponential of the input layers [74].

The main aim of natural language processing is to predict
the next word in the sequence, and training with distributed
representations helps the words to sense exponential
number of semantic words in the vicinity [75]. The basic

working behind this is that the words with some kind of
similarly are clubbed together and the word which is se-
mantic is given the value of 1 and the other words are given
the value of 0, and the semantic words are mapped closer to
each other and the rest are placed away from them. In
language modeling, the neural network converts an input
given in the form of a word to an image and can do the vice
versa operation also, and depending upon the context and
the number of times the word is used; the machine can
predict the next word to be used in the sentence. The
representations can be learned on a large data set necessary
for deep learning. It takes a bunch of text and computes the
statistics and generates the representations for the words
found in the text and the output encodes the meaning of the
word and looks at the nearest neighbors in the space. For
example, the neighboring word of dog will give cats and the
breeds of the dog. The matrix product of all words in vo-
cabulary with weight of word of our interest will give the
output that signifies higher probability of the word similar to
the word of our interest. The sentimental analysis used in
twitter and Facebook used for giving reactions and likes is
one of the applications of the language process. It is also used
for extracting information from any website. The words are
predicted by the neural network without any human in-
tervention and can translate a sentence in one language to a
sentence of other language by maintaining the sequence
[76-80]. There have been debates for logic-inspired para-
digms and neural-network-inspired paradigms. The logic-
inspired paradigms do not have an internal structure and
uses symbols to tell whether they are identical or not and are
bound by some rules of inference, but in neural networks
large matrices and weights are used to perform calculations
and get the output.

Natural language processing is not only used to make the
sense of words but is also used to understand the words that
denote sarcasm and also that denote a different meaning in
the context. For example, a word can be used as a noun in a
sentence and the same word can also be used as a verb in
some other sentence by taking the context of the sentence. N
grams serve the purpose by looking at the word that come
before the target word and the word that comes after it and
determines if the target word used is a noun or a verb in the
context. N gram models predict nth word from #n — 1 words.
The N here represents the number of words we are looking
at. Representations like unigram, bigram, and trigram and
up to n gram can be used for understanding the word form.
Bi-grams represent two pairs of words that occur in a
sentence and are used to train the machine to learn about the
specific form of word and also to predict the next word from
the previous words just like how the fill in the blank
questions are solved. N- grams are used to capture the
sarcasm of the text sentence by training the machine to look
at the before and after words used adjacent to the target word
and gives an opposite meaning of the sentence by seeing the
presence of the negative word. These language models are
used for spell correction and speech recognition by com-
puting the probability of a sentence. These models are used
in WhatsApp or messengers to suggest the next words that
can be used to make sense or to replace an incorrect word by
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a correct and meaningful word. In preprocessing of the
neural networks for statistical processing of natural lan-
guage, the n grams and stop words are eliminated. When any
sentence is entered in Google search, the machine eliminates
the articles, prepositions, and the words that share relations
between the keywords and takes only keywords into account
to produce the data.

7. Recurrent Neural Networks

Human beings can understand the words based on the
previous words they read in any paragraph and are able to
understand that paragraph based on the sequencing oper-
ations that run in their brain. Recurrent neural networks
(RNNs) also work in the same manner. RNNs are the neural
networks that are used for processing sequence data and are
most commonly used for pattern recognition tasks. Here, the
sequence data in the form of input is chopped into chunks
and are fed to the RNNs. They use sequential memory which
makes the networks easier to recognize the patterns that are
used in speech translation, stock predictions, language
translation, and image recognition. The architecture of RNN
consists of input in the form of text which can have a number
of features and hidden layers and an output with respect to
time. For forward propagation, the RNNs will preprocess
one word at a time and try to maintain the sequence of the
words by adding the previous words in loop with the new
words fed as input to the hidden layers, as shown in Figure 4.
For example, an input sentence of four words is given to the
network, then for the time 1 it will take the first word in the
form of a vector to a particular hidden layer, which consists
of some neurons, and these vectors are multiplied by the
weights assigned to them. These sums are applied to the
activation function like ReLU, and it gives the output for that
hidden layer. The output obtained at that particular hidden
layer is again given to the same hidden layer in the form of a
loop and at time 2 the second word is fed to the same hidden
layer as input and the same weights assigned for the first
word will be assigned to the second word also. But, the
output obtained for the first word in time 1 will be assigned
different weights before being fed to the same hidden layer
neurons in the form of loop for time 2. After this, the sum of
the weighted inputs of the second word and the weighted
output of the first word is given to the activation function to
produce the output at time 2. Thus, the output of the second
word will depend on the input of the second word as well as
the output of the first word, and this allows the network to
maintain the sequence up to the last word of the sentence.
Similarly, again the sum of the weighted input of the third
word and the output of the second word is fed to the ac-
tivation function to produce the output for the third word
for time 3 and this processing goes on until the final word is
reached. The output obtained after the processing of the
fourth word will be assigned a new weight and will be fed to
an activation function like softmax that will give the pre-
dicted value as the output. After the processing, the loss
function is calculated between the obtained output value and
the model predicted value, and is minimized. This type of
architecture of RNNs is used in outputs of Google and chat

Mathematical Problems in Engineering

box output based on the input given by the user in the form
of the statement.

After the calculation of the loss function, the weights are
updated during the backpropagation. Here, the derivative of
loss with respect to the output is calculated and is used for
updating the weights. The derivative of loss with respect to the
weight is calculated by using the chain rule and the updated
value of the weight at the output of the last word is obtained
by subtracting this derivative with the weight and the pre-
ceding weights are updated in a similar manner. Again,
through forward propagation, the loss function is calculated
and the weights are updated with respect to time through the
backpropagation procedure and these iterations repeat until
the loss function becomes minimum and get the global
minima, and at this point the training of the network stops.

But, RNNs also have some problems, such as vanishing
and exploding gradient. During the backpropagation, the
derivative of the activation functions like sigmoidal func-
tions lie between 0 and 1, so when the chain rule is applied to
this derivative while moving toward the weights assigned to
the first function, the derivative value becomes a negligible
value due to the continuous derivation. This in turn would
update the weights negligibly and will not allow the solution
to converge to the global minima and creates a vanishing
gradient problem. When the sigmoidal activation function is
replaced by ReLU, the derivative of the activation function
will give a value greater than 1 and this will change the value
of the weights by a large amount and will not allow the
solution to reach global minima. Such a problem is referred
to as the exploding gradient problem.

RNNs in spite of being powerful are tough to train due to
the exploding and vanishing gradient problem that does not
allow the solution to converge [81, 82] and were limited to
machine learning applications. Keeping this in mind, new
advancements were done in the architecture of simple RNNs
and an efficient method called long short-term memory
(LSTM) RNN [83, 84] was introduced to solve the vanishing
gradient problem. Also, new methods of training these net-
works [85, 86] have made the training of RNNs easier and
improved the performance of the architecture. Such type of
architecture has become dominant for applications like noisy
pattern recognition and natural language modeling tasks to
predict the next word or a character in the text document
[79, 87]. RNNs are also used for complex applications like
translating the languages that include long sentences. They have
also been used for representations that are not varied from
active or passive voices [17]. For translating from English to
French, modern RNNs use an encoder decoder pair, which
represents two RNNs. Here, the encoder converts the words
into a length vector and the decoder again converts the vector to
a variable length target to get the target sequence, and the si-
multaneous operation of the two RNNs maximize the proba-
bility of the target sequence [76, 80]. These RNNs generate
French sentences in terms of conditional probability based on
the given input English statements. RNNs are used for semantic
cognition tasks, which are similar to the ones implemented in
the brain [88, 89].

Apart from these applications, they are used for spam
classifier to predict if the statement is true or not. Google
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FIGURE 4: A recurrent neural network and the unfolding in time of the computation involved in its forward computation. The artificial
neurons (for example, hidden units grouped under node h with values h, at time t) get inputs from other neurons at previous time steps (this
is represented with the black square, representing a delay of one-time step, on the left). In this way, a recurrent neural network can map an
input sequence with elements x; into an output sequence with elements o, with each o, depending on all the previous x; (for ' <t). The same
parameters (matrices W, W, , Wy,) are used at each time step. Many other architectures are possible, including a variant in which the
network can generate a sequence of outputs (for example, words), each of which is used as inputs for the next time step. The backpropagation
algorithm can be directly applied to the computational graph of the unfolded network on the right, to compute the derivative of a total error
(for example, the log-probability of generating the right sequence of outputs) with respect to all the states /i, and all the parameters (https://

www.mdpi.com/2073-4441/12/2/585/htm).

image search also works on RNN, where the word we search
for gets converted into an image and produces the required
image as the output. Image captioning is another application
of RNN. An image is given to the system as an input and the
RNN converts it into a sentence. It can determine the objects
in the image and express their relations [90]. Recent ar-
chitectures with combination of CNNs and RNNs have been
used to convert the sentences into image representation and
again decode back to the language sentences. RNNs use same
weights for all hidden layers. Although the RNNs are used
widely for recognition or prediction problems, they face
difficulties while training due to the use of gradient descent
algorithm due to long-term dependencies [82]. In such cases,
short-term dependencies are used to get better converged
solutions and LSTM comes into play.

The LSTM architecture consists of memory cell, forget
gate, input gate, and output gate. Memory cell is used to
remember and forget the input depending on the context of
the input. When the context of the statement changes, the
memory cell remembers some of the previous information
and should also be able to add some new information to it
[83]. The first operation done in memory cell is point-wise
operation where the output of the first word in the hidden
layer after time 1 in the form of a vector of some dimension
is multiplied with the input of the second word at time 2,

which is also in the form of a vector with different entries but
of the same dimension and gives an output for the second
word of the same vector dimension. If the output vector has
any zero entry, then that particular information is forgotten
due to the change in context and some information will be
added. In the forget gate, the weights of the first output are
concatenated with the weight of the second input and this
generalized weighted input is added to the bias and this sum
is passed through the sigmoid activation function and gives
an output vector. The point-wise operation adds information
to the memory cell. Tanh activation function is also used to
add any new information when the context changes and
produces an output vector from the sum of generalized
weighted input and bias and gives output in the form of
vector having entries between —1 and +1. The point-wise
operation is performed to get new information and adds this
to the dissimilar vector obtained from the sigmoid function
and this output is added to the memory cell. So, here the
entries in the output nearer to 1 will be only passes on to the
memory cell and the rest is skipped. These operations are
done in the input layer. In the output layer, again the
concatenation of the information is passed to a sigmoid
function and it is combined with the information from the
memory cell after it passes through the tanh activation
tunction with the point-wise operation and will retrieve the
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information having meaningful context and pass it to the
next cell, and this process goes on. LSTM removes the
problem of long-term dependency on the derivatives taken
in simple RNNs and introduces temporal dependencies and
can remember some of the information from the past in-
formation and the last layer of the output can have all in-
formation from the first layer input itself. The combination
of LSTM RNN architecture and the effective training
methods has proved to be very effective for handwriting
recognition and speech recognition [91].

Recent advancements in RNNs have produced systems
similar to a Turing machine that uses a combination of
biological memory and computer design and have been used
in applications like copying, writing, or reading [92], and the
powerful memory networks for question answers tasks and
their application can be extended to other domains like
vision sensing [93].

Turing machines consist of a tape structure, which has a
number of cells, and in each cell an alphabet also called a tape
is placed. It is defined by seven tuples. A pointer called read-
write head points at a particular cell at a time and is flexible
to move in right or left directions by giving the notations,
and this movement is controlled by a controller. The ma-
chine looks at the tape one cell at a time, and it gives the code
in the form of a question or a problem to be solved. Attentive
neural Turing machines are used for cold start knowledge-
tracing problems where little data are available to train the
network and predict the output accurately by using an
external memory bank to store the useful information
learned through optimized iterations. ANTM are out-
performing LSTM networks in tasks involving predictions
by producing relatively higher accuracy [94, 95].

8. Future and Drawbacks of Deep Learning

Purely supervised learning had successively come about
through a system in spite of the catalytic effects of un-
supervised learning. But, there has been a massive in-
crease in the importance of unsupervised learning for a
long period of time. Animals and human beings are
mostly subjected to unsupervised learning because the
observation is done for discovering the structure of the
world rather than telling the names of objects. For the
active processes of human vision, the optical arrays are
sampled in tasks specific and intelligent ways using a
smaller, high resolutions forvea with a big, lower reso-
lutions surroundings. By combining with recurrent
neural networks, the reinforcement learning is used for
making decision where to see and is trained end to end. In
this paper, a comprehensive state-of-the-art review is
accomplished in the current scenario. Although deep
learning and simple reasoning have been used for speech
and handwriting recognition for a long time, new par-
adigms are needed to replace rule-based manipulation of
symbolic expressions by operations on large vectors. The
following are the drawbacks of deep learning:

(a) Large amount of data are required for performing
better than any other technique
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(b) Due to complex data modules, it is very expensive to
train

(c) Deep learning needs hundreds of machines and
expensive GPUs for processing data and thus it is
costly

(d) It requires classifier for comprehending the output
based on mere learning
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