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Artificial intelligence (AI) is defined as the ability of machines to perform tasks that are 
usually associated with intelligent beings. Argument and debate are fundamental 
capabilities of human intelligence, essential for a wide range of human activities, and 
common to all human societies. The development of computational argumentation 
technologies is therefore an important emerging discipline in AI research1. Here we 
present Project Debater, an autonomous debating system that can engage in a 
competitive debate with humans. We provide a complete description of the system’s 
architecture, a thorough and systematic evaluation of its operation across a wide 
range of debate topics, and a detailed account of the system’s performance in its 
public debut against three expert human debaters. We also highlight the fundamental 
differences between debating with humans as opposed to challenging humans in 
game competitions, the latter being the focus of classical ‘grand challenges’ pursued 
by the AI research community over the past few decades. We suggest that such 
challenges lie in the ‘comfort zone’ of AI, whereas debating with humans lies in a 
different territory, in which humans still prevail, and for which novel paradigms are 
required to make substantial progress.

Recent years have seen substantial progress in developing language 
models that adequately perform language understanding tasks2–4. 
Such tasks lie on a continuum of complexity. For simpler tasks, focused 
on specific linguistic phenomena such as predicting the sentiment 
of a given sentence5, state-of-the-art systems often present excel-
lent results6. On more complex tasks, such as automatic translation7, 
automatic summarization8 and dialogue systems9, automatic systems 
still fall short of human performance. The task of holding a debate is 
positioned further along this complexity continuum. Debating rep-
resents a primary cognitive activity of the human mind, requiring the 
simultaneous application of a wide arsenal of language understanding 
and language generation capabilities, many of which have only been 
partially studied from a computational perspective (as separate tasks), 
and certainly not in a holistic manner1,10. Therefore, an autonomous 
debating system seems to lie beyond the reach of previous language 
research endeavours. Here, we describe such a system in full, and report 
results suggesting that this system can perform decently in a debate 
with a human expert debater.

The development of this system, referred to as Project Debater  
(https://www.research.ibm.com/artificial-intelligence/project-debater/), 
started in 2012, aiming to eventually demonstrate its capabilities in 
a live debate with a champion human debater. We defined a debate 
format which is a simplified version of the parliamentary debate style 

commonly used in academic competitive debates. Once the resolution— 
called the ‘debate motion’—is announced, each side has 15 min of prepa-
ration time. Next, both sides alternate, delivering an opening speech 
of up to 4 min, a second speech of up to 4 min and closing statements 
of up to 2 min (Fig. 1). Speeches are typically composed of arguments 
supporting the speaker’s position as well as arguments rebutting those 
raised by the other side. The audience votes on the motion before 
and after the debate, and the contestant who was able to pull more 
votes to their side is declared the winner. The official debut of Project 
Debater took place on 11 February 2019 (https://www.youtube.com/
watch?v=m3u-1yttrVw), debating with H. Natarajan (a widely recog-
nized debate champion, who was a grand finalist at the 2016 World 
Universities Debating Championships and winner of the European 
Universities Debating Championship in 2012) on the motion of whether 
preschool should be subsidized. The focus of this paper is to describe 
the system and its results across a wide range of topics, and not this 
specific event. Nonetheless, it is important to note that this motion 
was never included in the training data used for the development of 
the system. A full transcript of this debate, including information that 
elucidates the system’s operation throughout, and the results of the 
audience vote, is provided in Supplementary Information section 11. 
Transcripts are also provided there for two additional debates held in 
June 2018 in front of a smaller audience.
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System architecture
Given the variety of tasks required to engage in a debate, it seems 
implausible to envision a monolith solution in the form of an end-to 
end system, such as a single neural model. Instead, our approach was 
to break the problem into modular tangible tasks pursued in parallel. 
Interestingly, at the time, some of these tasks had received relatively lit-
tle attention from the relevant scientific communities. For instance, the 
tasks of context-dependent claim detection11 and context-dependent 
evidence detection12 were proposed and formulated in the context 
of our project, and have since become an active area of research in 
the computational argumentation community. In the following we 
concisely describe all major components of the system and how they 
interact with one another (Fig. 2). In Supplementary Information sec-
tion 5 we provide additional details.

Project Debater is composed of four main modules: argument 
mining, an argument knowledge base (AKB), argument rebuttal and 
debate construction. The first two modules are the source of content 
for the debate speeches. Argument mining pinpoints arguments and 
counter-arguments that are relevant for the motion, within a large text 
corpus. The AKB contains arguments, counter-arguments and other 
texts that are relevant to general classes of debates rather than to a 
single motion; once given a motion, it finds the most relevant of those 
to use in the debate. The argument rebuttal module matches potential 
opposition claims coming from the first two modules against the actual 
speech of the opponent and generates potential responses based on 
the matching results. Finally, the debate construction module selects 
which of the texts suggested by the other modules will make it to the 
debate, and arranges them into a coherent narrative.

Argument mining
Argument mining is done in two stages. In an offline stage, a large 
corpus of some 400 million newspaper articles (from the LexisNexis 
2011-2018 corpus, https://www.lexisnexis.com/en-us/home.page) is 
processed, breaking the articles into sentences, and indexing these 
sentences by the words therein, the Wikipedia concepts they refer 
to13, the entities they mention14,15, and pre-defined lexicon words16. In 
the online stage, once given a motion the system relies on this index 
to perform corpus-wide sentence-level argument mining17, retrieving 
claims and evidence related to the motion (here, a ‘claim’ is a concise 
statement that has a clear stance towards the motion, and ‘evidence’ 
is a single sentence that clearly supports or contests the motion, yet 
is not merely a belief or a claim, but rather provides an indication of 
whether a relevant belief or a claim is true; see Supplementary Informa-
tion section 8 for more details).

First, sentences with a high propensity for containing such argu-
ments are retrieved using tailored queries. Next, neural models are 
used to rank these sentences according to the probability that they 
represent relevant arguments16–20. Finally, a combination of neural 

and knowledge-based methods is used to classify the stance of each 
argument towards the motion21,22. At this stage, the system also uses 
a topic-expansion component23 to better encompass the scope of rel-
evant arguments. That is, if the topic-expansion component success-
fully identifies additional concepts that are relevant to the debate, it 
requests the argument mining module to search for arguments men-
tioning these concepts as well. For example, in a motion debating the 
two-party system in the USA, the topic-expansion component may 
suggest searching for arguments regarding a multi-party system and 
integrating them into the speeches, with the correct stance towards the 
motion. The argument mining module also searches for arguments that 
support the other side, aiming to prepare a set of claims the opponent 
may use and evidence that may serve as responses. This set is later used 
by the rebuttal module.

The AKB
The AKB aims to formally capture the commonalities between dif-
ferent debates. For example, when debating whether to ban certain 
substances or activities, the system can exploit more general argu-
ments relating to the emergence of a black market. Texts in the AKB 
contain principled arguments, counter-arguments, and commonplace 
examples that may be relevant for a wide range of topics. These texts 
are authored manually—or extracted automatically and then manually 
edited—and are grouped together into thematic classes. Given a new 
motion, the system uses a feature-based classifier to determine which 
of the classes are relevant to this motion24. All authored texts associated 
with a matched class can then potentially be used in a speech, and the 
system selects those that it predicts to be most relevant based on their 
semantic relatedness to the motion25. These texts include not only argu-
ments but also inspiring quotes, colourful analogies, an appropriate 
framing for the debate, and more.

The AKB also contributes to the rebuttal module. Principled argu-
ments are mapped to counter-arguments that rebut them. Hence, if the 
system determines that such a principled claim was alluded to by the 
opponent, it can respond using the corresponding counter-argument. 
In addition, the AKB contains several key sentiment terms that are com-
mon to debates—for example, the word ‘harmful’—that are mapped to 
pattern-based authored responses, which can be used to rebut argu-
ments that focus on such a term.

Argument rebuttal
For argument rebuttal, the system first compiles a list of claims that 
might be mentioned by the opponent, termed ‘leads’, using (1) the 
argument mining module; (2) the AKB module; and (3) arguments 
extracted from iDebate (https://idebate.org/debatabase) in case the 
debate topic, or a close variant, is covered there. Next, IBM’s Watson 
is used to convert the speech of the human opponent into text using 
its automatic speech-to-text service for custom language and custom 
acoustic models (https://www.ibm.com/cloud/watson-speech-to-text). 
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A neural model splits the text obtained into sentences and adds punc-
tuation26. Next, dedicated components aim to determine which of the 
pre-identified claim ‘leads’ were indeed stated by the opponent27–29, and 
propose a rebuttal. AKB claims are rebutted with arguments listed in 
the AKB as rebutting them. Claims coming from argument mining are 
rebutted with mined evidence texts that mention similar concepts and 
are predicted to oppose the opponent’s stance. For the few motions 
that match iDebate data, claims are rebutted with text based on the 
response listed in this resource. In addition to this claim-based rebuttal, 
key sentiment terms from the AKB are identified and serve as a cue for 
a simple form of rebuttal.

Debate construction
Finally, the Debate Construction module is a rule-based system that 
integrates cluster analysis. After removing arguments that are pre-
dicted to be redundant, the remaining arguments are clustered30 
according to their semantic similarity25,31. For each cluster, a theme 
is identified, which is a Wikipedia concept (such as ‘poverty’) that is 
statistically enriched in the cluster’s arguments, and is used to intro-
duce the respective paragraph. The system then selects the content 
that will be included in the debate: a salient subset of clusters for the 
speeches and the arguments per cluster, aiming to keep a diverse set of 
high-quality arguments20 that reflect the cluster’s theme. Next, various 
text-normalization and rephrasing techniques are applied to enhance 
fluency, and finally each speech is generated paragraph-by-paragraph 
using a pre-defined template. For example, the opening speech starts 
with the system greeting the opponent (this greeting was scripted for 
live events and presented to the audience as such), framing the motion, 
presenting general arguments derived from the AKB module, moving 
on to a brief introduction of the main points, followed by more specific 
arguments derived from the argument mining module and arranged 

into paragraphs via the clustering process. To vocalize the generated 
speech, the system uses an expressive text-to-speech service that was 
developed to suit argumentative content32,33.

Evaluation and results
Evaluating the performance of a debate system is challenging because 
there is no single agreed-upon metric with which to determine a debate 
winner. In public debates, voting by the audience before and after the 
debate can determine the ‘winning’ side. But this approach has inher-
ent limitations. First, if the pre-debate vote is highly unbalanced, the 
burden on the leading side is correspondingly higher (for example, 
in the pre-debate vote during the February 2019 debut, 79% of audi-
ence were in favour of subsidizing preschool, whereas only 13% were 
against it, so Project Debater had a potential of 21% of the audience to 
convince, whereas H. Natarajan had a potential of 87%). Further, vot-
ing naturally involves personal opinions, and is likely to be affected 
by various factors that are difficult to quantify and control. Moreover, 
producing a live debate with an impartial large audience is compli-
cated, and producing many such debates is even more so. Nonethe-
less, a reliable estimation is essential in order to evaluate the overall 
performance of the system, to compare it to various baselines and to 
track its progress over time.

Comparison to baseline systems
We are unaware of any existing automatic method beyond Project 
Debater that can participate in a full debate. Hence, we compared Pro-
ject Debater to other methods on the more limited task of generating 
an opening speech, which is clearly the first step any debating system 
should be capable of. We selected 78 motions to estimate the perfor-
mance when a new, unknown motion is presented (Supplementary 
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Information section 4), and considered nine opening speeches per 
motion, as follows. There were three speeches generated in full by 
(1) Project Debater, (2) a multi-document summarization system34 
(denoted ‘Summit’), and (3) a fine-tuned GPT-2 language model4 
(denoted ‘Speech-GPT2’). There were four speeches generated by 
concatenating arguments that were (1) generated via GPT-2 (denoted 
‘Arg-GPT2’), (2) extracted via ArgumenText35 (denoted ‘Arg-Search’), 
(3) authored by humans36 (available for only 23 motions, and denoted 
‘Arg-Human1’), and (4) retrieved by Project Debater’s argument mining 
module, which were further manually curated by humans to ensure 
that they represent valid arguments in the correct stance17 (denoted 
‘Arg-Human2’). We note that the latter two speches rely on human 
annotation, providing challenging baselines. Finally, we included two 
opening speeches delivered by human expert debaters, reflecting the 
full human performance on this task (available for only 77 motions, 
and denoted ‘Human Expert’). The nine speeches were presented in a 
random order, with no indication of the speech origin, to crowd anno-
tators that had exhibited good performance on previous annotation 
tasks. We used a scenario-based approach, asking annotators to imagine 
themselves as part of a debate audience and to indicate to what extent 
they agree with several statements about the speech. Each speech was 
reviewed by 15 annotators. Figure 3a depicts the degree of agreement 
with the statement ‘This speech is a good opening speech for support-
ing the topic’, where 5 denotes strong agreement. The Project Debater 
results clearly outperform all baselines, and are rather close to the 
human expert scores.

Evaluation of the final system
For evaluation beyond the opening speech we used the same set of  
78 motions, and again asked the selected group of crowd annotators to 
imagine themselves as part of a debate audience, but in this case they 
read three speeches, without knowing their origin. The three speeches 
were an opening speech in support of the motion, denoted S1; an open-
ing speech contesting the motion, recorded by a human expert debater, 

denoted S2 (given that this speech is solely used as an anchor for the 
system’s response, it was recorded as a response to an opening speech 
supporting the motion recorded by a different human debater); and 
finally another speech supporting the motion, denoted S3, which in 
principle should include a rebuttal to S2 as well as further arguments 
supporting the motion.

Each set of three speeches S1−S3 was reviewed by 20 annotators, 
asked to indicate to what extent they agree with the statement ‘The 
first speaker is exemplifying a decent performance in this debate’, 
focusing only on S1 and S3. Since we are unaware of any baseline method 
that can participate in a full debate, in Fig. 3b we depict the results of 
Project Debater versus two simple controls, designed mainly to verify 
the validity of the labelling. In all but three motions the average score 
of Project Debater was above the neutral 3 and for 50 out of 78 motions 
the average score was ≥4, suggesting that in at least 64% of the motions, 
the crowd annotators perceived Project Debater as demonstrating 
‘decent performance’ in the debate.

It is worth noting the inherent challenges in evaluating the system, 
which are not completely overcome—the evaluation is only partial 
because annotators consider only S1 and S3, and the comparison is 
with simple controls rather than the performance of an experienced 
debater participating in a full debate. Indeed, even relying on annota-
tors who read the text, rather than on an audience during a live debate, 
is a compromise.

The above two evaluations are of the system at the end of its devel-
opment. However, working towards a ‘grand challenge’ event, it was 
important to track the progress of the system over time. To this end 
we performed a periodic evaluation analogous to the one described 
above, showing a clear improvement over the years. Finally, using the 
same set of motions for evaluation over a long time period raises the 
concern of gradually over-fitting to this set. To address this concern 
we performed an additional evaluation over an independent set of  
36 motions, showing that the magnitude of over-fitting in our results—if 
present—is small (Supplementary Information section 7.4).

4.4

4.2

4.0

3.8

3.6

3.4

3.2

3.0

2.8

A
ve

ra
ge

 s
co

re

A
ve

ra
ge

 s
co

re

4.4

4.0

3.6

3.2

2.8

2.4

2.0

a b

Sum
m

it

Arg
-S

ea
rc

h

Spee
ch

-G
PT2

Arg
-G

PT2

Arg
-H

um
an

2

Arg
-H

um
an

1

Pro
jec

t D
eb

at
er

Hum
an

 ex
per

t

M
ixe

d d
eb

at
er

 co
nt

ro
l

Bas
eli

ne
s c

on
tro

l

Pro
jec

t D
eb

at
er

Fig. 3 | Evaluation of Project Debater. a, Comparison to baseline systems. 
Bars denote the average score, where 5 denotes ‘Strongly Agree’, and 1 ‘Strongly 
Disagree’ with the statement ‘This speech is a good opening speech for 
supporting the topic’. Striped bars indicate systems in which the speeches were 
generated by a human or relied on manually curated arguments. b, Evaluation 
of the final system. ‘Project Debater’ depicts the results when S1 and S3 are 
generated by Project Debater. In ‘Mixed Debater Control’, the third speech was 
an S3 generated by Project Debater but for a different motion. In ‘Baselines 
Control’, both S1 and S3 were opening speeches selected from one of the fully 

automatic baseline systems. Bars denote the average score, where 5 denotes 
‘Strongly Agree’, and 1 ‘Strongly Disagree’ with the statement ‘The first speaker 
is exemplifying a decent performance in this debate’. In both panels, error bars 
denote the 95% confidence interval of the mean based on bootstrapping. The 
detailed labelling results are available in the Supplementary Information. 
Project Debater scores are significantly higher than the scores of all baselines 
and controls, and significantly lower than the scores of the Human Experts 
(P < 0.05 for both). For details on the statistical analysis see Supplementary 
Information section 7.



Nature | Vol 591 | 18 March 2021 | 383

In-depth analysis
To gain more insights, we further analysed the results over these  
36 motions. The errors are roughly divided into local errors, affect-
ing a specific content unit in a speech, and more extensive errors that 
propagate through multiple elements and affect the speech as a whole. 
The most common types of local errors were mistakes in classifying 
argument stance; elements that appear to be off-topic and do not fit 
into the overall speech narrative; and elements that are incoherent with-
out additional context. In an extensive error, the same type of mistake 
recurs throughout a speech. For example, in one motion the identi-
fied AKB classes were not a good match, resulting in a large amount of 
AKB content in the speeches that was entirely off-topic. Other cases of 
extensive errors were of a more complex nature, illustrating the need 
for a nuanced and holistic understanding of context. For instance, for 
the motion ‘We should increase the use of artificial insemination’, the 
system output included arguments pertaining to artificial insemina-
tion in livestock, which may sound awkward in this debate; in another 
motion, ‘We should not subsidize athletes’, the system suggested mul-
tiple arguments about negative health outcomes that afflict athletes, 
while only partially addressing the core issue of whether subsidizing 
athletes is a desired policy approach.

We further divided these motions into three groups based on the 
evaluation scores given by in-house annotators—‘high’ (12 motions 
with a score above 3.5); ‘medium’ (11 motions between 3 and 3.5); and 
‘low’ (11 motions below 3). Notably, extensive errors as described above 
occurred only in the ‘low’ group. In contrast, local errors appear to some 
extent in almost all of the evaluated motions, including those in the 
‘high’ group. Otherwise, the most prominent difference between the 
groups was the amount of content in the three speeches. In terms of 
total word count, ‘high’, ‘medium’ and ‘low’ motions had an average of 
1,496, 1,155 and 793 words, respectively. This hallmark of ‘low’ motions 
reflects the challenge of constructing a system that relies on the output 
of many components and is meant to generate a precision-oriented 
output over a wide variety of topics. Specifically, for the system to 
find relevant content, the motion’s topic must be discussed in the 
corpus; and for a specific content unit to be included in the final out-
put, it must pass multiple confidence thresholds, which are set to be 
strict, to ensure high precision. This, in turn, may result in much of 
the relevant content being filtered out. Correspondingly, generating 
several minutes of spoken language content that is relevant and to the 
point is a formidable task. Focusing on those motions that do have a 
reasonable amount of content, another salient property is the quality 
of the narrative framing, provided by AKB elements at the opening and 
closing of speeches. ‘High’ motions typically have framing elements 

that accurately capture the essence of a debate (for example, framing 
about the importance of privacy in ‘We should end the use of mass 
surveillance’), whereas ‘medium’ ones tend to have a framing that is 
acceptable but less on point.

Finally, we analyse the word frequency of five content types, which 
cover the entire system output: mined arguments; arguments coming 
from the AKB; rebuttal; rebuttal leads; and conventional canned text. 
Figure 4a depicts that across all types we have less content for ‘low’ 
motions compared to ‘high’ ones, in line with our analysis above. The 
largest gap is in the mined content, further suggesting that high-quality 
output is associated with an abundance of relevant arguments in the 
examined corpus, pinpointed by the argument mining module. In addi-
tion, we examined the relative distribution of content types across 
all speeches in all 78 motions in our original evaluation set (Fig. 4b).  
Evidently, less than 18% of the content is conventional canned text, while 
the remaining content is contributed by the more advanced underlying 
system components.

Discussion
Research in AI and in natural language processing is often focused on 
so called ‘narrow AI’, consisting of narrowly defined tasks. The prefer-
ence for such tasks has several reasons. They require less resources to 
pursue; typically have clear evaluation metrics; and are amenable to 
end-to-end solutions such as those stemming from the rapid progress 
in the study of deep learning techniques37. Conversely, ‘composite AI’ 
tasks—namely, tasks associated with broader human cognitive activi-
ties, which require the simultaneous application of multiple skills—are 
less frequently tackled by the AI community. Here, we break down 
such a composite task into a collection of tangible narrow tasks and 
develop corresponding solutions for each. Our results demonstrate 
that a system that properly orchestrates such an arsenal of components 
can meaningfully engage in a complex human activity, one which we 
presume is not readily amenable to a single end-to-end solution.

Since the 1950s AI has advanced in leaps and bounds, thanks, in part, 
to the ‘grand challenges’, in which AI technologies performed tasks of 
growing complexity. Often, this was in the context of competing against 
humans in games which were thought to require intuitive or analytic 
skills that are particular to humans. Examples range from chequers38, 
backgammon39, and chess40, to Watson winning in Jeopardy!41 and Alpha 
Zero winning at Go and shogi42.

We argue that all these games lie within the ‘comfort zone’ of AI, 
whereas many real-world problems are inherently more ambiguous and 
fundamentally different, in several ways. First, in games there is a clear 
definition of a winner, facilitating the use of reinforcement learning 
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techniques39,42. Second, individual game moves are clearly defined, 
and the value of such moves can often be quantified objectively (for 
example, see ref. 43), enabling the use of game-solving techniques. 
Third, while playing a game an AI system may come up with any tactic 
to ensure winning, even if the associated moves could not be easily 
interpreted by humans. Finally, for many AI grand challenges, such as 
Watson41 and Alpha Star44, massive amounts of relevant structured data 
(for example, in the form of complete games played by humans) was 
available and imperative for the development of the system.

These four characteristics do not hold in competitive debate, which 
requires an advanced form of using human language, one with much 
room for subjectivity and interpretation. Correspondingly, often there 
is no clear winner. Moreover, even if we had a computationally effi-
cient ‘oracle’ to determine the winner of a debate, the sheer complexity 
of a debate—such as the amount of information required to encode 
the ‘board state’ or to enumerate all possible ‘moves’—prohibits the 
use of contemporary game-solving techniques. In addition, it seems 
implausible to win a debate using a strategy that humans can fail to 
follow, especially if it is the human audience which determines the 
winner. And finally, structured debate data are not available at the 
scale required for training an AI system. Thus, the challenge taken by 
Project Debater seems to reside outside the AI comfort zone, in a ter-
ritory where humans still prevail, and where many questions are yet 
to be answered.
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