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Abstract: Low-rank representation with hypergraph regularization has achieved great success in
hyperspectral imagery, which can explore global structure, and further incorporate local information.
Existing hypergraph learning methods only construct the hypergraph by a fixed similarity matrix
or are adaptively optimal in original feature space; they do not update the hypergraph in subspace-
dimensionality. In addition, the clustering performance obtained by the existing k-means-based
clustering methods is unstable as the k-means method is sensitive to the initialization of the cluster
centers. In order to address these issues, we propose a novel unified low-rank subspace clustering
method with dynamic hypergraph for hyperspectral images (HSIs). In our method, the hypergraph is
adaptively learned from the low-rank subspace feature, which can capture a more complex manifold
structure effectively. In addition, we introduce a rotation matrix to simultaneously learn continuous
and discrete clustering labels without any relaxing information loss. The unified model jointly learns
the hypergraph and the discrete clustering labels, in which the subspace feature is adaptively learned
by considering the optimal dynamic hypergraph with the self-taught property. The experimental
results on real HSIs show that the proposed methods can achieve better performance compared to
eight state-of-the-art clustering methods.

Keywords: hyperspectral images; low-rank subspace clustering; hypergraph learning; discrete
label learning

1. Introduction

Hyperspectral image (HSI) classification is an important problem in the remote sens-
ing community. Extensive prior literature addresses the classification in the framework
of supervised classification [1–3], in which the training of the classifier relies on the la-
beled data (with ground-truth information). However, the labeled datasets are strained
and impossible to obtain in some applications by human capacity [4]. With the aim of
exploiting the unlabeled remote sensing data, unsupervised classification methods con-
taining the segmentation of the dataset into several groups with no prior label information
are necessary.

According to the existing literature, clustering methods are divided into several
categories [5]. The two most popular categories suitable for the characteristics of the
HSIs are centroid-based methods and spectral-based methods. Among the centroid-based
clustering methods, k-means [6] and fuzzy c-means (FCM) [7] get more attention due to
their computational efficiency and simplicity, which group pixels by finding the minimum
distance between pixels and each clustering centroid through iterative update. Recently, the
spectral-based clustering methods have been highly popular and have been widely used for
hyperspectral data clustering. In general, these methods construct a similarity matrix based
on the original data first, then apply the centroid-based methods to the eigenspaces of the
Laplacian matrix to segment pixels. Specifically, the locally spectral clustering (LSC) [8]
and the globally spectral clustering (GSC) [9] use the local and global neighbors about each
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pixel to construct the similarity matrix which represents the relationship between pairs of
pixels respectively, and applies k-means on the eigenspace of the Laplacian matrices, but
they cannot distinguish between subspaces the pixels should belong to. Otherwise, the
large spectral variability results in the uniform feature point distribution, which increased
the difficulty of HSI clustering [5]. The recently developed sparse subspace clustering
(SSC) [10,11] and low-rank subspace clustering (LRSC) [12,13] methods use the sparse
and low-rank representation coefficients to define the adjacent matrix, and apply spectral
clustering to obtain the segmentation result. However, compared with SSC, LRSC is better
at exploring the global structure information by finding the lowest-rank representation of
all the data jointly. Nevertheless, the original LRSC model cannot explore the local latent
structure information of the data while exploiting the corresponding subspaces.

Inspired by the theory of manifold learning in image processing [14], Lu et al. [15]
proposed the graph-embedded low-rank representation (GLRR) by incorporating graph
regularization into low-rank representation objective function. However, the general graph
regularization model only uses the paired relationship between two pixels, which can-
not excavate the complex high-order relationships of the pixels. In fact, the relationship
between the hyperspectral pixels we are interested in is not just a pairwise relationship
between two pixels, but a plural or even more complex relationship. Instead of consid-
ering pairwise relations, the hypergraph models the data manifold structures by explor-
ing the high-order relations among data points, which is first proposed by Berge [16].
Zhou et al. [17] combined the powerful methodology of spectral clustering to extend
originally undirected graph to hypergraph. Then, hypergraph is widely used in feature
extraction [18], band selection [19], dimension reduction [20], and noise reduction [21] in
hyperspectral images. According to the extensive prior literature, the methods associated
with hypergraph based on representation learning are divided into two categories. One is
using the representation coefficient as the hyperedge weight to construct hypergraph,
such as [2,22] regards sparse and low-rank coefficients as a new feature to measure the
similarity of the pixels and adaptively select neighbors for constructing the hypergraph,
respectively. The other is using hypergraph as regularization to optimal representation
coefficient by capturing intrinsic geometrical structure. Gao et al. [23] first introduced
hypergraph into sparse coding, in which hypergraph explores the similarity informa-
tion among the pixels within the same hyperedge, and simultaneously updates the sparse
representation coefficient of them to be similar to each other. Motivated by the idea of hyper-
graph regularization, it was introduced into non-negative matrix factorization [24], sparse
NMF [25], low-rank representation [26,27].

It is noteworthy that there are two main problems in existing hypergraph-based repre-
sentation learning methods. First, the pre-constructed hypergraph is usually learned from
the original data with a certain distance measurement but not optimized dynamically. Then,
Zhang et al. [28] proposed a unified framework for data structure estimation and feature
selection, which update the hypergraph weight in the hypergraph learning process. In
Reference [29], a dynamic hypergraph structure learning method was proposed, in which
the incidence matrix of hypergraph can be learned by considering the data correlation
on both the label space and the feature space. In addition, the data from the original
feature space may contain various of noises, which could degenerate the performance since
these methods highly depend on the constructed hypergraph. Zhu et al. [30,31] proposed
an unsupervised sparse feature selection method by embedding a hypergraph Laplacian
regularizer, in which the hypergraph was learned dynamically from the optimized sparse
subspace feature. Otherwise, the hypergraph was adaptively learned from the latent repre-
sentation space, which can robustly characterize the intrinsic data structure [32,33]. Second,
the clustering performance obtained by the existing k-means-based methods is unstable
as the initialization of the cluster centers has too much impact on the performance of the
k-means method. Therefore, it is necessary to construct a unified framework and directly
generate discrete clustering labels [34–36]. However, the existing unified clustering frame-
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work is based on the general graph structure, which may lead to significant information
loss and reduce the performance of the clustering algorithm.

To address the issues, we propose a novel unified dynamic hypergraph low-rank
subspace clustering method for hyperspectral images, known as UDHLR. First, we develop
a dynamic hypergraph low-rank subspace clustering method, known as DHLR, where
the hypergraph regularization is used to preserve the local complex structure of the low-
dimensional data. Meanwhile, the hypergraph is adaptively learned from the low-rank
subspace feature. However, the DHLR algorithm works in two separate steps: learning the
low-rank coefficient matrix as similarity graph; generating the discrete clustering label by
the k-means method. Therefore, we integrate these two subtasks into a unified framework,
in which low-rank representation coefficient, hypergraph structure and discrete clustering
label are optimized by using the results of the others to get an overall optimal result. The
main contributions of our methods are summarized as follows:

(1) Instead of pre-constructing a fixed hypergraph incidence and weight matrices, the hy-
pergraph is adaptively learned from the low-rank subspace feature. The dynamically
constructed hypergraph is well structured and theoretically suitable for clustering.

(2) The proposed method simultaneously optimizes continuous labels, and discrete
cluster labels by a rotation matrix without any relaxing information loss.

(3) It jointly learns the similarity hypergraph from the learned low-rank subspace data
and the discrete clustering labels by solving a unified optimization problem, in
which the low-rank subspace feature and hypergraph are adaptively learned by
considering the clustering performance and the continuous clustering labels just serve
as intermediate products.

The remainder of this paper is organized as follows: Section 2 revisits the low-rank
representation and hypergraph. Section 3 describes the proposed DHLR and UDHLR
models. Section 4 presents the experimental setting and experimental results. Section 5
presents the discussions about computation complexity. Finally, concludes are presented in
Section 6. The framework of the proposed methods is shown in Figure 1.

Figure 1. Illustration of the proposed method.



Remote Sens. 2021, 13, 1372 4 of 22

2. Related Work

The important notations in the paper are summarized in Table 1.

Table 1. Important notation used in this paper.

Notation Definition

d Number of bands
n Number of pixels
c Number of the classes
X Hyperspectral image
Z Low-rank representation matrix
N Noise matrix
G A hypergraph
V The vertexes of hypergraph
E The hyperedges of hypergraph
W The weight of hyperedges
H The incidence matrix of hypergraph
L Hypergraph Laplacian matrix
Q Rotation matrix
F The continuous label indicator matrix
Y The label matrix
t Number of iterations

2.1. Low-Rank Representation

Let X = [x1, x2, . . . , xn] ∈ Rd×n denotes a hyperspectral image with n samples, xi ∈ Rd

represents the i-th pixel with d spectral bands. Low-rank representation (LRR) attempts to
solve the following objective function to seek the lowest-rank representation for clustering

min
Z

rank(Z) s.t. X = XZ + N, (1)

where Z ∈ Rn×n denotes the lowest-rank representation matrix under a self-expressive
dictionary [13], rank(Z) is the rank of matrix Z , N is a sparse matrix of outliers. However,
the rank minimization problem is NP-hard and difficult to optimize, thus the nuclear norm
is adopted to address this issue, yielding the following optimization [13]:

min
Z
‖Z‖∗ s.t. X = XZ + N, (2)

where ‖Z‖∗ is the nuclear norm constraint of matrix Z and is calculated as ‖Z‖∗ =
n
∑
i

δi , δi is

the i-th singular value of matrix Z. The representation matrix Z can be solved by optimizing
the above problem via the inexact augmented Lagrange multiplier (ALM) method [37].
Finally, the adjacency matrix |Z|+ |Z|T as the edge weights can be constructed with the
obtained low-rank coefficient matrix, and the clustering result is obtained by applying the
k-means to the eigenspaces of the Laplacian matrix induced by the adjacency matrix.

2.2. Hypergraph

The relationship between pixels we are interested in is not just a pairwise relationship
between two pixels, but a plural or even more complex relationship. When simply compress
the multivariate relationship into a pairwise relationship between two pixels, it would
inevitably lose a lot of useful information, thus it would affect the accuracy of feature
learning to a certain extent [19].

Let G = (V, E, W) denote a hypergraph, where V = [vi]
n
i=1 and E = [ei]

n
i=1 are the

set of vertexes and hyperedges, respectively. The dataset X can be used to make up the
set of the vertexes V. W = diag(w(e1), w(e2), · · · , w(en)) denotes the weight matrix of
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the hyperedges. For simplicity, it only considers the case where the hyperedge contains
the same number of vertices. For a given edge ei ∈ E, the hyperedge weight can be
constructed as w(ei) = ∑vj∈N (vi)

exp
(
−
∥∥vi − vj

∥∥2/2σ2
)

, in which N (vi) is the set of the
nearest neighbors to vi, σ is the kernel parameter. An incidence matrix H denotes the
relationship between vertices and hyperedges, with entries defined as:

h
(
vi, ej

)
=

{
1, if vi ∈ ej
0, otherwise

. (3)

The vertex degree of each vertex vi is defined as d(vi) = ∑n
j=1 w

(
ej
)
h
(
vi, ej

)
, and the de-

gree of hyperedge ei is defined as d(ei) = ∑n
j=1 h

(
vj, ei

)
. Then, Dv = diag(d(v1), d(v2), · · · , d(vn))

and De = diag(d(e1), d(e2), · · · , d(en)) are the vertex–degree matrix and the hyperedge–degree
matrix, respectively. Finally, the normalized hypergraph Laplacian matrix is

L = I− (Dv)
− 1

2 HW(De)
−1HT(Dv)

− 1
2 . (4)

Thus, the hypergraph can well represent local structure information and complex
relationship between pixels. It worth noting that the quality of L depends on H and W, we
use L(H,W) to represent hypergraph Laplacian hereunder.

3. Materials and Methods

The conventional hypergraph construction is only based on the original features,
which is independent of the learned features in low-rank subspace. There is no guarantee
that the learned hypergraph is optimal to model the pixelwise relationship among subspace
feature. Therefore, this learned a suboptimal hypergraph structure can lead to a suboptimal
solution in the process of learning incidence matrix. To address the above problems, we
propose to learn a dynamic hypergraph to explore the intrinsic complex local structure
of pixels in their low-dimensional feature space. In addition, hypergraph-based manifold
regularization can make the low-rank representation coefficient well capture the global
structure information of the hyperspectral data. In the end, the proposed model learns
a rotation matrix to simultaneously learn continuous labels and discrete cluster labels in
one step.

3.1. Dynamic Hypergraph-Based Low-Rank Subspace Clustering

Based on Section 2.2, a hypergraph structure can be used to maintain the local relation-
ship of the original data [17,28]. First, we propose to preserve the local complex structure
of the low-dimensional data by the hypergraph regularization. To do this, we design the
following objective function:

min
X=XZ+N,Z≥0

‖Z‖∗ + λ1 ∑
e∈E,Xzi,Xzj∈V

w(e)h(Xzi,e)h(Xzj,e)
d(e)

(
Xzi√
d(Xzi)

− Xzj√
d(Xzj)

)2

+λ2‖N‖2,1.

(5)

Obviously, Equation (5) is equivalent to:

min
X=XZ+N,Z≥0

‖Z‖∗ + λ1Tr
(

XZL(H,W)ZTXT
)
+ λ2‖N‖2,1, (6)

where L(H,W) is hypergraph Laplacian, λ1 and λ2 are two tuning parameters. However, H
is pre-constructed based on the original data, which usually cannot be learned dynamically.
In this paper, we propose to update hypergraph H based on the low-dimensional subspace
information, furthermore, couple with the learning of Z in a unified framework. To achieve
this, we design the final objective function as follows:
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min
Z,N,H,W

‖Z‖∗ + λ1Tr
(

XZL(H,W)ZTXT
)
+ λ2‖N‖2,1 + λ3‖W‖2

F

s.t.X = XZ + N, Z ≥ 0, wT1 = 1, wi > 0
, (7)

where W = diag(w), the two-norm regularization on the weight matrix is used to avoid
overfitting. On the one hand, Z can preserve the global structures via the low-rank con-
straint to conduct subspace learning. On the other hand, it can also preserve the local
structures via the second term of Equation (7) to select the informative features. The
proposed dynamic hypergraph low-rank subspace clustering is known as DHLR.

3.2. Optimization Algorithm for Solving Problem (7)

In order to solve problem (7), the variable J is introduced to make (7) separable for
optimization as follows:

min
J,Z,N,H,W

‖J‖∗ + λ1Tr
(

XZL(H,W)ZTXT
)
+ λ2‖N‖2,1 + λ3‖W‖2

F

s.t.X = XZ + N, Z=J,Z ≥ 0, wT1 = 1, wi > 0
. (8)

The optimization problem (8) can be solved with ADMM algorithm by minimizing
the following augmented Lagrangian formulation:

L(J, Z, N, H, W) = ‖J‖∗ + λ1Tr
(

XZL(H,W)ZTXT
)
+ λ2‖N‖2,1 + λ3‖W‖2

F − η(wT1− 1)

+ µ
2

(∥∥∥X− XZ−N + C1
µ

∥∥∥2

F
+
∥∥∥Z− J + C2

µ

∥∥∥2

F

) , (9)

where C1, C2 and η are Lagrange multipliers, µ is a positive penalty parameter. The
variables J, Z, N, H, W. and Lagrange multipliers can be obtained by alternately solving
each variable of (9) with other variables fixed. The detailed solution steps are as follows:

Update J : Fixing variables Z, N, H, W, we can obtain the solution of J by solving the
following problem:

Jt+1 = arg min
J
‖J‖∗ +

µt

2

∥∥∥∥Zt − J +
Ct

2
µt

∥∥∥∥2

F
. (10)

By introducing the singular value thresholding (SVT) operator [38], the solution of J is
given as:

Jt+1 = Θ1/µt

(
Zt +

Ct
2

µt

)
, (11)

whereΘ denotes the SVT operator.
Update Z: Fixing variables J, N, H, W, we can obtain the objective function about Z

as follows:

Zt+1 = arg min
Z≥0

λ1Tr
(

XZL(Ht,Wt)ZTXT
)
+

µt

2

(∥∥∥∥X− XZ−Nt +
Ct

1
µt

∥∥∥∥2

F
+

∥∥∥∥Z− Jt+1 +
Ct

2
µt

∥∥∥∥2

F

)
. (12)

Problem (12) has a closed-form solution as a quadratic minimization problem, which is:

Zt+1 =

(
λ1

µt XTL(Ht,Wt)X + XTX + I
)−1

(
XTX− XTNt + Jt+1 +

XTCt
1 −Ct

2
µt

)
. (13)

Update N: Fixing variables J, Z, H, W , we can obtain the solution of N by solving the
following problem:

Nt+1 = arg min
N

λ2‖N‖2,1 +
µt

2

∥∥∥∥X− XZt+1 −N +
Ct

1
µt

∥∥∥∥2

F
. (14)
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The objective function on the variable N can be rewritten as:

Nt+1 = arg min
N

λ2

µt ‖N‖2,1 +
1
2

∥∥∥Pt+1 −N
∥∥∥2

F
. (15)

In which Pt+1 = X− XZt+1 +
Ct

1
µt , the i-th column of Nt+1 is

Nt+1
i =


‖Pt+1

i ‖2−λ2/µt

‖Pt+1
i ‖2

Pt+1
i , if

∥∥∥Pt+1
i

∥∥∥
2
> λ2/µt

0, otherwise
, (16)

where Pi and Ni are the i-th column of matrices P and N , respectively.
Update H and De : According to the definition of the hypergraph in Section 2.2, the

hyperedges are constructed from the original data and may affect the accuracy of the
hypergraph with the noise. To tackle this problem, we use the low-dimensional subspace
feature with no noisy to learn the hyperedges. Then the formulation for constructing the
set of the hyperedges is given like [30] as follow:

et+1
i =

{
vt+1

j |Xzt+1
j ∈ N

(
Xzt+1

i

)}
, i, j = 1, · · · , n, (17)

in which N (·) is the near neighbor pixels. In this work, Xzt+1
j is the top K similarity

neighbors of Xzt+1
i except for itself. After producing the incidence matrix Ht+1, it is easy to

work out Dt+1
e by  d

(
et+1

i

)
= ∑n

j=1 h
(

vt+1
j , et+1

i

)
Dt+1

e = diag
(

dt+1
) . (18)

Update W : Fixing variables J, Z, N, H, we can obtain the objective function about W
as follows:

Wt+1 = arg min
W > 0

λ1Tr
(

XZt+1
(

L(Ht+1,W)

)(
Zt+1

)T
XT
)
+ λ3‖W‖2

F − η
(
wT1− 1

)
. (19)

in which L(Ht+1,W) = I − (Dt
v)
− 1

2 Ht+1W
(
Dt+1

e
)−1(Ht+1)T

(Dt
v)
− 1

2 . By letting

Bt+1 =
(
Dt+1

e
)−1(Ht+1)T

(Dt
v)
− 1

2
(
Zt+1)TXTXZt+1(Dt

v)
− 1

2 , and bt+1 = diag
(
Bt+1).

Equation (19) can be rewritten as the following form:

wt+1 = arg min
wi>0

−λ1bt+1w + λ3
∥∥wt

∥∥2
2 − η

(
wT1− 1

)
. (20)

Then Equation (20) can be rewritten as the following form:

wt+1 = arg min
wi>0

∥∥∥∥w−
(

λ1

2λ3
bt+1 + η

)∥∥∥∥2

2
. (21)

According to the Karush–Kuhn–Tucker conditions, the closed-form solution for wi is:

wt+1
i =

(
λ1

2λ3
bt+1

i + η

)
+

, i = 1, · · · , n. (22)

Then we further obtain Wt+1 = diag
(
wt+1) and d

(
vt+1

i

)
= ∑n

j=1 w
(

et+1
j

)
h
(

vt+1
i , et+1

j

)
Dt+1

v = diag
(

dt+1
) . (23)
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Update the Lagrange multipliers C1 , C2 and penalty parameter µ by
Ct+1

1 = Ct
1 + µt(X− XZt+1 − Et+1)

Ct+1
2 = Ct

2 + µt(Zt+1 − Jt+1)
µt+1 = min

(
µmax, ρ · µt) . (24)

The entire procedure for solving DHLR method is summarized in Algorithm 1.

Algorithm 1 the DHLR algorithm for HSI clustering

Input: A 2-D matrix of the HSI X ∈ Rd×n, the number of desired clusters c and the

regularization parameter λ1, λ2, λ3.

Initialization:Initialize the hypergraph L(H0,W0) by using the original data.

while (
∥∥Zt − Jt∥∥

∞ > ε or
∥∥X - XZt −Nt∥∥

∞ > ε and t ≤ MaxIter) do

1. Update Jt+1 by solving Equation (11).

2. Update Zt+1 by solving Equation (13).

3. Update Nt+1 by solving Equation (16).

4. Update Ht+1 and Dt+1
e by solving Equations (17) and (18).

5. Update Wt+1 and Dt+1
v by solving Equations (22) and (23).

6. Update L(Ht+1,Wt+1) according to Equation (4).

7. Update the Lagrange multipliers and penalty parameter by (24).

end while

8. Construct the adjacent matrix with M = |Z|+ |Z|T.

9. Applying spectral clustering to the Laplacian matrix induced by the adjacent matrix

M.

Output: the cluster assignment for X.

3.3. Unified Dynamic Hypergraph-Based Low-Rank Subspace Clustering

Most existing hypergraph-based clustering methods contain two independent pro-
cesses: the hypergraph construction and clustering. Using the hypergraph to construct
similarity matrix, then use the spectral clustering or k-means to produce final clustering
labels [39]. Although this approach was very popular in clustering applications, it may
also produce very unstable performance since the initialization of the cluster centers has
too much impact on the performance of the k-means method [8]. In order to address their
problem, we propose a unified framework to exploit the correlation between the similarity
hypergraph and discrete cluster labels for the clustering task. It updates the dynamic
hypergraph with an optimal low-rank subspace feature and then directly generates the
discrete cluster labels by introducing a rotation matrix. Finally, the proposed model cannot
only make use of the optimal dynamic hypergraph and the global low-dimensional fea-
ture information but also get the discrete clustering labels. In order to achieve the above
purpose, the objective function can be denoted as

min
Z,N,H,W,F,Q,Y

‖Z‖∗ + λ1Tr
(

XZL(H,W)ZTXT
)
+ λ2‖N‖2,1 + λ3‖W‖2

F

+λ4Tr
(

FTL(H,W)F
)
+ λ5‖Y− FQ‖2

F
s.t.X = XZ + N, Z ≥ 0, FTF = Ic, F ∈ Rn×c, QTQ = Ic, wT1 = 1, wi > 0, Y ∈ Idx

, (25)

where λ4 and λ5 are penalty parameters. In general, F = [f1, f2, · · · , fn]
T ∈ Rn×c (s.t.

F ∈ Idx ) is the cluster indicator matrix in spectral clustering method. In order to solve
the NP-hard problem caused by the discrete constraint on F, F ∈ Rn×c is relaxed into
continuous domain, and the orthogonal constraint is adopted to make it computational
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tractable. In order to achieve an ideal clustering structures, [40] proposed to impose a
rank constrain on the hypergraph Laplacian matrix L induced by representation matrix Z,
rank(L) = n− c. Under this constraint, we can directly partition the data into clusters. The
rank constraint problem is equivalent to minimize ∑c

i=1 σi(L) [41]. According to Ky Fan’s
theorem [42], ∑c

i=1 σi(L) = min
FTF=I

Tr
(
FTLF

)
. In order to generate the discrete clustering label,

we introduce a rotation matrix Q ∈ Rc×c. According to the spectral solution invariance
property [43], the last term can find a proper orthonormal Q to make the result of FQ
approximate to the real discrete clustering labels. Y ∈ Rn×c is the discrete label matrix.
In fact, Equation (25) is not a simple unification of some terms, which can exploit the
relationship between the dynamic hypergraph matrix and the clustering labels. Ideally,
we have zij 6= 0 if and only if pixel i and j are in the same cluster, equivalently yi = yj. It
is also true vice versa. Therefore, the feedback from the inferred labels and the similarity
hypergraph matrix can affect each other. From this point of view, our clustering framework
has the self-taught property.

3.4. Optimization Algorithm for Solving Problem (25)

In order to solve problem (25), the variable J is introduced to make (25) separable for
optimization as follows:

min
J,Z,N,H,W

‖J‖∗ + λ1Tr
(

XZL(H,W)ZTXT
)
+ λ2‖N‖2,1 + λ3‖W‖2

F

+λ4Tr
(

FTL(H,W)F
)
+ λ5‖Y− FQ‖2

F

s.t.X = XZ + N, Z=J,Z ≥ 0, FTF = Ic, QTQ = Ic, wT1 = 1, wi > 0, Y ∈ Idx

. (26)

Then, (26) can be rewritten into the following augmented Lagrangian formulation:

L(J, Z, N, H, W, F, Q, Y) = ‖J‖∗ + λ1Tr
(

XZL(H,W)ZTXT
)
+ λ2‖N‖2,1 + λ3‖W‖2

F

+ λ4Tr
(

FTL(H,W)F
)
+ λ5‖Y− FQ‖2

F − η(wT1− 1)

+ µ
2

(∥∥∥X− XZ−N + C1
µ

∥∥∥2

F
+
∥∥∥Z− J + C2

µ

∥∥∥2

F

) . (27)

The steps to update J, Z, N and H are similar to those of DHLR except for updating W,
F, Q and Y.

Update W: Fixing variables J, Z, N, H,F,Q,Y, we can obtain the solution of W by
solving the following problem:

Wt+1 = arg min
W > 0

λ1Tr
(

XZt+1L(Ht+1,W)
(
Zt+1)TXT

)
+ λ3‖W‖2

F

+ λ4Tr
(
(Ft)TL(Ht+1,W)Ft

)
− η(wT1− 1)

. (28)

By letting Bt+1 =
(
Dt+1

e
)−1(Ht+1)T

(Dt
v)
− 1

2
(
Zt+1)TXTXZt+1(Dt

v)
− 1

2 , St+1 =(
Dt+1

e
)−1(Ht+1)T

(Dt
v)
− 1

2 Ft(Ft)T(Dt
v)
− 1

2 , bt+1 = diag
(
Bt+1) and st+1 = diag

(
St+1

)
,

since W is diagonal matrix, Equation (28) can be rewritten as the following form:

wt+1 = arg min
wi>0

−λ1bt+1w− λ4st+1w + λ3‖w‖2
2 − η

(
wT1− 1

)
. (29)

Similar to the solution of problem (20), the closed-form solution for wi is:

wt+1
i =

(
1

2λ3

(
λ1bt+1

i + λ4st+1
i

)
+ η

)
+

, i = 1, · · · , n. (30)
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We further obtain Wt+1 = diag
(
wt+1) , and Dt+1

v via the same formulation as
Equation (23). The diagram about the iterative optimization of H and W in the dynamic
hypergraph is shown in Figure 2.

Figure 2. Illustration of updating the dynamic hypergraph.

Update F : with other variables fixed, it is equivalent to solving

Ft+1 = arg min
FTF=Ic

λ4Tr
(

FTL(Ht+1,Wt+1)F
)
+ λ5

∥∥Yt − FQt
∥∥2

F. (31)

The solution of variable F can be efficiently obtained via the algorithm proposed
by [44].

Update Q: By fixing other variables, we have

Qt+1 = arg min
QTQ=Ic

λ5

∥∥∥Yt − Ft+1Q
∥∥∥2

F
. (32)

It has a closed-form solution as an orthogonal Procrustes problem [45]. The solution is
Q = UVT, where Uand V are left and right parts of the SVD decomposition of YTF.

Update Y: with other variates fixed, the problem becomes

Yt+1 = arg min
Y∈Idx

λ5

∥∥∥Y− Ft+1Qt+1
∥∥∥2

F
. (33)

Notes that Tr
(
YTY

)
= n, the above subproblem can be rewritten as below:

Yt+1 = arg max
Y∈Idx

Tr
∥∥∥YTFt+1Qt+1

∥∥∥2

F
. (34)

The optimal solution of variate Y is:

Yt+1
ij =

 1, j = arg max
k

(
Ft+1Qt+1

)
ik

0, otherwise
. (35)

Update the Lagrange multipliers and penalty parameter like DHLR in Equation (24).
The details of the UDHLR algorithm optimization are summarized in Algorithm 2.
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Algorithm 2 the UDHLR algorithm for HSI clustering

Input: A 2-D matrix of the HSI X ∈ Rd×n, the number of desired clusters c and the

regularization parameter λ1, λ2, λ3, λ4, λ5.

Initialization:Initialize the hypergraph L(H0,W0) by using the original data, randomly

initialize F0 and Q0.

while (
∥∥Zt − Jt∥∥

∞ > ε or
∥∥X - XZt −Nt∥∥

∞ > ε and t ≤ MaxIter) do

1. Update Jt+1, Zt+1, Nt+1, Ht+1 and Dt+1
e as Algorithm 1.

2. Update Wt+1 and Dt+1
v by solving Equations (30) and (23).

3. Update L(Ht+1,Wt+1) according to Equation (4).

4. Update Ft+1 by solving Equation (31).

5. Update Qt+1 by solving Equation (32).

6. Update Yt+1 by solving Equation (35).

7. Update the Lagrange multipliers and penalty parameter by (24).

end while

Output: the cluster label Y for data X.

4. Results
4.1. Experimental Datasets

To validate the effectiveness of the proposed methods, we conduct experiments on
three real-world hyperspectral datasets, namely Indian Pines, Salinas-A, and Jasper Ridge.
Table 2 summarizes the detailed information of these three datasets.

4.1.1. Indian pines

The Indian Pines dataset was collected by an Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor over Northwestern Indiana in 1992. The image has a spa-
tial resolution of 20 m and 220 spectral bands ranging from 0.4 to 2.5 µm. During the
test, 20 spectral bands (104–108, 150–163, and 220) are removed due to water absorption
and noisy [46]. The size of this image is 145 × 145. There are originally 16 classes in
total. Following, e.g., [47], nine main classes were used in our experiment: corn-no-till,
corn-minimum-till, grass pasture, grass-trees, hay-windrowed, soybean-no-till, soybean-
minimum-till, soy-bean-clean, and woods.

4.1.2. Selinas-A

The original data set is the Salinas Valley data. This scene was acquired by the
AVIRIS sensor over the Salinas Valley, California in 1998. The size of this image is
512× 217 and contains 224 spectral bands with a spatial resolution of 3.7 m per pixel.
There are originally 16 classes in Salina Valley. Following, e.g., [48], a subset of the Salinas
Valley scene, denoted as Salinas-A hereinafter, is adopted, which contains of 86× 83 pixels
with 6 classes and 204 bands remain after removing noisy bands. The subset is in the
[591–678] × [158–240] of Salinas Valley.

4.1.3. Jasper Ridge

There are 512 × 614 pixels and 224 spectral bands in Jasper Ridge dataset. After
removing the spectral bands 1–3, 108–112, 154–166 and 220–224 affected by water vapor
and the atmospheric, we obtained 198 spectral bands. Since the ground-truth is too complex
to get in this hyperspectral image, we consider a sub image containing 100× 100 pixels
with four classes. The first pixel starts from the (105,269)-th pixel in the original image.
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Table 2. Important notation used in this paper.

Datasets Size(N) Dim(D) Classes(C)

Salinas-A 7138 204 6
Jasper Ridge 10,000 198 4
Indian Pines 21,025 200 9

4.2. Experimental Setup
4.2.1. Evaluation Metrics

In the experimental results, the normalized mutual information (NMI) is employed to
gauge the clustering performance quantitatively, which measures the overlap between the
experimental obtained labels and the ground-truth labels. Given two variables A and B ,
NMI is defined as [49]:

NMI(A, B) =
I(A, B)√

H(A)H(B)
, (36)

where I(A, B) is the mutual information between A and B , H(A) and H(B) respectively
denote the entropies of A and B. Obviously, if A is identical with B, NMI(A, B) will be
equal to 1; if A is independent from B, NMI(A, B) will become 0.

In addition, we also evaluate the clustering performance by measuring user’s accuracy,
producer’s accuracy, overall accuracy (OA), average accuracy (AA), k coefficient. For a
dataset with n pixels, yi is the clustering label of pixel xi obtained by clustering method, gi
is the ground-truth of xi. The OA is obtained by

OA =
∑n

i=1 δ(map(yi), gi)

n
(37)

where δ(x, y) = 1, if x = y; δ(x, y) = 0, otherwise. map(·) is the optimal mapping function
that permutes clustering labels to match the ground-truth labels. The best mapping can be
found by using the Kuhn–Munkres algorithm [50]. The average accuracy (AA) is the ratio
between the number of predictions on each class and the total number of each class. For
clustering tasks, the clustering results (i.e., clustering labels) obtained in the experiment
must be aligned to the class labels of the ground-truth. To achieve the above purpose, a
simple exhaustive search on all permutations of the cluster labels is used to maximize the
resulting OA as was done in [51]. We note that this alignment is perhaps the most beneficial
for maximizing OA measurement, there may be alternative alignments that powerful for
maximizing AA or k [52].

4.2.2. Compared Methods

In order to evaluate the clustering performance of the proposed DHLR and UDHLR
algorithms, eight clustering methods are selected for fair comparison. The first cate-
gory comprises two centroid-based methods, which are k-means [6] and fuzzy c-means
(FCM) [7]. The iterations of the k-means method are 200 in our experiment. The fuzziness
exponent in FCM we set is 2. For the second category, we compare against classical spectral-
based clustering approaches using both a globally connected graph (GSC [8]) as well as a
locally connected graph (LSC [9]). The graph weights are constructed by a Gaussian kernel.
The third category comprises four subspace-based spectral clustering methods, including
SSC [10,11], LRSC [12,13], GLRSC [15], and the hypergraph-regularized LRSC (HGLRSC)as
described in [52].

The regularization parameters for SSC and LRSC are searched from the set { 10−4,
10−3, 10−2, 10−1, 1, 101, 102, 103, 104, } to choose the value producing the best clustering
result. For the parameter pair λ1 and λ2 in both GLRSC and HG-LRSC, the same is done
searching over the set

{
10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104

}
to choose the appropri-

ate values. These parameters are used in the experiment of the compared algorithms.
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For SSC and LRSC, the regularization parameter is set via an exhaustive search over the
set
{

10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104
}

, choosing the value yielding the best OA
performance. The same is done for the parameter pair and in both GLRSC and HGLRSC as
well as in (4) using an exhaustive search over the values{

10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104
}

. These parameters are used throughout the
remainder of the experimental results.

4.3. Parameters Tuning

There are five parameters λ1, λ2, λ3, λ4, and λ5 in UDHLR, and three parameters λ1 ,
λ2 , λ3 in DHLR. In this section, we evaluate the parameter sensitivity of the proposed meth-
ods on three datasets, and investigate different parameter settings. In the experiment, we
tune the parameters λ1, λ2, λ3, λ4, and λ5 in the range of{

10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104
}

. We observe the variations of OA with dif-
ferent values of each parameters.

(1) Parameter analysis in DHLR: In DHLR, λ1 is the manifold regularization parameter,
λ2 is the noise regularization parameter, λ3 is penalty parameter of hyperedge weight W.
Figure 3 shows the OA of DHLR with respect to the parameter λ1. For the Indian Pines
dataset, the peak value of OA generates when λ1 = 0.1. For the Salinas-A dataset, we set
λ1 = 1 for obtaining the best result in the experiments. For the Jasper Ridge dataset, the
clustering results are better when we set λ1 = 1. Figure 4 shows the OA of DHLR with
respect to the parameter λ2. For the Indian Pines dataset, the peak value of OA generates
when λ2 = 1000. For the Salinas-A dataset, we set λ2 = 1 for obtaining the best result
in the experiments. For the Jasper Ridge dataset, the clustering results are better when
we set λ2 = 0.01. Figure 5 shows the OA of DHLR with respect to the parameter λ3.
According to Figure 5, we find that the proposed methods can achieve better performance
with λ3 in the setting of 1000, 0.01, 0.001 for the Indian Pines, Salinas-A, and Jasper Ridge
datasets, respectively.

(2) Parameter analysis in UDHLR: Except for the same three parameters λ1 , λ2 , and λ3
as DHLR, λ4 is the parameter of the label feature manifold regularization. In addition, λ5 is
conductive to discrete label learning. Figure 6 shows the OA of UDHLR with respect to the
parameters λ1. For the Indian Pines dataset, the best results can be achieved when λ1 = 10.
For the Salinas-A dataset, the clustering results are better when we set λ1 = 1000. For the
Jasper Ridge dataset, we set λ1 = 0.001 for obtaining the best result in the experiments.
Figure 7 shows the OA of UDHLR with respect to the parameters λ2. For the Indian
Pines dataset, the best results can be achieved when λ2 = 0.01. For the Salinas-A dataset,
the clustering results are better when we set λ2 = 1. For the Jasper Ridge dataset, we
set λ2 = 100 for obtaining the best result in the experiments. Figure 8 shows the OA of
UDHLR with respect to the parameters λ3. The UDHLR performs well when λ3 being set
of 1, 0.01, 100 for the Indian Pines, Salinas-A, and Jasper Ridge datasets, respectively. In
UDHLR, λ4 and λ5 play a vital role in clustering performance. Figure 9 demonstrates the
OA values of three datasets under tuning λ4 while keeping other parameters fixed. As can
be seen, the best result can be achieved when λ4 = 10 for the Indian Pines dataset. For the
Salinas-A dataset, we set λ4 = 1000 in our experiments. The results in Figure 9c show that
the UDHLR performs well when λ4 = 1000 for the Jasper Ridge dataset. Figure 10 shows
the OA of UDHLR with respect to the parameters λ5. For the Indian Pines dataset, the
peak value of OA generates when λ5 = 0.01. For the Salinas-A dataset, we set λ5 = 0.001
for obtaining the best result in the experiments. For the Jasper Ridge dataset, the clustering
results are better when we set λ5 = 1.
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(a) Indian pines (b) Salinas-A (c) Jasper Ridge

Figure 3. The OA of DHLR with different λ1 on three datasets.

(a) Indian pines (b) Salinas-A (c) Jasper Ridge

Figure 4. The OA of DHLR with different λ2 on three datasets.

(a) Indian pines (b) Salinas-A (c) Jasper Ridge

Figure 5. The OA of DHLR with different λ3 on three datasets.

(a) Indian pines (b) Salinas-A (c) Jasper Ridge

Figure 6. The OA of UDHLR with different λ1 on three datasets.
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(a) Indian pines (b) Salinas-A (c) Jasper Ridge

Figure 7. The OA of UDHLR with different λ2 on three datasets.

(a) Indian pines (b) Salinas-A (c) Jasper Ridge

Figure 8. The OA of UDHLR with different λ3 on three datasets.

(a) Indian pines (b) Salinas-A (c) Jasper Ridge

Figure 9. The OA of UDHLR with different λ4 on three datasets.

(a) Indian pines (b) Salinas-A (c) Jasper Ridge

Figure 10. The OA of UDHLR with different λ5 on three datasets.

4.4. Investigate of Clustering Performance

Both the clustering maps and quantitative evaluation results are given in this section.
The presented results clearly demonstrate that DHLR and UDHLR outperform the other
methods on the three datasets. We run all the methods 100 times independently, and show
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the mean results of the clustering result in the corresponding Tables of the three datasets.
In addition, the corresponding variance values of the methods generated in three datasets
are recorded in Figure 11.

Figure 11. Histogram of the clustering accuracy with variance.

(1) Indian Pines: Figure 12 shows the clustering maps of the Indian Pines dataset.
Table 3 gives the quantitative the clustering results. In general, the graph-based methods
get better performance than the methods with no graph. Specifically, the K-means and
FCM methods perform poorly with many misclassifications in the cluster map because of
without exploring the local geometrical structure of the data. Compared with K-means and
FCM, the GSC and LSC methods improves the clustering results by applying k-means on
the eigenspace of the Laplacian matrices. In contrast, the subspace clustering methods can
obtain a much better performance by using subspace learning to model the complex inher-
ent structure of HSI data. Compared with K-means, SSC and LRSC perform much better in
this dataset, obtaining the increments in OA of 3.82% and 5.58%, respectively. However, the
learned representation coefficient matrix cannot capture the essential geometric structure
information. As a result, the clustering results are not very high. GLRSC and HGLRSC
improve the clustering performance of LRSC by optimizing the low-rank representation
coefficient with the graph and hypergraph regularization, which shows the advantage of
incorporating the latent geometric structure information. Unfortunately, the hypergraph is
usually fixed, which is constructed by the original data, which is not optimized adaptively.
The proposed DHLR algorithm improves 4.49% compared with the classical LRSC, and
more than 4.07% compared with HGLRSC. Furthermore, the proposed UDHLR method
obtains the best results with the 2.07% improvements than DHLR.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 12. Indian Pines dataset. (a) Ground-truth. (b) k-means, 40.66%. (c) FCM, 40.70%. (d) GSC, 42.33%. (e) LSC, 44.13%.
(f) SSC, 44.48%. (g) LRSC, 46.24%. (h) GLRSC, 46.86%. (i) HGLRSC, 47.38%. (j) DHLR, 51.45%. (k) UDHLR, 53.52%.

Table 3. Performance of Indian Pines dataset.

IP
Class Method

No. k-Means FCM GSC LSC SSC LRSC GLRSC HGLRSC DHLR UDHLR

User’s
accuracy

(%)

C1 26.50 42.61 29.15 11.16 56.97 56.97 56.90 23.84 00.55 0.62
C2 0.00 15.83 0.00 0.00 0.00 0.00 0.00 0.35 0.00 0.00
C3 7.04 12.27 18.51 4.63 28.77 6.04 44.26 57.34 65.79 65.79
C4 40.70 35.48 31.73 30.12 88.35 95.85 90.22 76.43 83.93 87.81
C5 99.39 98.98 91.41 99.59 99.80 100 99.79 99.59 99.59 99.59
C6 17.46 31.51 0.00 4.24 0.00 0.72 0.72 0.61 50.20 0.72
C7 66.05 43.56 73.95 88.86 45.87 45.87 46.23 81.28 59.92 85.61
C8 0.49 0.00 27.52 0.00 31.11 30.78 31.92 0.32 41.20 42.50
C9 61.28 67.23 59.35 76.89 56.11 72.72 65.45 56.10 88.17 88.17

Producer’s
accuracy

(%)

C1 23.39 31.17 30.13 27.35 27.98 27.98 28.20 22.55 21.05 22.50
C2 0.00 14.66 0.00 0.00 0.00 0.00 0.00 2.63 0.00 0.00
C3 6.27 17.13 26.13 17.42 50.88 11.53 31.65 35.62 93.42 93.96
C4 80.21 88.92 86.49 90.00 89.30 72.91 78.92 80.19 83.15 81.38
C5 63.36 64.79 71.86 49.74 99.18 90.72 96.06 84.25 100 100
C6 18.15 21.52 0.00 25.30 0.00 12.50 12.50 12.76 24.01 2.80
C7 43.87 53.80 44.11 39.67 43.70 43.48 43.69 42.30 41.90 40.57
C8 60.00 0.00 21.91 0.00 25.67 25.36 25.42 100 24.80 24.53
C9 72.88 73.85 73.00 75.78 69.40 75.94 88.69 87.05 100 100

OA (%) 40.66 40.70 42.33 44.13 44.48 46.24 46.96 47.38 51.45 53.52
AA (%) 35.43 38.61 36.85 35.05 45.22 45.44 48.39 43.99 54.37 52.32

κ 0.284 0.308 0.299 0.303 0.341 0.361 0.372 0.353 0.423 0.429

NMI (%) 43.08 41.17 43.55 46.68 47.28 45.31 46.12 46.58 48.68 54.26

(2) Salinas-A: Figure 13 illustrates the visualization performance of the Salinas-A
dataset. Table 4 gives the corresponding quantitative clustering results. Among these
comparison algorithms, GLRSC and HGLRSC combine the graph theory and representation
learning into the HSI data clustering. Meanwhile, SSC and LRSC only use the representation
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learning to obtain the new feature, and GSC and LSC only use the graph theory into the
clustering. It can be seen from Table 4 that clustering accuracy of GSC, LSC, SSC and
LRSC is lower than GLRSC and HGLRSC. This indicates that learning with the local
geometry structure information can improve the HSI clustering observably. In addition,
K-means and FCM methods perform poorer than the spectral-based methods. Compared
with the aforementioned methods, the proposed DHLR and UDHLR effectively improve
the clustering performance by optimal the hypergraph adaptively. As shown in Table 4,
UDHLR achieves the highest OA than other methods. We can see that the proposed DHLR
and UDHLR algorithms can effectively preserve the detailed structure information, and
show an obvious advantage compared with the other clustering methods.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 13. Salinas-A dataset. (a) Ground-truth. (b) k-means, 65.12%. (c) FCM, 61.21%. (d) GSC, 69.27%. (e) LSC, 61.36%.
(f) SSC, 66.49%. (g) LRSC, 74.79%. (h) GLRSC, 75.15%. (i) HGLRSC, 75.45%. (j) DHLR, 79.37%. (k) UDHLR, 84.31%.

Table 4. Performance of Salinas-A dataset.

IP Class Method

No. k-means FCM GSC LSC SSC LRSC GLRSC HGLRSC DHLR UDHLR

User’s
accuracy

(%)

C1 0.00 99.74 100 99.74 99.48 99.74 99.48 99.48 0.00 99.74
C2 92.85 0.00 100 0.00 62.50 94.48 87.98 89.28 90.58 92.04
C3 53.83 48.06 49.63 46.62 54.03 99.86 97.70 99.27 98.22 100
C4 100 99.85 99.40 99.85 99.85 0.00 0.00 0.00 99.85 99.70
C5 87.23 95.11 92.86 95.11 98.12 99.74 99.37 99.24 90.48 97.49
C6 53.53 53.46 39.38 55.69 37.30 52.71 59.86 58.74 59.04 42.88

Producer’s
accuracy

(%)

C1 0.00 100 100 100 100 100 100 100 0.00 100
C2 94.23 0.00 33.02 0.00 30.55 88.58 95.59 96.49 96.20 42.53
C3 94.15 89.28 70.35 97.26 50.30 97.19 96.06 95.94 77.77 96.76
C4 52.41 55.66 98.82 90.57 96.69 0.00 0.00 0.00 89.85 97.39
C5 63.42 94.88 98.01 58.64 90.74 54.47 54.68 54.38 99.86 99.74
C6 100 33.75 91.04 34.45 100 100 93.16 97.04 95.77 99.65

OA (%) 65.12 61.21 69.27 61.36 66.49 74.79 75.15 75.45 79.37 84.31
AA (%) 64.57 66.04 80.21 66.17 75.21 74.42 74.07 74.34 73.03 88.64

κ 0.582 0.515 0.631 0.517 0.589 0.689 0.691 0.696 0.742 0.808

NMI (%) 70.84 62.67 67.64 63.88 64.38 84.02 81.69 83.33 81.10 86.30
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(3) Jasper Ridge: Figure 14 and Table 5 show the visual and quantitative clustering
results of Jasper Ridge dataset, respectively. From Figure 14 and Table 5, we can see that
the centroid-based and spectral-based clustering methods—K-means, FCM, GSC, LSC,
SSC, and LRSC—achieve poorer clustering performance when compared with the graph
and hypergraph combined clustering results. On the contrary, GLRSC obtains a much
higher clustering accuracy than LRSC. HGLRSC also obtains higher clustering precision
than LRSC and GLRSC. The proposed DHLR and UDHLR algorithm outperform the other
state-of-the-art clustering methods significantly. In which the UDHLR method achieves
the best clustering results, with the best OA of 92.56%, which again demonstrates the
advantage of the proposed algorithm.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 14. Jasper Ridge dataset. (a) Ground-truth. (b) k-means, 75.56%. (c) FCM, 75.28%. (d) GSC, 70.75%. (e) LSC, 77.55%.
(f) SSC, 79.52%. (g) LRSC, 80.12%. (h) GLRSC, 81.09%. (i) HGLRSC, 81.16%. (j) DHLR, 82.89%. (k) UDHLR, 92.56%.

Table 5. Performance of Jasper Ridge dataset.

IP Class Method

No. k-means FCM GSC LSC SSC LRSC GLRSC HGLRSC DHLR UDHLR

User’s
accuracy

(%)

C1 97.39 97.13 56.68 72.17 63.15 95.50 78.07 78.44 95.13 92.38
C2 59.14 56.22 99.87 99.21 97.92 67.55 90.10 90.01 91.91 100
C3 90.07 93.28 42.17 79.65 71.49 100 97.40 97.32 97.65 84.22
C4 0.00 0.00 99.46 0.00 100 0.13 2.52 2.52 1.19 87.38

Producer’s
accuracy

(%)

C1 93.35 95.38 100 100 99.63 99.88 99.92 100 99.81 92.91
C2 100 100 98.83 99.90 99.54 100 99.96 99.89 100 95.08
C3 71.19 71.49 40.94 69.76 58.29 71.94 60.23 60.43 72.13 88.60
C4 0.00 0.00 34.70 0.00 49.02 0.01 5.47 5.38 2.75 91.26

OA (%) 75.56 75.28 70.75 77.55 79.52 80.12 81.08 81.16 82.89 92.56
AA (%) 61.65 61.66 74.55 62.76 83.14 65.79 67.02 67.07 68.33 90.99

κ 0.662 0.659 0.606 0.690 0.719 0.723 0.732 0.733 0.757 0.894

NMI (%) 73.56 74.45 70.24 74.48 69.25 78.43 68.72 68.82 71.46 77.18

5. Discussion

In this section, we will discuss the computation complexity of the proposed DHLR
and UDHLR methods. The main computation cost of the DHLR algorithm lies in updating
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Jt+1 , Zt+1 , Nt+1 , which need the complexity about O
(
n2r
)

all of them. As referred
in [13], r is the rank of the dictionary with the orthogonal basis of the dictionary data. The
updating of Ht+1 need to construct an n× n matrix, whose time complexity isO

(
nd2
)

. The

complexity of updating Wt+1 is O
(

nd2
)

. In addition, updating the Lagrange multipliers
take the complexity of O(nd), which is too small to be neglected. The complexity of
the UDHLR algorithm comes from the updating of Ft+1 , Qt+1 , Yt+1 , except for the
variables Jt+1 , Zt+1 , Nt+1 , Ht+1 , Wt+1 same as DHLR. The complexity for updating
Ft+1 is O

(
nc2 + c3). The solution of solving Qt+1 involves SVD and the complexity is

O
(
nc2 + c3). To update Yt+1, we need O

(
nc2). Therefore, the total complexity of UDHLR

is O
(

n2r + nd2 + nc2 + c3
)

. Though, the number of the cluster c is small, the computation
complexity of the proposed methods is greatly higher than original LRSC algorithm because
of involving matrix inversion and SVD. In the future, we will consider parallel computing
to increasing running speed.

6. Conclusions

In this paper, we propose a novel unified adaptive hypergraph-regularized low-
rank subspace learning method for hyperspectral clustering. In the proposed framework,
low-rank and the hypergraph terms are used to explore the local and global structure
information of data, and the last two terms are used to learn the continuous label and
the discrete label. Specifically, the hypergraph is adaptively learned from the low-rank
subspace feature without exploring a fixed incidence matrix, which is theoretically optimal
for clustering. Otherwise, the proposed model learns a rotation matrix to simultaneously
learn continuous labels and discrete cluster labels, which need no relaxing information loss
as many existing spectral clustering methods. It jointly learns the similarity hypergraph
from the learned low-rank subspace data and the discrete clustering labels by solving an
optimization problem, in which the subspace feature is adaptively learned by considering
the clustering performance and the continuous clustering labels just serve as intermediate
products. The experimental results demonstrate that the proposed DHLR and UDHLR
outperforms the existing clustering methods. However, the computational complexity of
each iteration is very high in the proposed methods, which should be optimized in the view
of running time. In the future, we will optimize the complexity of the proposed method and
intend the hypergraph learning to conduct the large-scale hyperspectral image clustering.
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