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ABSTRACT Service search in IoT’s large-scale, heterogeneous and multi-domain services space is a
challenging task. It can take the time that may not be acceptable for many IoT applications and requires
resources that may not be available in many IoT devices. A categorisation of these services into their
application domains can reduce the search space and offer an efficient and scalable service search. Recently,
in many fields, such as short text messages and categorisation of IoT service specifications, generative
probabilistic models, like Topic modelling, are being used. Generally, IoT service descriptions are short and
sparse. Existing work on IoT services categorisation is based on Latent Dirichlet Allocation (LDA), but it
does not perform well in short and sparse texts. Also, IoT services categorisation has few specific issues,
which are not well addressed by existing short texts-specific topic modelling approaches. In this paper, we
identify these issues and quantitatively and qualitatively evaluate how well a set of selected short texts-
specific topic modelling approaches perform as IoT service categorisers against these issues. The results
show that these approaches do not perform well in a corpus of noisy APIs descriptions and heterogeneous
service descriptions. Also, they do not support domain identification of services, which is essential in
domain-based service search. We conclude that integrating an appropriate and comprehensive knowledge
base (i.e., domain ontology) could minimise noise and address IoT’s APIs and service descriptions’
heterogeneity. More importantly, it can identify the domains of those APIs and services.

INDEX TERMS Large-scale IoT, Service Discovery, Service Oriented Computing, Topic Modelling

I. INTRODUCTION

By enabling easy access to, and interaction with a wide
variety of physical devices or things, the IoT will foster
the development of various applications in many different
domains [1]. Although exciting, there are significant sci-
entific and technological challenges to be overcome before
these applications can be fully realised. These challenges
arise, at least partially, due to the heterogeneity and scale
of things/objects and their offered services [2]. The lack of
semantic interoperability within IoT services presented in
different semantic languages (i.e., WSDL-S, OWL-S) is an
excellent example of the kinds of scientific problems that het-
erogeneity introduces. The adoption of service-oriented com-
puting (SOC), especially large-scale SOC in IoT, can miti-
gate these challenges [3]–[7]. However, autonomous service
search and discovery, which is an important aspect of SOC,
in this large-scale, heterogeneous and multi-domain services
is a challenging task for many reasons, including the real-
time requirements of many IoT applications and resource

limitations of many IoT devices. Unified representation of
heterogeneous IoT service descriptions and categorisation of
these services into their application domains or clusters can
reduce the search space and offer semantic interoperabil-
ity. This will make service search [6]–[9] in IoT efficient
(i.e.,lower search time and consuming less resource) and
scalable. Significantly, this will complement many existing
service search approaches [10], [11], including a keyword-
based search of things or services, by reducing the search
space.

In many areas, including the autonomous categorisation
of text, machine learning (ML) techniques are preferred
over knowledge engineering (KE) [12], because of their
effectiveness, considerable savings in terms of expert labour
power and straightforward portability to different domains.
Generally, ML approaches for categorisation fall into one of
two schools of thought: discriminative or generative models.
Recently, topic modelling (TM), which exploits a generative
model (i.e., Probabilistic Latent Semantic Analysis, Latent
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Dirichlet Allocation [13]) or a combination of generative
models (i.e., Hidden Topic Markov Model [14]), is being
widely used in text categorisation, including news group-
ing, opinion mining, sentiment analysis of social networks’
messages and IoT service descriptions, as they are statisti-
cally efficient (i.e., smaller training data), computationally
efficient, and robust to missing values [9], [13], [15]–[17].
A categorisation of IoT services according to their domains,
can provide scalability and efficient application-driven ser-
vice search by reducing the search space [18]. Also, topic-
based homogeneous and lower-dimensional representation,
built automatically from the syntactic/semantic IoT service
descriptions, can semantically search services regardless of
their providers, description formats or technologies [16],
[17]. However, research efforts [9], [17] is limited in this
field, and they are based on Latent Dirichlet Allocation
(LDA) [13], which does not perform well in short texts
because of their sparseness. Recently, many TM-based short
texts (e.g., tweets, or Facebook status) categorisation ap-
proaches [15], [16], [19]–[23], have proposed novel methods
to improve the performance of topic-based categorisers in
short texts. These proposals can be useful in IoT service
descriptions categorisation as they are generally short and
sparse. In this context, an evaluation of these proposals on
heterogeneous IoT service descriptions will provide a more
in-depth perspective of the state-of-the-art. There is no such
work that evaluates these proposals.

Considering the importance of categorisation of IoT ser-
vices, this paper: (1) identifies the issues of IoT services cate-
gorisation; (2) presents an evaluation of a set of existing TM-
based short texts categorisation approaches, in the light of
IoT services, to show how well they perform as categorisers
and address the identified issues; and (3) outlines open re-
search challenges, recommending future research directions.
The evaluation results show that TM-based approaches can
be used to categorise IoT services. However, few open issues,
including distributed implementation, hierarchical categori-
sation, the order of words/concepts, and distributed knowl-
edge base (i.e., domain ontology) development and manage-
ment, still exist. However, research is needed, especially in
domain-specific context or knowledge integration within the
approaches, to support domain identification and improve
these techniques’ accuracy and precision. Also, research is
needed in distributed implementation and distributed knowl-
edge base (i.e., domain ontology) development and manage-
ment.

Section II presents a list of issues in categorising IoT
services and potential support for these issues from existing
topic modelling approaches. Section III provides an overview
of the selected approaches and justify their selection for
further study. Section IV presents the framework, testbed,
datasets, and metrics for the evaluation. Section V presents
the results of the evaluation. Qualitative evaluation and open
research challenges, including possible future research direc-
tions, are presented in Section VI. Section VII concludes the
work and points to areas of potential future work.

Table 1. List of Abbreviations and Acronyms

Acronyms Abbreviations
IoT Internet of Things
SOC Service-oriented Computing
TM Topic Modelling
ML Machine Learning
LDA Latent Dirichlet Allocation
WS Web Services
TF-IDF Frequency-Inverse Document Frequency
SATM Self-Aggregation-based Topic Model
TLDA Twitter-LDA
DMM Dirichlet Multinomial Mixture
GSDMM Gibbs Sampling DMM
BTM Biterm Topic Model
LFDMM Latent features based DMM
GPUDMM Generalised Polya urn DMM
GPUPDMM Poisson-based GPUDMM
LFLDA Latent Feature LDA
GW Gateway
DS1 First Dataset
DS2 Second Dataset
DS3 Third Dataset
DS4 Fourth Dataset
H Homogeneity
C Completeness
NMI Normalized Mutual Information
TC Time Complexity

II. IOT SERVICES CATEGORISATION: ISSUES
Unlike categorisation for other short texts, IoT services cate-
gorisation encounters a few specific issues. In the following,
we identify these issues, and in later sections, we will use
them to evaluate a set of existing short texts-specific TM-
based categorisers.

Heterogeneity: Different providers can offer the same ser-
vice and similar services. Service providers may advertise
or register their services through syntactic or semantic ser-
vice descriptions written in different languages (e.g., JSON,
XML, OWL-S, WSDL-S). Alternatively, they can register
their services as Web Services (WS) or REST services
through API descriptions. Such service representation-level
heterogeneity may cause semantic mismatches and make
search inefficient. Also, services’ content-level heterogeneity
(i.e., atomic- contains a domain or topic, composite- may
contain multi-domain services) could make a single solution
inefficient for a different type of content in services.

Scalability:The large-scale IoT services are likely to result
in many heterogeneous concepts to describe those services.
Handling many concepts in resource-constrained IoT gate-
ways (e.g., Raspberry Pi) is a challenging task, especially in
terms of scalability.

Domain Hierarchy: The IoT can offer its services to a
large number of applications in numerous domains and envi-
ronments. These domains can have hierarchical sub-domains
and may have similar services (e.g., temperature service for
weather domain and body temperature service for healthcare
domain), making services categorisation difficult.

Shortness and Sparseness: Generally, IoT service descrip-
tions are short in length and are consequently much more
sparse in word co-occurrences. As a result, approaches such
as the Term Frequency-Inverse Document Frequency (TF-
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IDF) measure does not work well. Moreover, the use of the
Vector Space Model [15] to represent short service descrip-
tions, and the sparse and high-dimensional representation
vectors, will result in a waste of both memory and com-
putation time. On the other hand, limited and insufficient
contexts make it more difficult to identify the senses of
ambiguous words or concepts in short service descriptions.
Many existing approaches [15], [16], [24]–[28] address data
sparsity and related issues (i.e., context) in short texts. These
approaches are grouped and briefly presented in Section III.

Order of Word in Descriptions: It is vital to maintain the
order of words, especially the order of words on input, output,
precondition and effect (IOPE) features of IoT services,
during categorisation to support functionality (e.g., inputs,
outputs, processes and operations) based search. However,
the bag-of-words concept, used in TM-based categorisation,
does not maintain the order of words/concepts in service de-
scriptions. It relies on frequencies of words from a dictionary.

Knowledge Base for Categorisation: Knowledge bases,
such as ontologies (i.e., domain ontology), are essential to
categorise services, especially to identify services’ domains.
A domain-specific ontology building and management is a
challenging task, especially in distributed IoT environments.

Distributed Implementation: The IoT and its offered ser-
vices are distributed, and so are the IoT service registries.
In distributed service registries, a categoriser’s centralised
implementation may not work well mainly because of com-
munication overhead and higher response time.

Resource-constraints: Resource-constrained IoT gateways
(e.g., Raspberry Pi, smartphone) require categorisation ap-
proaches with lower time and space complexity. They also
need to be energy efficient.

III. OVERVIEW OF SELECTED APPROACHES
Recent research into topic modelling for short texts has
resulted in a number of proposals, which fall into two broad
categories: mixed-membership models and mixture models.
These models can be further categorized based on their short
texts-specific solutions. We introduce the class of approach,
briefly compare existing work and justify the selection of one
approach for further quantitative evaluation.

Aggregation of Short texts: Many mixed-membership pro-
posals [22], [27], [29], [30] aggregate short texts based
on metadata (e.g., location, timestamps, hashtags) to form
a pseudo-document and then apply conventional topic mod-
elling on it. However, favourable metadata may not always
be available in IoT service descriptions. TwitterRank [29],
an extension of the PageRank algorithm, is not suitable
for IoT services categorisation, as it ranks (not categorises)
users (not tweets or documents) based on their influence
on Twitter. Also, the unavailability of hashtags/labels makes
the hashtags-based aggregation dependent LDA [27] ap-
proach unsuitable for IoT services categorisation. The self-
aggregation based topic model (SATM) [30] assumes that
each short text is a segment of a long pseudo-document and
shares the same topic proportion of the pseudo-document,

which may not be accurate in IoT service descriptions.
Setting an appropriate number of long pseudo-documents in
SATM is a non-trivial task. Moreover, the inference process
involving both text aggregation and topic sampling is time-
consuming. Twitter-LDA (TLDA) [22] could be a potential
TM-based categorisation approach for IoT services, assum-
ing that each service description comes from a topic or
domain, and all the services registered by a service provider
in a service registry are from a domain or its sub-domains.
This is a realistic assumption as generally a service provider,
such as a healthcare service provider, offers and registers
healthcare-related services, and so TLDA is further evaluated
in this study.

One Topic Per Document/Service Description: A sim-
ple and effective approach for short texts is to restrict the
document-topic distribution by assuming only one topic per
document. Given the limited content of short texts, this
assumption is reasonable and is proven to be more effec-
tive than conventional topic models in many studies [15],
[31]. The Dirichlet Multinomial Mixture (DMM) [31] model
may not be suitable for resource-constrained IoT gateways
because of its resource-hungry parameter estimation method
(Gibbs Sampling). GSDMM [15] is an improved version of
the DMM, especially for short texts using collapsed Gibbs
Sampling (GS). The collapsed GS offers better performance,
especially in terms of computing resources and time than the
Gibbs Sampling because it examines uncertainty in smaller
space. GSDMM is further evaluated in this study.

Explicit Word Co-occurrences Modelling: Recently, few
proposals, including [28] have worked towards intensifying
the word co-occurrence information from the collection of
short texts being modelled. One of the key reasons for the
poor performance of the conventional topic models [13], [32]
in short texts is their implicit modelling of document-level
word co-occurrence. The biterm topic model (BTM) [28]
explicitly models the generation of word co-occurrence pat-
terns instead of single words, as in many topic models [13],
[32]. Also, it exploits the aggregated patterns learned from
the whole corpus for learning topics to solve the problem
of sparse word co-occurrence patterns at the document-level.
As the aggregation process does not require external data or
metadata, it could be useful for IoT services categorisation,
and so it is further evaluated in this work.

Words Embedding: Integration of word embedding into
TM approaches can add context to the service descriptions
and improve their categorisation performance [16], [19],
[33], [34], as they encode both syntactic and semantic in-
formation of words into continuous vectors in which sim-
ilar words are close in vector space. Latent features based
DMM (LFDMM) [19] and generalised Polya urn DMM
(GPUDMM) [16] are two recent proposals on words embed-
ding. Poisson-based Dirichlet Multinomial Mixture model
(GPUPDMM) [34] is an extended version of GPUDMM,
which allows each document can be generated by one or
more (but not too many) topics. These proposals are similar
in terms of their working principle (exploits word embed-
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Figure 1. Selected TM Approaches.

ding approach to add context to service descriptions). We
have selected LFDMM over GPUDMM as it integrates word
embedding into both LDA (mixed-membership model) and
DMM/GSDMM (mixture model).

A. SELECTED APPROACHES
The key components of a generative model, including a
topic model are: (i) a generation process and (ii) a model
parameters estimation method for the generation process.
The generation processes of the selected approaches are
illustrated in Figure 1 and described in Algorithms III-A-
III-A. The figure also includes all the necessary notations
used in the algorithms. These approaches use one of the three
popular model parameters estimation methods: (i) variational
inference, (ii) Gibbs Sampling, and (iii) collapsed Gibbs
Sampling. They are briefly presented in the following in
terms of IoT service descriptions.

:Generation process for LDA
1: Draw each topic φt ∼ Dir(β), t = 1, ..., T
2: for each service description s in Sn: do
3: Draw topic proportions θs ∼ Dir(α)
4: for each word i = 1, ...Nw: do
5: Draw Zs,i ∼Mult(θs)
6: Draw Ws,i ∼Mult(φzs,i)
7: end for
8: end for
LDA: LDA [13] represents each document or service

description s as a probability distribution θs over T topics
or domains, where each topic z is modelled by a probability
distribution φz over words or concepts in the vocabulary set
V . Figure 1 (a) illustrates, and Algorithm III-A describes
the generation process of service descriptions for LDA.
LDA [13] uses a variational inference model to infer the
parameters used in the generation process.

: Generation process for Tiwtter-LDA
1: Draw φb ∼ Dir(β), λ ∼ Dir(γ)
2: Draw each topic φt ∼ Dir(β), t = 1, ..., T
3: for each service provider p = 1, 2, ..., P : do
4: Draw topic proportions θp ∼ Dir(α)
5: for each service description s = 1, ..., Sn do
6: Draw Zp,s ∼Mult(θp)
7: for each word i = 1, ...Np,w do
8: Draw Ip,s,i ∼Mult(π)
9: if Ip,s,i = 0 then

10: Draw Wp,s,i ∼Mult(φb)
11: else
12: Draw Wp,s,i ∼Mult(φzp,s)
13: end if
14: end for
15: end for
16: end for

Twiteer-LDA: Twitter-LDA or TLDA [22] is explicitly
designed for tweets, which are short texts of only 140
characters. It considers that there are T topics in C, the
corpus of tweets, each represented by a word distribution.
For IoT service categorisation, we replace tweets with service
descriptions. Unlike LDA, TLDA considers topic distribution
over all the tweets generated by a user, which turns short mes-
sages into a longer pseudo-message. Also, TLDA includes
a background model to generate a list of background words
(e.g., yeah, and great). IoT services’ background model can
be used to generate words or concepts, including service, IoT,
endpoint, for IoT service descriptions or API descriptions.
Figure 1 (b) illustrates and Algorithm III-A describes the
generation process of IoT service descriptions for TLDA. λ,
a Bernoulli distribution, governs the choice between back-
ground concepts and domain/topic concepts. In writing a
service description, a provider first chooses a topic based

4 x



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3071009, IEEE Access

on its topic distribution for its domain, and it chooses a bag
of concepts, one by one, based on the chosen topic or the
background model. TLDA uses Gibbs sampling to infer the
model parameters used in the generation process.

GSDMM: GSDMM [15] includes a clustering approach
along with the collapsed Gibbs Sampling based parameters
estimation algorithm. In the clustering approach, a docu-
ment/service description chooses a cluster/domain with more
documents/service descriptions and whose document/service
descriptions share similar topic/topics. Following these rules,
some clusters will grow larger, and others will vanish. The
generation process of GSDMM is illustrated in Figure 1 (c)
and described in Algorithm III-A. As shown in Figure 1 (c),
GSDMM uses the corpus-wide topic distribution θC instead
of LDA’s document-wide topic distribution θs and assigns
a topic for a document/service description Zs instead of
LDA’s word-wise topic assignment Zs,i (Figure 1 (a)). These
changes are to address the shortness and sparsity of short
documents/service descriptions.

: Generation process for GSDMM
1: Draw for the corpus θC ∼ Dir(α)
2: Draw each topic φt ∼ Dir(β), t = 1, ..., T
3: for each service description (s) in Sn: do
4: Draw topic Zs ∼Mult(θC)
5: for each word i = 1, ...Nw: do
6: Draw Ws,i ∼Mult(φzs)
7: end for
8: end for
BTM: BTM [28] learns topics over short texts or service

descriptions based on the aggregated biterms in the whole
corpus to tackle the sparsity problem in a single document
or service description. The direct modelling of biterm co-
occurrence pattern, rather than a single word, offers semantic
information of topics. It considers that the whole corpus as a
mixture of topics (θC), where each biterm (b) (e.g., mobile
sensor, body sensor) is drawn from a specific topic (Zb)
independently. The probability that a biterm drawn from a
specific topic is further captured by the chances that both
words in the biterm are drawn from the topic (Zb). The
generation process of BTM is illustrated in Figure 1 (d) and
described in Algorithm III-A. BTM uses Gibbs sampling to
infer the model parameters used in the generation process.
One prerequisite for BTM is the availability of biterms co-
occurrence patterns in the corpus as insufficient patterns may
deteriorate the performance of BTM instead of improving it.

: Generation process for BTM
1: Draw for the corpus θC ∼ Dir(α)
2: Draw each topic φt ∼ Dir(β), t = 1, ..., T
3: for each biterm b in the biterm set B : do
4: Draw a topic assignment Zb ∼Mult(θC)
5: Draw two words: wi, wj ∼Mult(φt)
6: end for
LFLDA and LFDMM: Latent Feature LDA (LFLDA)

extends LDA and LFDMM [19] extend DMM/GSDMM for
short texts by replacing their topic-to-concept φt compo-

nent that generates concepts/words from topics, with a two-
component mixture of a topic-to-concept component φt and
a latent feature component τ . Figure 1 (e) and (f)) have
illustrated this extension along with the Isi , a Bernoulli
distributed indicator function that determines whether the
word/concept Ws,i is to be generated by the Dirichlet multi-
nomial or latent feature component. Algorithms III-A and
III-A describe the generation process of concepts/words in
LFLDA and LFDMM. The larger corpora selection, which
is relevant and comprehensive to extract features for service
domains, is vital to shape the topic representations of short
texts or service descriptions and improve the concept/word-
topic mapping for them.

: Generation process for LFLDA
1: Draw each topic φt ∼ Dir(β), t = 1, ..., T
2: Get Vector representations for words ω
3: Get Vector representations for topics τ
4: Calculate latent feature matrix τω
5: for each service description (s) in Sn: do
6: Draw topic proportions θs ∼ Dir(α)
7: for each word i = 1, ...Nw: do
8: Draw Zs,i ∼Mult(θs)
9: Draw Isi ∼ Ber(γ)

10: Draw Ws,i ∼ (1 − Is,i)Mult(φzs,i) +
IsiMult(τzs,iωT )

11: end for
12: end for

: Generation process for LFDMM
1: Draw for the corpus θC ∼ Dir(α)
2: Draw each topic φt ∼ Dir(β), t = 1, ..., T
3: Get Vector representations for words ω
4: Get Vector representations for topics τ
5: Calculate latent feature matrix τω
6: for each service description (s) in Sn: do
7: Draw topic Zs ∼Mult(θC)
8: for each word i = 1, ...Nw: do
9: Draw Isi ∼ Ber(γ)

10: DrawWs,i ∼ (1−Is,i)Mult(φzs)+IsiMult(τzsωT )
11: end for
12: end for

IV. EXPERIMENTAL SETUP
A. THE EVALUATION FRAMEWORK
Figure 2 presents the evaluation framework. We used it
to evaluate the categorisation performance of the selected
TM approaches. None of the selected approaches supports
distributed implementation. Similar to [35], we used a hybrid
implementation method to make these approaches suitable
for IoT services. The implementation includes a centralised
model learning phase and a distributed inference or categori-
sation phase.

The key components of the framework are: (i) a ser-
vice registry with accumulated service descriptions, (ii) a
knowledge-base to store knowledge about application do-
mains of the services, including an ontology, concepts, the
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ground truth of the services, (iii) a topic model and (iv) a
categorisation algorithm. The centralised model learner and
distributed inferencing nodes (i.e., IoT gateways) include all
these components, but an inferencing node’s registry includes
only locally registered services. The categorisation includes
a four steps process as below.

• Step 1: The distributed IoT gateways (GW) send their
registered service descriptions to the model learner,
which accumulates the descriptions into a corpus for
model learning. The accumulation process stops when
the learner node has four or more service descriptions
of each service category or domain. Categories that
have less than four descriptions are not included in the
training phase.

• Step 2: The model learner node runs a TM algorithm on
the corpus and learns the model parameters (i.e., θs: a
service description’s (s) topic distribution).

• Step 3: The model learner broadcasts/multicasts the
learned model and learned vocabulary to the inferencing
nodes.

• Step 4: Based on the received model, each inferencing
node runs its categorisation algorithm on the locally
registered services and assign their topics or domains.
The categorisation algorithm assigns a cluster to a
service description according to GSDMM’s clustering
algorithm, presented in Section III. This is because of its
superior performance over the popular K-means algo-
rithm [15]. Every inferencing node records the percent-
age of new concepts that appears from the services that
registered after the first learned model. If the percentage
reaches a threshold (e.g., 20% words in a sentence are
new), the node sends those service descriptions to the

model learner. The model learner relearns the model if
it receives such service descriptions from one or more
inferencing nodes.

B. THE TESTBED
We implemented the framework using two configurations: (i)
the model learner on a Desktop with Intel i7-4770 3.4GHz
64-bit CPU and 8GB memory, and inferencing nodes (IoT
GWs) are on Raspberry Pi 4 [36] with a Quad core Cortex-
A72 (ARM v8) 64-bit 1.5GHz CPU and 4GB memory [36],
(ii) the model learner and inferencing nodes (IoT GWs) on
Raspberry Pi 4 [36]. The second configuration is to evaluate
the approaches in resource-constrained IoT environments.

Figure 3 presents the physical deployment of the second
implementation of the framework, which was a part of our
IoT services implementation testbed [37]. Here, we briefly
present the testbed implementation, and for detailed informa-
tion of it, readers are referred to the work [37]. We used five
Raspberry Pi 4 as gateways connected in a WiFi MANET.
All these gateways installed distributed service registry, and
four of them (Gateways 1-4) worked as inferencing nodes,
and the fifth (unmarked) gateway (Figure 3) worked as the
model learner. Two Raspberry Pi 4, three Galileo boards,
and six motes were used as service providers for dataset 1
(discussed in IV-C). They also used WiFi to communicate
with gateways. On the other hand, five gateways worked as
the inferencing nodes in the first implementation and were
connected with the model learner (the desktop) through WiFi.

Figure 3. The Physical Deployment.

C. DATASETS
Generally, registered IoT service representations can take one
of the three forms: (i) service descriptions written in different
languages (i.e., JSON, XML, OWL-S, WSDL-S), (ii) Web
Services (WS) written in different languages (i.e., OWL-S,
WSDL-S), and (iii) REST API descriptions. The experiment
considers four different datasets for training the models: one
dataset for each of the three service representations forms and
one for combining these three. The first dataset (DS1) [38]
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Table 2. Summary of the Datasets

Features Dataset 1 Dataset 2 Dataset 3 Dataset 4
Avg. Length 17 43 12 24
Min. Length 13 11 4 4
Max. Length 20 115 30 115
Voca. Size 67 2237 562 2676
Avg. Sparsity 25.3% 1.9% 2.2% .89%
Corpus length 80 233 310 623
No. of domains 4 19 10 31

consists of 80 IoT service descriptions defined in JSON.
These services are from four different domains. The second
dataset (DS2) has been scraped from the ProgrammableWeb
API directory [39]. The DS2 consists of 233 IoT services’
API descriptions, which come from different domains (ap-
proximately 19). Unlike DS1, the DS2 is a noisy dataset that
includes many background words, and several domains have
only a few samples (e.g., the agriculture domain has only
four descriptions). The third dataset (DS3) consists of 310
web service descriptions and is obtained from the OWL-S
service retrieval test collection called OWLS-TC v3 [40].
These services can be grouped into ten different domains.
The fourth and final dataset (DS4) is a combination of the
earlier three datasets and consists of 623 service descriptions
from 31 different domains. DS4 was created to study the
performance of the selected approaches in heterogeneous
service representations (i.e., JSON for DS1, OWL-S for DS2,
API descriptions). Table 2 summarises the datasets, where
sparsity is defined as the % of nonzero elements in a vector
representation of a service description.

Each of the above training datasets (DS1-DS4) has a rep-
resentative inference or test dataset (DS1I-DS4I) to study the
categorisers’ performance in the new dataset through topic
inferencing. Every dataset in DS1I-DS4I includes ten new
service descriptions.

D. EVALUATION METRICS
We introduce evaluation metrics for the categorisers and their
impact on service search separately. The metrics to evaluate
the categorisers are further divided into quantitative and qual-
itative ones. The quantitative metrics are Purity, Homogene-
ity (H), Completeness (C), Normalized Mutual Information
(NMI) and time complexity (TC). These metrics are used in
many existing work [15], [16], [28] to evaluate TM-based
categorisers. In the following, we present the definitions of
these metrics.
Purity: Purity measures the percent of the total number of
services that were categorised or clustered correctly.

purity(C,GT ) =
1

N

∑
k

m
j
ax | ck ∩ gtj | (1)

where C = c1, c2, ...ck is the set of clusters and GT =
gt1, gt2, ...gtj is the set of ground truth (GT) or classes.

Homogeneity (H): Homogeneity represents the percent-
age/fraction of services that came from a single cate-
gory/cluster.

H(C,GT ) = 1− E(GT |C)
E(GT )

(2)

where E(GT |C) is the conditional entropy of the ground
truth/classes given the cluster assignments and E(GT ) is the
entropy of the ground truth/classes.

Completeness (C): It represents the percentage/fraction of
a given category/cluster of services are assigned to the same
category/cluster.

C(C,GT ) = 1− E(C|GT )
E(C)

(3)

where E(C|GT ) is the conditional entropy of clusters
given the ground truth/classes and E(C) is the entropy of
clusters.

Normalized Mutual Information (NMI): is a function
that measures the agreement of the two assignments, ignoring
permutations [41].

NMI(C,GT ) =
I(C,GT )

[E(C) + E(GT )]/2
(4)

where I(C,GT ) is the mutual information between C and
GT , E(C) is the entropy of C and E(GT ) is the entropy of
GT .

Time Complexity: It represents the time required by an
approach to learn its model.

The qualitative metrics are derived from the issues identi-
fied in Section II are heterogeneity, hierarchical categorisa-
tion, scalability, order of words, support for ontology com-
plexity and implementation. We also consider domain identi-
fication (supervised learning or classification) as a qualitative
parameter. We use search response time and scalability to
study the impact of service categorisation on service search.

V. RESULTS
This section presents the quantitative evaluation results of the
categorisers in terms of purity, NMI, H, C and time complex-
ity, and the influence of the topics/domains number (T) and
models’ hyperparameters α and β on categorisation purity.
It also discusses how well the selected approaches address
the issues identified in Section II. Finally, it demonstrates the
potential of service categorisation in search.

A. COMPARISON OF CATEGORISERS
Table 3 illustrates the results for purity, NMI, H, C and
time complexity on training datasets (DS1-DS4), and Ta-
ble 4 illustrates the results for purity on the corresponding
inference datasets DS1I-DS4I. Like [15], [16], [28], we used
symmetric values for α and β, and they are fixed to α = .25
and β = .01 for all the datasets. All the approaches perform
well (e.g., purity ≥ .72) in DS1 and DS1I as the service
descriptions for DS1 and DS1I are structured, and they are
short but not sparse (as shown in Table 2, on average, more
than 25% elements of every service description vector are
nonzero). In DS2 and DS2I, all the categorisers perform
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Table 3. Training Performance of the Categorisers

Metrics Dataset LDA TLDA GSDMM BTM LFLDA LFDMM

Purity

DS1 .97 1.0 1.0 .72 .75 .75
DS2 .44 .46 .465 .37 .36 .38
DS3 .74 .80 .78 .54 .37 .44
DS4 .54 .66 .67 .36 .45 .52

NMI

DS1 .92 1.0 1.0 .63 .86 .83
DS2 .34 .35 .35 .26 .25 .26
DS3 .63 .79 .78 .46 .21 .43
DS4 .60 .68 .67 .45 .47 .52

H

DS1 .928 1.0 1.0 1.0 1.0 1.0
DS2 .30 .305 .32 .25 .23 .425
DS3 .715 .791 .778 .46 .22 .24
DS4 .615 .65 .646 .48 .47 .5

C

DS1 .928 1.0 1.0 1.0 1.0 1.0
DS2 .31 .31 .32 .25 .23 .42
DS3 .72 .79 .78 .46 .22 .25
DS4 .61 .65 .64 .49 .47 .5

Time complexity (c1)

DS1 .11 .10 .035 .05 .22 .21
DS2 .19 .18 .12 .13 10.1 10.2
DS3 .16 .14 .07 .08 .571 .572
DS4 .21 .22 .19 .178 20.2 20.7

Time complexity (c2)

DS1 .13 .12 .05 .08 .41 .42
DS2 .22 .21 .15 .175 19.7 19.9
DS3 .19 .18 .08 .095 1.75 1.8
DS4 .25 .27 .24 .29 39.5 40.1

Table 4. Inferencing Performance of the Categorisers

Metrics Dataset LDA TLDA GSDMM BTM LFLDA LFDMM

Purity

DS1I .925 1.0 1.0 .47 .72 .72
DS2I .42 .435 .44 .34 .34 .35
DS3I .72 .78 .765 .525 .357 .425
DS4I .52 .65 .66 .345 .44 .50

poorly, and the main reasons for this are: (i) unstructured
and noisy descriptions (i.e., too many common words such
as API, service), (ii) heterogeneous length of service descrip-
tions, and (iii) sparsity of the descriptions. On the other hand,
all the approaches perform better in DS3 and DS3I than
DS2 and DS2I, as descriptions in DS3 and DS3I are more
structured and less noisy and less heterogeneous in length
than DS2 and DS2I. In DS4 and DS4I, the performances
other than the time complexity of all the approaches have
improved compared to those in DS2 and DS2I, as the DS4
and DSI4 are less noisy and more structure than DS2 and
DS2I. However, the performances are not as good as in
DS1, DS1I, DS3 and DS3I. They include DS2 or service
descriptions similar to DS2, and service descriptions’ length
level heterogeneity and sparsity are more than other datasets.

TLDA and GSDMM outperform other approaches in
all training and inference/test datasets. Their performance’s
main reason is their strict assumption: one topic per service
description and this assumption is valid for the datasets as
most of their services came from one of the listed domains.
LDA, the baseline TM, performs well in DS1 and DS1I but
struggles in other datasets mainly because of sparsity. On the
other hand, BTM does not perform well because there are
no or limited biterms co-occurrence patterns in the datasets.
LFLDA and LFDMM perform poorly compared to TLDA,
GSDMM and LDA. The reason for their poor performance is

the inappropriate and irrelevant supporting corpus used in the
word embedding. We used DS4 as a supporting corpus for all
datasets to embed related words in service descriptions, and
DS4 has many irrelevant words and topics, which have "used
up" the vocabulary and topic space of LFLDA and LFDMM.
The word embedding model of LFLDA and LFDMM repre-
sents each word using a single vector, which makes the model
indiscriminative for ubiquitous homonymy and polysemy.

The purity results of all the approaches on the inference
datasets show that these approaches are performing close
to their training performance. Inference datasets with more
differences than the training datasets may initiate retraining
of the models to keep the models’ performance close to a
certain threshold.

1) Influence of Number of Domains or Topics (T)

In this section, we investigate the influence of T on the
performance of clustering purity. An optimal number of
T is important, as, for numbers below the optimal one, a
categoriser may perform poorly. For numbers higher than
the optimal one, a categoriser may need more computing
resources to categorise the services. For example, as shown
in Table 3, the time complexity of an approach increases, not
only by an increase in dataset size but also by the increase
in the number of topics it involves. For this experiment, we
use α = .25 and β = .01 for all the datasets, and varied
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Figure 4. Number of Topics/Domains vs. Clustering purity.

T from 2-40. As shown in Figure 4 (a-d), in all datasets,
clustering purity improves as T increases till it reaches the
optimal or near the actual number of T . After that, purity does
not improve or deteriorate much. The reason for this pattern
is the "richer gets richer" property of the clustering approach.
For example, in DS1 (Figure 4 (a)), the actual number of T
is 4, and all the approaches show the highest or close to the
highest purity on this value. The purity values for the higher
values of T do not fluctuate much.

2) Influence of Alpha α

Dirichlet prior α is a prior on the topic-distribution of doc-
uments (of a corpus), and it is a corpus-level parameter. It
represents the sparsity of a document or service descriptions
in terms of topic distribution (i.e., a lower value α for corpus
means every document in the corpus includes a few topics
or one topic, not all the topics available in the corpus).
Determining the optimal value or range of values of α is
important to represent the sparsity (topic-wise) of a document
appropriately. For this experiment, we used β = .01 for all
the datasets, T = 4 for DS1, T = 19 for DS2, T = 10 for
DS3 and T = 4 for DS4, and varied α from .1-1.0 (as service
descriptions are short and sparse). As shown in Figure 5 (a-
d), clustering purity is not the same for all values of α. All
the approaches’ best performances may coincide at a range

rather than a fixed value of α. For example, in DS1 (Figure 5
(a)), the best performances of the categorisers coincide in
between .25-.37. More importantly, as shown in Figure 5 (a-
d), a fixed value or range of values may not work well in
all datasets of service descriptions, as it is a property of a
corpus instead of the property of a set of corpora. In short and
heterogeneous datasets, the use of an adaptive and optimised
value of α based on a corpus may show better performance
than a predefined value (e.g., α = 50/T [13]).

3) Influence of Beta β

Dirichlet prior β is a prior on the word-distribution of topics
(of a document/service description), and generally, it is a
corpus-level (symmetric value) parameter. It represents the
sparsity of a document or service descriptions in terms of
word distribution (i.e., a lower value β represents each doc-
ument in a corpus includes a few words, not all the words
available in the corpus or corresponding vocabulary). Like
α, the optimal value or range of values of β is necessary to
appropriately represent the sparsity (word-wise/feature-wise)
of a document. For this experiment, we used α = .25 for all
the datasets, T = 4 for DS1, T = 19 for DS2, T = 10 for
DS3 and T = 4 for DS4, and varied β from .01-.2 (as service
descriptions are short and sparse). As shown in Figure 6 (a-
d), clustering purity is not the same for all the values of β,
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Figure 5. Sparsity of topic distribution (α) vs. Clustering purity.

and most approaches in all the datasets showed their optimal
clustering purity within the range β = .01 − .07, which
includes the recommended value of β (.01). The variation of
clustering performance varies less with β than α. The clus-
tering performances of LFLDA and LFDMM vary more with
β than that of LDA, TLDA, GSDMM and BTM. Explicit use
of latent feature/concepts in LFLDA and LFDMM could be
a potential reason for this behaviour. Moreover, BTM relies
more on corpus-wide word co-occurrence than β. On the
other hand, GSDMM assigns a topic to a document, and
TLDA assigns topic proportions to a user or service provider.

B. EFFICIENT AND SCALABLE SERVICE SEARCH

We implemented a service search use case in MongoDB [42].
In MongoDB, we created four different database collections
(CL1-CL4) for four datasets DS1-DS4 (without categorisa-
tion) and a collection (CLD1-CLD31) for every categorised
domain. We searched ten different services in CL1-CL4 and
CLD1-CLD31 through a key-value pair based query and
recorded their worst response time in milliseconds (ms). Fig-
ure 8 presents results. As shown in the figure, service search
is categorised, and reduced search space or collections scales
better than the service search in non-categorised and larger
search space. For example, the worst service search time in

the non-categorised CLD2 is 2.5 ms and in the categorised
CLD2 is 1 ms. Moreover, this lower response time will offer
efficient service search in resource-constrained IoT devices
by utilising computing resources and consuming battery
power for a shorter time. Even though the worst search time
for all the categorised collections in this experiment is 1
ms, it will increase if per cluster service descriptions count
increases.

VI. QUALITATIVE EVALUATION AND OPEN RESEARCH
CHALLENGES

Unlike discriminative models [18], TM-based categorisers
can offer additional benefits by addressing the issues iden-
tified in Section II. In the following, we discuss how these is-
sues can be addressed by existing TM-based approaches, in-
cluding the selected ones. Although the selected approaches
presented herein address many issues and requirements (Fig-
ure 7) in IoT service categorisation, there are still some open
research challenges, which are also discussed in this section.

Heterogeneity: As illustrated in Section V, TM-based
approaches can address service representation-level hetero-
geneity through topic-based unified service representation
and categorise services according to their topic/topics. All
the selected approaches address two types (i.e., representa-
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Figure 6. Sparsity of word distribution (β) vs. Clustering purity.
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tion and source, representation and content) of heterogeneity
(Figure 7). Only TLDA and LFLDA [13], [22] address three
types of heterogeneity because of their mixed membership
models. However, LDA, a mixed membership model, may
not always address source-level heterogeneity as it is not de-
signed for short texts. Also, service descriptions’ length (i.e.,
word length) level heterogeneity is not addressed well by
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Figure 8. Scalable service search.

the selected approaches. The use of adaptive and optimised
hyperparameters selection in a TM may address this.

Scalability: Probabilistic topic models are popular meth-
ods for dimensionality reduction of text documents or im-
ages. For example, a topic-based representation of a service
description from DS4 reduces the length (2676) of the word
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vector representation of the service description to 31. This
lower-dimensional representation and topic-based categori-
sation of services can offer an efficient and scalable service
search (Figure 8). As shown in Figure 7, LDA, TLDA, and
GSDMM are more scalable than BTM, LFLDA and LFDMM
as BTM needs corpus-wide biterm co-occurrence patterns,
and LFLDA and LFDMM need a relevant and larger corpus,
which may not always be available.

Hierarchical Categorisation: The selected approaches do
not support hierarchical categorisation. However, in mixed
membership model-based approaches (i.e., LDA, TLDA and
LFLDA), a service description includes multiple topics,
which may be useful in hierarchical categorisation (Figure 7).
On the contrary, strict condition about a topic (one topic
per document or service description) of mixture model-
based categorisers (e.g., GSDMM, GPUDMM) makes them
unsuitable in hierarchical categorisation documents/services.
An adaptive and less strict condition might allow more than
one topics in a document/service description and support
hierarchical categorisation. Further research is necessary for
this direction.

Order of Words/concepts: As shown in Figure 7, only
BTM partially maintains the order of words, explicitly ex-
ploiting biterm (e.g., body sensor, wireless network) co-
occurrence patterns in a service description. However, the use
of bi-grams or n-grams [43] based TM can maintain the order
of words or phrases. The use of bi-grams or n-grams may
maintain the order of words/concepts in service descriptions,
but it also increases complexity, especially in short texts,
by making them shorter. For example, 3-grams words, such
as body-sensor-network instead of 3 uni-gram words body,
sensor and network, shorten the service description by two
words. Context-aware adaptive use of n-grams in short texts
could be a potential research direction.

Support for Knowledge Base/ Ontology: The selected ap-
proaches do not offer any support for ontology development
and management. Also, word embedding based approaches
(i.e., LFLDA, LFDMM) perform poorly due to the lack of
distributed and comprehensive knowledge base (e.g., domain
ontology, appropriate supporting and larger corpus) and the
word embedding model’s single vector assumption. Domain
knowledge and TM-based categoriser may incrementally
help each other to build and maintain a distributed knowl-
edge base. This distributed knowledge base can also work
as a vocabulary for supporting and larger corpus in word
embedding based approaches. Also, context-aware word em-
bedding [44] can address the homonymy and polysemy issue
of single vector assumption. TM-based ontology [45] and
taxonomies [46] learning, along with an overlay network
of the service registries, could be a potential solution to
distributed ontology development and maintenance.

Implementation: The selected approaches do not support
distributed implementation, but they support a hybrid imple-
mentation, as shown in Section IV. Distributed implemen-
tation of a topic model requires the parallel implementation
of the model parameters estimation method. Generally, Gibbs

Sampling is parallelizable, but efficient collapsed Gibbs Sam-
pling is not. A trade-off is necessary between collapsed Gibbs
sampling’s efficiency and parallelizability.

Complexity: As shown in Figure 7, LFLDA and LFDMM
need more processing time and memory (complex) space
compared to LDA, TLDA, GSDMM and BTM. Distributed
implementation [47], [48], and model parameters estimation
algorithm with lower time and space complexity [15] may
reduce the complexity of these approaches.

Domain Identification: The selected approaches are
clustering-based unsupervised categorisers and do not sup-
port domain identification. Use of feature selector to se-
lect appropriate domain features [49] or classifiers, such as
SVM [16], [50] and K-Nearest Neighbor with topic mod-
elling, can identify service domains. A domain-based IoT
services classifier could be a potential future research direc-
tion.

VII. CONCLUSION AND FUTURE WORK
In categorisation, unlike other short texts, IoT services en-
counter a few specific issues, which can be addressed by topic
modelling based categorisers. This article identified those
issues and used them to evaluate six selected topic modelling
based categorisers, namely LDA, TLDA, GSDMM, BTM,
LFLDA and LFDMM in IoT services descriptions. All except
LDA, the baseline model, are designed for short texts. The
quantitative evaluation results show that all the approaches
perform well in a short but not too sparse dataset (DS1).
However, they do not perform well in noisy API descriptions
(DS2) datasets and heterogeneous service descriptions (DS3
and DS4). TLDA and GSDMM outperform other approaches
in all training and inference datasets mainly because of their
strict assumption: one topic per service description. Word
embedding based approaches (LFLDA and LFDMM) may
support semantic interoperability, but they perform poorly
compared to TLDA, GSDMM and LDA. They perform
poorly because of the inappropriate supporting corpus.

In addition to the comparison of the categorisers, this
article presents results on the influence of models’ hyper-
parameters α and β, and number of topics/domains (T)
on categorisation purity. These results demonstrate that an
optimal value of T can offer categorisation efficiency through
lower processing time, and optimal values of α and β can
optimise categorisers’ performance by well representing the
datasets.

The evaluation of the selected approaches presented in this
study shows that these approaches well address heterogene-
ity. They also have the potential to address scalability issues
in IoT service categorisation. However, few open issues, in-
cluding distributed implementation, hierarchical categorisa-
tion, the order of words/concepts, and distributed knowledge
base (i.e., domain ontology) development and management,
still exist. There is significant scope for future work in these
areas. Realising the importance of domain identification in
domain-based service search in IoT, our future endeavours
will focus on developing and managing a distributed knowl-
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edge base (i.e., domain ontology), exploiting topic mod-
elling’s generative aspect. Our future effort will also be to
evaluate our solutions in larger IoT datasets as the datasets
used in this evaluation are insufficient to demonstrate service
search’s scalability.
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