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Current life cycle impact assessment (LCIA) practices use a characterization factor to

linearly scale chemical emission to human health impact assuming a homogeneous

exposure and toxicological susceptibility for the entire population. However, both

exposure and toxicological susceptibility may vary within the population, making the

same emission elicit disproportionate impacts. Here we explore how inter-individual

variabilities in human exposure and toxicological susceptibility interact to affect the

estimated overall health impacts on the population level. For exemplification, we use the

PROTEX model to simulate the exposure of the general American population to dieldrin

and heptachlor, two organochlorine pesticides that tend to accumulate in food items.

Using a Monte-Carlo analysis, we characterize inter-individual variabilities in exposure by

considering variations in anthropometrics and dietary patterns between ages, sexes, and

racial groups. We assess the overall health impact on the population level in five scenarios

with different combinations of assumptions in exposure (homogeneous/heterogeneous)

and the dose-response relationship (linear/non-linear, homogeneous/heterogeneous

susceptibility). Our results indicate human exposure can vary by a factor of six among the

different demographic groups. Combined with a non-linear dose-response relationship

with heterogeneous susceptibility, the estimated overall health impact is substantially

higher than the results using homogeneous susceptibility. However, the current LCIA

practice of using a linear dose-response relationship produces even higher results that

may overestimate the health impacts.

Keywords: human health, inter-individual variability, exposure, suscepibility, life cycle impact assessment,

chemical

INTRODUCTION

Life cycle impact assessment (LCIA) frequently encounters the problem of quantitative
characterization of health impact from human exposure to toxic substances. Currently, the human
health characterization approach in the USEtox framework (Rosenbaum et al., 2008) is the most
widely utilized. Under this approach, several regional factors influencing characterization of the
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human health impact in LCIA such as environmental parameters,
population size, and population exposure patterns are
considered. However, the characterization of human exposure
to chemicals often builds on anthropometric and exposure
factors representative of medians or averages of a population in
a region of interest. Underlying this practice is an assumption
that all individuals across a population share homogeneous
exposure and identical heath response to a marginal increase in
exposure. This exposure is then scaled linearly by an effect factor
representing a fixed slope of the dose-response relationship and
homogeneous toxicological susceptibility to the chemical to
derive a characterization factor before multiplied by the emission
of chemical to arrive with the impact result (Rosenbaum
et al., 2011). The use of linear representation of dose-response
relationship and the assumption of homogenous population
are largely shared by other LCIA methodologies (European
Commision, 2010; Wegener Sleeswijk and Heijungs, 2010; Bare,
2012; Fazio et al., 2018; Bulle et al., 2019) and prevail in the LCIA
practice nowadays.

However, studies in other fields have long shown
systematic inter-individual variabilities in human exposure
and toxicological susceptibility due to a mixture of factors
including genetics (Fenna et al., 1971; Zhang et al., 2011),
development stage (Bearer, 1995; Garí and Grimalt, 2013),
dietary pattern (Shikany et al., 2015; Awata et al., 2017),
and behavior (Li L. et al., 2020). For instance, compared to
individuals on an omnivorous or a vegetarian diet, those on
a lipid-richer diet are found to be associated with a higher
rate of ingestion of lipophilic persistent organic chemicals like
organochlorine pesticides, because these compounds show a
strong tendency to accumulate and concentrate in animal lipids
(Undeman et al., 2010). In addition, the acceptability of using
a linear dose-response relationship in toxicity characterization,
especially for non-cancer effects, is also being questioned
because it runs against our understanding of dose-response
relationships for many substances (Fantke et al., 2018). Our
recent work also evaluated the effect of using a non-linear
dose-response relationship in human health characterization
(Li D. et al., 2020), indicating that the traditional linear dose-
response relationship underestimates substantially the overall
health impacts in the case that a transient high exposure
exerts disproportionate health effects. The most exposed and
susceptible individuals would be underrepresented if generic,
one-size-fits-all population characterization factors and the
linear dose-response relationship were used in LCIA. Since
these individuals may suffer severer health impacts compared
to less vulnerable individuals, such an underrepresentation may
bias the characterized health impacts at the entire population
level. As such, it is imperative to understand the extent to
which the characterized overall population health impacts in
LCIA are influenced by the use of a linear representation of the
dose-response relationship and the omission of inter-individual
variations in human exposure and toxicological susceptibility.
Such a quantitative understanding would benefit the future
LCIA practice if population- and region-specific characterization
factors should be refined in LCIA. However, these issues have not
yet to be well-understood from the current perspectives of LCIA.

In the following, we model the daily oral doses of two
lipophilic persistent organic chemicals (dieldrin and heptachlor)
by ∼330,000 virtual Americans varying in age (from 0
to 80), sex (male and female), and race/ethnicity (Non-
Hispanic White, Non-Hispanic Black, Non-Hispanic Asian,
and Hispanic). In this way, the exposure of the general U.S.
population can be characterized using either individual-specific
estimates or the population median. We also construct three
types of dose-response relationships: linear, non-linear with
homogeneous susceptibility across the population, and non-
linear with individual-specific heterogeneous susceptibility. The
overall health impacts of the general U.S. population are then
evaluated using combinations of different expressions of human
exposure and dose-response relationships.

MATERIALS AND METHODS

Overview of the Method
Figure 1 gives an overview of the approach used in this work,
using dieldrin as an example. First, a comprehensive fate and
exposure model called PROTEX, is used to predict the life-
course daily oral dose (in µgchemical/kgbodyweigt/d) of dieldrin
and heptachlor by archetypal, average males and females of four
groups of race/ethnicity (Figure 1A). Such PROTEX modeling
enables us to characterize inter-individual variability in exposure
resulting from variabilities in anthropometric data and dietary
patterns between ages, sexes, and races/ethnicities.

We then generate a virtual population using a Monte-Carlo
simulation with 329,131 repetitions, each representing a virtual
American with age, sex, and race/ethnicity stochastically sampled
from the United States demographic composition in 2019 (U.S.
Census Bureau, 2020a) (Supplementary Material Part 1).
This virtual population represents ∼0.1% of the actual
U.S. total population (U.S. Census Bureau, 2020b). Next,
each virtual individual is assigned a daily oral dose from
PROTEX predictions based on their age, sex, and race/ethnicity
(Figure 1B); for instance, Figure 1B shows that a 19-year-old
Black female is predicted to have a daily oral dose of 2.9
µgchemical/kgbodyweigt/d on average for dieldrin. The exposure
of this virtual population can be characterized using either
individual-specific estimates (“heterogeneous exposure”) or
the population median (“homogeneous exposure,” indicated
in Figure 1B). Meanwhile, each virtual individual is assumed
to follow a dose-response relationship, which can be either
linear, non-linear with homogeneous susceptibility across the
population, or non-linear with individual-specific heterogeneous
susceptibility (Figure 1C). The estimated daily oral doses and
dose-response relationships are then combined to assess the
probability of occurrence of adverse health effects of these virtual
individuals (Figure 1D). These probabilities of occurrence of
health effects are then aggregated and scaled to estimate the
overall health impact (the incidence of disease) of the general U.S.
population. We seek to compare the estimated health impacts
with and without considering inter-individual variabilities in
human exposure and the dose-response relationship.
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FIGURE 1 | Schematic overview of the human health characterization approach (dieldrin for illustration). The PROTEX model predicts daily oral dose of chemicals with

variabilities in age, sex, race/ethnicity (A). A nationally representative population of 329,131 virtual individuals is generated, each of which is assigned a daily oral dose

sampled from the PROTEX predictions based on the individual’s age, sex, race/ethnicity (B; the population median is indicated). The probability of occurrence of

health effects is calculated for each virtual individual, based on dose-response relationships that are linear (dashed curve), non-linear with homogeneous susceptibility

across the population (solid curve), or non-linear with individual-specific heterogeneous susceptibility (95% Confidence Interval shown in shadow) (C; Probability of

occurrence of health effects on a logarithmic scale). (D) shows the distribution of the calculated probability of occurrence of health effects within the virtual population.

The PROTEX Model
PROTEX is a process-based, modular model that supports
simulating life-course human exposure to chemicals present in
various exposure media through multiple exposure pathways
(Li et al., 2018a,b). PROTEX’s performance has been well-
evaluated elsewhere (Li et al., 2018a,b; Li et al., 2019;
Li L. et al., 2020). In this work, we use three modules
in PROTEX. First, fed with rates of chemical emission, a
regional environmental fate module predicts the concentrations
of chemicals in environmental compartments (e.g., air, soil,
freshwater, freshwater sediment, estuary water, and estuary
sediment in a modeled rural environment) due to their
transport, transformation, and accumulation. Next, a food-
web bioaccumulation module predicts chemical concentrations
in the bodies of aquatic (planktivorous and piscivorous fish)
and terrestrial organisms (beef and dairy cattle, pigs, poultry,
and vegetables) living in this modeled rural environment,
resulting from their absorption of chemicals from environmental
compartments and predation, as well as toxicokinetics. These
organisms constitute the diet of the modeled individual in
PROTEX. For instance, the levels of chemicals in beef cattle,

dairy cattle, pigs, poultry represent the levels in beef, dairy
products, pork, and poultry and eggs, respectively. Finally, with
anthropometric data (body weight and height), dietary patterns
(weights of individual food items), and levels of contamination
in food items, a human exposure module predicts age-dependent
and sex-specific daily oral doses of chemicals via dietary ingestion
throughout the lifetime.

In this work, PROTEX is parameterized to represent an
archetypal subtropical U.S. environment. Specifically, 94.7% of
the total regional area is rural, where unforested soil, forest,
freshwater, and estuarine account for 29.2, 35.8, 7.0, and 28.0%,
respectively (Nowak and Greenfield, 2012; US Census Bureau,
2018). Each year, the modeled rural region receives 379mm
of precipitation, with monthly ambient temperature varying
from 287 to 296K and monthly windspeed varying from 3.4
to 4.2 m/s (Arguez et al., 2010). The extrapolated monthly
hydroxyl radical concentrations in the lower atmosphere vary
from ∼0.7 × 105 to ∼5.7 × 105 molecule/cm3 (Spivakovsky
et al., 2000). PROTEX’s built-in defaults are used for other
environmental parameters, to which the modeled results are
less sensitive.
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The two compounds are assumed to be emitted exclusively
to the compartment of rural air. Since the soil compartment
in PROTEX represents the growth environment for livestock
and vegetables (as opposed to agricultural fields receiving
the two pesticides) where the direct application of dieldrin
and heptachlor is absent, atmospheric deposition is the main
mechanism responsible for the occurrence of these two
compounds in the soil compartment. The emission rate is
assumed to be 299 kg/d for dieldrin and 1,507 kg/d for
heptachlor based on historical high estimates (Fendick et al.,
1990; Jorgenson, 2001), as these two compounds have no longer
been used in the U.S. since the 1980s. Because we focus on
variability in exposure in a generic context, we perform steady-
state calculations. Since PROTEX is a time-variant model, we
assume that the rate of chemical emission keeps constant
throughout the modeling and starts 10 years prior to the birth
of the modeled individuals. This decadal “spin-up” time ensures
contamination in the environment and food items to reach
and maintain the steady state throughout the lifetime of the
modeled individual.

Demographic Parameters
When parameterized with sex- and race-specific anthropometric
data and dietary patterns, PROTEX predicts the central
tendencies of daily oral doses for females and males of
four groups of race/ethnicity (Non-Hispanic White, Non-
Hispanic Black, Non-Hispanic Asian, and Hispanic) throughout
the lifetime.

The anthropometric data, i.e., body weight and height, are
taken from the U.S. National Health and Nutrition Examination
Survey (NHANES) between 1999 and 2018. A total of 102,956
NHANES participants are categorized into eight demographic
groups based on their four groups of race/ethnicity and sex
(male and female) according to theNHANES codebook (National
Center for Health Statistics, 2020). Mexican American and Other
Hispanic originally coded in NHANES are both considered
Hispanic in this study. It should be noted that the sample size
for Non-Hispanic Asians is significantly lower than the other
races because it was not until 2011 when NHANES broke it
out from the group of “Other Race—Including Multi-Racial.”
Meanwhile, the ages of NHANES participants are converted to
years with fractions if recordings of age in months are available
for any given year in NHANES or whole numbers of years if
recordings of age are only available in years. Participants older
than 80 are assumed to be 80 since it is the maximum age
defined in PROTEX. For each of the eight demographic groups,
we use quartic regressions to express the central tendencies of
body height and weight as quartic functions of age. The curated
data from NHANES and regression functions can be found in
Supplementary Material Part 1, Part 2, respectively.

Dietary patterns for individuals aged 20 and over are curated
from Food Patterns Equivalents Database (2015-2016) by
the U.S. Agricultural Research Service (Agricultural Research
Service, 2018). Since the Food Patterns Equivalents Database
uses a categorization different from that in PROTEX, we match
the reported food items with their best corresponding items
represented in PROTEX (Supplementary Material Part 2).

Since the daily food consumption rates in the Database are in
cups equivalent and ounce equivalent, depending on food items,
they are converted into grams according to the information in
the user guide accompanied the report (Bowman et al., 2018).
Details about the conversion and the curated dietary patterns
can be found in Supplementary Material Part 1. For each
demographic group, PROTEX requires inputs of daily food
consumption rates of a 25-year-old individual who has the
average body weight and height in the racial group. The central
tendencies of daily food consumption rates recorded in the
Database are used to parameterize the 25-year-old male, whereas
they are scaled, based on the ratio between national averages of
males and females, to parameterize the 25-year-old female. A
built-in algorithm in PROTEX (Li et al., 2018a) then extrapolates
the daily food consumption rates at age 25 to other ages based on
age-dependent body weight.

Chemicals Used in This Study
We evaluate human exposure to dieldrin and heptachlor because
dietary ingestion has been revealed as the most predominant
pathway of human exposure for these organochlorine pesticides.
This is because they are almost exclusively used in agricultural
environments (i.e., far-field environments) and their lipophilic
and persistent features make them readily bioaccumulative in
living organisms (Li et al., 2019). PROTEX requires inputs
of properties describing the multimedia partitioning and
transformation of dieldrin and heptachlor (Table 1).

To evaluate the health risks associated with dietary ingestion
of the two compounds, we take the toxicity values in estimated
effective dose causing a probability of health effects of 50%
(in kgchemical over lifetime), a body weight of 70 kg, and a
lifetime of 70 years (Rosenbaum et al., 2011) to derive an ED50

with the unit consistent with that of the daily oral dose (in
µgchemical/kgbodyweigt/d). By this measurement, dieldrin is about
50-folds more toxic than heptachlor, which is another reason
why we choose these two chemicals—to showcase potential
differences when comparing chemicals of substantial differences
in toxicity (Table 1).

Human Health Characterization
Assessment of human impact largely follows our previous
work (Li D. et al., 2020) using a non-linear dose-response
relationship to arrive at health impact estimates with some
modifications. In this work, although the focus is on non-
cancer effects, for which an exposure threshold below which
no risks are usually assumed (Barnes et al., 1988; Lu, 1988),
we do not make this assumption. This is because a recent
study on probabilistic dose-response assessment suggests this
threshold could have a large uncertainty—typically around 100-
fold between upper and lower 95% confidence bounds—partly
due to variability of susceptibility to the toxic chemical among
the human population (Chiu et al., 2018). As a result, applying a
deterministic threshold may artificially ignore the effects to those
more susceptible.

For each virtual individual with long-term exposure
to chemical i, expressed as a daily oral dose Xi

[µgchemical/kgbodyweigt/d], we quantify the health impact
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TABLE 1 | Physicochemical properties and toxicity values of dieldrin and heptachlor.

Dieldrin Heptachlor References

CAS Number 60-57-1 76-44-8

Octanol-water partition coefficient (logKOW; unitless) 5.48 5.94 Shen and Wania, 2005

Octanol-air partition coefficient (logKOA; unitless) 8.84 7.76 Shen and Wania, 2005

Atmospheric hydroxylation rate constant (cm3/molecule/s) 7.0 × 10−13 5.9 × 10−11 Predictions by the OPERA model Mansouri et al.,

2018

Half-life in water (h) 7,995 3,520 Predictions by the OPERA model Mansouri et al.,

2018

Half-life in soil (h) 20,300 8,000 Freeman et al., 1975

Half-life in sediment (h) 72,000 32,000 Extrapolated from half-life in water based on the

empirical relationship in Fenner et al., 2005

Vertebrate biotransformation half-life (10-g normalized; h) 1,260 670 Experimental data compiled by Papa et al., 2014

Mammalian and avian biotransformation half-life (70-kg

normalized; h)

3,000 10,300 Predictions by the IFS model Arnot et al., 2014

ED50 (70-kg body weight and 70 years lifetime normalized;

µgchemical/kgbodyweight/d)

55.0 2,860 Calculated based on the values documented in

Rosenbaum et al., 2011

using the probability of occurrence of adverse health effects
(PrHE, unitless) by assuming this level of exposure persists over
the lifetime. Since we use a steady state setting for exposure, Xi

remains the same for each day over time, so does PrHE. Here, we
use two types of daily oral dose in the assessment:

(I) individual-specific estimates for the 329,131modeled virtual
Americans varying in sex, age, and race/ethnicity (denoted
as “heterogenous exposure”); and

(II) the median of the estimates for the 329,131 virtual
Americans (denoted as “homogeneous exposure”).

On the other hand, we examine three types of dose-
response relationships:

(I) the linear dose-response relationship. We follow the
method used in USEtox (Rosenbaum et al., 2011) by multiplying
exposure and an effect factor (calculated by 50% over ED50,i):

PrHElinear(Xi) = Xi ×
50%

ED50,i
(1)

We only adopt this equation from USEtox for the representation
of a linear dose-response relationship and should not be confused
as the method in this work is based on USEtox—i.e., Xi is
characterizing exposure but not equivalent to intake fraction
in USEtox.

(II) a non-linear dose-response relationship, given by
Huijbregts et al. (2005) and adapted for lifetime daily oral dose
instead of aggregated total lifetime exposure:

PrHEnon−linear(Xi) =
∫ Xi

0

e

− 1
2





log
Xi

ED50,i
σlog





2

σlog ×
√
2π × Xi × ln 10

dXi (2)

where σlog [unitless] is the spread in human susceptibility for
a non-cancer effect in a lognormal distribution. The spread
in human toxicological susceptibility (σlog) is assumed to

TABLE 2 | Scenarios considered in this study with a breakdown of their

combinations of exposure, dose-response relationship, and susceptibility

assumptions.

Scenario Exposure Dose-response relationship Susceptibility

I Heterogenous Non-linear Heterogenous

II Heterogenous Non-linear Homogeneous

III Heterogenous Linear Not applicable

IV Homogeneous Non-linear Homogeneous

Va Homogeneous Linear Not applicable

aThis scenario has the same assumptions as in the current LCIA practice.

be identical for all the modeled individuals, with a value
of 0.26 based on the central tendency recommended by
Huijbregts et al. (2005). This way is denoted as “homogeneous
human susceptibility.”

(III) The spread in toxicological susceptibility (σlog) is
assumed to vary between the 329,131 virtual Americans. That
is, there are 329,131 dose-response curves with different shapes.
Their σlog are randomly sampled from a log-normal distribution
with the central tendency of 0.26 and squared geometric standard
deviation (i.e., the ratio between 97.5th and 2.5th percentiles,
otherwise known as “uncertainty factor” in Huijbregts et al.,
2005) of 2.5 (Huijbregts et al., 2005). This way is denoted as
“heterogeneous human susceptibility.”

It should be noted that if Xi varies by day, the calculated PrHE
from the above equations should be aggregated for the lifetime
and then normalized over the lifetime to represent the lifetime
probability (Li D. et al., 2020). However, since Xi is constant in
this study, so does PrHE, we omit this step in the calculation.

As such, considering the combination of the inter-individual
variability in daily oral dose and the type of dose-response
relationship, we discuss five scenarios in this work, as
summarized in Table 2.
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The calculated probabilities of occurrence of health effects of
the virtual Americans (n= 1, 2, . . . , 329,131) are then aggregated
and scaled to the total population in the U.S. (329,131,338)
to calculate the overall health impacts (the number of cases
of disease):

HI =
329, 131, 338

329, 131

∑329,131

n=1
PrHE(Xi) (3)

RESULTS AND DISCUSSIONS

Inter-Individual Variability in Exposure
Figure 2 shows the modeled human exposure to dieldrin
and heptachlor when these organochlorine pesticides were in
prevalent use. Accounting for variabilities in sex, age, and
race/ethnicity, PROTEX estimates that the median daily oral
dose is 2.81 (95% Confidence Interval: 1.43–4.95) µg/kg/d
for dieldrin and 1.27 (95% Confidence Interval: 0.66–1.86)
µg/kg/d for heptachlor. These numbers are close to historical
measurements among Americans, with a difference within an
order of magnitude (Hunter et al., 1967; McGill et al., 1972).
For instance, surveys conducted in the mid-1960s, when the
use of dieldrin and heptachlor started to decline nationally,
show that the mean dietary intake of dieldrin by the general
American population∼0.3 µg/kg/d (Hunter et al., 1967; Duggan
and Corneliussen, 1972; McGill et al., 1972).

As shown in Figure 2, a ∼3-fold variation is associated with
the 95% Confidence Interval of the modeled daily oral doses.
Such an interindividual variation is similar to that observed in
reality, i.e., 3–6 folds for the two compounds in the 1960s surveys
(Duggan and Corneliussen, 1972) and 3–4 folds for the two
compounds in the 1990 survey (MacIntosh et al., 1996). Note
that the interindividual variation is independent of the rate of
chemical emissions, and thus, should not change with time. The

agreement between modeled and observed variations indicates
that variabilities in age, sex, and race/ethnicity account to a large
extent for inter-individual variabilities in human exposure to the
two compounds, although the inter-individual variability within
each demographic group is not considered in this work.

Across age, sex, and race/ethnicity, the total variation of daily
oral doses of these two compounds can be as high as a factor of
6. Variability in age, by a factor of ∼4 (Figure 1A), contributes
the most to this total variation, whereas sex and race/ethnicity
make relatively smaller contributions (approximately a factor of
2 for race/ethnicity and up to 18% for sex). The dependence
of the daily oral dose on age is caused by age-variant changes
in food consumption rate and body weight, as the daily oral
dose is defined as chemical exposure normalized by body weight.
The daily oral dose is highest in early childhood and declines
rapidly before 5 years of age due to fast growth. Throughout
adulthood, the daily oral dose keeps decreasing because of a
constant but slim increase in body weight. In particular, when
a woman becomes pregnant (assumed to occur at 29 years of age
by default in PROTEX), her body weight increases but the rate of
food consumption remains almost the same, resulting in a sharp
decline in the daily oral dose (Figure 1A). The daily oral dose
rebounds to the pre-pregnancy level after child delivery.

The variation associated with race/ethnicity is a result
of differences in anthropometrics and dietary patterns.
Supplementary Figure 1 in Supplementary Material Part 2

shows the relative contributions of different food items to the
daily oral dose, using a 25-year-old median female American as
an example. For dieldrin, consumption of fish contributes the
most (∼40%) to daily oral dose, followed by consumption of
beef and dairy products (∼35%), and leafy vegetables and root
plants (∼15%). For heptachlor, consumption of beef and dairy
products is dominant (∼45%), followed by leafy vegetables and

FIGURE 2 | Distribution of modeled daily oral dose within the virtual population (histogram in red), the linear dose-response relationship (dashed curve), non-linear

dose-response relationship with homogeneous susceptibility (median) across the population (solid curve), and non-linear dose-response relationship with

individual-specific heterogeneous susceptibility (97.5th percentile shown in shadow) for dieldrin (A) and heptachlor (B). Note that the probability of occurrence of

health effects is displayed on a logarithmic scale. The curve representing the 2.5th percentile is too low to be shown.
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root plants (30%) and poultry (12%). Our modeling results are
consistent with findings in an earlier theoretical study (Undeman
et al., 2010), in which consumption of fish and beef was also
identified as the dominant contributors to human exposure to
chemicals with partition coefficients identical to dieldrin and
heptachlor, respectively. The predominance of fish consumption
in human exposure to dieldrin has also been confirmed by a
national comprehensive food survey in the U.S. (Dougherty
et al., 2000). Asian Americans have higher daily oral doses of
both chemicals (see the example of dieldrin in Figure 1A), which
results mainly from their higher consumption of fish and leafy
vegetables than other racial groups, although they consume the
least amount of beef. Asian Americans also have the highest total
food consumption rate. Their lighter body weight is also a reason
for the higher daily oral dose of Asian Americans.

Inter-Individual Variability in
Dose-Response Relationships
The dose-response relationship varies, depending on (i) the
assumed shape (linear vs. non-linear) and (ii) toxicological
susceptibility if a non-linear dose-response relationship is
assumed. Figure 2 compares the probability of health effects
estimated using linear and non-linear dose-response (median,
and 97.5th percentile that represents high susceptibility)
relationships for two compounds. For dieldrin (Figure 2A),
within the daily oral dose range of up to 10µg/kg/d, a linear dose-
response relationship (brown dashed curve) always gives higher
estimates of the probability of occurrence of health effects than a
non-linear dose-response relationship with median susceptibility
(the blue solid curve); the two curves get closer as exposure
increases. The linear dose-response curve intersects with the
non-linear dose-response curve with high susceptibility (the
blue dashed line) at the daily oral dose of 3.3 µg/kg/d. These
indicate that the relative magnitude of linear and non-linear
dose-response relationships is dependent on daily oral dose as
well as susceptibility. When daily oral dose exceeds 3.3 µg/kg/d,
a linear dose-response relationship gives a lower estimate of the
probability of occurrence of health effects relative to a non-linear
dose-response relationship with high susceptibility. As such,
assuming a linear dose-response relationship underestimates
the health impact of highly exposed and more susceptible
individuals. By contrast, for heptachlor (Figure 2B), in the
investigated dose range, a linear dose-response relationship
always gives a higher estimate of the probability of occurrence
of health effects than the non-linear dose-response relationship,
regardless of whether the median or 97.5th percentile is used for
toxicological susceptibility. Overall, when exposure is relatively
low (median exposure ∼5% of ED50 for dieldrin and ∼0.04% of
ED50 for heptachlor in Figure 2), the estimate of health impact is
the most conservative for almost all individuals if a linear dose-
response relationship is used, but it becomes less conservative
once exposure reaches a higher level. This is consistent with our
findings reported previously (Li D. et al., 2020).

Numerically, the maximum marginal increase in probability
occurs at exposure relative to ED50 depending on the spread
in human susceptibility, σlog. In the case of using 0.104,

0.26, and 0.65 as the 2.5% percentile, median, and 97.5%
percentile for σlog, respectively, the maximum marginal increase
in response is for exposures at ∼94, 70, and 11% of the ED50,
respectively. This would indicate that the rate of increase in
response would slow down first in the individuals supposedly
with higher susceptibility than those with lower susceptibility.
In addition, after reaching exposure equal to ED50, at which
all curves will intersect according to the equation representing
the non-linear dose-response relationship used in this study,
individuals supposedly with higher susceptibility would see
lower responses compared to those with lower susceptibility
as exposure increases. This is purely due to the mathematical
description of the non-linear dose-response relationship used in
this study and may not reflect reality. However, this limitation
may not significantly affect the results of this study as exposure
is much lower than the ED50, similar to what to be expected
in reality. Nevertheless, future study is needed for mathematical
descriptions that agree better with reality.

Overall Human Health Impacts Across the
U.S. Population
It is mathematically intuitive that the probability of occurrence
of health effects is proportional to the level of exposure when a
linear dose-response relationship is assumed. However, when a
non-linear dose-response relationship is assumed, the interplay
of the variabilities in exposure and human susceptibility results
in uncertainty in human health impacts. Table 3 compares the
probability of occurrence of health effects when the lower (2.5th
percentile), median, and higher (97.5th percentile) estimates of
the daily oral dose of the 329,131 virtual Americans, and the
lower (2.5th percentile; σ = 0.104), median (σ = 0.260), and
higher (97.5th percentile; σ = 0.650) estimates of the human
susceptibility, are used in the assessment. The comparison shows
that the estimated probability of occurrence of health effects is
the highest if the assessment is based on the high end of exposure
estimate and a larger fraction of the population is assumed to be
susceptible to the health impact. Note that the probabilities in
Table 3 are for individuals and due to the nature of a sigmoid
shaped non-linear dose-response relationship, individuals with
low exposure and/or low susceptibility landing on the “flat” part
of the curve would experience negligible risk, represented by the
extremely low estimates of probabilities that are effectively 0.

As indicated in Section “Inter-individual variability in
exposure,” the daily oral doses of these two compounds vary
roughly by a factor of 6 within the modeled population. However,
Table 3 shows that the variation in the probability of occurrence
of health effects is more pronounced, e.g., by factors of 7
(dieldrin) and 42 (heptachlor) in the case of high human
susceptibility and factors of 104 (dieldrin) and 109 (heptachlor)
in the case of median human susceptibility. That is, variability
in human susceptibility amplifies the variation in exposure for
health impacts. Notably, in our case, such amplification is more
remarkable when human susceptibility is low. This is due to
the coincidence between the range of daily oral doses of the
modeled individuals and the range of dose-response curve with
the steepest slope (Figure 2). As a sigmoid dose-response curve
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TABLE 3 | The probability of occurrence of health effects (unitless) resulting from a

virtual individual’s exposure to dieldrin and heptachlor, calculated based on low,

mid, and high levels of human exposure and toxicological susceptibility.

Susceptibility Exposure

Low Mid High

Dieldrin

Low 1.14×10−52 1.04 × 10−35 4.58 × 10−24

Mid 5.59 × 10−10 3.39 × 10−7 2.91 × 10−5

High 7.41 × 10−3 2.35 × 10−2 5.39 × 10−2

Heptachlor

Low 5.42 × 10−268 2.80 × 10−228 1.33 × 10−206

Mid 1.00 × 10−44 2.43 × 10−38 7.44 × 10−35

High 1.12 × 10−08 1.25 × 10−07 4.70 × 10−7

The low, mid, and high levels of human exposure represent the 2.5th, 50th, and 97.5th

percentiles of the daily oral doses of the modeled population, respectively. The low,

mid, and high levels of toxicological susceptibility represent the 2.5th, 50th, and 97.5th

percentiles of the toxicological susceptibility (σlog), respectively.

indicates, the increase in the probability of occurrence of health
effects eventually becomes minimal when the daily oral dose
reaches a sufficiently higher level, where the dose-response curve
is flattened. As shown in Figure 2 and discussed in the previous
section, compared with the case of medium human susceptibility,
the curve is flattened at a much lower dose level when human
susceptibility is high. In this case, therefore, the probability of
occurrence of health effects becomes less responsive in the range
of daily oral doses of the modeled individuals.

Table 4 compares the overall health impact estimated for
the entire U.S. population under five scenarios. It also shows
the contributions to the overall health impact estimates from
individuals at the top 10, 5, and 1% of health impact estimates.
The following findings can be obtained. First, when a linear
dose-response relationship is applied, the estimated disease cases
across the U.S. are almost the same regardless of heterogeneous
or homogeneous exposure (Scenarios III vs. V). This is not
surprising, as the variation of exposure within the population
could eventually be “averaged” out among themselves. Second,
when the non-linear dose-response relationship is used, the
combination of a homogeneous exposure and homogeneous
human susceptibility, i.e., ignoring variabilities in both human
exposure and susceptibility, leads to the lowest estimate of
disease cases (Scenario IV). This is because the median daily
oral doses of the modeled Americans (2.81 µg/kg/d for dieldrin
and 1.27 µg/kg/d for heptachlor) are both located where the
curve representing the median of non-linear dose-response
relationship is below the one representing the linear dose-
response relationship (see Figure 1 and discussion in Section
“Inter-individual variability in dose-response relationships”).
Compared with Scenario IV, adding variability in human
exposure increases disease cases (Scenario II) for dieldrin
(Table 4) because the involvement of individuals with higher
daily oral doses contributes significantly more to the health
impact estimate (Figure 1).

Most surprisingly but not totally unexpected is the substantial
increase—more than hundreds of times at least—in health
impact estimates in the simultaneous consideration of the
heterogenous exposure and heterogeneous human susceptibility
(Scenario I vs. IV). This is because the health impact estimates
are dominated by the small portion of highly susceptible
individuals who also have higher exposure, as revealed by
the disproportionate contributions from the top 10, 5, and
1% of such individuals (Table 4). Supplementary Figure 2

compares the distribution of the probability of occurrence
of health effects within the modeled population between
different scenarios. It is evident in Supplementary Figure 2A

that considering the variability in human susceptibility spreads
out the distribution, lowering the health impact to a portion
of the modeled population but elevating that to the other.
Overall, since the probability of occurrence of health effects
is small (e.g., at a level of ∼10−7 when a homogeneous
exposure is used, Scenarios IV), a further reduction in the
already small probability can impact only marginally the
aggregated health impact among the modeled population.
However, this level of exposure is sufficient to result in severe
health outcomes in the highly susceptible subpopulation. For
example, Supplementary Figure 2A demonstrates that more
than 5% of the modeled individuals are associated with a
probability of occurrence of health effects >1%. As such, the
highly susceptible subpopulation makes a disproportionately
outsized contribution to the national overall health impacts.
Furthermore, compared to results in Scenario I (heterogenous
human susceptibility), the overall health impacts estimate in
Scenario II (homogeneous human susceptibility) is substantially
smaller while the contributions from the top 10, 5, and 1%
most impacted individuals are similar. This indicates that the
distribution of health impact largely depends on the variation
of the exposure among the population, but by using the median
dose-response relationship for everyone, susceptible individuals
will not be represented in the estimate and lead to a substantially
lower estimation for health impact.

The health impact estimates are the highest, e.g., 8 million
cases for dieldrin over the entire lifetime, when using a
linear dose-response relationship (Scenario III and V). This is
because the linear dose-response relationship implies a more
conservative estimate of the probability of occurrence of health
effects relative to other assumed dose-response relationships,
as explained earlier in Section “Inter-individual variability in
dose-response relationships.” It should be noted that Scenario
V, i.e., the homogenous exposure and linear dose-response
relationship, also represents the key assumptions of calculating
characterization factors for human health impact from toxic
chemicals in most “mainstream” LCIA methodologies used
in LCA practices. Scenario III takes a heterogenous exposure
assumption, but its effect is minimal as long as the linear
dose-response relationship is still in effect. However, it remains
unknownwhether these estimates are realistic or not. For dieldrin
alone, such a high estimate of incidence corresponds to an annual
incidence rate of 37.4 per 100,000 during its peak use across the
United States. This annual incidence rate is close to the high
end of estimates for health impacts resulting from exposure to
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TABLE 4 | Overall health impacts estimated for the total population of the United States under five scenarios with the assumed emission rates in this study.

Scenario Health impacts

(cases over lifetime)

Top 10% individuals’

contribution (%)a
Top 5% individuals’

contribution (%)a
Top 1% individuals’

contribution (%)

Dieldrin Heptachlor Dieldrin Heptachlor Dieldrin Heptachlor Dieldrin Heptachlor

(I) Heterogenous exposure

and non-linear dose-response

relationship with

heterogeneous human

susceptibility

703,683 1,444 92.9% 100.0% 78.7% 100.0% 36.7% 99.7%

(II) Heterogeneous exposure

and non-linear dose-response

relationship with

homogeneous human

susceptibility

994 <1 78.9% 99.8% 65.9% 99.6% 31.1% 94.2%

(III) Heterogeneous exposure

and linear dose-response

relationship

8,624,257 72,748 15.7% 14.3% 8.7% 8.0% 2.3% 1.9%

(IV) Homogeneous exposure

and non-linear dose-response

relationship with

homogeneous human

susceptibility

112 <1 25.0% 25.0% 25.0% 25.0% 25.0% 25.0%

(V) Homogeneous exposure

and linear dose-response

relationship

8,409,856 73,082 25.0% 25.0% 25.0% 25.0% 25.0% 25.0%

aNumbers rounded to one digit after the decimal point. 100.0% is not exactly one hundred percent.

a wide range of endocrine-disrupting chemicals (Attina et al.,
2016), and it even rivals the annual incidence rate of syphilis, one
of the most common infectious disease (US CDC, 2019). Future
epidemiology studies may confirm the plausibility and validity of
using a linear dose-response relationship in this estimation.

The consideration of the non-linear dose-response
relationship and inter-individual variability could have several
implications on the calculation of characterization factors in
LCIA. First, when a non-linear dose-response relationship is
assumed, characterization factors may no longer be independent
of emission amount as they are in current LCIA methods.
As emission increases, even if exposure increases linearly, the
marginal increase in health response could increase more/less
as the dose moves toward a steeper/flatter part of the sigmoid
shaped dose-response relationship curve. Even if the total
emission amount keeps the same, characterization factors for
long-term low-dose exposure (e.g., the case that the emission
is spread evenly throughout a year) would differ substantially
from those for short-term high-dose exposure (e.g., the case that
the emission is concentrated in a presumed accidentally release)
(Li D. et al., 2020). Second, should the spread in toxicological
susceptibility among the population vary between chemicals,
the current ranking of characterization factors would change
even if emissions were assumed to be equal. As discussed
above, the overall health impacts are contributed mostly by
a small portion of highly susceptible individuals (Table 4,
Supplementary Figure 2). If two chemicals have similar
exposure and ED50, we would expect a larger number of disease
cases for the chemical with a larger spread of susceptibility (σlog),
because it exerts a higher probability of occurrence of health

effects on the highly susceptible individuals. Thus, this chemical
could have a higher characterization factor, which would not
be the case for current LCIA methods assuming homogeneous
susceptibility. However, since the current understanding of
toxicological susceptibility is limited, we have to assume this
spread of susceptibility is not chemical specific. Under this
assumption, the ranking of characterization factors would
remain unchanged.

Limitations
In this study we assume the spread in toxicological susceptibility
(σlog) has the same probability distribution among demographic
groups while this may not be true given variabilities in
toxicokinetics, genetics, ontogeny, and physiology. For instance,
it has been demonstrated that hepatic clearance rate, a key
determinant in the metabolism of compounds in the body, varies
systematically between racial groups for some compounds (Ja,
2000; Piccinini et al., 2017). It is also well-known that the level
of tolerance to certain substances associates with demographics
due to genetic differences (Jorgenson et al., 2017; Ugidos-
Rodríguez et al., 2018). Although it is desirable to incorporate this
systematic difference in susceptibility to toxic compounds among
subpopulations in the calculation, to our knowledge, there is no
quantitative representation that can be used.

Moreover, the probabilistic non-linear dose-response
relationship used in this study is theoretical and generic. It
has not been validated for specific toxic compounds with
observational data, which is unlikely feasible to be at all due to
the sheer size of chemical space and the resources needed to
gather experimental data points. As such, this study is exploratory
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in nature and does not imply the health impact estimates are
accurate. Recently, sophisticated efforts considering a number
of variations in the extrapolation from animal data to expected
human toxicity have been made to derive probabilistic Reference
Doses for more than a thousand chemicals (Chiu and Slob,
2015; Chiu et al., 2018). However, this risk assessment-oriented
approach is only suitable to determine the exposure threshold
that can protect the desired fraction of the population and cannot
be employed with varying exposure to estimate health impacts.
Without validated non-linear dose-response relationships for
specific toxic compounds, the accuracy of results from this study
remains uncertain and should be interpreted in the comparative
sense of contrasting results with or without the non-linear
dose-response relationship.

In addition, when estimating human exposure, PROTEX
assumes homogeneous contamination in various environmental
compartments and food items. This assumption may not be true
for less ubiquitous chemicals since the emission of chemicals to
the environment is not evenly distributed spatially (Mennis and
Jordan, 2005; Logue et al., 2010) nor the real environment is a
“well-mixed box” often assumed in fate and transport models.
However, this challenge is out of the scope of this study and better
suited to be addressed by research in life cycle inventory (Tessum
et al., 2012) and fate and transport modeling (Wannaz et al.,
2018). The variation in exposure potential across the population
will only enhance the variation we show with our health impact
estimate results by further driving the range of daily oral dose.

CONCLUSIONS

Our results show that with a given emission of chemicals,
variations in both human exposure and toxicological
susceptibility to the chemical as well as the adoption of a
non-linear representation of dose-response relationship can
influence the health impact estimate. Overall, the variation
in exposure may not be influential if a linear dose-response
relationship is used to estimate health impacts for a large and
diverse population but could be important when comparing
two or more distinctive subpopulations. The influence of

adopting a non-linear dose-response relationship instead of a
linear one depends on the relativeness of exposure and toxicity.
In contrast to heterogeneous exposure and the non-linear
dose-response relationship with heterogeneous toxicological
susceptibility, the current LCIA practice that uses a linear
dose-response relationship and homogenous exposure gives a
more conservative estimate of the overall health impacts, which
could be one order of magnitude higher. This significant effect
on the human health impact result could potentially alter the
conclusions of LCA studies when impact estimates from all
categories are viewed together. To better estimate the health
impacts associated with exposure to chemicals with a higher
degree of confidence, we need an improved understanding
of the dose-response relationship as well as the variation of
toxicological susceptibility among the diverse population. Then,
LCIA methods can incorporate such variations in population
characteristics and provide more realistic estimates of health
impact when coupled with life cycle inventory data for the region
where the population lives.
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