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Introduction
Chris Maser says in his book [1] that “What we are doing 

to the forests of the world is but a mirror reflection of what 
we are doing to ourselves and to one another”.

Forest, a precious resource provided by nature, is the 
house for numerous organisms; we tend to take forests for 
granted, underestimating how irreplaceable they are for hu-
mankind. Our endurance is linked with Forest. Hydrologic 
cycle, soil conversation, prevention of climate change, and 
preservation of biodiversity are a few examples of many en-
vironmental benefits that are attained through Forests [2]. 
Regardless of all the benefits, we gain we still are permitting 
them to vanish. Deforestation is caused due to anthropogenic 
activities or natural disturbances and affects nature and cli-
mate [3].

Man is clearing away the forest area for agriculture, in-
dustrial development, or mineral/Oil extraction, and in cer-
tain regions, degradation of the forest is practiced to devel-
op modern cities [4]. Not all deforestation is intentional, and 
forest fires are one of the most reoccurring natural disasters 
worldwide. Each year, fires burn millions of hectares of for-
est. Fires are a part of nature and have enormous side effects 
on economics, ecological and social culture globally and re-

gionally. Fires destroy biodiversity and endanger the ecosys-
tem killing the large mass of inhabitants. Moreover, forest 
fires lead to the loss of many timbers growing for hundreds of 
years, which leads to significant material losses to the coun-
tries that contain it due to the importance of wood in making 
many raw materials. Valuable Tree species decline after a fire, 
creating an enormous down imprint on the nation’s economy 
[5,6]. Many scientists have studied the causes of these forest 
fires to reduce their economic and environmental impacts. 
Furthermore, they are trying to work out how to predict fu-
ture forest fires to minimize the damages that are caused by 
them. Scientists and researchers have been in a debate on 
various causes of forest or wildfire fires. Predicting the source 
of wildfires could lead to many considerable benefits for hu-
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est or wildfire as follows,

• Prediction of Fire Occurrence (time and location)

• Detection of already started fire event

• Prediction of Spread of Wildfire (burned area in future)

• Detection of Burned Area due to fire

The accurate prediction of the occurrence of forest fires 
is a challenging task [17]. Prediction is not only knowing the 
exact time of the start of a forest fire but also the location 
where this fire occurs. Hence it is a combination of tempo-
ral and spatial prediction problems, making it more complex 
and challenging for the researchers. Machine learning algo-
rithms are applied to forecast events in many real-life applica-
tions which are highly stochastic in nature, naming a few like 
stock market crisis forecasting [18-22] stock market invest-
ment strategies [23-25], weather extreme events forecasting 
[26-28], predictive outage estimation [29-31], forecasting 
health-related issues [32-34].

Machine learning algorithms are also used extensively 
in the image processing/computer vision based applications 
[35-37], thermal infrared image based applications [38-40], 
satellite imagery [41-43], sensor signal processing [44-46], big 
data processing [47-49] etc. There are other numerous appli-
cation areas of machine learning algorithms including energy 
sector [50,51] and activity monitoring using wearable sen-
sors [52,53]. Details of different machine leaning algorithms 
and how they are applied to different types of problems can 
be found some good textbooks like [54-56]. Forest fire pre-
diction and detection require spatial placement of sensors. 
Hence optimization of placement locations of the sensor 
nodes, whether on ground or airborne, is also very important 
[44,57,58]. Overall framework optimization is also required to 
reduce the operational and deployment costs without com-
promising the quality of operations. In the forest fire-related 
literature, researchers have access to lots of data coming from 
different resources. A set of features is selected according to 
the relative importance of the features considering their sta-
tistical significance. Machine learning algorithms can be help-
ful in a better selection of important features [59-61]. Select-
ing only relevant and essential features may provide optimal 
performance with less computational and operational costs. 
Machine Learning algorithms can further be applied to deci-
sion making and decision support systems for forest fire pre-

man health, human life, the economy, and the environment. 
If we can predict the occurrence of fires before their occur-
rence will help emergency teams intervene and prevent them 
from happening or reduce its bad effects. Also, predicting the 
forest fire may help to protect the life of humans and oth-
er inhabitants, protecting human health from the damage 
caused by smoke from forest fires and reducing accidents in 
vehicles and aircraft moving nearby due to smoke generated 
by huge fires [7]. Table 1 gives a list of some of the deadliest 
forest fires in history [8].

Recently Australia faced disastrous bushfires causing se-
vere damage. Over three months, more than seventeen mil-
lion hectares of forest were burnt, two dozen lives were lost, 
more than two thousand homes were destroyed, and around 
a billion animals were killed. In addition to the suffering, loss 
of life, and property damage, the whole nation experienced 
massive disruption to infrastructure and the economy, and 
unprecedented air pollution [9]. A list of annual wildfires from 
the National Interagency Coordination Center, USA can also 
be found at [10]. Information about Large wildfires in Europe 
can be found in [11]. Problems related to the worldwide fires 
are discussed in [12]. From the above-mentioned few facts 
and figures, we can comprehend the deadliest impacts of For-
est fires. The scientific community is investing its efforts to 
assemble a system to prevent forest fires, and the primary 
objective is to predict and explain the cause of forest fires. 
Numerous researchers had contributed to this field. Several 
computational tools or simulators have been developed to 
aid in predicting the Fire propagation at the right time and 
preventing it. In case, Forest Fire erupts, then how to discov-
er the reason, the rate and the direction of fire spread and 
the flame intensity, etc. The early prediction will reduce the 
death toll and help Fire Fighters to control the spread of fire. 
Achieving correct prediction is vital, and for that, we have to 
analyze as much information as possible [13]. The mean an-
nual maximum temperature is increasing at the rate of 0.184 
centigrade per decade from 1979 to 2013 across the vegetat-
ed land surface [14]. Hence, the length of fire seasons is in-
creasing globally and getting severe in fire intensity in differ-
ent fire-prone areas of Earth [15,16] resulting in an increasing 
number of adult trees mortality.

Scope of ML Algorithms in Forest Fire Man-
agement Frame-Works

There are four important areas of research related to for-

Table 1: Some of the biggest wildlife fires [8].

Name Year Size Area Casualties

Miramichi Fire 1825 3 million acres New Brunswick, Canada 160 to 300

Peshtigo Fire 1871 1,200,000 acres Wisconsin, United States 1,200 to 2,500

Black Friday Bushfires 1939 5 million acres Victoria, Australia killed 71

Greek Forest Fires 2007 670,000 acres Greece 84

Black Dragon Fire 1987 18 million acres China 191

Cloquet Fire 1918 250,000 acres Minnesota, United States 453

Great Hinckley Fire 1894 350,000 acres Minnesota, United States 418+

Indonesian forest fires 1997 8 million hecta acres Indonesia 240
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Forests recorded the fire data for ten years from 2008 to 2018 
in the region. Features such as temperature, relative humidi-
ty, month, distance from leveling, wind speed, distance from 
agricultural land, amount of burned area, tree types, and dis-
tance from the road are recorded. A Bayesian network model 
is trained on the data to predict possible causes of the forest 
fire. The Bayesian network produced a high AUC of 0.9, 0.89, 
0.89, 0.82 for hunting, picnic, stubble burning, and shepherd 
fire, respectively.

Simulation of forest fires to study fire behavior is very 
useful in predicting the rate of fire spread, fire size, and the 
number of trees lost in the fire. BehavePlus V6 is currently 
used by the US and Canada to study fire behavior [69]. It is 
one of the most widely used forest fire modeling systems that 
predict wildfire behavior and prescribe fire planning. Other 
similar systems also exist [70,71]. BehavePlus provides much 
useful information, including the rate of fire spread and spot-
ting distance, fire effect, and fire environment, and includes 
over 40 fire models. Rapp modeling system (http://redapp.
org) is developed in Canada with the support of the Canadian 
Interagency Forest Fire Centre (CIFFC). Fire is a fire behavior 
prediction simulator that calculates fire effect on stand char-
acteristics [72]. Stacy A Drury [73] compared predicted fire 
behaviors from four models (BehavePlus, RedAPP, CanFIRE, 
and Crown Fire irritation and Spread System) with the ob-
served fire behavior on the Alaskan black spruce forest. He 
studied the rate of fire movement, predicted flame length, 
energy, and ecological impact, and concluded that Canadian 
models, including RedAPP and CanFIRE provide more accu-
rate predictions than BehavePlus. Similarly, many tools exist 
for fire, and smoke models, which are crucial in decision mak-
ing and planning to tackle the forest or a wild-land fire [74-
77]. A lot of research has been done in the last two decades, 
especially after the increase of computation power during the 
last few years [77-80]. Satellite active fire data such as Visible 
Infrared Imager Radiometer Suite (VIIRS) [81], moderate-res-
olution imaging spectro-radiometer (MODIS) [82] etc., can be 

vention and fighting [62,63]. Machine learning algorithms are 
already being used in various types of decision support and 
recommender systems [64,65]. Machine learning algorithms 
can also help find strategies to place the resources (human 
resources, types of equipment, vehicles, etc.) optimally so 
that fire hazards to the forest could be minimized [66,67].

Figure 1 explains the process of using machine learning al-
gorithms in fire forest management. Useful and relevant data 
can be collected from different resources, including satellite 
imaging, aerial imaging and remote sensing, weather data, 
and so on. Different features can be calculated on this data, 
relevant features may be selected, and a classifier can be 
trained on this feature set. A classifier can also be optimized 
to produce the best classification performance. For predic-
tion purposes, the classifier in the Figure 1 can be replaced by 
an appropriate prediction algorithm.

Literature Review
Significant causes of forest fire are human-based and 

nature-based. Human-based forest fires are Arson (hu-
man-made fire), Smoking and throwing cigarettes, Sparks in 
power lines, explosive or fire use during hunting, picnic fires, 
shepherd fires, stubble burning. Nature-based forest fires are 
lightning strikes due to high environmental temperature, etc. 
[68]. Major factors for the forest fires include Weather fac-
tors (Temperature and relative humidity, precipitation wind 
speed, rainfall, striking probability of lighting), Time factors 
(holiday season, month, time of the day), population-based 
factors (population density, human activities in the forest, 
human behaviors), Landscape factors (Tree types, slope, dis-
tance from agricultural land, etc.) and Human-made factors 
(Short-circuit on power grid lines passing through the forest).

Volkan Sevinc, et al. [68] offers the Bayesian network 
model (BN) to predict possible causes of forest fires in the 
southwest of Turkey, specifically in Mugla Regional. The data 
set contained 3231 fire records. The General Directorate of 

         

Figure 1: Application of ML algorithms to forest fire management.
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pixel-based and object-based classifications of burned area. 
They have found that at least 250 m is the spatial resolution 
required to map the burned area accurately using red and 
NIR bands of the MODIS sensor. Meng, et al. [93] proposed a 
method to produce high-resolution fire severity maps by us-
ing VHR satellite imagery data (acquired by WV-2 spaceborne 
platform) of the wildfire at Long Island, New York, USA. Mul-
tiple spectral indices were calculated. The burned mask was 
generated, and burned pixels were classified into three se-
verity levels (Low, Medium, and High). RF classifier produced 
good classification results, and the burn severity map showed 
an overall accuracy of 84% in the sub-crown scale and 82% 
on the crown scale. A good survey about the developments 
in the research of mapping post-fire burned areas accurately 
from satellite observations [94,95]. Pinto, et al. [96] explored 
the use of deep learning approach on multi-spectral images 
obtained by Visible Infrared Imaging Radiometer Suite (VIIRS) 
750 m bands from satellite imagery. Daily images between 
2012 and 2018 of Red, NIR, and MIR reflectance of five re-
gions in California, Portugal, Brazil, Mozambique, and Austra-
lia are recorded and resampled to a regular grid using bilinear 
interpolation. Different datasets collected from different sat-
ellites are used for validation. The input data consists of 64 
images of size 128 × 128 and 4 data channels (Red, NIR, MIR, 
and Active Fires) and U-Net architecture with several mod-
ifications are used, which contains thirteen layers between 
input and output layers (called BA-Net by authors). Temporal 
validation of BA-Net achieved the lowest overall Mean Ab-
solute Error (MAE) for all regions as 1.13 days as compared 
to MCD64A1C6 and FireCC151 algorithms. In terms of spatial 
validation, the BA-Net Dice score was 0.678 was found to be 
near to the MCD64A1C6 (Dice score 0.687) and better than 
FireCC151 (Dice score 0.656).

Sousa, et al. [97] highlighted some of the challenges in 
identifying the wildfire through image surveillance systems 
due to outdoor settings having varying lighting conditions, 
reflection from different surfaces, and smoke may create 
fog conditions. Authors have augmented different publically 
available datasets including Portuguese Fire Fighters Portal 
Database (PFPDB), Corsican fire database and other data-
sets. Transfer learning is used on pre-trained ImageNet deep 
learning architecture to classify these images in the augment-
ed dataset as fire or not fire and the model achieved an ac-
curacy of 93% on 10 folds cross-validation. Pourghasemi, et 
al. [98] assessed forest fire susceptibility in the Fars Province 
Iran using Landsat-8 OLI and MODIS satellite images from 358 
locations. They have identified ten most relevant factors (el-
evation, slope, topographical wetness index, aspect, distance 
from urban areas, annual mean temperature, land use, dis-
tance from the road, annual mean rainfall, and distance from 
the river) from the dataset and trained three machine learn-
ing algorithms, Boosted regression tree (BRT), General linear 
model (GLM) and Mixture discriminant analysis (MDA). For-
est fire susceptibility map is generated by these three models 
with four risk levels, very high, high, moderate and low. The 
area under the ROC curve (AUC) for BRT, GLM, and MDA was 
found to be 0.89, 0.86, 0.866 respectively. Identification of 
high-risk areas can help the government to make an effective 
fire fighting plan.

used to validate the simulation models [83]. Performance of 
the forest fire prediction models depends on measuring im-
portant input parameters such as topology, meteorological 
conditions, vegetation, fire front situation, etc. Evolutionary 
algorithms are used to reduce the uncertainty in the forest 
fire propagation models [13]. Evolutionary statistical systems 
can reduce the uncertainty in the input parameters of the for-
est fire prediction models to improve their accuracy [13,84]. 
We will present a review of how different machine learning 
algorithms are used to predict the occurrence and spread, 
decision-making, and planning of the forest or wild-land fires.

Satellite-based monitoring of forest fire
Satellite imagery-based fire detection and finding out the 

fire effected region (hot spots) have their own benefits as a 
satellite can monitor large areas and detect fires. Sifakis, et al. 
[85] used the Spinning Enhanced Visible and Infrared Imager 
(SEVIRI) data collected from the geostationary Meteosat Sec-
ond Generation (MSG) satellite for fire detection and tracking 
in Greece during 2007 when there was disastrous wildfire oc-
curred. EUMETSAT’s Active Fire Monitoring Image processing 
algorithm was used to quickly locate the hot spots with 85% 
accuracy and helped the authorities correctly calculate the 
fire extent and progress at the country level. An agglomera-
tive hierarchical clustering algorithm is used on the satellite 
images to detect the hotspots and predict the fire spread 
direction [86]. The Moderate Resolution Imaging Spectrora-
diometer (MODIS) sensors on satellites of NASA collect infor-
mation in terms of 36 spectral bands from the whole surface 
of the Earth. Based on a certain threshold on the temperature 
of a pixel, hotspots are identified [87]. Chiaraviglio, et al. [88] 
proposed an alpha algorithm to estimate the fire perimeter in 
situations when cloud or smoke blocks the fire front position. 
The algorithm implemented in the European Forest Fire In-
formation System (EFFIS) to estimate perimeters of fire from 
MODIS hotspots on fire data occurred in 2014 in Sweden. 
Unmanned aerial imagery is useful in natural resources man-
agement [89]. Lots of remote sensing data through aircraft 
and satellite imagery is collected during the fire and after the 
completion of a fire event. Classification of the post-wildfire 
burned area to calculate the damage through satellite imag-
ery can be used in future decision making and repair of losses. 
Monitoring Trends in Burn Severity (MTBS) is a US project to 
map fire severity [90]. Mallinis and Koutsias [91] evaluated 
different classification methods to map the burned area af-
ter the forest fire. They have used three study sites, including 
the fire at Parnitha National Park in 2007, fire at Kassandra 
Peninsula in 2006, and fire at Alexandroupoli in 2009, all in 
Greece. Aerial imagery is acquired through satellite. Burned 
area mapping was classified, and the performance of ten clas-
sifiers is tested on these study sites. Neural networks (NN), 
SVM, Logistic regression, and maximum likelihood classifiers 
mapped the burned area in Parnitha park with 96% accura-
cy. In Kassandra fire, NN, SVM, and CART performed better 
with an accuracy between 93% and 94%. Whereas in Alex-
androupoli fire, NN and Object-based image analysis were 
the best with 95% accuracy. Mohler and Goodin [92] devised 
suitable mapping methods by comparing seven combinations 
of spectral bands and indices from the MODIS sensor using 
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Table 2 provides some of the machine learning algorithms’ 
useful applications to detect the burned area or fire severity 
mapping [85,87,91,92,98,99].

Wireless sensors network-based monitoring and 
prediction

In satellite-based monitoring of forest fires, it is difficult 
to locate the fire accurately, and satellite images are of low 
spatial and temporal resolution. Wireless sensor networks 
are being used in many real-life applications successfully in-
cluding animal tracking and health monitoring [100,101], pre-
cision agriculture [102], environmental monitoring, security 
and surveillance [103], smart buildings [104,105] and smart 
cities [106], health care [107], monitoring water quality [108] 
etc.

A wireless sensor network can be deployed in larger ar-
eas where there is a history of forest fires at ground level. 
Wildfire monitoring using wireless sensors to measure tem-
perature, relative humidity, and barometric pressure, and 
whenever there is a wildfire starts, these sensors can issue 
warnings to the base station [109]. Early warning about the 
fire started can initiate the early fire extinguishing process. 
Wireless sensor networks can also be used to sense the wind 
speed to monitor the local spread of fire [110]. Lin, et al. 
[111] used the fuzzy rule-based system to predict the forest 
fire using rechargeable wireless sensor networks. Bui, et al. 
[7] introduced a new machine learning algorithm called DFP-
MnBpAnn based on Differential Flower Pollination (DFP) and 
mini-match backpropagation (MBps) for spatial modeling of 
forest fire danger. Ten features, namely land slope, aspect, 
elevation, land use, Normalized Differential Vegetation Index 
(NDVI), distance to the road, distance to the residential area, 
temperature, wind speed, and rainfall are used to train the 
proposed DFP-MnBpAnn algorithm. The data consists of 540 
historical fire locations provided by the Department of Forest 
Protection (Ministry of Agriculture and Rural Development 
of Vietnam). The proposed algorithm is compared with Ran-
dom Forest (RF), SVM, Least Square SVM, BpAnn, and Particle 
Swarm Optimized Neural Fuzzy model (PSO-NF) algorithms. 
Classification accuracy of 70% training and 30% testing data-
sets is the best for the proposed algorithm DFP-MnBpAnn 
(Accuracy 89% and AUC - 0.94) compared to other algorithms, 

which shows classification accuracy more than 85% also. Air-
borne sensor platforms on drones or small planes can also be 
used for airborne fire sensing. Allison, et al. [112] reviewed 
variously manned, and unmanned aerial platforms used to 
detect the fire. Electro-optical sensors, including videos and 
thermal infrared, can be useful remote sensing technologies 
for fire detection using automatic image processing algo-
rithms. Heat, smoke, infrared, and light detection can be used 
in a combination or separate fire detection during daytime 
and night time. Lee, et al. [113] applied deep convolutional 
neural networks on the aerial images captured by unmanned 
airborne vehicles and achieved an accuracy of 94% with a 
classification time of about 7 seconds on a small prototype 
fire experiment. Bosch, et al. [114] presented an idea of a 
multi-sensor wireless network system for automatic detec-
tion of forest fires. Airborne sensing systems can provide a 
larger coverage area with a quicker response at the cost of 
flight expenses. Spectroscopic analysis to map the wild-land 
fire effects can be used through remotely sensed imagery by 
unmanned aircraft systems. The class means spectral reflec-
tance from black ash, and white ash helps the classifier to 
differentiate between low severity of burned area and high 
severity burned areas [115]. Moreover, the separation be-
tween black ash and vegetative class is also possible through 
the mean reflectance of visible and near-infrared spectrum 
above 350 nm. Arkin, et al. [116] emphasized the importance 
of higher spatial resolution fire severity maps. In this regard, 
they have proposed an integrated framework consisting of 
high spatial resolution post-fire imagery and digital aerial 
photogrammetric point clouds acquired from an unmanned 
aerial vehicle (UAV). The correlation-based feature selection 
method is used to select the most relevant features from the 
suite of spectral, structural, and textural features extracted 
from the data acquired by UAV. Random forest classifier is 
used to produce a 5-meter and 1-meter resolution map with 
a high accuracy of 89.5% for 5-m resolution and 85.4% for 
1-m resolution maps. Table 3 summarize few applications of 
wireless sensors network to monitor and predict the forest 
fire and issues alerts [7,111,113,116-118].

Prediction of fire risks
Fire risk analysis is critical in wildfire and forest fire man-

agement. Ignition of fire in the forest is a highly stochastic 

Table 2: Satellite-based monitoring of forest fire.

Reference, Year Purpose Data Classifier Performance

Sifakis, et al. [85] Hot spot detection MSG-SEVIRI geostationary 
data

Image Processing 85% accuracy

Giglio, et al. [87] Hotspot detection 36 spectral bands (MODIS) Image Processing False Alarm Rates less 
than 2%

Mallinis and Koutsias [91] Burned Area mapping Landsat Thematic Mapper 
(TM) imagery

SVM and 9 others More than 93% Accuracy

Mohler and Goodin [92] Burned Area mapping spectral bands (MODIS) Supervised minimum 
distance classification

90% Accuracy

Pourghasemi, et al. [98] Forest fire susceptibility 
map

OLI and MODIS satellite 
images

Boosted regression tree AUC is 0.89

Gibson, et al. [99] Fire Severity Mapping Sentinel2 satellite imagery Random Forest 98% Accuracy
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numerical values of ISI and BUI. Safi and Bouroumi [132] op-
timized neural network architecture to predict total burned 
area based on 12 parameters including (location coordinates, 
day and month, FFMC, DMC, DC, ISI, temperature, relative 
humidity, wind speed, daily rainfall) on dataset available at 
machine learning repository [133]. The error rate of the best 
neural network was 9%. Sakr, et al. [134] predicted fire dan-
ger index on a scale from one to four based on temperature, 
average humidity, solar radiation, wind speed, and cumula-
tive precipitation level using neural networks (NN) and sup-
port vector machine (SVM). Prediction accuracy of fire/no fire 
binary decision by NN and SVM is found to be more than 90% 
for all months in summer on the data of Lebanese Agricultural 
Research Institute (LARI), covers the Lebanese territory and 
spans the nine years between 2000 and 2008. Performance 
on the four-level scale was not found to be accurate. Spatial 
patterns of fire occurrences in Mediterranean Europe was 
studied by Oliveira, et al. [135]. The machine learning algo-
rithms estimated the number of fires occurring per square 
area (km2). Data for training and prediction by the models 
were obtained from the European Fire Database of the Eu-
ropean Forest Fire Information System. Due to irregular pat-
terns present in the region (space and time), human factors 
were also considered in contributing to the fire occurrences. 
Hence non-parametric models, random forest, and multiple 
regression methods were selected for the prediction of the 
fire occurrences. Random forest performed better than the 
linear regression model, and 96% of the variance is success-
fully explained by this model using twelve important features. 
They have found total precipitation in the off-season as the 
most important feature and, interestingly, unemployment as 
the second important feature in the list. Hence human-made 
fires may be linked to the dissatisfaction of the rural popula-
tion due to employment. Cortez and Marias [136] used mul-
tiple regression, SVM, RF, and NN algorithms to predict the 
burn area by small fires in the northeast region of Portugal. 
The SVM classifier performed the best with only four direct 
weather inputs consisting of temperature, relative humidity, 
rain, and wind speed (Error of 12.7%).

Alonso-Betanzos, et al. [137] predicted forest fire risks 
(four categories, low, medium, high, extreme) using neural 
networks so that firefighters can focus on high-risk areas. 
Four inputs are used, namely, the temperature of the day, 
daily humidity, daily rainfall, and fire history. Map of Galicia, 
Spain, was divided into zones, and for every zone, the risk cat-

process, and fire risk can be predicted with a certain prob-
ability only. Three components, the likelihood of fire event, 
the intensity of the fire, and the effect of fire in terms of the 
burn area, are essential in the fire risk analysis. A good re-
view of the wildfire risk analysis can be found in [119,120]. 
Logistic regression analysis is used in many fire risk analysis, 
and occurrence of fire probability in temporal and spatial 
domains [120-122]. Methods to predict the Fire danger risk 
can be divided into statistical methods and dynamical meth-
ods [123]. Statistical methods can forecast long-term fire risk 
using topological parameters, frequency of occurrences and 
vegetation types etc. Dynamical methods are based on data 
that changes daily, and they can predict short term fire risk 
indices. A big list of factors that can affect the occurrence of 
wildfires are given in [124] that can be used in the prediction 
of wildfire and forest fire risks. To predict the probability of 
forest fire occurrences, different fire prediction indices based 
on mathematical modeling are proposed between 1960 and 
1970 including Fire Weather Index (FWI), Angstrom index, 
KBDI index, Nesterov index, and Baumgartner index based on 
meteorological parameters [125]. Human factors are also as-
sociated with forest fire risks, including socio-economic trans-
formation in rural areas, Human presence in the urban area, 
traditional activities linked with fire, accidental or negligent 
events, intentional fires, and forest policy [126]. Logistic re-
gression models can be used to estimate the human-caused 
fires [127,128]. A good review of different models including 
logistic regression, Autoregressive regression, Classification 
and Regression Trees (CART), Poisson regression, etc. for 
short term and long term prediction of the Human-caused 
fire occurrence events can be found in [129]. Lightning with 
high winds can start the fire, and winds can drive high fire 
growth [130]. Canadian Forest Fire Danger Rating System 
(CFFDRS) [131] rate the risk of fire as the Fire Weather Index 
(FWI) based on many components. Fine Fuel Moisture Code 
(FFMC) is calculated based on daily rainfall, relative humidity, 
Temperature, and Wind. Duff Moisture Code (DMC) is based 
on rainfall, relative humidity, and temperature. It indicates 
fuel consumption in the moderate duff layer. Drought Code 
(DC) represents the average moisture content of the deep or-
ganic layer and depends on daily rainfall and temperature. 
Initial Spread Index (ISI) is the predicted fire spread rate and 
depends on wind speed and FFMC, whereas Buildup Index 
(BUI) is the measure for available fuel for combustion and de-
pends on DMC and DC values. Finally, FWI is calculated using 

Table 3: Wireless sensors network based monitoring and prediction.

Reference, Year Purpose Data Classifier/Predictor Performance

Lin, et al. [111] Forest fire prediction Weather, location and time 
history data)

Fuzzy inference system 75% prediction 
accuracy

Biu, et al. [7] Forest fire danger prediction Weather data and Location data DFP-MnBpAnn 89% Accuracy

Lee, et al. [113] Fire detection UAV imagery Deep convolutional NN > 95% accuracy

Arkin, et al. [116] Fire severity mapping UAV imagery Random Forest classifier 89% accuracy

Jiao, et al. [117] forest fire detection UAV-based aerial images Convolution neural network 
(CNN)

83% Accuracy

Barmpoutis, et al. 
[118]

Early fire detection Aerial 360-degree imagery Convolution neural network 
(CNN)

94% Accuracy
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is Spanish EGIF, from the year 1988 to 2007. It contained 
308,893 fire during this period consists of approximately 
93,537 samples, and it was divided into 60% for training, 40% 
for testing, and 37,429 samples for validation. Different ma-
chine learning algorithms, Linear Regression (LR), SVM, RF, 
and Boosting Regression Trees (BRT), are compared on the 
data set. The results indicated that Random Forest (RF) and 
BRT had shown the best results with AUC = 0.746 and 0.730, 
respectively. Tien Bui, et al. [141] proposed a machine learn-
ing methodology that analyzes and forecasts the spatial pat-
terns of the tropical forest fires in Lao Cai state, Vietnam. The 
database used in this study was created for the Geographic 
Information System (GIS). The study area was about 2253 
Km2 with a 257 fire location. Ten features were recorded: 
Temperature, slope, road distance, height, vegetation index, 
humidity, wind speed, land use, rainfall, and aspect. The suit-
ability of these features with forest fires was determined and 
evaluated by the algorithm for mutual information. A new hy-
brid AI model called MARS-DFP based on Multivariate Adap-
tive Regression Splines and Differential Flower Pollination fire 
locations is proposed. They graded the danger rating of fire to 
five levels: Very low, low, moderate, high, and very high. The 
MARS-DFP algorithm achieved high performance (Accuracy = 
86.57% and AUC = 0.91) compared to other machine learning 
models (BPANN, ANFIS, RBFANN, RE, and MARS). Jaafari, et 
al. [142].

Ferreira, et al. [143] emphasized that the prediction of fire 
occurrences on global and seasonal scales can be very ben-
eficial for fire management and control. Global models are 
used for long-time forecasting (decades to centuries), where-
as seasonal models are short-range forecasting only specific 
to seasonal time scales. Authors have used different time se-
ries forecasting methods for seasonal fire forecasting as time 
series forecasting is fast and straightforward. Several fore-
casting methods (naive forecasting, autoregressive integrat-
ed moving average models (ARIMA), Exponential smoothing, 
Short term load forecasting, Generalized linear model, NN) 
are compared for seasonal fire forecasting on time series of 

egory is predicted by the neural network with a prediction 
accuracy of 79%.

Arpaci, et al. [138] have conducted a study on a dataset 
of fire presence only in Tyrol province, Austria, from 1993 
to 2011, including the topography data vegetation, climate, 
and socio-economic parameters. Their study was to predict 
the driving parameters of the spatial fire distribution and lo-
cate the areas with fire danger. Maximum Entropy (MaxEnt) 
and Random forest algorithms are applied to determine the 
main governing parameters of fire distribution. Authors have 
analyzed a comprehensive list of parameters consisting of 
Socio-economics (n = 6), infrastructure (n = 19), Forest veg-
etation (n = 4), Topology (n = 3), and FWI as fire risk days per 
year. They have found that population density and climate 
are two significant factors contributing to spatial fire suscep-
tibility. Random forest predicted fire ignition distribution (fire 
or no fire in spatial location) with a classification accuracy 
of 75 to 78%. Further classification of fire susceptibility lev-
els into six classes starting from very low to extremely high 
was also compared between MaxEnt and RF algorithms. Pre-
diction of both algorithms was comparable except in the ex-
tremely high fire susceptibility class where MaxEnt found 28 
spatial locations compared to two found by the RF algorithm. 
Liang, et al. [139] compared three types of neural networks, 
namely backpropagation NN(BPNN), recurrent NN(RNN), and 
long short-term memory (LSTM) to predict different scales of 
wildfire in the forest of Alberta, Canada. The scale of wildfire 
(6 levels according to the severity of fire) was calculated from 
the wildfire data (Location, duration of fire, and burned area), 
whereas weather data (features from Temperature, Rain, 
Snow, Wind speed) after normalization was used to estimate 
the wildfire scale. The LSTM model obtained the best predic-
tive accuracy of 90.9% out of all three algorithms on the test 
data set. Different machine learning algorithms are used in 
predicting the human-caused wildfire occurrences. Rodrigues 
and Riva [140] covered the entire peninsula of Spain, except 
some cities to evaluate human-induced wildfires in Spain. 
This study used one of the oldest databases in Europe, which 

Table 4: Prediction of forest fire risks.

Reference, Year Purpose Data Classifier/Predictor Performance

Safi and Bouroumi [132] Fire weather index 
prediction

Weather observations NN 9% error rate

Oliveira, et al. [135] Fire density Environmental, demographic, infra-
structure, socio-economic

RF 96% variance 
explained

Cortez and Moarias [136] Fire weather index 
prediction

Weather observations SVM 12.7% Error

Arpaci, et al. [138] Fire prediction Weather, topology, infra-structure, 
socio-economic

RF 78% Accuracy

Liang, et al. [139] Wildfire scale 
Prediction

Weather and wildfire data LSTM 90.9% Accuracy

Rodrigues and Riva [140] Human caused wildfire 
occurrences

socio-economics and economic 
activity, Fire causing possibilities

LR, SVM, RF AUC=0.746

Tien Bui, et al. [141] Spatial Pattern of 
forest fires

Weather, vegetation and 
infrastructure

MARS-DFP 86.5% Accuracy

Qu, et al. [144] Fire occurance 
forecasting

Weather data Auto-sklearn framework 87% Accuracy
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type and wind speeds. Authors have compared these models 
on different fuel types like grasslands, temperate shrublands, 
semi-arid shrublands, dry eucalypt forests, and conifer for-
ests.

Hong, et al. [153] utilized the genetic algorithm (GA) to 
optimize the number of forest fire-related variables out of 
thirteen most common forest fire-related variables (eleva-
tion, slope angle, aspect, curvature, land use, soil cover, heat 
load index, normalized difference vegetation index, mean 
annual temperature, mean annual wind speed, mean annual 
rainfall, distance to river network and distance to road net-
work) extracted from the data of forest fire events in Dayu 
county, China during 1980 to 2010. A fire susceptibility map 
was generated by RF and SVM using a full set of variables 
(Thirteen variables) and an optimized variables set (eight vari-
ables). RF classifier outperformed the SVM classifier for both 
sets of variables. AUC of cumulative forest fire susceptibility 
percentage was 0.816, 0.849 for original and optimized RF, 
respectively. Another paper by Bui, et al. [154] proposed the 
Particle Swarm Optimized Neural Fuzzy (PSO-NF) method to 
predict the spatial fire susceptibility map of forest fire in the 
Tropical Forest at the province of Lam Dong (Central Highland 
of Vietnam) in 2013. Ten fire ignition factors are used to train 
the classifier, and the overall classification accuracy of the 
proposed algorithm was found to be 89% with AUC = 0.932. 
Three fuzzy-metaheuristic algorithms, namely the adaptive 
neuro-fuzzy system (ANFIS) incorporated with GA, PSO, and 
differential evolution (DE), were used by Moayedi, et al. [155] 
to find the fire susceptibility map of a fire-prone region of cit-
ies Galikesh and Minudasht in Iran covering 1531 km2 forest 
area. Five classes of fire susceptibility (Very low, Low, Moder-
ate, High, and Very high) are defined for each cell. GA-ANFIS 
performed the best with AUC equals 0.85.

Detection of Smoke spread after forest fires
Forest fire smoke can become one of the biggest concerns 

for the population living nearby by contributing to the poor 
air quality in a wider region. Wildfire smoke is harmful to hu-
man health and may cause death. If climate changes in the 
world due to human-made or natural reasons contribute to 
more forest fires and wildfires, smoke generated from these 
fires containing a mixture of pollutants may spread to wider 
regions polluting the fresh air resulting in significant concerns 
for public health. Wildfire smoke is composed of a blend of 
gases including acrolein, benzene, carbon mono oxide, poly-
cyclic aromatic hydrocarbons, and microscopic particles from 
burned material known as the delicate particulate matter 
(PM) with aerodynamic diameter = 2.5 m (PM2.5), which is 
the most hazardous [156]. PM2.5 when inhaled results in 
the death of the person, global mortality caused by wildfire 
smoke is 339,000, including 157,000 in sub-Saharan Africa 
and 110,000 in Southeast Asia [157]. Landscape Fires are a 
global occurrence consisting of wildfires, Deforestation fires, 
peat fires, agriculture burning, and grass fires result in pollut-
ing the environment by release of 2 petagrams of carbon an-
nually. The harmful nature of smoke is often neglected [158]. 
Forest fires smoke influences global warming and affects re-
gional cloud formation and rainfall patterns, causing the es-
calation of the fire’s frequency and intensity, which enhances 

fire counts. Fire season severity (FSS) for the area divided 
into cells defined as the sum of fire counts in a season. They 
claimed that their method could predict the FSS accurately in 
many regions globally. Table 4 presents some applications of 
machine learning algorithms in forest fire forecasting using a 
different type of data collected from weather, environmen-
tal, socio-economics, and infrastructure details of the region 
[132,135,136,138-141,144].

Prediction of propagation of fire
The fire propagation rate depends on fuel characteristics 

(types of vegetation), terrain, and weather conditions. In the 
weather factors, wind speed plays a vital role in spreading 
forest fires to larger areas. Monitoring the wind speed and 
direction can be used to predict the spread of forest fires. 
Prediction of wildfire spread models can be grouped into 
four major groups [145]. In data-driven models or empirical 
models, correlations between data recorded from different 
wildfire events are obtained [146] and are statistical. In qua-
si-physical or semi-physical models, only physical equations 
are used to model the fire spread behavior, whereas physi-
cal models include physics and chemistry of the fire spread. 
Quasi-empirical models use the physical framework on which 
statistical modeling is based. A good survey on these types of 
models from 1990 to 2007 can be found in [146]. Guelpa, et 
al. [147] proposed a model reduction technique to the phys-
ical model named Proper Orthogonal Decomposition (POD) 
to reduce the computational cost of the model. Sanjuan, et 
al. [148] suggested that high-resolution wind speed and di-
rection are necessary for the prediction of fire propagation, 
whereas wind speed and direction provided by meteoro-
logical stations are of low resolution. Hence they proposed 
a map partitioning methodology to compute partial wind 
field maps to be integrated with the forest fire propagation 
prediction frame-work. Thus, a deep analysis to optimize the 
parameters such that wind field differences remain within 
a reasonable limit and execution time should also be mini-
mized. Carrillo, et al. [149] mentioned that forest fire spread 
simulation requires a diverse set of parameters that may not 
accurately measurable and contain high uncertainty. To solve 
this problem, they used a two-stage methodology to calibrate 
the input parameters, adjustment stage (calibration is done), 
and the prediction stage (to improve the quality of predic-
tion). Hence, different error functions are proposed, and their 
effect on the prediction of forest fire has been analyzed on 
an example of a fire in Greece during the summer season of 
2011. Hajian, et al. [150] predicted the fire travel time distri-
bution by using monte Carlo simulation on the landscape that 
is considered as graph network, and fire propagation time is 
modeled as stochastic shortest path problem. The network 
reduction technique is also applied to reduce the computa-
tional cost of the simulation. The fire propagation rate was 
calculated on Montague Plains Wildlife Management Area 
(MPWMA) in West-Central Massachusetts and showed good 
accuracy. Zhou, et al. [151] integrated ensemble Kalman filter 
to the FARSIGHT prediction model to import the forecast of 
the wildfires by updating dynamically evolving fireline posi-
tion. Cruz, et al. [152] provided a comprehensive summary of 
the Australian fire rate of spread models depending on fuel 
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Short term forecasting can be beneficial for allocating bud-
get, mobilization of firefighters, moving the population to 
safer places, and, if possible, avoiding fire ignition. Long-term 
forecasting can help in country-level decision making for the 
next five or ten years by modifications in the factors (mini-
mization of human-made changes in weather etc.) related to 
the fire events to secure the vegetation, forest, and wildlife, 
and healthy environment. Such studies help to understand 
the dependencies of fire events and spread forecasting on 
long term weather changes (human-made or natural), so-
cio-economic conditions in the country, population growth, 
fuel demand forecasting, etc. [166,167]. Hearing the sound 
of the forest by putting various self-powered sensors in the 
forest can also provide lots of useful information in better 
forest care. Proactive preparedness and planning in terms of 
behavioral, cultural, structural and institutional play an im-
portant role in mitigating the hazardous effect of wildfires. 
Social media now can play its role in increasing the resilience 
of the people directly or indirectly exposed to wildfire threats 
[168]. Hence there is a strong need for community collabo-
ration and its involvement in the decision-making process 
to develop effective wildfire mitigation schemes [169,170]. 
Adaptive governance at multiple scales with the help of ag-
gressive data processing and involving all the stakeholders 
is the key to success in mitigating the effect and hazards of 
the wildfire [171]. In this regards, good papers the readers 
can read include [172-177]. Big data measurement and anal-
ysis related to fire occurrences and prediction of fire events 
require a more significant framework incorporating the gov-
ernment and communities living nearby fire-prone areas to 
increase wildfire resilience. More research is needed to study 
such types of framework constituted on social media interac-
tions of communities and crowdsource sensing of the events. 
Crowdsource sensing of the events can help in the prediction 
of man-made fire events. Deep learning is a new field that has 
a promising future in wildfire/forest fires predictions as it is 
successfully applied in various similar events prediction [178-
180]. Deep learning algorithms can be used for short-term 
and long-term fire occurrence events, fire spread prediction, 
and fire severity mapping. Already some researchers started 
using deep learning towards solving wildfire occurrence and 
spread forecasting.

There are not many standard data sets available for the 
application of machine learning algorithms in the wildfire. 
Few data sets available publicly are given in Table 5 [136,181-
183]. Although lot of research has been done in forest fire 
and wildfire management and prediction using different ma-
chine learning algorithms, we could not find a well structured 
data sets available publicly. Researchers have to collect data 
from different sources and agencies.

the spread of fire and elongates the fire sessions burning larg-
er areas [157,159].

Smoke from larger fires can spread over thousands of 
square kilometers. Exposure to smoke is associated with the 
spread of various health hazards, including respiratory diseas-
es and cardiovascular diseases [160-163]. In the last couple of 
decades, the availability of new satellite records helped re-
searchers and decision-makers predict emissions accurately 
from forest fires. Yao, et al. [164] developed a random forest 
(RF) model to predict the height of the smoke layer observed 
by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIP-
SO) satellite using fire activity and its geographic location and 
meteorological conditions. A total of twenty-two variables is 
identified from the CALIPSO data and NASA Modern-Era Ret-
rospective-analysis for Research and Applications (MERRA) 
program data. In the final model of RF, thirteen variables are 
used, and the model explained 82% of data variance. RF clas-
sifier predicted the minimum height with great accuracy if the 
minimum height is above 100 m.

Discussions, Future Directions and Challenges
Forecasting forest fires is a complex phenomenon as it 

depends on many parameters that are difficult to predict. 
Fire ignition can be due to natural causes (self-ignition due to 
natural heat-generating process or striking of lightning etc.), 
or it can also be caused by human behaviors (negligence or 
intentional). Short term forecasting (within a year), both fac-
tors are stochastic. After fire ignition, its spread depends on 
various factors including weather conditions, terrain, type of 
fuels, etc. Prediction methods for forest fires are designed to 
consider multiple factors measurable by sensors in the spatial 
and temporal domain. These prediction models can not work 
as standalone applications. Still, they require forecasting in 
the required parameters, including weather forecasting, pop-
ulation forecasting, urban area development forecasting, 
socio-economical situation forecasting, seasonal drought 
predictions, etc. Hence strong integration of different mod-
ules in a greater framework is required. In the last decade, 
computational power and resources are increased exponen-
tially, and new machine learning algorithms are getting plac-
es into various real-life applications. An intelligent automatic 
decision making and smart city concepts are developing, and 
in the coming decade, the concept of smart countries with 
automated intelligent governance may also evolve. Early 
warning systems for catastrophic events like big fire eruption 
will be in place in such frameworks. Wildfires not only pollute 
the climate, but the severity of wildfires may also contam-
inate the clean water supply to the population [165]. Wild-
fire forecasting can be divided into short term forecasting (in 
terms of days) and Long term forecasting (in terms of years). 

Table 5: Few publicly available data sets.

Reference Year Purpose Size Number of Features

Cortez and Morais [136] 2007 Predict burned Area Small (517 instances) 13 (mostly meteorological)

Abid, et al. [181] 2019 Binary Classification (Fire, No fire) Small (244 instances) 12 (mostly meteorological)

Sayad, et al. [182] 2019 Binary Classification (Fire, No fire) Medium (804 instances) 3

Short and Karen [183] 2017 Fire Intensity Categories Huge (1.8 million instances) Many (can be selected)
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