
applied
sciences

Review

A Survey of Machine Learning-Based System Performance
Optimization Techniques

Hyejeong Choi and Sejin Park *

����������
�������

Citation: Choi, H.; Park, S. A Survey

of Machine Learning-Based System

Performance Optimization

Techniques. Appl. Sci. 2021, 11, 3235.

https://doi.org/10.3390/app11073235

Received: 23 February 2021

Accepted: 2 April 2021

Published: 4 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, Keimyung University, Daegu 1095, Korea; hyejeong12311@gmail.com
* Correspondence: baksejin@kmu.ac.kr; Tel.: +82-53-580-5270

Abstract: Recently, the machine learning research trend expands to the system performance opti-
mization field, where it has still been proposed by researchers based on their intuitions and heuristics.
Compared to conventional major machine learning research areas such as image or speech recog-
nition, machine learning-based system performance optimization fields are at the beginning stage.
However, recent papers show that this approach is promising and has significant potential. This
paper reviews 11 machine learning-based system performance optimization approaches from nine
recent papers based on well-known machine learning models such as perceptron, LSTM, and RNN.
This survey provides a detailed design and summarizes model, input, output, and prediction method
of each approach. This paper covers various system performance areas from the data structure
to essential system components of a computer system such as index structure, branch predictor,
sort, and cache management. The result shows that machine learning-based system performance
optimization has an important potential for future research. We expect that this paper shows a wide
range of applicability of machine learning technology and provides a new perspective for system
performance optimization.

Keywords: deep learning; machine learning; system performance; optimization

1. Introduction

As the amount of data and the complexity of data structures increase, computer system
performance optimization is highly required. However, traditional optimization techniques
do not work adaptively because most of them are designed for specific data under a specific
environment. Hybrid techniques [1–3] came out but are still time-consuming and difficult
to obtain good results on complex data distribution.

Prefetching or prediction techniques have already existed concepts, but they are
limited in time and space. In addition, traditional techniques only work well under
certain patterns or situations. For example, stride prefetcher [4] cannot learn various data
characteristics such as delta [5]. That is to say, there is a possibility of space waste and
performance decline when irregular data come in. Also, depending on the data distribution,
the conventional workload or pattern-based algorithm leads bad if the data distribution
does not fit to the algorithm. Furthermore, existing techniques for handling large data such
as database management and sorting have reached speed limits.

Therefore, since it is difficult to intuitively design a system that satisfies the increas-
ingly complex workload and performance metrics (latency, prediction) that the system
targets, Machine Learning was introduced to design the system architecture more auto-
matically. Machine learning can be a good solution because machine learning can find the
various relationship among data, such as linear, non-linear. This is the biggest advantage
of a machine learning-based approach, and it can automatically explore patterns for a
given workload.

The goal of this survey paper is to show the state-of-the-art machine learning tech-
niques for various areas in terms of system performance optimization. It covers various
machine learning-based approaches from CPU prefetching to basic data structure.

Appl. Sci. 2021, 11, 3235. https://doi.org/10.3390/app11073235 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2824-6382
https://orcid.org/0000-0001-5050-3093
https://doi.org/10.3390/app11073235
https://doi.org/10.3390/app11073235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11073235
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/7/3235?type=check_update&version=1

Appl. Sci. 2021, 11, 3235 2 of 19

In the papers we reviewed, each topic or designed model is unique, but the main
purpose is the same-system performance optimization using machine learning techniques.

This paper reviews 11 ML-based techniques from nine papers that have applied
machine learning to optimize various systems such as traditional database management,
data structure, sorting algorithms, etc. Each system has a target optimization direction,
and by applying machine learning, problem-solving possibilities and future potential are
confirmed. In addition, there may be various models, approaches, and available data for
a given problem. Therefore, based on the challenge found in the conventional system,
we explore the design space for the ML component and analyze how to apply it to the
conventional system.

The paper is organized as follows. Section 3 introduces recent works that applied ma-
chine learning for system performance optimization. Section 4 describes the characteristics
and architecture design of the works introduced in Section 3. Finally, Section 5 discusses
the challenges and future directions of applying ML for system designs and concludes
this paper.

2. Background

We briefly summarize the models introduced in this survey. Most approaches applied
four models.

Perceptron receives an input signal and outputs one signal. Each input signal has
a weight, and this weight represents the importance of the input signal. Single-layer
perceptron have only input and output stages, and multi-layer perceptron add a hidden
layer between input and output.

Support Vector Machine (SVM) is an algorithm similar to perceptron and is a method
of defining a decision boundary to obtain a baseline for classification and maximizing the
margin between the decision boundary and the actual data.

Recurrent Neural Network (RNN) has input signals, output signals, and weights like
perceptron, but has several hidden layers inside, and these hidden layers are not only
affected by the current input but are cyclically connected to memorize previous input
information. The left side of Figure 1a is the RNN cell. To calculate the hidden state of the
current time t, it is calculated as follows using the hidden state ht−1 of the previous time
t− 1 and the input xt. Next, the calculated ht value is sent to the output layer and becomes
an input value for calculating ht+1 again.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 20

(a) RNN cell (b) LSTM cell

Figure 1. (a) The Architecture of Recurrent Neural Network (RNN) cell; (b) The Architecture of
Long Short-term Memory (LSTM) cell.

3. Review of Machine Learning-based System Performance Optimization Research
This section reviews machine learning-based system performance optimization re-

search. Table 1 is a summary of the paper before surveying the paper.

Table 1. Summary of the reviewer searches.

Research Model Description

Learned In-
dex Struc-
tures [7]

B-Tree index
Single and Multi-
layer Perceptron

It replaces a B-Tree with a neural network to improve query speed. A regression-based
model predicts the position of the key if it is given as the input. The model is hierarchi-

cally organized for higher accuracy.

Hash-Map index
Single and Multi-
layer Perceptron

It replaces a hash-function with a neural network to solve the collision problem, which
is the major problem of hashing technique. When a key is given as an input value, a re-
gression-based model predicts the position of the key. This model implemented model

hierarchically to reduce the complexity of a single model.

Bloom filter
RNN

It includes a neural network to minimize the spatial overhead and false positive rate of
Bloom filter. It designed a classification model that treats Bloom filter as a binary classi-

fication problem to predict 0 or 1 when a key comes in.

Pavo [8] LSTM

It replaces a hash-function with LSTM to increase the space utilization rate of inverted
indexing. The architecture consists of a total of four stages: Input Stage is pre-pro-
cessing data, Disperse Stage distributes the sub-models uniformly, Mapping Stage

maps the sub-data to a local hash, and the Join Stage creates a global hash table.

Learned
Branch Pre-

dictor [9]
Perceptron

It replaces the traditional two-level scheme counter table with perceptron for efficient
branch prediction. Given input is indexed into one of the perceptron tables, and the

model classifies whether the branch will be taken or will not be taken by a weight vec-
tor.

NN-sort [10] Multi-layer
Perceptron

It is a regression-based neural network to improve sorting performance. The overall
framework consists of three stages: the input phase is a step of pre-processing the input
data, the sorting phase is a step of sorting the data by repeatedly inputting data into the

model. Finally, there is a polish phase to correct inaccurately sorted elements to pro-
duce an accurate result.

MER-sort
[11]

Perceptron It is a machine learning sorting algorithm-based radix sort. Similar to radix sort, this
model proceeds sorting by separating the unordered keys into partial buckets.

Figure 1. (a) The Architecture of Recurrent Neural Network (RNN) cell; (b) The Architecture of Long
Short-term Memory (LSTM) cell.

Long Short-term Memory (LSTM) [6] is a proposed method to solve the disadvantage
that the current hidden layer loses the memory of the previous input information when
the input of the RNN becomes long. In order to solve the problem, unnecessary memories
are deleted by adding a value called cell state, and things to remember are selected. The

Appl. Sci. 2021, 11, 3235 3 of 19

right side of Figure 1b is an LSTM cell. LSTM has three gates to obtain hidden state and
cell state values. The first forget gate (ft) is a gate to delete memories. As the second input
gate (it,gt), it is a gate to remember the current information. Finally, the output gate (ot)
is a gate to calculate the hidden state at the current point in time. The cell state ct can be
obtained by multiplying two values (it,gt) calculated at the input gate for each element and
adding the memory selected at the input gate to the result of the forget gate. The hidden
state ht can be obtained by performing an entrywise product for the cell state ct and the
output gate (ot).

3. Review of Machine Learning-Based System Performance Optimization Research

This section reviews machine learning-based system performance optimization re-
search. Table 1 is a summary of the paper before surveying the paper.

Table 1. Summary of the reviewer searches.

Research Model Description

Learned Index
Structures [7]

B-Tree index
Single and Multi-layer

Perceptron

It replaces a B-Tree with a neural network to improve query speed. A
regression-based model predicts the position of the key if it is given as the input.

The model is hierarchically organized for higher accuracy.

Hash-Map index
Single and Multi-layer

Perceptron

It replaces a hash-function with a neural network to solve the collision problem,
which is the major problem of hashing technique. When a key is given as an input

value, a regression-based model predicts the position of the key. This model
implemented model hierarchically to reduce the complexity of a single model.

Bloom filter
RNN

It includes a neural network to minimize the spatial overhead and false positive
rate of Bloom filter. It designed a classification model that treats Bloom filter as a

binary classification problem to predict 0 or 1 when a key comes in.

Pavo [8] LSTM

It replaces a hash-function with LSTM to increase the space utilization rate of
inverted indexing. The architecture consists of a total of four stages: Input Stage is

pre-processing data, Disperse Stage distributes the sub-models uniformly,
Mapping Stage maps the sub-data to a local hash, and the Join Stage creates a

global hash table.

Learned Branch
Predictor [9] Perceptron

It replaces the traditional two-level scheme counter table with perceptron for
efficient branch prediction. Given input is indexed into one of the perceptron

tables, and the model classifies whether the branch will be taken or will not be
taken by a weight vector.

NN-sort [10] Multi-layer
Perceptron

It is a regression-based neural network to improve sorting performance. The
overall framework consists of three stages: the input phase is a step of

pre-processing the input data, the sorting phase is a step of sorting the data by
repeatedly inputting data into the model. Finally, there is a polish phase to correct

inaccurately sorted elements to produce an accurate result.

MER-sort [11] Perceptron It is a machine learning sorting algorithm-based radix sort. Similar to radix sort,
this model proceeds sorting by separating the unordered keys into partial buckets.

Learned Reuse
Predictor [12] Perceptron

It is a perceptron-based reuse predictor to improve the accuracy of reuse
prediction. However, an actual neural network is not applied, it only brought an
idea of a perceptron. The multiple inputs are given, and it is indexed each weight

table using input and PC, and it conducts prediction by adding each weight.

Learned Cache
Prefetching [13,14]

Perceptron

It is a perceptron-based cache prefetching technique to reduce unnecessary
prefetching. The basic configuration is the traditional prefetcher that proposes the
block. It keeps the latest cache miss address, and perceptron determines whether

the block is accepted or not.

LSTM

It is a neural network-based prefetcher considering data distribution. Two
LSTM-based architectures are proposed. The first is embedding LSTM. If the

embedded Program Counter (PC) and delta (a distance between two addresses)
are given as input, the delta value is predicted. The second is Clustering + LSTM.

It separates various cluster regions according to addresses and predicts deltas
within the cluster.

Appl. Sci. 2021, 11, 3235 4 of 19

Table 1. Cont.

Research Model Description

Learned Cache
Replacement

Policy [15]
LSTM, SVM

It proposed an attention-based LSTM for offline prediction and SVM for online
prediction. Although there are differences in the architecture of the two models,

both models work with the same input. This model classifies whether the input is
cache-friendly or not.

3.1. Machine Learning Based Index Structures

Traditional data management systems use a heuristic-based algorithm, which means
that they do not utilize the characteristics of specific applications and data themselves [16].
In order to improve these problems, the papers [7,8] introduce a new index structure
that leverages machine learning. In paper [7], three well-known index structures (B-Tree,
Hash-Map, Bloom filter) are re-designed with machine learning-based techniques. Ref. [8]
also proposes an inverted index based on machine learning.

3.1.1. Learned B-Tree

B-Tree index model predicts a position of look-up key within a sorted set of keys.
Original B-Tree guarantees that found the key is the first key or higher than the look-up
key. In addition, B-Tree determines whether the look-up key is in the page through binary
search. In this paper [7], a regression-based range index is proposed.

For the Learned B-Tree design, the Recursive Model Index (RMI) [7] was designed to
increase accuracy and reduce complexity rather than a single CDF model. Because RMI
trains only for each range of data, such as B-Tree, RMI can easily build with a simple
model. In addition, this paper supports B-Tree. If learning data distribution does not fit for
prediction, they use B-Tree.

In Figure 2, the upper-level model receives the key as input and predicts the next-level
model until it is located at the lowest level. Upon reaching the lowest level model, the
model predicts the location of the queried key and finds the queried key between min_err
and max_err of the predicted location.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 20

Figure 2. Learned B-Tree [7]: The top-level model receives a key as an input and it predicts the
final position between min_err and max_err.

3.1.2. Learned Hash-Map
A Hash-Map uses hash-functions to map the position in the array. The goal of the

learned Hash-Map is to reduce the hash conflict [7]. To address the problem, they replace
the hash-function with a machine learning-based model. They used a regression-based
model. The model is also modeled as CDF for the key distribution, and it also uses RMI
like the range index. In Figure 3, when the trained model receives a key as an input, it
predicts the position of the key in the array, similar to a hash function. When the learned
hash-function was compared with the existing hash-function, the collision rate of the
learned hash-function for the given dataset was reduced by up to 77%.

Figure 3. Learned Hash-Map [7]: The top-level model received the key as an input and it predicts
the final position in the leaf model.

3.1.3. Learned Bloom Filter
A Bloom filter is a structure that determines whether the data is a member of the set

or not. By design, a Bloom filter is space efficient because it checks whether the key exists
at the position that K hash-function returned to the bit-array, but Bloom filter still occupies
a large amount of memory. Also, it has a false-positive result because of hash function
conflict. The goal of this learned existence index [7] is to minimize the space and false

Figure 2. Learned B-Tree [7]: The top-level model receives a key as an input and it predicts the final
position between min_err and max_err.

Compared with the original B-Tree under various conditions, the learning index model
achieved much less memory consumption and faster look-up speed than B-Tree.

Appl. Sci. 2021, 11, 3235 5 of 19

3.1.2. Learned Hash-Map

A Hash-Map uses hash-functions to map the position in the array. The goal of the
learned Hash-Map is to reduce the hash conflict [7]. To address the problem, they replace
the hash-function with a machine learning-based model. They used a regression-based
model. The model is also modeled as CDF for the key distribution, and it also uses RMI
like the range index. In Figure 3, when the trained model receives a key as an input, it
predicts the position of the key in the array, similar to a hash function. When the learned
hash-function was compared with the existing hash-function, the collision rate of the
learned hash-function for the given dataset was reduced by up to 77%.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 20

Figure 2. Learned B-Tree [7]: The top-level model receives a key as an input and it predicts the
final position between min_err and max_err.

3.1.2. Learned Hash-Map
A Hash-Map uses hash-functions to map the position in the array. The goal of the

learned Hash-Map is to reduce the hash conflict [7]. To address the problem, they replace
the hash-function with a machine learning-based model. They used a regression-based
model. The model is also modeled as CDF for the key distribution, and it also uses RMI
like the range index. In Figure 3, when the trained model receives a key as an input, it
predicts the position of the key in the array, similar to a hash function. When the learned
hash-function was compared with the existing hash-function, the collision rate of the
learned hash-function for the given dataset was reduced by up to 77%.

Figure 3. Learned Hash-Map [7]: The top-level model received the key as an input and it predicts
the final position in the leaf model.

3.1.3. Learned Bloom Filter
A Bloom filter is a structure that determines whether the data is a member of the set

or not. By design, a Bloom filter is space efficient because it checks whether the key exists
at the position that K hash-function returned to the bit-array, but Bloom filter still occupies
a large amount of memory. Also, it has a false-positive result because of hash function
conflict. The goal of this learned existence index [7] is to minimize the space and false

Figure 3. Learned Hash-Map [7]: The top-level model received the key as an input and it predicts
the final position in the leaf model.

3.1.3. Learned Bloom Filter

A Bloom filter is a structure that determines whether the data is a member of the set
or not. By design, a Bloom filter is space efficient because it checks whether the key exists
at the position that K hash-function returned to the bit-array, but Bloom filter still occupies
a large amount of memory. Also, it has a false-positive result because of hash function
conflict. The goal of this learned existence index [7] is to minimize the space and false
positive. One way to construct a Bloom filter is to think of it as a binary classification model.
Therefore, a predictive model has been proposed to determine whether an element is a key
or not. However, since this model has a false negative, unlike the Bloom filter, the authors
add an overflow Bloom filter to keep the false-negative rate (FNR) at zero. In Figure 4, if a
key is given as input to the trained model and the predicted value by the model exceeds the
threshold, queried key is determined that the key exists in the set. However, if it does not
exceed the threshold, the existence of the key is checked through the actual bloom filter. In
an experiment to track blacklisted phishing URLs, Bloom Filter of 1% FPR needed 2.04 MB
of memory, while the learned Bloom filter reduced the size of the required memory with
1.31 MB of memory.

Appl. Sci. 2021, 11, 3235 6 of 19

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 20

positive. One way to construct a Bloom filter is to think of it as a binary classification
model. Therefore, a predictive model has been proposed to determine whether an element
is a key or not. However, since this model has a false negative, unlike the Bloom filter, the
authors add an overflow Bloom filter to keep the false-negative rate (FNR) at zero. In Fig-
ure 4, if a key is given as input to the trained model and the predicted value by the model
exceeds the threshold, queried key is determined that the key exists in the set. However,
if it does not exceed the threshold, the existence of the key is checked through the actual
bloom filter. In an experiment to track blacklisted phishing URLs, Bloom Filter of 1% FPR
needed 2.04 MB of memory, while the learned Bloom filter reduced the size of the required
memory with 1.31 MB of memory.

Figure 4. Bloom Filter Architecture [7]: The Learned model received a key as an input and predicts
a regression value to determine if the key exists in the set or not.

3.1.4. Learned Inverted Index
An inverted index is a technique that is widely used in a large-scale text search. In

contrast to forward index, words become key and documents become value (so, inverted).
However, when indexing such a large-scale text, it is generally generated through the
same hash function without understanding the distribution of various data. In order to
increase the space utilization rate of the inverted list when the large amount of data is
given, this paper presents Pavo [8], an RNN-based learned inverted index.

Figure 5. Learned Inverted Index [8]: The RNN model received the preprocessed data string as an
input and predicts the position of the data in the leaf RNN.

Figure 4. Bloom Filter Architecture [7]: The Learned model received a key as an input and predicts a
regression value to determine if the key exists in the set or not.

3.1.4. Learned Inverted Index

An inverted index is a technique that is widely used in a large-scale text search. In
contrast to forward index, words become key and documents become value (so, inverted).
However, when indexing such a large-scale text, it is generally generated through the same
hash function without understanding the distribution of various data. In order to increase
the space utilization rate of the inverted list when the large amount of data is given, this
paper presents Pavo [8], an RNN-based learned inverted index.

Pavo conducts four stages as shown in Figure 5. The first stage, the input stage, is
a stage for pre-processing input data. The input data string is processed as bigram and
used as the input sequence of the RNN. For example, the word “Documentaries” can be
divided into do, oc, cu, . . . , es when using bigram. The second stage, the disperse stage,
consists of a hierarchical model and plays a role to distribute data evenly among multiple
models. By dividing the dataset into several sub-data sets, the low-level model helps to
learn the mapping relationship of the dataset. The third stage, the mapping stage, maps
each data in the dataset of models in the last layer to a local hash. The last stage, the join
stage, is connected by a local hash to create the final hash-table. All local hashes are serially
connected to create a global hash table, and as shown in Figure 5, pos1 located in the
local hash of RNN 3.2 is mapped to the global hash table to finally find the location of the
key. This paper introduces two learning methods in the mapping stage: supervised and
unsupervised learning methods. First, supervised learning aligns keys, then sets labels
in order, and learns to map keys one-to-one with hash entries. Supervised learning hash-
function tends to overfitting the model when the number of labels is small, or the noise
is high [17]. Therefore, unsupervised learning is introduced. The second unsupervised
learning is a method of self-learning the distribution of data without labels. When each
key is input to the model, the model outputs a vector of hash table length. Next, the vector
is the input to the Softmax function [18]. It finds the position of the largest value in the
output value of Softmax and sets the position’s value to 1. At the end of the stage, to
obtain a distribution, the value of each category is summed, and the model optimized the
computed error through a loss function to distribute the data uniformly. When mapping
size is 1000, the average number of look-up of learned hash-function from the entire dataset
was approximately 1.0–1.15, which was lower than 1.5 of the existing hash-function.

Appl. Sci. 2021, 11, 3235 7 of 19

1

Figure 5. Learned Inverted Index [8]: The RNN model received the preprocessed data string as an
input and predicts the position of the data in the leaf RNN.

3.2. Perceptron Based Branch Predictor

The existing 2-bit branch prediction [19] stores two-level scheme branch history infor-
mation for branch prediction. In order to predict, a pattern history table (PHT) is used. To
improve branch accuracy, a larger table is needed. In order to reduce the space overhead, it
shares counters, but duplicates may occur. Because of these disadvantages, history length
is limited, and the predictor is difficult to learn a long history. Perceptron is a simple
neural network, but it has the advantage of learning a long history. This paper proposed a
two-level scheme using perceptron instead of a 2-bit counter [9]. A detailed description of
this structure is shown in Figure 6. If a branch address is given, the address is hashed to
obtain an index. The index obtained by hashing the branch address indexes the entry of
the Perceptron Vector Table. The entry has a weight and a bias indicating the correlation
between branch addresses. The extracted weights and biases are dot products with the
Global Branch History that stores the past branch address to calculate the output value y. If
y is negative, the branch is non-taken, otherwise it is taken. Finally, when the actual branch
result appears, the weight is updated by comparing it with the predicted branch result.
When comparing the prediction rate according to the hardware budget, learned branch
predictor improved 14.7% over gshare [20] and 10% over bi-mode [21].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 20

Figure 6. Perceptron Predictor Block Diagram [9]: After selecting the parameter corresponding to
the branch address, compute dot product the parameter with the previous branch history, and the
predictor decides if the branch is taken or not based on the result.3.3. Perceptron based Branch
Predictor.

3.3. Machine Learning based Sort
Sorting is one of the basic tasks of computing components used in many applications.

Recently, machine learning is applied to solve the problem because the speed of the algo-
rithm has reached the limit.

3.3.1. NN-Sort (Neural Network Sort)
In paper [10], a neural network-based sorting algorithm called NN-sort [10] is pro-

posed. NN-sort trains the model about past data and classifies incoming data in the future.
The overall structure of NN-sort is divided into three phases as shown in Figure 7: Input
Phase, Sorting Phase, and Polish Phase.

Figure 7. NN-Sort (Neural Network Sort) [10].

Input Phase serves to convert data into a vector so that NN-sort can learn the various
type of data.

Sorting Phase serves to convert unsorted data into roughly sorted data by repeatedly
executing the proposed model. If different input data result in the same position, NN-sort
stores the input data in the conflicting array c. On the other hand, the non-conflicting key

Figure 6. Perceptron Predictor Block Diagram [9]: After selecting the parameter corresponding to
the branch address, compute dot product the parameter with the previous branch history, and the
predictor decides if the branch is taken or not based on the result.

Appl. Sci. 2021, 11, 3235 8 of 19

3.3. Machine Learning Based Sort

Sorting is one of the basic tasks of computing components used in many applications.
Recently, machine learning is applied to solve the problem because the speed of the
algorithm has reached the limit.

3.3.1. NN-Sort (Neural Network Sort)

In paper [10], a neural network-based sorting algorithm called NN-sort [10] is pro-
posed. NN-sort trains the model about past data and classifies incoming data in the future.
The overall structure of NN-sort is divided into three phases as shown in Figure 7: Input
Phase, Sorting Phase, and Polish Phase.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 20

Figure 6. Perceptron Predictor Block Diagram [9]: After selecting the parameter corresponding to
the branch address, compute dot product the parameter with the previous branch history, and the
predictor decides if the branch is taken or not based on the result.3.3. Perceptron based Branch
Predictor.

3.3. Machine Learning based Sort
Sorting is one of the basic tasks of computing components used in many applications.

Recently, machine learning is applied to solve the problem because the speed of the algo-
rithm has reached the limit.

3.3.1. NN-Sort (Neural Network Sort)
In paper [10], a neural network-based sorting algorithm called NN-sort [10] is pro-

posed. NN-sort trains the model about past data and classifies incoming data in the future.
The overall structure of NN-sort is divided into three phases as shown in Figure 7: Input
Phase, Sorting Phase, and Polish Phase.

Figure 7. NN-Sort (Neural Network Sort) [10].

Input Phase serves to convert data into a vector so that NN-sort can learn the various
type of data.

Sorting Phase serves to convert unsorted data into roughly sorted data by repeatedly
executing the proposed model. If different input data result in the same position, NN-sort
stores the input data in the conflicting array c. On the other hand, the non-conflicting key

Figure 7. NN-Sort (Neural Network Sort) [10].

Input Phase serves to convert data into a vector so that NN-sort can learn the various
type of data.

Sorting Phase serves to convert unsorted data into roughly sorted data by repeatedly
executing the proposed model. If different input data result in the same position, NN-sort
stores the input data in the conflicting array c. On the other hand, the non-conflicting key
is stored in the array ok. In this case, c is used as input of model f at the next iteration. If
c is below the threshold after one iteration, c is not supplied from model f again, but c is
sorted by the existing algorithm.

At Polish Phase, all arrays of {o1, o2, . . . , ok, . . . , ot}(0 < t < ε, ε is the maximum
number of iterations) are scanned and merged with w. If the position of an element in
oi is incorrect, NN-sort inserts the element in the correct position and if the position of
the element is correct, NN-sort appends the element in the result array. Compared to the
real-world dataset, NN-sort shows a sorting rate of 5950 data points per second, which is
2.72 times of std::sort [22], 7.34 times of Redis sort [23], and 58% faster than std::heap [22].

3.3.2. MER-Sort (Model-Enhanced Radix Sort)

Machine learning sorting algorithm-based radix sort with almost linear time called
MER-sort has been proposed [11]. When n data are given, radix sort performs bucket
sorting of k phases with time complexity of O(kn) [24]. MER-sort is also similar to radix
sort because MER-sort divides the bucket until the input is sorted. But MER-sort learns the
CDF model, and the learned model predicts the position [11].

Figure 8 shows the structure of MER-sort. In Step 1A, the model predicts the bucket
where the input will be located when the unordered input array comes in. At this time,
when the bucket overflows, the input enters the spill bucket. In Step 1B, the model repeats
the same mapping operation until the number of inputs per bucket is less than the threshold
(typically 100). Next, for a bucket of variable size, MER-sort determines how many inputs

Appl. Sci. 2021, 11, 3235 9 of 19

each bucket has. The number of inputs per bucket is stored in Count Array. In addition, a
bucket of variable size can be stored directly in the output array (Step 2). Finally, the spill
bucket is merged with the output array, and insert sort is used for modification (Step 3). At
up to 1 billion keys of standard normal distribution, MER-sort showed only 30% of sorting
speed compared to other algorithms [11].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 20

is stored in the array ݋௞. In this case, c is used as input of model f at the next iteration. If c
is below the threshold after one iteration, ܿ is not supplied from model f again, but ܿ is
sorted by the existing algorithm.

At Polish Phase, all arrays of {݋ଵ, ,ଶ݋ … , ,௞݋ … , > ௧}(0݋ > ݐ ߳, ߳ is the maximum num-
ber of iterations) are scanned and merged with ݓ. If the position of an element in ݋௜ is
incorrect, NN-sort inserts the element in the correct position and if the position of the
element is correct, NN-sort appends the element in the result array. Compared to the real-
world dataset, NN-sort shows a sorting rate of 5950 data points per second, which is 2.72
times of std::sort [22], 7.34 times of Redis sort [23], and 58% faster than std::heap [22].

3.3.2. MER-Sort (Model-Enhanced Radix Sort)
Machine learning sorting algorithm-based radix sort with almost linear time called

MER-sort has been proposed [11]. When n data are given, radix sort performs bucket sort-
ing of k phases with time complexity of ܱ(݇݊) [24]. MER-sort is also similar to radix sort
because MER-sort divides the bucket until the input is sorted. But MER-sort learns the
CDF model, and the learned model predicts the position [11].

Figure 8. MER-sort (Model-Enhanced Radix Sort) [11].

Figure 8 shows the structure of MER-sort. In Step 1A, the model predicts the bucket
where the input will be located when the unordered input array comes in. At this time,
when the bucket overflows, the input enters the spill bucket. In Step 1B, the model repeats
the same mapping operation until the number of inputs per bucket is less than the thresh-
old (typically 100). Next, for a bucket of variable size, MER-sort determines how many
inputs each bucket has. The number of inputs per bucket is stored in Count Array. In
addition, a bucket of variable size can be stored directly in the output array (Step 2). Fi-
nally, the spill bucket is merged with the output array, and insert sort is used for modifi-
cation (Step 3). At up to 1 billion keys of standard normal distribution, MER-sort showed
only 30% of sorting speed compared to other algorithms [11].

3.4. Machine Learning based Cache Management
The speed of a CPU is far ahead of the memory latency. This problem causes a bot-

tleneck in many computer applications [25]. A hierarchical memory system was con-
structed with the addition of cache memory to overcome between the speed of memory
access and the speed of the CPU. Since cache memory is even smaller than main memory
capacity, cache memory must be managed efficiently. Therefore, various techniques such
as cache replacement, prefetching, etc. were introduced to increase efficiency. Since these
traditional techniques are speculative, they should ideally predict future patterns. How-
ever, predictors are almost impossible to know the pattern of the future, so one way is to
learn memory patterns of the past.

3.4.1. Reuse Prediction

Figure 8. MER-sort (Model-Enhanced Radix Sort) [11].

3.4. Machine Learning Based Cache Management

The speed of a CPU is far ahead of the memory latency. This problem causes a bottle-
neck in many computer applications [25]. A hierarchical memory system was constructed
with the addition of cache memory to overcome between the speed of memory access and
the speed of the CPU. Since cache memory is even smaller than main memory capacity,
cache memory must be managed efficiently. Therefore, various techniques such as cache
replacement, prefetching, etc. were introduced to increase efficiency. Since these traditional
techniques are speculative, they should ideally predict future patterns. However, predictors
are almost impossible to know the pattern of the future, so one way is to learn memory
patterns of the past.

3.4.1. Reuse Prediction

Cache block reuse prediction is a technique to predict whether the block currently
residing in the cache is likely to be accessed again before being replaced. Previous tech-
niques have not significantly combined various input [12]. The proposed model is possible
to increase cache efficiency by weighting various inputs and analyzing correlations with
each other. This paper does not use perceptron algorithm but uses a similar perceptron
learning algorithm [12]. In this paper [12], when a block is accessed a predictor works. If
the block was in the cache (i.e., cache hit), the predictor predicts the possibility of reusing
in the near future. If the block is predicted as it will not be reused, the block will not be
stored in the cache again and vice versa.

Figure 9 shows the structure of the predictor presented in the paper [12]. The predictor
uses six features: the memory access trace and the PC of the memory instruction that
caused the eviction, and the memory address bits. Each feature has its own table and
indexes into the corresponding entry to the hash by applying the XOR gate to each feature
with the PC of the instruction. This predictor is similar to perceptron predictor known as
hashed perceptron [26]. Next, when the weights of the feature table are extracted through
the calculated index and the weights extracted from each table are added to exceed the
threshold, it is determined that the accessed block is not reused. If the sum of corresponding
weights exceeds the threshold, the predictor is predicted that the prediction is incorrect.

In a single-thread workload, the average Sampling Dead Block Prediction (SDBP) [27]
(3.5%), Signature-based Hit Predictor (SHiP) [28] (3.8%), and Perceptron (6.1%) improved
compared to the LRU when the predictor’s introduction per cycle (IPC) by the LRU’s IPC.

Appl. Sci. 2021, 11, 3235 10 of 19

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 20

Cache block reuse prediction is a technique to predict whether the block currently
residing in the cache is likely to be accessed again before being replaced. Previous tech-
niques have not significantly combined various input [12]. The proposed model is possi-
ble to increase cache efficiency by weighting various inputs and analyzing correlations
with each other. This paper does not use perceptron algorithm but uses a similar percep-
tron learning algorithm [12]. In this paper [12], when a block is accessed a predictor works.
If the block was in the cache (i.e., cache hit), the predictor predicts the possibility of reusing
in the near future. If the block is predicted as it will not be reused, the block will not be
stored in the cache again and vice versa.

Figure 9. Perceptron Reuse Predictor [12]: After XORing the PC and each feature and adding all
indexed weights, the predictor predicts the reusability of the block based on the added weights.

Figure 9 shows the structure of the predictor presented in the paper [12]. The predic-
tor uses six features: the memory access trace and the PC of the memory instruction that
caused the eviction, and the memory address bits. Each feature has its own table and in-
dexes into the corresponding entry to the hash by applying the XOR gate to each feature
with the PC of the instruction. This predictor is similar to perceptron predictor known as
hashed perceptron [26]. Next, when the weights of the feature table are extracted through
the calculated index and the weights extracted from each table are added to exceed the
threshold, it is determined that the accessed block is not reused. If the sum of correspond-
ing weights exceeds the threshold, the predictor is predicted that the prediction is incor-
rect.

In a single-thread workload, the average Sampling Dead Block Prediction (SDBP) [27]
(3.5%), Signature-based Hit Predictor (SHiP) [28] (3.8%), and Perceptron (6.1%) improved
compared to the LRU when the predictor’s introduction per cycle (IPC) by the LRU’s IPC.

3.4.2. Perceptron based Prefetcher
Prefetching is the process of fetching data from memory into the cache before the

processor demands it. If the prediction is wrong, cache pollution occurs, and the efficiency
may be reduced because additional work is required. To remove this unnecessary
memory request, a two-level prefetching mechanism based on perceptron has been pro-
posed [13]. The first level combines the existing prefetchers (stride prefetcher [4], Markov
prefetcher [29]) and Global History Buffer (GHB) [2]. In Figure 10, if a cache miss occurs,
the model pushes the block to the GHB stack, and the convolutional prefetcher proposes
a block. Next, after finding the proposed block in the index table, it is hashed to the GHB
to extract the features related to the proposed block and input it to the perceptron. Per-
ceptron performs prediction based on the input features and does not prefetch the corre-
sponding block if the predicted value is negative. Otherwise, it prefetches the proposed

Figure 9. Perceptron Reuse Predictor [12]: After XORing the PC and each feature and adding all
indexed weights, the predictor predicts the reusability of the block based on the added weights.

3.4.2. Perceptron Based Prefetcher

Prefetching is the process of fetching data from memory into the cache before the
processor demands it. If the prediction is wrong, cache pollution occurs, and the effi-
ciency may be reduced because additional work is required. To remove this unnecessary
memory request, a two-level prefetching mechanism based on perceptron has been pro-
posed [13]. The first level combines the existing prefetchers (stride prefetcher [4], Markov
prefetcher [29]) and Global History Buffer (GHB) [2]. In Figure 10, if a cache miss occurs,
the model pushes the block to the GHB stack, and the convolutional prefetcher proposes a
block. Next, after finding the proposed block in the index table, it is hashed to the GHB to
extract the features related to the proposed block and input it to the perceptron. Perceptron
performs prediction based on the input features and does not prefetch the corresponding
block if the predicted value is negative. Otherwise, it prefetches the proposed block. Also,
depending on the result, the block is added to the Deny Table or Accept Table. Both tables
are used as perceptron′s training data to adjust memory access patterns. Compared with
Stride, Markov Prefetcher, an average of 80.84% of proposed requests by stride prefetcher
was rejected, and an average of 49.71% of proposed requests by Markov prefetcher was
rejected. However, the cache hit rate was −1.67 to 2.46% because even useful proposals
could be rejected.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 20

block. Also, depending on the result, the block is added to the Deny Table or Accept Table.
Both tables are used as perceptron′s training data to adjust memory access patterns. Com-
pared with Stride, Markov Prefetcher, an average of 80.84% of proposed requests by stride
prefetcher was rejected, and an average of 49.71% of proposed requests by Markov
prefetcher was rejected. However, the cache hit rate was −1.67 to 2.46% because even use-
ful proposals could be rejected.

Figure 10. Two Level Prefetcher [13]: In the first level prefetcher, the feature related to the block
proposed by the existing prefetcher is transferred to the perceptron, and in the second level
prefetcher, the proposal is accepted or denied based on the value predicted by the perceptron.

3.4.3. LSTM based Prefetcher
Prefetch’s role is to determine what data needs to be cached to ease the memory wall

[30]. For prefetch performance, many existing tasks rely on tables [2,4,5,29]. However, as
the workload increases, the table also must expand, which puts pressure on the hardware.
Considering that the previous long history will affect the current prefetching, this paper
proposes a prefetcher using a sequence-based neural network. In this paper [14], two de-
signs are introduced.

The first is Embedding LSTM, the second is Clustering + LSTM. In the Embedding
LSTM (see Figure 11), the PC and the delta are individually embedded, and the two fea-
tures are connected to become a two-layer LSTM input. Then, the model outputs the top-
10 deltas for each time stamp and selects the highest probability delta among the last
timestamp K.

Figure 11. The Embedding LSTM Model [14].

Clustering + LSTM (see Figure 12) is built on the assumption that the interaction be-
tween addresses occurs locally. Therefore, the address space is clustered using k-means.
The PC and Address are divided into each cluster, and the delta between adjacent ad-
dresses within each cluster is calculated. Assuming that there are two clusters in Figure
 ଵ~ே are clustered, and the PC and Delta existing in the first clusterݎ݀݀ܣ ଵ~ே andܥܲ ,12
are called ܲܥଵ,௡ and ܽݐ݈݁ܦଵ,௠. This separate set of data is embedded with appropriate
values, and the two embedding values are concatenated to become the input of the LSTM.

Figure 10. Two Level Prefetcher [13]: In the first level prefetcher, the feature related to the block
proposed by the existing prefetcher is transferred to the perceptron, and in the second level prefetcher,
the proposal is accepted or denied based on the value predicted by the perceptron.

Appl. Sci. 2021, 11, 3235 11 of 19

3.4.3. LSTM Based Prefetcher

Prefetch’s role is to determine what data needs to be cached to ease the memory
wall [30]. For prefetch performance, many existing tasks rely on tables [2,4,5,29]. However,
as the workload increases, the table also must expand, which puts pressure on the hardware.
Considering that the previous long history will affect the current prefetching, this paper
proposes a prefetcher using a sequence-based neural network. In this paper [14], two
designs are introduced.

The first is Embedding LSTM, the second is Clustering + LSTM. In the Embedding
LSTM (see Figure 11), the PC and the delta are individually embedded, and the two
features are connected to become a two-layer LSTM input. Then, the model outputs the
top-10 deltas for each time stamp and selects the highest probability delta among the last
timestamp K.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 20

block. Also, depending on the result, the block is added to the Deny Table or Accept Table.
Both tables are used as perceptron′s training data to adjust memory access patterns. Com-
pared with Stride, Markov Prefetcher, an average of 80.84% of proposed requests by stride
prefetcher was rejected, and an average of 49.71% of proposed requests by Markov
prefetcher was rejected. However, the cache hit rate was −1.67 to 2.46% because even use-
ful proposals could be rejected.

Figure 10. Two Level Prefetcher [13]: In the first level prefetcher, the feature related to the block
proposed by the existing prefetcher is transferred to the perceptron, and in the second level
prefetcher, the proposal is accepted or denied based on the value predicted by the perceptron.

3.4.3. LSTM based Prefetcher
Prefetch’s role is to determine what data needs to be cached to ease the memory wall

[30]. For prefetch performance, many existing tasks rely on tables [2,4,5,29]. However, as
the workload increases, the table also must expand, which puts pressure on the hardware.
Considering that the previous long history will affect the current prefetching, this paper
proposes a prefetcher using a sequence-based neural network. In this paper [14], two de-
signs are introduced.

The first is Embedding LSTM, the second is Clustering + LSTM. In the Embedding
LSTM (see Figure 11), the PC and the delta are individually embedded, and the two fea-
tures are connected to become a two-layer LSTM input. Then, the model outputs the top-
10 deltas for each time stamp and selects the highest probability delta among the last
timestamp K.

Figure 11. The Embedding LSTM Model [14].

Clustering + LSTM (see Figure 12) is built on the assumption that the interaction be-
tween addresses occurs locally. Therefore, the address space is clustered using k-means.
The PC and Address are divided into each cluster, and the delta between adjacent ad-
dresses within each cluster is calculated. Assuming that there are two clusters in Figure
 ଵ~ே are clustered, and the PC and Delta existing in the first clusterݎ݀݀ܣ ଵ~ே andܥܲ ,12
are called ܲܥଵ,௡ and ܽݐ݈݁ܦଵ,௠. This separate set of data is embedded with appropriate
values, and the two embedding values are concatenated to become the input of the LSTM.

Figure 11. The Embedding LSTM Model [14].

Clustering + LSTM (see Figure 12) is built on the assumption that the interaction
between addresses occurs locally. Therefore, the address space is clustered using k-means.
The PC and Address are divided into each cluster, and the delta between adjacent addresses
within each cluster is calculated. Assuming that there are two clusters in Figure 12, PC1∼N
and Addr1∼N are clustered, and the PC and Delta existing in the first cluster are called
PC1,n and Delta1,m. This separate set of data is embedded with appropriate values, and the
two embedding values are concatenated to become the input of the LSTM. At this time, to
reduce the size of the model, multi-task LSTM is used to model each cluster. LSTMs are
an independent model, but the weights of model tie and cluster ID provide to give a bias.
Because this structure can calculate delta within the address set, the vocabulary size can
be significantly reduced compared to Embedding LSTM. However, because Clustering +
LSTM trains the model in a separate address region, it has a disadvantage that access to
other regions cannot be handled.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 20

At this time, to reduce the size of the model, multi-task LSTM is used to model each clus-
ter. LSTMs are an independent model, but the weights of model tie and cluster ID provide
to give a bias. Because this structure can calculate delta within the address set, the vocab-
ulary size can be significantly reduced compared to Embedding LSTM. However, because
Clustering + LSTM trains the model in a separate address region, it has a disadvantage
that access to other regions cannot be handled.

Figure 12. The Clustering + LSTM Model [14].

3.4.4. Cache Replacement Policy
Cache replacement is a problem of determining which blocks to remove when a new

access is requested under the “cache capacity is full” condition. Cache replacement is im-
portant to replace the block so that cache hit ratio is not violated. Existing heuristic-based
replacement algorithms have a disadvantage that they cannot adapt to data changes. To
solve this disadvantage, this paper [15] proposes two neural network models as a solution.
The first model is an attention-based LSTM, which is an offline learning, and the second
model is an integer Support Vector Machine (ISVM), called Glider, which enables offline
and online learning. The two models are Hawkeye [31]-based prediction approach, which
learns optimal caching behavior as supervised learning model. The first model, an atten-
tion-based LSTM, sees the problem as a sequence labeling problem. The detailed architec-
ture consists of embedding, single layer LSTM, and attention layer as shown in Figure 13.
The embedding layer is the task of processing the input into meaningful data, the LSTM
layer learns the behavior of the cache, and the attention layer learns the correlation be-
tween PCs. The output is a binary value which predicts whether the PC sequence is cache-
friendly or not.

Figure 12. The Clustering + LSTM Model [14].

3.4.4. Cache Replacement Policy

Cache replacement is a problem of determining which blocks to remove when a new
access is requested under the “cache capacity is full” condition. Cache replacement is
important to replace the block so that cache hit ratio is not violated. Existing heuristic-

Appl. Sci. 2021, 11, 3235 12 of 19

based replacement algorithms have a disadvantage that they cannot adapt to data changes.
To solve this disadvantage, this paper [15] proposes two neural network models as a
solution. The first model is an attention-based LSTM, which is an offline learning, and the
second model is an integer Support Vector Machine (ISVM), called Glider, which enables
offline and online learning. The two models are Hawkeye [31]-based prediction approach,
which learns optimal caching behavior as supervised learning model. The first model, an
attention-based LSTM, sees the problem as a sequence labeling problem. The detailed
architecture consists of embedding, single layer LSTM, and attention layer as shown in
Figure 13. The embedding layer is the task of processing the input into meaningful data, the
LSTM layer learns the behavior of the cache, and the attention layer learns the correlation
between PCs. The output is a binary value which predicts whether the PC sequence is
cache-friendly or not.

1

Figure 13. Attention-based LSTM Model [15]: LSTM received a sequence of PC recurrently as an
input and predicts the cache priority for current PC.

The second model, Glider simplifies feature by designing the PC sequence as a k-
sparse binary to simplify the model as shown in Figure 14. This feature has the advantage
of not having to learn the order of the sequences. Glider consists of a PC History Register
(PCHR) and an ISVM table. PCHR keeps the last 5 PCs seen from each core in any order,
and is modeled as an LRU cache to keep the most recent 5 PCs. ISVM stores the weight of
each PC and consists of 16 weights. When the current PC is accessed, it creates an index by
hashing the current PC and finds the corresponding ISVM entry in the ISVM table. And,
based on the indexed ISVM and the PC existing in the current PCHR, a 4-bit hash is created
to find the five weights. Five weights are extracted through five indexes. The output is
calculated by adding the extracted five weights. If the output is above the threshold, the
model predicts the block as cache-friendly. In this case, it is inserted with a high-priority.
If the output is less than 0, the model predicts the block as cache-averse. In this case, the
block is inserted with low-priority. If the output is between 0 and the threshold, the model
predicts the block as cache-friendly, but it is inserted with a mid-priority.

Appl. Sci. 2021, 11, 3235 13 of 19

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 20

Figure 13. Attention-based LSTM Model [15]: LSTM received a sequence of PC recurrently as an
input and predicts the cache priority for current PC.

Figure 14. The Glider Predictor [15]: Glider selects the ISVM as a currently accessed PC and deter-
mines the cache priority based on the sum of the weights associated with the previously accessed
PC.

The second model, Glider simplifies feature by designing the PC sequence as a k-
sparse binary to simplify the model as shown in Figure 14. This feature has the advantage
of not having to learn the order of the sequences. Glider consists of a PC History Register
(PCHR) and an ISVM table. PCHR keeps the last 5 PCs seen from each core in any order,
and is modeled as an LRU cache to keep the most recent 5 PCs. ISVM stores the weight of
each PC and consists of 16 weights. When the current PC is accessed, it creates an index
by hashing the current PC and finds the corresponding ISVM entry in the ISVM table.
And, based on the indexed ISVM and the PC existing in the current PCHR, a 4-bit hash is

Figure 14. The Glider Predictor [15]: Glider selects the ISVM as a currently accessed PC and
determines the cache priority based on the sum of the weights associated with the previously
accessed PC.

When evaluating the online model, Glider showed an average accuracy improvement
of 88.8 vs. 84.9% compared to the latest online model Hawkeye.

4. Evaluation and Design Consideration

This section compares the learned models explained in Section 2 in various perspec-
tives and explores the design considerations.

4.1. Evaluation

Based on the above-mentioned studies, we evaluate the characteristics that can be
observed by dividing into three. First, the machine learning model must be able to general-
ize not only the training data but also various data. Therefore, when applying machine
learning to an existing system, we evaluate the generalization ability of a machine learning
model. Second, we compares the characteristics found by applying machine learning
to the existing computer system with the characteristics of the existing system. Finally,
we compare the characteristics of each machine learning model applied to the studies
mentioned above.

4.1.1. Data Distribution

All the above models explain in Section 2 show that they obtain a lot of benefits by
learning the distribution of the data. However, since these models are supervised learning
models, they rely on the distribution of the training data.

We can compare NN-sort with std::sort by data distribution. For example, NN-
Sort trains well by uniform distribution data. When the target data set contains regular
distribution data more than 45%, we can see that std::sort shows better performance than
NN-Sort since NN-sort was trained by uniform distribution data [10].

The perceptron-based branch predictor is a model in which perceptron trains a linear
relationship. When prediction data is non-linear, gshare [20] that can learn non-linear
distribution by applying address and history to XOR gate showed better performance than
perceptron-based branch predictor.

4.1.2. Machine Learning Model and Traditional Model

Based on the reviewed papers, the advantages and disadvantages that can be identified
when replacing the traditional model with machine learning are summarized. Compared
to the traditional B-Tree, Learned B-Tree showed improved results that were up to 1.5~3×
faster and up to 2× less spatially [7], but since Learned B-Tree is trained with training
data, it works well only in read operations. Therefore, when a new input comes in, it is
necessary to retrain Learning B-Tree. This means that the trained model does not reflect the

Appl. Sci. 2021, 11, 3235 14 of 19

diversity of data. Two Level Prefetcher [13] uses perceptron to deny unnecessary proposals
from traditional prefetcher. Although Two Level Prefetcher increased accuracy by denying
unnecessary decisions, it reduced the cache hit rate slightly because the perceptron can
deny the required requests, and the prefetch may not be done during the perceptron
training. Learned Prefetcher [14] designed an LSTM-based prefetcher and compared to two
hardware prefetchers for experimentation. In various application traces, the LSTM-based
prefetchers showed high accuracy and recall compared to two traditional prefetchers, but
there were no usability experiments to see if the training model could learn different types
of traces. In view of this aspect, machine learning shows an improvement in accuracy
when compared to traditional models, but machine learning is limited by the training data
and may not be able to guarantee timeliness due to the training time. Table 2 summarizes
two pros and cons.

Table 2. Difference between machine learning model and traditional model.

Advantage Disadvantage

Machine Learning Model
(1) Can learn various data distribution

according to the complexity or
characteristics of the model.

(1) Results depends on training datasets
(2) It takes time to generate a prediction model.

Traditional Model
(1) Fast result (The model is already

implemented, and results are quickly out).
(2) Not sensitive to data distribution.

(1) The model usually shows a consistent result,
but only a certain class shows better
performance.

4.1.3. Perceptron and LSTM

Perceptron and LSTM are used in the reviewed papers. It is difficult to find a suitable
network structure for the technology, but it is important to select a suitable neural network.
Based on the paper introduced in Section 2, Table 3 summarizes the characteristics, advan-
tages, and disadvantages of the two models. This is assumed that all models are computed
in a single layer. The model parameter means a parameter whose value changes during
training, such as weight. Operation refers to the computation method of neural networks.

Table 3. Properties and Advantages and Disadvantages of Perceptron and LSTM.

Perceptron LSTM

Model
parameter

Properties Proportional to the number of inputs. Parameters exist for each gate as well as input.

Advantage • Fast training
• Small model size

The relationship of inputs can be saved in
more detail.

Disadvantage Difficult to remember complex distribution. • Model size increases.
• Slow training.

Operation

Properties Feed forward Hidden layer is used as input again.

Advantage
• Simple operation
• Back-propagation algorithm isn’t needed

to update the weight.

Can take advantage of the previous
long history.

Disadvantage It is not remembering long-term history
because it is only affected by the current input. Not suitable for time-variant system.

Offline&
Online

learning

Properties Offline & Online learning are available Offline learning is available

Advantage Even at runtime, the model can be flexibly
changed according to the influx of workload. Can give a variety of models and features.

Disadvantage
Online learning requires limitations (storage

space, data operation), so a less complex model
is required.

When limited resources are given, learning
becomes impossible if the amount of

data increases.

Appl. Sci. 2021, 11, 3235 15 of 19

4.2. Design Considerations

To design a new model with machine learning, the researcher needs to be able to
think of a new way of thinking and learning. At this time, the effort of the engineer is
required. This section describes design considerations by comparing with reviewed papers.
We describe training and prediction for design considerations. Table 4 summarizes the
reviewed papers.

Table 4. Design Summary of the Reviewed Papers.

Summary Input Output Learning Method Prediction

Learned index
[7]

Learn the index
structure for efficient

range request

Key

Regression
(key’s position)

Offline learning

RMI network
+ B-Tree

Learn hash-function
for efficient key

lookup
RMI network

Learn structure to
learn whether a key

is recorded

Classification
(key’s existence

(0/1))

RNN + overflow
Bloom filter

Pavo [8]
Learn hash-function
for efficient indexing
in space and speed.

Word to be used as
a key

1. Regression
(supervised
learning)

2. Classification
(unsupervised
learning)

Offline learning LSTM + fully
connected layer

Learned branch
predictor [9]

Learn a model that
replaces a 2-bit

counter in a
two-level scheme

Global History
Register

Classification
(taken or non-taken)

Online learning
(Adjust weights
according to loss

of predictions and
actual results)

Perceptron +
gshare/perceptron

NN-sort [10]
Data

distribution-aware
sorting algorithm

Data elements Regression
(Return position) Offline learning Multi-layer NN +

Quick sort

MER-sort [11]

Learn Radix
sort-based sorting

algorithm, which is
not sensitive to data

Data elements Regression
(Return position) Offline learning Perceptron + insert

sort

Reuse predictor
[12]

Determine if the
access block is
reusable or not

• PC
• memory addr
• compressed

data
time/reference
count

Classification
(Reuse or not)

Online learning
(Learning by

inputting part of
the access to a

sampler that has a
partial set of

cache)

Perceptron

Cache
prefetcher [13]

Learning-based
two-level scheme to
reduce prefetching

of unnecessary
requests.

• prefetch
distance

• transition
probability

• address delta
• frequency

Classification
(Accept or Deny) Online learning

Two-level
predictor

(traditional
prefetcher +
perceptron)

Learning
memory access

patterns [14]

Learn prefetcher to
analyze memory

access pattern

• PC
• address delta

Classification
(Delta with the

highest probability)

Offline learning
(Vocabulary

generation during
training for

classification)

(1) Embedding
LSTM

(2) Clustering +
LSTM

Appl. Sci. 2021, 11, 3235 16 of 19

Table 4. Cont.

Summary Input Output Learning Method Prediction

Glider [15]
Learn hardware

cache replacement
policy

• attention-
based LSTM:
PC sequencer

• Glider:
unordered
unique PC
sequence

Classification
(cache-friendly or

not)

Offline learning
(attention-based

LSTM, ISVM)
Online learning

(ISVM)

(1) attention-
based
LSTM

(2) ISVM

4.2.1. Training

Input. Machine learning can use several features to learn patterns in data. Reuse pre-
dictor uses features associated with block access, such as certain bits of memory address, to
correlate with adjacent blocks, rather than using only Program Counter (PC) that generated
the current eviction [12]. Two Level Prefetcher [13] features prefetch distance, number of
occurrences, address delta, etc. to prevent cache pollution. Learned Prefetcher [14] viewed
memory access as a sequential trace and used past PC sequence and delta sequence as
inputs. However, no matter how many features the engineer chooses, the model may fall
short of the expected value. In addition, as more features are required to be implemented
in real hardware, space for storage is required, and time for computation is required, so
the researcher should balance between hardware overhead and accuracy. There are three
feature selection methods to select meaningful data [32]. First, the filter is a method that
selects a subset of variables in pre-processing as independent of the model. Second, the
wrapper looks at the learning model as a black box and scores a subset of variables for
performance measurement. Finally, the embedded method performs a variable selection in
the training process. Also, by analyzing the meaning between the memory access pattern
and natural language, such as Learning access pattern and attention-based LSTM [14,15],
the model input data is analyzed and modeled by NLP (Natural Language Processing).
This means that the use of domain knowledge that can interpret not only natural language
but also programming language with NLP plays an important role in the interpretation of
the ML model to apply ML to the system.

Regression & Classification. A supervised learning model needs to understand
whether the problem is a classification or a regression before selecting. Briefly speaking,
classification is the task of predicting one of the pre-defined class labels, and regression is
the task of outputting a series of values.

Sorting algorithm can be thought of as regression because the algorithm is a task that
predicts a continuous position. Branch prediction can be thought of as a classification
because two classes are pre-defined whether taken or non-taken a branch when a branch
address comes in. Prefetching can be thought of as regression because prefetcher predicts
future memory access. However, since address space has a wide range of features when
considered as a regression, there is a way to divide address space into a classification
problem [14]. They also described a paper designing prefetching as classification problem
that determines whether taken or non-taken prefetching as the auxiliary structure of
prefetching [13].

Online & Offline Learning. The model can learn online or offline. Online learning is
required to gradually learn model as the system changes, and offline learning is to learn the
model only once and apply the model in the system. Online learning is proper for cache
tasks with limited computing resources. This is because the cache needs to be adjusted
for the condition of the hit or miss. Glider [15] selected perceptron that consumes fewer
computing resources for cache optimization. Additional feedback is needed to learn online.
The best way is to keep track of the entry in the long term, but this is not possible because
it has time and space overhead. Perceptron-based Prefetching [13] uses a cache access
interval to tread as an incorrect prediction if an entry in the accept table is not referenced
within a certain reference period and to read as a correct prediction if an entry in deny table

Appl. Sci. 2021, 11, 3235 17 of 19

is not referenced within a certain reference period. Offline learning is properly for database
systems. This is because already stored data need only learn the correlation of the data.
However, re-training is required to insert or delete tasks.

Consequently, online learning generally uses SVM and shallow artificial neural net-
work (ANN), and offline learning shows the diversity of models. This is because online
learning requires only limited data availability and space in order to have low complex-
ity. However, offline learning requires a lot of data and overhead for model accuracy
and generalization.

4.2.2. Prediction

Since machine learning is applied to improve performance, prediction accuracy must
be guaranteed. Some paper claims that replacing the traditional technique requires auxiliary
assistance of traditional technique as well as machine learning. Branch predictor [9] replaces
PHT (Pattern History Table) and maintains a global history register (GHR) to have the
same architecture as the traditional two-lever scheme. In the learned index [7], the learned
B-Tree is supported by traditional B-Tree according to min/max-error in the last mile. The
learned Bloom filter adds an overflow Bloom filter to guarantee zero of false-negative rate
(FNR) in the binary classification task. NN-sort [10] uses a traditional sorting algorithm
such as Quick Sort in Polish Phase to guarantee accuracy. MER-sort [11] uses an insert
sort algorithm to merge Spill array and Output array. Instead of replacing all existing
techniques to provide guarantees similar to the specific functions of existing techniques
and to increase predictive accuracy, the engineer can make a hybrid model, which mixed
the existing techniques and machine learning model.

5. Discussion

New ML schemes. Despite the achievements through the ML-based system design,
a new ML-based system is still needed. The reviewed papers [7,10,11,13] proposed a
combined method of traditional algorithm and machine learning-based approach. This
approach improves performance by addressing the pros and cons between machine learn-
ing and traditional techniques. However, the combination with traditional techniques
has a fundamental limitation of traditional techniques. Recently, there is an approach to
approximating Belady′s MIN without a heuristic combination in cache replacement stud-
ies [33]. In addition, we improved the accuracy of the model by proposing a method that
hierarchically combines multiple models rather than a single model [7,8,10,11]. Another
promising approach that can be seen through this design is hierarchical reinforcement
learning (RL) [34], a method of hierarchically learning the goals by setting multiple goals.
The overhead of a single model can be reduced because the behavior can be coordinated
between layers.

Scalability & New Application. The ML-based system must be applicable to the
existing architecture and new systems and needs to be continuously developed. Some
designs are limited to specific workloads, and generalization can be compromised when
faced with new workloads. For that reason, new ML learning methods can be used. For
example, LSTM shows good performance in a lot of labeled data, but because it requires a
lot of iteration for optimization, it is difficult to optimize if only a few labeled examples are
used for learning [35]. Therefore, the proposed method for model generalization with a
few data is Meta-learning [36], and it is possible to adapt to new tasks or environments not
encountered during fast weight update and training time.

Implementation Improvement. An efficient strategy is needed for an ML-based
system to be actually implemented with acceptable overhead. In terms of the model,
Glider [15] reduced the hardware budget by removing redundant PCs and proposing
an integer value ISVM. Perceptron Reuse Prediction [12] reduces the memory overhead
for the training dataset by applying the concept of a sampler that stores separate cache
metadata. In addition, promising methods that can be proposed are network pruning,
memory sharing method [37], and 16-bit float representation [38], which can reduce the

Appl. Sci. 2021, 11, 3235 18 of 19

number of operations and the model size. DNN acceleration can be used to improve
computational performance versus power consumption. Recently, there is a DNN inference
acceleration method that caches the output of the DNN’s hidden layer and consumes only
the computation required for inference [39].

This paper surveys recent papers applying machine learning to optimize various
computer system. We evaluated the machine learning applied system and analyzed the
machine learning design method in several aspects. Most reviewed papers use a well-
known neural network like perceptron, LSTM. By just using a simple model, the proposed
methods show better performance than traditional techniques. Of course, machine learning
techniques are not a panacea. They face its own problems such as over-fitting, scalability,
calculation overhead, and memory footprint, etc. However, in order to overcome these
problems, a more practical implementation is possible while proposing quantization,
pruning, and inference acceleration methods. Therefore, as the network introduced in
this paper, as well as the more expressive and complex model, is sought, a wide range
of applications will be possible. These optimization opportunities will act as a positive
feedback loop between ML and system design as computer architecture/system advances
for ML acceleration and ML for computer architecture/system optimization are pursed.
In a near future, we believe that innovative machine learning-based system optimization
techniques will appear.

Author Contributions: Conceptualization, H.C.; writing—original draft preparation, H.C.; supervi-
sion and review, S.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. 2019R1G1A1100305).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, D.; Noh, S.H.; Mim, S.L.; Cho, Y. LRFU: A block replacement policy which exploits systems and theory. IEEE Trans. Comput.

2001, 50, 1352–1361.
2. Nesbit, K.J.; Smith, J.E. Data cache prefetching using a global history buffer. In Proceedings of the Tenth Symposium on

High-Performance Computer Architecture, Madrid, Spain, 14–18 February 2004.
3. Musser, D.R. Introspective Sorting and Selection Algorithms. Softw. Pract. Exp. 1997, 27, 983–993. [CrossRef]
4. Fu, J.W.; Patel, J.H.; Janssens, B.L. Stride directed prefetching in scalar processors. ACM SIGMICRO Newsl. 1992, 23, 102–110.

[CrossRef]
5. Kim, J.; Pugsley, S.H.; Gratz, P.V.; Reddy, A.N.; Wilkerson, C.; Chishti, Z. Path confidence based lookahead prefetching. In

Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, 15–19
October 2016.

6. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
7. Kraska, T.; Beutel, A.; Chi, E.H.; Dean, J.; Polyzotis, N. The case for learned index structures. In Proceedings of the International

Conferernce on Management of Data, Houston, TX, USA, 10–15 June 2018; pp. 489–504. [CrossRef]
8. Xiang, W.; Zhang, H.; Cui, R.; Chu, X.; Li, K.; Zhou, W. Pavo: A RNN-Based Learned Inverted Index, Supervised or Unsupervised?

IEEE Access 2019, 7, 293–303. [CrossRef]
9. Jimnez, D.A.; Lin, C. Dynamic branch prediction with perceptrons. In Proceedings of the HPCA Seventh International Symposium

on High-Performance Computer Architecture, Monterrey, Mexico, 19–24 January 2001; pp. 197–206.
10. Zhu, X.; Cheng, T.; Zhang, Q.; Liu, L.; He, J.; Yao, S.; Zhou, W. NN-sort: Neural Network based Data Distribution-aware Sorting.

arXiv 2019, arXiv:1907.08817.
11. Kristo, A.; Vaidya, K.; Çetintemel, U.; Misra, S.; Kraska, T. The case for a learned sorting algorithm. In Proceedings of the 2020

ACM SIGMOD International Conference on Management of Data, Portland, OR, USA, 14–19 June 2020; pp. 1001–1016.
12. Teran, E.; Wang, Z.; Jimnez, D.A. Perceptron learning for reuse prediction. In Proceedings of the 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, 15–19 October 2016; pp. 1–12.
13. Wang, H.; Luo, Z. Data cache prefetching with perceptron learning. arXiv 2017, arXiv:1712.00905.

http://doi.org/10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-
http://doi.org/10.1145/144965.145006
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1145/3183713.3196909
http://doi.org/10.1109/ACCESS.2018.2885350

Appl. Sci. 2021, 11, 3235 19 of 19

14. Hashemi, M.; Swersky, K.; Smith, J.; Ayers, G.; Litz, H.; Chang, J.; Kozyrakis, C.; Ranganathan, P. Learning Memory Access
Patterns. In Proceedings of the 35th International Conference on Machine Learning, in PMLR, Stockholmsmässan, Stockholm
SWEDEN, 15 July 2018; Volume 80, pp. 1919–1928.

15. Shi, Z.; Huang, X.; Jain, A.; Lin, C. Applying deep learning to the cache replacement problem. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, Columbus, OH, USA, 12–16 October 2019; pp. 413–425.

16. Kraska, T.; Alizadeh, M.; Beutel, A.; Chi, E.; Kristo, A.; Leclerc, G.; Madden, S.; Mao, H.; Nathan, V. SageDB: A learned database
system. In Proceedings of the 9th Biennial Conference on Innovative Data Systems Research, CIDR ’19, Asilomar, CA, USA, 13–16
January 2019.

17. Wang, J.; Kumar, S.; Chang, S.-F. Semi-supervised hashing for largescale search. IEEE Trans. Pattern Anal. Mach. Intel. 2012, 34,
2396–2406.

18. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation Functions: Comparison of trends in Practice and Research for
Deep Learning. arXiv 2018, arXiv:181103378.

19. Yeh, T.-Y.; Patt, Y. Two-level adaptive branch prediction. In Proceedings of the 24th ACM/IEEE Int’l Symposium on Microarchi-
tecture, Albuquerque, NM, USA, 18–20 September 1991; pp. 51–61.

20. McFarling, S. Combining Branch Predictors; Technical Report TN-36; Digital Western Research Laboratory: Palo Alto, CA, USA,
June 1993.

21. Lee, C.-C.; Chen, C.C.; Mudge, T.N. The bi-mode branch predictor. In Proceedings of the 30th Annual International Symposium
on Microarchitecture, Research Triangle Park, NC, USA, 3 December 1997.

22. C++ Resources Network. Available online: http://www.cplusplus.com/ (accessed on 3 April 2021).
23. Redis. Redis is an Open Source (BSD Licensed), In-Memory Data Structure Store, Used as a Database, Cache and Message Broker.

Available online: https://redis.io/ (accessed on 10 May 2009).
24. Andersson, A.; Hagerup, T.; Nilsson, S.; Raman, R. Sorting in linear time? In Proceedings of the 27th Annual ACM Symposium

on the Theory of Computing, Las Vegas, NV, USA, 29 May–1 June 1995; pp. 427–436.
25. Manegold, S.; Boncz, P.A.; Kersten, M.L. Optimizing database architecture for the new bottleneck: Memory access. VLDB J. 2000,

9, 231–246. [CrossRef]
26. Tarjan, D.; Skadron, K. Merging path and gshare indexing in perceptron branch prediction. ACM Trans. Archit. Code Optim. 2005,

2, 280–300. [CrossRef]
27. Khan, S.M.; Tian, Y.; Jim´enez, D.A. Sampling dead block prediction for last-level caches. In Proceedings of the 2010 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, Atlanta, GA, USA, 4–8 December 2010; pp. 175–186.
28. Wu, C.-J.; Jaleel, A.; Hasenplaugh, W.; Martonosi, M.; Steely, J.S.C.; Emer, J. SHiP: Signature-based hit predictor for high

performance caching. In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-44,
New York, NY, USA, 3–7 December 2011; pp. 430–441.

29. Joseph, D.; Grunwald, D. Prefetching using markov predictors. ACM SIGARCH Comput. Archit. News 1997, 25, 252–263.
[CrossRef]

30. Wulf, W.; McKee, S. Hitting the wall: Implications of the obvious. ACM SIGARCH Comput. Archit. News 1995, 23, 20–24.
[CrossRef]

31. Jain, A.; Lin, C. Back to the future: Leveraging Belady’s algorithm for improved cache replacement. In Proceedings of the 43rd
Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016; pp. 78–89.

32. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
33. Song, Z.; Berger, D.S.; Li, K.; Lloyd, W. Learning relaxed belady for content distribution network caching. In Proceedings of

the 17th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 20), Santa Clara, CA, USA, 25–27
February 2020; pp. 529–544.

34. Kulkarni, T.D.; Narasimhan, K.R.; Saeedi, A.; Tenenbaum, J.B. Hierarchical deep reinforcement learning: Integrating temporal
abstraction and intrinsic motivation. arXiv 2016, arXiv:1604.06057.

35. Ravi, S.; Larochelle, H. Optimization as a model for few-shot learning. In Proceedings of the 5th International Conference on
Learning Representations (ICLR), Toulon, France, 24–26 April 2017; pp. 1–11.

36. Hospedales, T.; Antoniou, A.; Micaelli, p.; Storkey, A. Meta-learning in neural networks: A survey. arXiv 2020, arXiv:2004.05439.
37. Chen, T.; Li, M.; Li, Y.; Lin, M.; Wang, N.; Wang, M.; Xiao, T.; Xu, B.; Zhang, C.; Zhang, Z. Mxnet: A flexible and efficient machine

learning library for heterogeneous distributed systems. arXiv 2015, arXiv:1512.01274.
38. Courbariaux, M.; Bengio, Y.; David, J.-P. Low precision arithmetic for deep learning. arXiv 2014, arXiv:1412.7024.
39. Balasubramanian, A.; Kumar, A.; Liu, Y.; Cao, H.; Venkataraman, S.; Akella, A. Accelerating Deep Learning Inference via Learned

Caches. arXiv 2021, arXiv:2101.07344.

http://www.cplusplus.com/
https://redis.io/
http://doi.org/10.1007/s007780000031
http://doi.org/10.1145/1089008.1089011
http://doi.org/10.1145/384286.264207
http://doi.org/10.1145/216585.216588

	Introduction
	Background
	Review of Machine Learning-Based System Performance Optimization Research
	Machine Learning Based Index Structures
	Learned B-Tree
	Learned Hash-Map
	Learned Bloom Filter
	Learned Inverted Index

	Perceptron Based Branch Predictor
	Machine Learning Based Sort
	NN-Sort (Neural Network Sort)
	MER-Sort (Model-Enhanced Radix Sort)

	Machine Learning Based Cache Management
	Reuse Prediction
	Perceptron Based Prefetcher
	LSTM Based Prefetcher
	Cache Replacement Policy

	Evaluation and Design Consideration
	Evaluation
	Data Distribution
	Machine Learning Model and Traditional Model
	Perceptron and LSTM

	Design Considerations
	Training
	Prediction

	Discussion
	References

