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Preface

This book was developed as part of my efforts to build and enhance the accel-
erator and beam physics program in the UCLA Department of Physics and
Astronomy. This program includes an active research program in advanced
accelerators (particle accelerators based on lasers and/or plasmas) and free-
electron lasers (conversely, lasers based on accelerators and particle beams) and
is essentially a student-oriented enterprise. Its focus is primarily on graduate
education and training, but the laboratory activities of the group also include a
strong showing of undergraduate students. The desire to introduce both incom-
ing graduate students and interested undergraduates to the physics of beams
led me to develop a course, Physics 150, to formally provide the background
needed to enter the field.

In teaching this senior-level course the first few times, I found that I was rely-
ing on a combination of excerpts from a variety of accelerator and laser physics
texts and my own notes. Because the hybrid nature of the UCLA research pro-
gram in beams is reflected in the course, it was simply not possible to use a
single text for the course’s source material. As one might imagine, in the mix-
ing of written references, the notation, level, and assumed background varied
widely from reading to reading. In addition, many existing texts and references
in this area are geared towards a practitioner of accelerator physics working at
a major accelerator facility. Thus this type of text has an emphasis that is heavy
on the physics, engineering methods, and technical jargon specific to large
accelerators at the high-energy frontier. The needs of this professional reader
are inherently a bit different than the senior level university student, however.
As such, previous texts typically have given less orientation to basic physics
concepts than the university student needs in order to be properly introduced to
the subject. My desire to clarify the written introduction of beam physics as it
is practiced at UCLA to undergraduate students led directly to the production
of this book.

The contents of this book were also flavored by my desire to create the com-
pact introduction to beam physics that I wish I could have had—hopefully the
reader will benefit from the resulting weight put on the points I have found
to be least clear or intuitive in my journeys in the field. The present book is
therefore written with the student constantly in mind, and has been structured
to give a unified discussion of a variety of subjects that may seem to be, on
the surface, disparate. The intent of the book is to provide a coherent introduc-
tion to the ideas and concepts behind the physics of particle beams. As such,
the book begins, after some introductory historical and conceptual comments,
with a review of relativity and mechanics. This discussion is intended to build
up our sets of physics tools, by placing a few standard approaches to modern
dynamics, such as Hamiltonian and phase space-based analyses, in the context
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of relativistic motion. We then give a presentation of charged particle dynamics
in various combinations of simple magnetostatic and electrostatic field con-
figurations, providing another unifying set of basic tools for understanding
more complex scenarios in beam physics. Also, at a higher conceptual level,
we examine the physics of circular accelerators using simple extensions of the
principles developed first in the context linear accelerators, and then use similar
approaches to analyzing both transverse optics and acceleration (longitudinal)
dynamics. The adopted emphasis on fundamental, unified tools is motivated by
the challenges of modern accelerators and their applications as encountered in
the laboratory. In present, state-of-the-art beam physics labs, the experimental
systems display an increasing wealth of physical phenomena, that require a
physicist’s insight to understand.

One of the more unique aspects of this text is that its unified approach is
extended to include a discussion of the connection between the methods of
charged particle beam optics and descriptions of the physics of paraxial light
beams such as lasers. This unification of concepts, between wave-based light
beams and classical charged particle beams, is also motivated by experimental
challenges arising from two complementary sources. The first is that lasers are
increasingly used as critical components in accelerators—for example, they are
used to produce intense, picosecond electron pulses in devices termed photoin-
jectors, two of which are found at UCLA. The second was already mentioned
above. In advanced accelerators and free-electron lasers, the concepts of accel-
erators, particle beams, and lasers are, in fact, merged. These cutting edge
subjects in beam physics are what provide the intellectual impetus behind my
research program at UCLA. It should not be surprising that such subjects find
their way into this introductory text in a number of different ways.

This book is also structured so that an abbreviated course consisting of the
first four chapters may give an introduction to single particle dynamics in accel-
erators. Additionally, Chapter 5 introduces the physics of beam distributions
(collections of many particles), a subject that is quite necessary if one wishes to
apply this text in practice. Further, the notions developed in Chapters 1–5 can
then be used to give the basis for the material on photon beams in Chapter 8.
Chapters 6 and 7, which discuss the technical subjects of magnets as well as
waveguides and accelerator cavities, can stand virtually by themselves. They
do, however, complete the set of basic material offered here, and it is hoped
that they prove useful in practice as an introductory guide to the design and use
of accelerator laboratory components.

To aid in streamlining the approach to learning from this text, sections that
contain general “review” material are marked with the � symbol next to their
title. For an advanced student, these sections (the reviews of relativity and
mechanics fall into this category) might be omitted on first reading. Other
sections are marked by an asterix (*), and contain material which can be con-
sidered in some way tangential to the main exposition of topics in beam physics.
Such sections, while forming important components of the book as a whole,
and may be referenced elsewhere in the text, may contain material that is too
lengthy or deep for a fast initial reading. In an alternative approach, much
of the material in both these special sections would be included in appen-
dices. Here they are included in the main body of text, both to improve the
logical flow of the book, and to allow illustrative exercises for the student to be
included.
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The exercises in this book, included at the end of each chapter, are meant to be
an integral part of the exposition, as some important topics are actually covered
in the exercises. In order to provide a guide to approaching the exercises, and
to help emphasize their importance, worked solutions to roughly one-third of
the problems are included in Appendix A.

The subjects introduced in this book are related in both obvious and subtle
ways. To aid in tying threads of the text together for the reader, a short summary
is included at each chapter end.

Numerous acknowledgments are in order. One must first find your interest
sparked by a field of inquiry; my present colleague David Cline provided the
spark for me when I was yet a student. My initial training in accelerator theory
was most heavily influenced by Fred Mills (then at Fermilab), and his style
can be seen in many of the approaches taken to analyzing beam dynamics in
this text. Other friends, mentors and collaborators of particular note, who have
given me stimulus to go deeper into the subjects presented here are: Pisin Chen,
Richard Cooper, Luca Serafini, and Jim Simpson. A special debt of gratitude is
due to my close colleague, Claudio Pellegrini, who has, with our students and
post-docs, built the UCLA beam physics program with me.

Perhaps the highest level of thanks must go, however to those students
at UCLA who have provided components of the background, motivation,
and critical feedback to finish this text. A no-doubt incomplete listing of
the graduate students (many of whom are now professional colleagues) fol-
lows: Ron Agusstson, Scott Anderson, Gerard Andonian, Kip Bishofberger,
Salime Boucher, Nick Barov, Eric Colby, Xiadong Ding, Joel England, Spencer
Hartman, Mark Hogan, Pietro Musumeci, Sven Reiche, Soren Telfer, Andrei
Terebilo, Matt Thompson, Gil Travish and Aaron Tremaine. Special thanks are
due to the undergraduate students who have aided in the editing of this text,
Pauline Lay and Maria Perrelli.

As a university professor with a large, active research program, my textbook
writing has generally been performed after the “day job” is done. Therefore,
I must also thank my family (my wife, Judy, and children, Max, Julia and
Ian) for their patience, and occasional cheers—mainly for attempts at artistic
graphics—as this project began to unfold at home.

James Rosenzweig
Los Angeles, 2002
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This textbook, the first of a planned two-set volume on the physics of accel-
erators and beams, is intended to provide a comprehensive introduction to the
physical principles underlying the theory and application of particle beam,
accelerator, and photon beam physics, within the context of a one semester
(or two quarter) undergraduate course. Its emphasis lies in providing the basic
conceptual and analytical tools underpinning further study in the field. The
course of study is presented from a unified viewpoint, with connections drawn
between what may at first seem to be disparate topics made wherever possible.

The book begins, in this chapter, with an overview of the basic con-
cepts needed to start the discussion of particle beams—collections of charged
particles all traveling in nearly the same direction with the nearly the same (pos-
sibly relativistic) speed—and accelerators. These concepts include Lagrangian
and Hamiltonian approaches to mechanics, and how these methods are applied
naturally in the context of relativistic charged particle motion. After this formal
re-introduction to some powerful analysis tools, we then proceed to examine
the motion of charged particles in static electric and magnetic fields, with the
purpose of acquiring a basic understanding of the relevant categories of motion.
From these building blocks, we then take up a series of topics in particle beam
physics: linear transverse oscillations, acceleration and longitudinal motion in
linear and circular devices, and envelope descriptions of beams. In this initial
volume, these topics are discussed from the viewpoint of collections of nearly
non-interacting particles, where the forces generated by the particles’ collective
electromagnetic fields are too small to be of interest. On the other hand, much
of modern accelerator physics is concerned with intense beams that have very
strong self-forces, and display characteristics of plasmas (ionized gases); the
physics of such systems is beyond the scope of this text, but will be addressed
in the following volume. A description of the topics covered in this second
volume is given in Appendix B.

After the introductory survey of particle and beam dynamics in the first
five chapters of this volume, we subsequently examine some aspects of relev-
ant technologies. In particular, we concentrate on the features of physics and
engineering methods used in accelerator magnet and electromagnetic acceler-
ating systems most directly related to the material presented on charged particle
motion. Our investigation is then extended to include the comparisons between
single particle and collective descriptions of charged particle beam optics on the
one hand, and ray and wave optics in coherent electromagnetic (light) beams,
such as lasers, on the other. With the introduction of electromagnetic radiation
in the text, the discussion progresses to encompass aspects of charged particle
radiation processes and their effect on charged particle motion.
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2 Introduction to beam physics

1.1 History and uses of particle accelerators

The history of particle accelerators is one of physics and technology at the
cutting edge, as the desire to use increasingly higher-energy particles for basic
research in physics has led to vigorous innovation and experimentation. These
efforts have caused explosive growth in the field of particle accelerators, which
at the dawn of the new millennium has established itself as a fundamental
area of research in its own right, with its own research journals and societies.
It is, however, a cross-disciplinary field, having many connections to other
sub-disciplines within the world of physics. Areas of inquiry in which particle
beam physicists have made a significant impact, or have borrowed techniques
from, over the years include high-energy physics, nuclear physics, nonlinear
dynamics, medical physics, plasma physics, and coherent radiation and X-ray
sources. Particle beams are now an indispensable tool in these endeavors, with
thousands of practitioners worldwide using them, and billions of dollars per
year being spent by governments and industry to develop and improve them.

It was not always such! Let us review the history of particle accelerators in
order to provide a context for our discussion and to introduce some concepts
and terminology. This is not meant to be a self-contained discussion—some
concepts are mentioned and can only be defined later—we only wish to sketch
a description of the successive generations of accelerators so that, when we
discuss them further in the text, the reader has an idea of the conceptual and
chronological roles of these devices.

The history of the particle accelerator begins in the mid-nineteenth century
with the development of the cathode ray tube, in which electrons are accelerated
across a vacuum gap with an applied electrostatic potential. The need to create
cathode ray tubes spurred the advance of many aspects of modern experimental
physics, such as voltage sources and vacuum techniques. The cathode rays
themselves were the subject of intense scrutiny, which led to the actual discovery
of the electron and its properties. Notable experiments in this regard include
the determination of the electron’s charge-to-mass ratio by J.J. Thomson, and
the discovery of the photoelectric effect by Lenard and Millikan.

The cathode ray tube evolved1 over time and technological development to1The cathode ray tube evolved most import-
antly from the general viewpoint into the tele-
vision display and computer monitor. Much of
this text was being written on a lap-top com-
puter with a liquid crystal display, however, so
this ancient accelerator technology may, after
a century of use, be losing its dominance in
this application.

the electrostatic accelerator, which, instead of kV potentials, gave rise to MV
potentials and the creation of electron beams with relativistic velocity. The
technological innovations associated with electrostatic accelerators included
several inventions such as the belt-charged Van der Graaf accelerator and the
cascaded-voltage Cockcroft–Walton generator. These devices could be used
to accelerate both electrons and heavier, ionized particles—allowing the birth
of nuclear physics, and playing a key role in the quantum revolution of the
1920s and 1930s. During this time, radio-frequency linear accelerators were
also studied, but did not become prominent tools in physics research until later.

The advancement of particle accelerators definitively hit its stride with the
invention of the initial circular accelerators: the ion accelerator known as the
cyclotron, and an electron accelerator termed the betatron. The betatron was
proposed as early as 1924 by Wideroe and was made into experimental reality
by Kerst and Serber in 1940. This device introduced acceleration based on elec-
tromagnetic induction and provided a demonstration of the principle of weak
focusing (giving rise to simple transverse betatron oscillations, discussed in
Sections 2.2 and 3.1). This transverse focusing effect was also developed in
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the cyclotron, a machine with an expanding circular geometry (see Fig. 2.14
associated with Ex. 2.3). The cyclotron was also notably the first device to show
acceleration based on resonance of particle motion with time-varying electro-
magnetic fields. Additionally, the cyclotron lends its name to the frequency of
oscillation upon which this resonance is based, the well-known cyclotron fre-
quency. This frequency is not constant (see Section 2.1) but turns out to vary
noticeably when the particle becomes relativistic. For heavy particles, going
above a few 100 MeV of kinetic energy required the invention of the synchro-
cyclotron, in which the frequency of the applied fields is varied in time. The
cyclotron concept is still employed in many nuclear and medical accelerators,
but for higher energies, such devices could not be used. This is due to iron-
based magnets that must be used throughout the machine to bend the particles
in circular or spiral orbits. At a certain point one cannot keep building larger
magnets, due to the complication and expense involved.

After the Second World War (in which the cyclotron played a part in
development of the atomic bomb2), radar technology pushed the invention 2The principles of cyclotron motion were

employed in radioactive isotope separation.of the radio-frequency linear accelerator, by allowing microwave powers high
enough to directly accelerate particles in electromagnetic cavities. The Alvarez
drift-tube linear accelerator (linac), a standing wave structure (see Figs 1.1
and 4.13), was the first of this category of accelerator, followed by the period-
ically loaded traveling wave (e.g. Fig. 4.1) structures typical of modern linacs.
The traveling wave linac has allowed the construction of a 50-GeV electron
accelerator at Stanford in which the quark structure of matter was first observed.
Higher-energy linacs are now on the horizon, and may be the next frontier tool
for discoveries in particle physics.

Fig. 1.1 The interior of an Alvarez drift-tube
linear accelerator cavity, showing the drift
tubes and their supports.

The circular accelerator also underwent a “revolution” in the post-war
period due to the invention of the synchrotron. The synchrotron, in which the
concept of phase focusing, or phase stability (characterized by longitudinal—
in the direction of nominal beam motion—synchrotron oscillations), was fully
developed, is a merging of the linac, in that it employs radio-frequency accel-
eration, with the circular accelerator and its associated bend magnets. In the
synchrotron, unlike the cyclotron, particles always stay on approximately the
same radius orbit. This is also true of the betatron, but, since (see Ex. 2.2) the
acceleration in the betatron arises from electromagnetic induction, the entire
interior area bounded by the particle orbit must have a time-varying magnetic
field. The synchrotron, however, is free of the constraints on magnetic field of
both the betatron and the cyclotron, so the bend magnets need only be placed
near that orbit, not the entire device. This innovation, along with the imple-
mentation of alternating gradient focusing (also termed strong focusing, as
opposed to the weak focusing of the betatron), has allowed very large energy
synchrotrons to be built. One such device is the 0.9-TeV (1 TeV = 1012 eV)
Tevatron at Fermi National Accelerator laboratory outside of Chicago with a
radius of 1 km. One of course could not imagine the cost associated with using
iron in the entire interior of this device! In fact the modern electromagnets
employed in the Tevatron, which are shown in Fig. 1.2, are superconducting
and as such do not rely on iron to achieve high fields.

Fig. 1.2 Bend magnets associated with
the Tevatron collider, presently the world’s
largest highest-energy synchroton.

The Tevatron is an example of a synchrotron that is operated as a collider,
in which counter-propagating beams of equal energy particles and antiparticles
are squeezed into sub-mm-sized collision regions located inside of the huge,
sophisticated particle detectors used to analyze the debris produced in hard
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collisions. At the Tevatron, the top quark was recently discovered in such a
proton–antiproton (pp̄) collider experiment; at the European laboratory CERN,
which built the first pp̄ collider, the W and Z intermediate vector bosons were
discovered some 15 years previously in a similar manner. An aerial view of the
entire Tevatron complex at Fermilab is shown in Fig. 1.3. The Tevatron injection
system includes a charged particle source, linear accelerator, and two smaller-
energy synchrotrons, as well as the collider ring itself. It also has beamlines
through which high-energy protons extracted from the rings can be directed
onto fixed targets, allowing experiments based on creation of secondary beams
that consist of more exotic particles, such as muons and neutrinos.

Fig. 1.3 Aerial view of the Tevatron collider
complex at Fermilab.

The synchrotron also lends its name to the radiation produced by charged
particles as they bend in magnetic fields—synchrotron radiation. This radia-
tion is both a curse and a blessing. As an energy loss mechanism that has a
strong dependence on the ratio of the particle energy to its rest energy (see
Section 8.7), it practically limits the energy of electron synchrotrons to that
currently achieved, around 100 GeV. On the other hand, synchrotron radiation
derived from multi-GeV electron synchrotrons is the preferred source of hard
x-rays for research purposes today, with over a dozen such major facilities
(synchrotron light sources) world-wide. Synchrotron radiation also forms the
physical basis of the free-electron laser; it can produce coherent radiation in
both long- and short-wavelength regimes that are inaccessible to present laser
sources based on quantum systems. Both the need to create collisions in high-
energy colliders, and the desire to make a high-intensity free-electron laser
imply that the beams involved must be not only energetic, but of very high
quality. A measure of this quality is the phase space density of the beam, which
is introduced in Section 1.5.

Today, particle accelerators, while a mature field, present considerable chal-
lenges to the physicist who must use and improve these tools. These challenges
arise from the need in elementary particle experiments to move to ever increas-
ing energies, a trend that is placed in doubt by the cost of future machines.
As the present high-energy frontier machines cost well in excess of $109,
accelerator physicists are in the process of exploring much more compact and
powerful accelerators based on new physical principles. These new acceleration
techniques may include use of lasers, plasmas, or ultra-high-intensity charged
particle beams themselves. Accelerators also promise to play a critical future
role in short-wavelength radiation production, inertial fusion, advanced fission
schemes, medical diagnosis, surgery and therapy, food sterilization, and trans-
mutation of nuclear waste. These goals present new challenges worthy of the
short, yet accomplished, history of the field.

Even with the present level of sophistication, the subject of accelerators can
be initially approached in a straightforward way. The fundamental aspects of
particle motion in accelerators can be appreciated from examination of simple
configurations magnetostatic (or, less commonly, electrostatic) fields, which
may be used to focus and guide the particles, and confined electromagnetic
fields that allow acceleration. Moreover, analysis of charged particle dynamics
in these physical systems has certain general characteristics, which are dis-
cussed in the remainder of the chapter. We begin this discussion by writing
the basic equations governing the electromagnetic field, and then proceed to
review aspects of methods in mechanics—Lagrangians and Hamiltonians, as
well as special relativity. Based upon this discussion, we then introduce the
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description of beams as distributions in phase space. We finish the present
chapter by examining the notion of the design trajectory and analysis of nearby
“paraxial” trajectories.

We note that the following three sections are indicated (by the � symbol)
as review, and therefore optional for a first reading of the text. In fact, most
readers should benefit from the material presented, either as a review for those
who are familiar with the methods discussed, or as a focused introduction to
the uninitiated. In any case, the results contained in Sections 1.2–1.4 will be
referenced often in the remainder of the text, and will thus need to be seriously
examined sooner or later.

1.2 System of units, and the Maxwell equations�

In order to construct our analyses, we must begin by choosing a system of
units. While classical electromagnetism in general, and particle beam physics
in particular, are a bit more compactly written in cgs units, we use mks or SI
units in this text. This is for two main reasons: (a) ease of translation of the
results into laboratory situations, and (b) familiarity of undergraduate physics
students, as well as engineers, with the mks system.

Several basic equations need to be introduced in units-specific context. These
include the Maxwell equations:

�∇ · �B = 0, (1.1)

�∇ · �D = ρe, (1.2)

�∇ × �H = ∂ �D
∂t

+ �Je, (1.3)

and

�∇ × �E = −∂ �B
∂t

, (1.4)

where ρe and �Je are the free electric charge density and current density,
respectively, that are related by the equation of continuity

�∇ · �Je + ∂ρe

∂t
= 0. (1.5)

We will also make use of the following relations between the electromagnetic
fields, the scalar potential φe and the vector potential �A,

�E = −�∇φe − ∂ �A
∂t

, (1.6)

�B = �∇ × �A. (1.7)

For completeness, we must also include the constitutive equations,

�D = ε( �D)�E and �B = µ( �H) �H, (1.8)

where ε( �D) andµ( �H) are the electric permittivity and the magnetic permeability
of a material, respectively. We will not encounter the first of Eq. (1.8) again in
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the text (except in the context of vacuum electrodynamics, where ε( �D) = ε0,
the permittivity of free space) until we discuss propagation of light in Chapter 8.
The latter of Eq. (1.8) will be revisited when we discuss the design principles
of electromagnets based on ferric materials. We note here that the constants
ε0 = 8.85×10−12C2/N m2 andµ0 = 4π×10−7N/A2 are related to the speed
of light c by

c = (ε0µ0)
−1/2 = 2.998 × 108m/s. (1.9)

In particle beam physics, one often wishes to use MeV (106 eV=1.6×10−13 J)
as the unit of energy. In this case it is useful, when making calculations of applied
acceleration due to an electric field, to quote the electric force (acceleration
gradient) qE in terms of eV/m by simply absorbing the charge q, an integer
multiple of e, into the units. This same position may be adopted in the context
of applied magnetic forces if one notes that the force qvB also has units of eV/m
when one absorbs the charge q and multiplies the magnetic field B in tesla (T)
by the velocity v in m/s. Note that this implies that the commonly encountered
level of 1 T static magnetic field is equivalent to a 299.8 MV/m static electric
field in force for a relativistic (v ≈ c) charged particle. This electric field
exceeds typical breakdown limits on metallic surfaces by nearly two orders of
magnitude, giving partial explanation to the predominance of magnetostatic
devices over electrostatic devices for manipulation of charged particle beams.

When considering the self-forces of a collection of charged particles, the
combination of constants e2/4πε0 often arises. This quantity may be converted
to our desired units by writing

e2

4πε0
= rcm0c2, (1.10)

where rc is defined as the classical radius of the (assumed |q| = e) and m0 is the
rest mass of the particle. In the case of the electron, we have a rest energy m0c2 in
useful “high-energy physics” units of mec2 = 0.511 MeV and a classical radius
of re = 2.82×10−15 m. Thus, we may write e2/4πε0 = 1.44×10−15 MeV m.

1.3 Variational methods and phase space�

The study of beam physics is based on the understanding of relativistic motion
of charged particles under the influence of electromagnetic fields. Such fields
are constrained by the relations shown in Eqs (1.1)–(1.7). Given the �E and �B
fields, the analysis of charged particle dynamics can be performed, perhaps
most naturally, using only differential equations derived from the Lorentz force
equation,

d�p
dt

= q(�E + �v × �B). (1.11)

While we will base many of our discussions of charged particle motion in this
book on the Lorentz force equation, more powerful methods are also available
that use variational principles, that is, Lagrangian and Hamiltonian analyses.
These methods, which have traditionally been introduced at the graduate level,
are now increasingly taught in undergraduate-level mechanics courses. The
power of variational methods is found in their rigor, and in the clarity of
the results obtained when such approaches are applied to problems naturally
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formulated in difficult coordinate systems, such as curvilinear or accelerating
systems. Even in difficult cases, variational methods give a straightforward
formalism that reliably yields the correct equations of motion.

We now give a short review of these methods, which will also prepare us, in
a quite natural way, to discuss the roles of electromagnetic fields and special
relativity in classical mechanics. This review is meant to clarify these subjects
to the reader who is already conversant in variational methods and relativity.
For one who has not studied these subjects before, the following discussion (the
remainder of this chapter) may serve as an introduction, albeit a steep one, which
may be supplemented by material recommended in the bibliography. It may be
remarked that beam physics provides some of the most elegant and illustrative
uses of advanced methods in dynamics, as well as the role of relativity in
these dynamics, that are encountered in modern physics. Thus, even if this text
serves as a first introduction to these subjects, it will be a physically relevant
and, hopefully, rewarding discussion.

The discussion of variational methods nearly always is initiated by introduc-
tion of the Lagrangian, which in non-relativistic mechanics is given by

L(�x, �̇x) = T − V . (1.12)

Most commonly, the potential energy V is a function of the position (coordin-
ates) �x and the kinetic energy T is a function of the velocity �̇x. Note that
we use the notation �x to indicate the set of M generalized coordinates3 xi 3A generalized coordinate is often a simple

Cartesian distance (x, y, or z), but may also be
an angle, as naturally found in cylindrical or
spherical polar coordinate systems.

(i = 1, . . . , M), and the associated velocities are, thus, defined as �̇x ≡ d�x/dt
(the compact notation (.) ≡ d/dt will be used in this text to indicate a total time
derivative). The application of Lagrangian formalism, and the Hamiltonian
formalism that is based upon it, to forces not derivable from a scalar potential
V (such as magnetic forces) is discussed in the next section.

The equations of motion are derived from the Lagrangian by Hamilton’s
principle, or the principle of extreme action,

δ

∫ t2

t1

L dt = 0. (1.13)

The variation of coordinate and velocity components in the integral in Eq. (1.13),
when at an extremum, yields a recipe that gives the Lagrange–Euler equations
of motion,

d

dt

(
∂L

∂ ẋi

)
− ∂L

∂xi
= 0. (1.14)

The power of these equations is first and foremost in that they rigorously gen-
erate forces of constraint and “fictitious forces” such as those arising from
centripetal acceleration. This is a significant accomplishment, but one that is
eventually overshadowed by the use of the Lagrangian to form the basis of
constructing a Hamiltonian function,

H(�x, �p) ≡ �p · �̇x − L, (1.15)

where the canonical momenta are defined through the Lagrangian by

pi ≡ ∂L

∂ ẋi
. (1.16)
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These momenta (momentum components) are new dependent variables in the
formalism, replacing the role of the velocity components in the Lagrangian ana-
lysis. In the most familiar example, that of non-relativistic motion in Cartesian
coordinates, the kinetic energy is T = 1

2 m0�̇x2 = �p2/2m0, and the momenta are
pi = m0ẋi, as expected.

In the Hamiltonian formalism, Hamilton’s principle gives twice the number
of equations of motion,

ẋi = ∂H

∂pi
, ṗi = −∂H

∂xi
, (1.17)

as the Lagrange–Euler equations. The first of Eq. (1.17) defines the velocity
components in terms of the canonical momentum components; the second,
governing the time evolution of the momentum, is a generalization of Eq. (1.11).
The canonical momentum components and corresponding coordinates have a
nearly symmetrical relationship with each other, and pairs of such variables
are termed canonically conjugate. The space (�x, �p) of all such pairs is termed
phase space. It should be noted that the canonical momentum is not necessarily
identical to the more familiar mechanical momentum employed in Eq. (1.11).
This point is returned to in Section 1.4.

The Hamiltonian formalism allows constants of the motion to be derived
with little difficulty. From Eq. (1.17), it is apparent that if the Hamiltonian
is independent of the coordinate, then the conjugate momentum component
is a constant of the motion. Likewise, if the Hamiltonian is independent of
the momentum component, then the conjugate coordinate is a constant of the
motion. Further, the Hamiltonian obeys the relation

Ḣ = ∂H

∂t
, (1.18)

and therefore H is a constant of the motion if it is not explicitly dependent on
the time t.
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Fig. 1.4 Phase plane plot for simple har-
monic oscillator orbits, corresponding to three
different values of the Hamiltonian H =
1/8, 1/2, and 2, with m = 1 and, ω = 0.5.
The trajectories of the oscillator lie along
ellipses described by these constant H curves.

If the Hamiltonian is a constant of the motion, we can most often identify
this constant as the total energy U of the system. The invariance of H allows
one of the main tools of particle beam physics to be employed—the drawing
of the so-called phase space maps. The phase space is the 2M-dimensional
space of all M pairs of coordinates and their canonically conjugate momenta.
Phase space maps, an example of which is displayed in Fig. 1.4, are of a (xi, pi)

trajectory drawn in two-dimensional projections of the full phase space. As
such, these representations may more properly be called phase plane maps.
Of course, in fully three-dimensional accelerators, we have M = 3, and there
are three phase planes in which maps are drawn. In particle beam physics, in
fact, one often deals with motion in which the variables in one phase plane
are very nearly independent of any other phase plane variable. This state of
affairs, in addition to the inherent ease of two-dimensional (as opposed to
higher dimensional) visualization, makes phase plane descriptions popular as
a tool for understanding particle beam dynamics.

The creation of phase plane maps such as Fig. 1.4 is accomplished analytically
by using a time-independent Hamiltonian and plotting H(xi, pi) = constant
curves. In more complicated cases, phase plane maps are created by numerical
solution of the equations of motion. The concept of phase space is central to



“chap01” — 2003/6/28 — page 9 — #9

1.3 Variational methods and phase space� 9

the field of particle beam physics and certain results, such as the invariance of
phase space density (see discussion Section 1.4) can only be clearly discussed
in the context of Hamiltonian formalism.

Perhaps the most familiar example of this mapping technique is the one-
dimensional non-relativistic simple harmonic oscillator. In this case (for
simplicity indicating the coordinate x1 ⇒ x) the one-dimensional Hamiltonian
is of the form

H = 1

2m
[p2

x + m2ω2x2], (1.19)

where ω2 = K/m, and K is the oscillator strength or spatial gradient of the
restoring force, K = −Fx/x. The phase plane maps associated with simple
harmonic motion are thus ellipses in the two-dimensional (x, px) phase plane,
as shown by the examples in Fig. 1.4. Note that the Hamiltonian alone does not
indicate the direction in which the system traces out the ellipse, but examination
of the force and velocity direction does—the direction of motion is clearly
clockwise in phase space for this system.

The area of the phase plane ellipse is proportional to the value of the
Hamiltonian associated with each trajectory, and is therefore also a constant
of the motion. This area is given by∮

px dx =
∮

pxẋ dt =
∮
(H + L) dt = Uτ . (1.20)

where τ is the period of the oscillation. We shall see in Chapter 5 that the area
associated with a closed trajectory in phase space forms a central place in the
theory particle beam dynamics.

The phase plane map is of great use in visualizing the motion of charged
particles beyond simple harmonic orbits (see Ex. 1.3) and is profitably employed
even in cases when the Hamiltonian is not a constant of the motion. In the case
of a time-varying Hamiltonian, one may not trivially generate plots like Fig. 1.4,
but must often solve the equations of motion (Eq.(1.17)) first. Furthermore, if
one solves these equations in such a case, it may not be illuminating, but rather
confusing (e.g. Fig. 3.6), to use continuous lines in phase space to illustrate
the motion as it advances continuously in time. For systems typical of circular
accelerators, the Hamiltonian varies periodically in time t, however. A valuable
strategy for phase plane plotting in this case is taking periodic “snap-shots” and
plotting the instantaneous position in the phase plane once per Hamiltonian (not
oscillation) period. This type of map is termed a Poincare plot (e.g. Fig. 3.7)
and is discussed further in Chapter 3.

There are also manipulations of the phase space or phase plane variables that
can be undertaken to create a description where the Hamiltonian is a constant
of the motion in the new variables, where it was not constant in the old vari-
ables. To see the utility of this approach, consider an explicitly time-dependent
Hamiltonian, in which the potential arises from a traveling wave so that the
Hamiltonian can be written

H = 1

2m
[p2

x + G(x − vϕ t)], (1.21)

where vϕ is the phase velocity of the wave in the x direction and G is an
arbitrary function. The simplest way to make the Hamiltonian into a con-
stant of the motion is to perform a mathematical transformation of the system
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description. Let us examine such a transformation of the coordinates, the
Galilean transformation, where

x̃ = x − vϕ t. (1.22)

Now we must transform the Hamiltonian so that the coordinate’s equation of
motion remains correct. With the new canonical momentum set equal to the
old, p̃x = px,

˙̃x = − ∂H̃

∂ p̃x
= p̃x

m
− vϕ = v − vϕ , (1.23)

as expected for a Galilean transformation. To generate Eq. (1.23) as a correct
canonical equation of motion (i.e. one derivable from Eq. (1.17)), the new
Hamiltonian H̃ must transform from the old Hamiltonian H as

H̃(x̃, p̃x) = H(x̃, p̃x)− vφ p̃x = 1

2m
[p̃2

x + G(x̃)] − vφ p̃x. (1.24)

Now the new Hamiltonian H̃(x̃, p̃x) is explicitly independent of t and is thus
a constant of the motion. The trajectory of the charged particle in this wave
potential can, therefore, be visualized, as before, with a phase plane map created
by the simple algebraic relationship between x̃, p̃x, and H̃. For example, we
may use Eq. (1.24) with a moving simple harmonic oscillator potential, G(x̃) =
1
2 Kx̃2. This leads to

H̃(x̃, p̃x) = 1

2m

[
p̃2

x + m2ω2x̃2 − 2pϕ p̃x

]

= 1

2m

[
(p̃x − pϕ)

2 + m2ω2x̃2
]

− Tϕ , (1.25)

where we have defined pϕ and Tϕ as the (non-relativistic) momentum and kinetic
energy associated with a particle of mass m traveling at the phase velocity vϕ .
In this case, the constant H̃ curves associated with the motion shift upward in
p̃x by pϕ , when compared those shown in Fig. 1.4, to as shown in Fig. 1.5.

Note that the phase plane plots for the moving simple harmonic oscillator
potential can be made to look identical to the stationary potential plot by use of

Fig. 1.5 Phase plane plot for moving simple
harmonic oscillator orbits corresponding to
same limits in x̃ as those in x found in Fig. 1.4.
Here pϕ = 2, with m = 1 and ω = 0.5. The
curves corresponding to the moving potential
are represented by solid lines, and their coun-
terparts from Fig. 1.4 are shown in dashed
lines.
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our Galilean transformation from x to x̃ and, further, by plotting δp ≡ p̃x − pϕ .
Each of the curves in the x̃ frame is associated with values (total energies) of
the new Hamiltonian H̃ = H − Tϕ . The constant −Tϕ contains no information
about the system’s dynamics (cf. Eq. (1.17)), however, and may be ignored. At
this point, we need to clarify that the transformation given by Eqs (1.22)–(1.24)
is a purely mathematical change of variables, not a change of physical frame.
We will make use of this type of mathematical transformation while discuss-
ing acceleration in traveling electromagnetic waves (Chapter 4). The physical
change of frame is described, of course, not by a Galilean transformation but
by a Lorentz transformation, as discussed in Section 1.4.

The type of variable transformation illustrated by Eqs (1.22)–(1.24) is termed
a canonical transformation because it preserves the canonically conjugate rela-
tionship between the coordinate and the momentum. In general, one does not use
such an ad hoc way of deriving the transformation but a more rigorous method
based on generating functions, which are discussed in advanced mechanics
textbooks. These functions come in a variety of types, depending on the vari-
ables to be transformed. The generating function always is dependent on a pair
of variables per phase plane, some combination of the old and new canonically
conjugate variables.

As an example, consider use of a generating function to transform the
one-dimensional simple harmonic oscillator Hamiltonian, Eq. (1.19) to a par-
ticularly interesting new form. The well-known solutions for the motion in such
a system are given by

x(t) = xm cos(ωt + θ0), and px(t) = mωxm sin(ωt + θ0). (1.26)

We would like to transform the Hamiltonian to one that reflects the constant
rate of advance in argument of the cosine function in Eq. (1.26), so we propose
that the new coordinate be chosen as θ = ωt + θ0. In this case, we can use
a generating function of the form F(x, θ) to transform the simple harmonic
oscillator problem into a more useful form. According to Hamilton’s principle,
Eq. (1.27) must yield the following formal properties:

px = ∂

∂x
F(x, θ), J = ∂

∂θ
F(x, θ), H ′ = H + ∂

∂t
F(x, θ), (1.27)

where J is the new momentum and H ′ is the new Hamiltonian. We can
deduce from Eq. (1.27) that a proper generating function is given by F(x, θ) =
1
2 mωx2 cot(θ). Using F(x, θ) to obtain the new momentum and Hamiltonian,
we have

H ′ = Jω, (1.28)

which is a constant of the motion. Since ω is a constant, the momentum J ,
known as the action, is also a constant. The new canonically conjugate pair are
termed action-angle variables. The action-angle description is important for
analyzing perturbations to simple harmonic systems, a commonly encountered
problem in particle beam physics. The action is, comparing Eqs (1.18) and
(1.25), simply related to the area enclosed by the phase space trajectory,

J = 1

2π

∮
px dx. (1.29)

The action is also generally known to be an adiabatic invariant, in that when
the parameters of an oscillatory system are changed slowly, the action remains a
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constant. This can be illustrated by writing the differential equation for a slowly
varying oscillator (with the mass factor set to m = 1) as

ẍ + K(t)x = 0, (1.30)

and substituting an assumed form of the solution

x(t) = C
√

a(t) cos(ψ(t)). (1.31)

After some manipulations, we obtain the relations

ψ̇ = 1

a
and ä − ȧ2 + 4

2a
+ 2Ka = 0. (1.32)

The substitution given in Eq. (1.31) is commonly found in the theory of time-
dependent oscillators, which is quite important in particle beam physics—it is
explicitly used in an analysis in Chapter 5. The solution of the first equation in
(1.32) is formally

ψ =
∫

dt

a(t)
, (1.33)

while the second of these equations’ solution can be examined approximately.
Assuming the first and second time derivatives of a are small (ä/a � K and
(ȧ/a)2 � K)4, one has simply4These conditions give a quantitave definition

of the term “adiabatic”.

a(t) ∼= (K(t))−1/2 or x(t) = C(K(t))−1/4 cos(ψ(t)). (1.34)

The momentum corresponding to this approximate solution is

px(t) = ẋ ∼= C(K(t))1/4 sin(ψ(t)). (1.35)

The area of the phase space ellipse, whose semimajor and semiminor axes are
the maximum excursion in x and px, respectively, is again the value of the action
at that time,

J = 1
2 px,maxxmax = 1

2 C
2
. (1.36)

The action is independent of time and dependent only on the initial conditions
(taken at t = 0) through the constant C

2
. Thus, we have shown the adiabatic

invariance of the action J for oscillators whose strength is slowly varying, a
result pertinent to discussions in future chapters.

We emphasize at this juncture the primary role of the momenta in Hamilto-
nian methods, as opposed to the velocity components found in the Lagrangian
formalism. This is inherent in both the structure of Hamiltonian and relativistic
analyses, as is reviewed in Section 1.4.

1.4 Dynamics with special relativity and
electromagnetism�

The Hamiltonian formulation of dynamics is naturally suited to analyzing
relativistic systems. We shall see that this is because in the canonical approach
to dynamics the roles of the coordinates, momenta, time, and energy have
a rigorously defined relationship with each other. The relationships between



“chap01” — 2003/6/28 — page 13 — #13

1.4 Dynamics with special relativity and electromagnetism� 13

these dynamical variables actually become clearer after one studies relativ-
istic dynamics, where the ways in which all such variables transform from one
inertial frame to another are emphasized.

The point of departure for the present discussion is precisely this trans-
formation, which should be familiar to any reader of this text, the Lorentz
transformation. This relation, which governs the transformation of coordinates
and time from one inertial reference frame to another moving at constant speed
vf = βf c with respect to the first frame (along what we choose to be the z-axis),
is written as

x′ = x, y′ = y, z′ = γf(z − βf ct), ct′ = γf(ct − βf z), (1.37)

where the Lorentz factor γf = (1 − β2
f )

−1/2. This Lorentz transformation acts
upon the space-time four-vector �X ≡ (x, y, z, ct), and preserves the length, or
norm, of the four-vector. This norm, termed a Lorentz invariant because it is
frame independent, is specified by the quantity

| �X|2 = x2 + y2 + z2 − (ct)2. (1.38)

The invariance of the norm of the space-time four-vector is often the starting
point of the derivation of the Lorentz transformation, as it indicates that the
phase velocity c of spherical light waves in vacuum is independent of inertial
reference frame.

The invariance property of the norm of �X is therefore entirely equivalent to
the property that the four-vector transforms between frames under the rules of a
Lorentz transformation. Thus, a four-vector can be defined equivalently either
as an object that obeys Lorentz transformations or one in which its norm, as
defined by Eq. (1.38), is conserved during such a transformation. The invariance
of four-vector norm is a key tool in performing analyses of relativistic dynamics.

The absolute value of | �X|2, which refers to the “distance” in space-time
between two events (or implicitly, one event and the origin), can be positive,
negative, or zero. If it is positive, it is termed “space-like”, as one may always
transform to a frame where the events occur at the same time, but at a separated
distance. If it is negative, it is termed “time-like”, as one may always transform
to a frame in which the events occur at the same point in space, but at separate
times. Space-like pairs of events cannot be causally connected, because they are
too far separated in space-time for light to propagate between them. If the norm
of �X is zero, the two events are exactly connected by a signal traveling at the
speed of light. In this case, the events are said to be on each other’s light cone.

Using Lorentz transformations of space and time, it can be trivially shown that
properties of waves—the wave numbers (spatial frequencies) ki and (temporal)
frequency ω—form a four-vector. This is intuitively so, since the wave number
simply measures spatial intervals while the frequency measures intervals in
time. As an illustration of this derivation, consider a plane electromagnetic
wave moving in the positive z-direction, with functional form cos[kzz −ωt]. If
one begins in a frame moving with velocity βf c in the z-direction, the inverse
transformation

cos

[
kzγf(z

′ + βf ct′)− ωγf

(
t′ + βf

z′

c

)]

= cos

[
γf

(
kz − βf

ω

c

)
z′ − γf(ω − βf kzc)t

′
]
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can be deduced from Eq. (1.37). We can thus see that kz and ω (Lorentz)
transform as z and t, respectively. Further, we know, therefore, that the norm
of the four-vector (�kc, ω) = (kxc, kxc, kxc, ω) is

∑

i

k2
i c2 − ω2 = const. (1.39)

In the case where the constant on the right-hand side of Eq. (1.39) is zero, this
can be recognized as the dispersion relation for vacuum electromagnetic waves.
From a quantum-mechanical viewpoint, such waves correspond to massless
photons (cf. Section 7.1). When the constant in Eq. (1.39) is not zero, a quantum-
mechanical interpretation indicates that we are examining an object of non-
vanishing rest mass, or rest energy.

The quantum mechanical indentifications of free particle momenta and
energy in terms of wave properties, pi = h̄ki and U = h̄ω, lead us to the conclu-
sion that momentum and energy must also form a four-vector, �P ≡ (�pc, U) =
h̄(�kc, ω), with the invariant

�P2 ≡ �p2c2 − U2 =
∑

i

p2
i c2 − U2 = const. (1.40)

We must allow for the possibility of Lorentz transformation into the rest frame
of the particle, in which case �p = 0 and the invariant can be identified as the
rest energy of the particle. Thus,

�p2c2 − U2 = −(m0c2)2, (1.41)

where m0 is the rest mass of the particle. Note the norm of the momentum–
energy four-vector is always negative (or “energy-like”), because the square of
the rest energy is positive definite.

As an example of the utility of Lorentz transformations of the (�kc, ω) four-
vector, we consider the process known as relativistic Thomson backscattering
where a relativistic electron collides head-on with a photon (quantum of light,
see Section 8.1), yielding a reversal of photon direction and an increase in the
photon energy and momentum. This process is illustrated in Fig. 1.6, through a
diagram of the initial and final momentum vectors of the electron and photon.
The term Thomson is somewhat imprecisely5 applied to this scattering process5It is more precise to term this process

“inverse Compton scattering”, as in the end
we see that the photon energy, as observed
in the laboratory frame, increases. This is the
opposite of what happens in Compton scatter-
ing of photons off of electrons that are initially
at rest. See Exercise 1.6 for further discussion
of this point.

whenever the change in the electron momentum during collision is negligible. In
the frame traveling with the electron, βf = v/c (v is the velocity of the electron),
an oncoming photon of laboratory frequency ω has an observed frequency given
by Lorentz transformation, ω′ = ωγf(1 + βf). If we assume that this photon
suffers a reversal of its momentum vector direction but no change in amplitude
during collision, a second Lorentz transformation of the (�kc, ω) four-vector
yields ωs = ω′γf(1 + βf) = ωγ 2

f (1 + βf)
2. Thus, for a highly relativistic

(βf ≈ 1) electron, the frequency (energy) of backscattered light is increased,
ωs ∼= 4γ 2

f ω. This scattering process is explored further in Exercise 1.6.

Fig. 1.6 Diagram of electron and photon
momenta in initial and final states of the
Thomson backscattering process. The viola-
tion of momentum conservation is exagger-
ated in this picture.

Initial electron state Initial photon state 

Final electron state Final photon state 
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While we have now established the four-vector relationship between the
energy and momentum of a physical system, we have not described what
these quantities are in the familiar terms of mass and velocity. In doing so,
we must obtain the well-known expressions of the non-relativistic limit, where
the momentum �p = m�v and energy U = �p2/2m + const. We must also preserve
the most general relationship between the momentum and energy,

dU = �v · d�p, or less specifically,
dU

dp
= v, (1.42)

where p = |�p| and v = |�v|. This result is derived by noting that the energy
change on a particle is equal to the work performed on it, dU = �F · d�l, where
the force is assumed to still obey Newton’s third law, �F = d�p/dt, and the
differential length is d�l = �v · dt. Differentiating Eq. (1.40) and combining with
Eq. (1.42), we also obtain

�v = �pc2

U
. (1.43)

Then, solving for the energy as a function of the velocity, we may write((v

c

)2 − 1

)
U2 = −(m0c2)4 or U = γm0c2, (1.44)

where we have now defined the Lorentz factor associated with the particle
motion as γ ≡ (1 − (�v2/c2))−1/2. The Lorentz factor of a particle is, therefore,
its total (mechanical) energy normalized to its rest energy, and the condition
γ � 1 implies a particle that travels at nearly the speed of light. For electrons,
having rest energy mec2 = 0.511 MeV, it is very easy to obtain a particle that
travels nearly at the speed of light—megavolt-class electrostatic accelerators
can accomplish this feat. However, for the other most commonly accelerated
particle, the proton (with rest energy mpc2 = 938 MeV), it is relatively difficult
to impart enough energy (several GeV) to make the particle relativistic.

Using Eqs (1.43) and (1.44), we also now have an expression for the
momentum vector,

�p = γm0�v ≡ �βγm0c, (1.45)

which allows Eq. (1.40) to be written, after removing the common factor of
m0c2 in all quantities, as

γ 2 = �β2γ 2 + 1. (1.46)

Equation (1.40) is valid not only for single particle systems, but also for general
systems of many (j = 1, . . . , N) objects, in which case we have


∑

j

�pj




2

c2 −

∑

j

Uj




2

= constant. (1.47)

For such systems it is still true that, if any of the objects have non-zero rest
mass, one may transform to a coordinate system in which the total momentum
of the system vanishes,

∑
j pj = 0.

In this frame, the total energy of the system is obviously minimized. This fact
allows straightforward calculation of the available energy for particle creation
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in high-energy physics experiments. Such a calculation serves as an illustrative
example of the use of a Lorentz invariant norm.

In colliders, where charged particles and their antiparticles counter-circulate
in rings (or collide after accelerating in opposing linacs), the colliding species,
in general, have equal and opposite momentum. Therefore, the first term in
Eq. (1.47) vanishes and all of the particle energy (2U) is available for creation
of new particles. Thus, the Z0 particle (with a rest energy of 91.8 GeV, 1 GeV =
109 eV) has been studied in detail using the LEP collider at CERN, by using
electron and positron beams accelerated to 45.9 GeV and then collided. Before
the era of the colliding beam machines, however, the frontier energies for
exploring creation of new particles took place in fixed-target experiments where
the beam particles struck stationary target particles. In the fixed target collision,
one may calculate the Lorentz invariant on the right-hand side of Eq. (1.47) by
evaluating the left-hand side in the lab frame,

p2
bc2 − (Ub + mtc

2)2 = −m2
t c4 − m2

t c4 − 2γbmbmtc
4 = constant, (1.48)

where the subscripts b and t indicate beam and target particles, respectively.
In the center of momentum frame, however, the total momentum vanishes and
the constant in Eq. (1.48) is seen to set a maximum on the total rest energy of
particles created in the collision,

∑
i

mp,ic
2 ≤

√
2γbmbmtc2. (1.49)

The maximum energy for particle creation in Eq. (1.49) occurs when the beam
and target particles annihilate and the newly created particles are at rest in the
center of momentum frame. Equation (1.49) clearly indicates why colliding
beam machines are so important in exploring the energy frontier. At Ferm-
ilab, proton–antiproton collisions occur between counter-propagating beams
of 900 GeV with up to 1.8 TeV available for creation of new particles.6 If one,6Because protons and antiprotons are had-

rons, composed of substituent particles
(quarks and gluons), the effective (likely to
observe) energy available for particle creation
is considerably smaller than the full beam
particle energy, and the “physics reach” of a
1.8-TeV hadron collider may be only in the
several hundreds of GeV.

instead, substitutes a stationary proton as the target particle with a 900 GeV
incident particle, the available energy for particle creation is only 41 GeV!

Equations (1.44) and (1.45) have introduced the relativistically correct
momentum and energy. If one substitutes the relativistically correct form of
the momenta into Eq. (1.9), it should be emphasized that this Lorentz force
relation remains valid by construction. It is of interest to examine this vec-
tor equation of motion for the momentum in the case (discussed in detail in
Section 2.1) where only a magnetic field is present. In such a scenario the
energy of the particle is constant, and we may write

γm0
d�v
dt

= q(�v × �B). (1.50)

Equation (1.45) displays, upon comparison with the non-relativistic version of
Eq. (1.9), an effect known as the transverse relativistic mass increase, where
the inertial mass under transverse (normal to the velocity) acceleration effect-
ively behaves as though m0 → γm0 . Note that this is also true for electric forces
that are instantaneously transverse. For cases involving energy-changing accel-
eration (in which the acceleration is parallel to the velocity vector), the situation
is different, as illustrated in Section 2.4.
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With the results in this section thus far, obtained by emphasizing the invari-
ance of the norms of a variety of four-vectors under Lorentz transformation, it is
straightforward to find other relations more typically derived directly by use of
Lorentz transformations. For example, let us examine the addition of velocities.
Using the notation vf = βf c to designate the relative velocity of a new frame,
the velocity in the new frame of a particle whose velocity is v (parallel to vf ) in
the original frame is

v′ = p′c2

U ′ = γf c(pc − βf U)

γf(U − βf pc)
= γfγm0c3(β − βf)

γfγm0c2(1 − βfβ)
= β − βf

1 − βfβ
c. (1.51)

This derivation is, perhaps, more transparent than the more standard version
based on Lorentz transformation of the components of �X, because it begins
with more powerful concepts. It also points to an important facet of the theory
of special relativity—velocities do not play a central role as useful descriptions
of the motion since they do not form a part of a four-vector.

The momenta and energy, on the other hand, do form a four-vector. This is
an interesting state of affairs within the context of particle dynamics, because
these same quantities play a primary role in the Hamiltonian formulation of
mechanics. We now discuss how the two concepts, Hamiltonian and four-vector
dynamics, relate to each other in the context of charged particle dynamics in
electromagnetic fields.

We begin by noting that the Lorentz force (Eq. (1.9)) acting on a charged
particle is written, in terms of potentials, as

�FL = d�p
dt

= q(�E + �v × �B)

= q

[
−�∇φe − ∂ �A

∂t
+ �v × ( �∇ × �A)

]

= q

[
−�∇φe − ∂ �A

∂t
− (�v · �∇)�A

]
= q

[
−�∇φe − d�A

dt

]
. (1.52)

In the last line of this expression, we have used the definition of the total (partial
plus convective) time derivative.

The forces in electromagnetic fields are most generally derived not only from
a scalar (electrostatic) potential φ, but from an electromagnetic vector potential
�A as well; thus, we must generalize our approach to Hamiltonian analysis. In
particular, we note that Eq. (1.52) indicates that the equations of motion for
the momenta are not simply derivable from a conservative potential energy
function. If we define the canonical momenta to be pc,i = pi + qAi, however,
the Hamilton equation of motion for this canonical momentum is correctly
obtained by the prescription

dpc,i

dt
= −∂H

∂xi
= −q

∂φe

∂xi
, (1.53)

where the Hamiltonian contains only a conservative (electrostatic) potential
energy. At this point, what we have considered (á la Newton) to be the
momentum in the problem can now be seen to be a mechanical as opposed
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to canonical momentum. The symmetry between the total “canonical” energy
(value of the Hamiltonian) and the canonical momentum is clear—the total
energy H = U + V = U + qφe (the numerical value of the Hamiltonian func-
tion) also has a portion arising from a potential (in this case, qφe). Note that
the remainder of the total energy (the “mechanical” component) also includes
a rest energy component, U = γm0c2 = T + m0c2, that is, the sum of rest and
kinetic energies.

From this discussion, it should also be clear that the scalar and vector poten-
tials, since they comprise components of the momentum–energy four-vector,
also form a four-vector, (�Ac,φ). Further, they are paired with the mechanical
momenta and energy through the definitions of canonical momenta and energy,
pc,i = pi + qAi and H = U + qφ. To complete our survey of electrodynamic
four-vector quantities, we note that the equations governing the potentials can
be written as [

�∇2 − 1

c2

∂2

∂t2

] { �A
φe

}
= −

{
µ0�Je
ρe

ε0

}
. (1.54)

Since the potentials form a four-vector, the sources (�Je, ρec) form one as well.
This result could also have been alternatively derived directly from charge
conservation, and Lorentz transformation of lengths (and thus charge density)
and velocities.

As we have just discussed sources and potentials associated with electro-
magnetic fields, it is appropriate at this point to examine the transformation
between inertial frames of these fields. Since the potentials form a four-vector
(�Ac,φe), an obvious starting point of the discussion is to discuss the Lorentz
transformation of this four-vector. This relation, governing the transformation
of potentials from one frame to another that moves at speed βf c along what we
again choose to be the z-axis is written as

cA′
x = cAx, cA′

y = cAy, cA′
z = γf(cAz − βfφe), φ′

e = γf(φe − βf cAz).
(1.55)

The quantities Ax, Ay, Az, and φ are all, in principle, functions of x, y, z, and t.
In the new (primed) frame, the spatio-temporal dependence of these quantities
must be expressed in terms of the primed variables, found by substitutions
obtained from the inverse Lorentz transformation

x = x′, y = y′, z = γf(z
′ + βf ct′), t = γf(ct′ + βf z′). (1.56)

The fields are obtained from this expression using the following relations:

�E′ = −�∇′φ′
e − ∂ �A′

∂t′
, �B′ = �∇′ × �A′. (1.57)

The transformation of the electromagnetic fields described by Eqs(1.55)–(1.57)
are often written as

�E′⊥ = γf(�E⊥ + �vf × �B⊥), �E′|| = �E||,

�B′⊥ = γf

(
�B⊥ − 1

c2
�vf × �E⊥

)
, �B′|| = �B||,

(1.58)
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where the symbols || and ⊥ indicate the components of the field parallel to
and perpendicular to the direction of Lorentz transformation of the frame �vf ,
respectively.

Now we can return to the derivation of relativistic Lagrangian and
Hamiltonian mechanics with electromagnetic fields. With our definition of
canonical momenta, we can proceed to construct the Lagrangian by integrating
the expression that defines these momenta,

pc,i = ∂L

∂ ẋi
= γm0ẋi + eAi, (1.59)

with respect to the spatial coordinates. We thus obtain

L(�x, �̇x) = −m0c2

γ
+ q�A · �v − qφe(�x), (1.60)

where we have allowed the presence in the Lagrangian of a conservative poten-
tial dependent only on �x, and identified it as the negative of the electrostatic
potential energy −qφe(�x).

The relativistically correct Hamiltonian is obtained from Eq. (1.60) by use
of the definition

H = �pc · �̇x − L = �pc · (�pc − q�A)
γm0

− L

= (�pc − q�A)2
γm0

+ m0c2

γ
+ qφe(�x). (1.61)

By multiplying this expression by γm0c2 and using H − qφ = γm0c2, we
arrive at

(H − qφe)
2 = (�pc − q�A)2c2 + (m0c2)2, (1.62)

or

H =
√
(�pc − q�A)2c2 + (m0c2)2 + qφe. (1.63)

We note that Eq. (1.62) could have been obtained by direct substitution of
canonical definitions into Eq. (1.41) governing the norm of the mechanical
momentum–energy four-vector, that is,

(�pc − q�A)2c2 − (H − qφe)
2 = −(m0c2)2. (1.64)

1.5 Hierarchy of beam descriptions

The methods for analyzing single particle dynamics given in Section 1.4 repres-
ent the first step in understanding the physics of charged particle beams. A real
beam is made up not of a single particle, however, but a collection of many (N)
particles. The second step towards describing the dynamics of an actual beam,
therefore, is to consider a collection of N points in phase space, as illustrated
in the phase plane plot shown in Fig. 1.7. It is not obvious how to proceed with
the description of such a system, where the phase space has 2NM variables.
It is therefore now necessary to discuss a hierarchy of descriptions that begin
with single particle dynamics.
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Fig. 1.7 Distribution of particles in (x, px)

phase plane.
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For many particle beams, the density of particles in phase space is small
enough that the particles are essentially a non-interacting ensemble, with both
macroscopic and microscopic electromagnetic fields created by the particles
themselves contributing insignificantly to the motion. In this case, one only
needs to solve the single particle equations of motion in the presence of
applied forces, and then proceed to produce a collective description of the
beam ensembles’ evolution based on the known single-particle orbits. This
book assumes the validity of this type of description, which straightfor-
wardly leads to analyses based the beam’s distribution. In real charged particle
beams, as well as in the modeling of such beams in multi-particle compu-
tations, this distribution is discrete, as illustrated in Fig. 1.7. On the other
hand, for analytical approaches, the distribution is viewed as a smooth prob-
ability function7 in a 2M-dimensional phase space f (�x, �p, t), that is, the7With a smooth phase space distribution,

the charge and current distributions asso-
ciated with such a distribution are also
continuous and smooth. The fields derived
from the smooth charge/current densities may
be termed macroscopic. Deviations from
these approximate fields (near an individual
particle) may be termed microscopic.

number of particles found in a differential phase space volume dV = d3�x d3�p
in the neighborhood of a phase space location �x, �p at a time t is simply
given by f (�x, �p, t) dV . While the computational approach to multi-particle
dynamics is beyond the scope of this book, analytical approaches based
on the distribution function f (�x, �p, t) will be introduced in Chapter 5. One
result concerning phase space distributions deserves prominent discussion at
this point, however, the conservation of phase space density, or Liouville’s
theorem.

To begin, we write the total time derivative of the phase space distribution
function,

df

dt
= ∂f

∂t
+ �̇x · �∇�xf + �̇p · �∇�pf , (1.65)

where the second and third terms on the right-hand side of Eq. (1.62) are the
convective derivatives in phase space, derived simply by the chain rule. (Note:
the subscript on the gradient operators indicates differentiation with respect to
either coordinate or momentum components.) If the forces are derivable from
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a Hamiltonian, then

df

dt
= ∂f

∂t
+

∑
i

(
dxi

dt

∂f

∂xi
+ dpi

dt

∂f

∂pi

)

= ∂f

∂t
+

∑
i

(
∂H

∂pi

∂f

∂xi
− ∂H

∂xi

∂f

∂pi

)

= ∂f

∂t
+

∑
i

(
∂H

∂pi

∂H

∂xi

df

dH
− ∂H

∂xi

∂H

∂pi

df

dH

)
= ∂f

∂t
. (1.66)

Because we have assumed that the forces are derived from a Hamiltonian, it
can be seen that the summation in Eq. (1.66) vanishes, and df /dt = ∂f /∂t. In
Eq. (1.65), it should be understood that the total derivative is taken by moving
about phase space according to the particle’s equations of motion at a given
phase space point (�x, �p). If neither creation nor destruction of the particles are
allowed, we also have, by drawing a small constant differential volume dV
around a given particle, f (�x, �p, t) = dV−1 in the neighborhood of this point.
Then we have the result that ∂f /∂t = 0 and

df

dt
= 0. (1.67)

This result is termed Liouville’s theorem, and it states that the phase space
density encountered as one travels with a particle in a Hamiltonian system is
conserved. The derivation of Eq. (1.67) may seem to be tautological, since
we stated that ∂f /∂t = 0 without referring to any property of Hamiltonian.
Equation (1.67) is more illustrative than it seems, however, because the proper-
ties of the Hamilton equations guarantee that the density of any volume of phase
space whose boundary follows these equations is constant. An alternative point
of view, suggested by Eq. (1.65), is that phase space itself is incompressible.
Perhaps the most common statement derived from interpretation of Eq. (1.67)
is that the volume occupied by particles in phase space is conserved. For sys-
tems in which the motion of all phase planes is uncorrelated, the motion in the
separate phase planes is independent. Then one can state that the emittance or
area occupied by particles in a phase plane is conserved. The conservation of
emittance, which is discussed further in Chapter 5, plays a very important role
in the theory and design of particle accelerators.

Here, we concentrate on cases where Liouville’s theorem holds, since we will
almost exclusively consider motion due to applied forces that are derivable from
a Hamiltonian. Deviations from this physical scenario form much of the follow-
ing volume on advanced subjects in beam physics so we restrict comment on
such topics to a few general statements. When multi-particle interaction effects
become important, there are two distinct regimes to consider. The first can be
described as one in which the collective macroscopic fields arising from the
bulk beam charge and current density is the dominant self-interaction mechan-
ism of the beam. These self-fields are most often termed space-charge when
they arise from the near-field of the beam’s charge distribution and wake-fields
when they arise from the beam’s collectively radiated fields. The evolution of
the beam distribution can be dominated by space-charge fields, in which case
one can use a description that is based on the notions of cold fluid motion
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developed in the field of plasma physics. In this scenario, simple collective
(plasma) oscillations are encountered. When only macroscopic beam fields are
important, these fields may, in principle, be included into the Hamiltonian,
Eq. (1.67) is unchanged, and the implications of Liouville’s theorem still hold.

On the other hand, microscopic binary collisions may strongly affect the
beam distribution evolution, and diffusion (heating) may occur in phase space.
There are a number of methods for dealing with this complication, but most are
beyond the scope of the present discussion. However, one method is relatively
easy to appreciate in the context of this section. An explicit non-Hamiltonian
term may be introduced on the right-hand side of Eq. (1.67), which accounts
for the time derivative of the distribution due to collisions (the effects of micro-
scopic fields), so that df /dt = ∂f /∂t|coll. In this generalized form, the revised
version of Eq. (1.67) is termed theBoltzmann equation. Thus, Eq. (1.67), which
is commonly known (when the full derivative is written as in Eq. (1.65)) as the
Vlasov equation, is also referred to as the collisionless Boltzmann equation.
The non-macroscopic-Hamiltonian physics arising from emission of radiation
by particle beams gives rise to dissipation and damping of phase space tra-
jectories. The description of the effect of such phenomena on the distribution
function may be treated with a full Boltzmann equation approach, or though an
analysis based on the Fokker–Planck equation.

1.6 The design trajectory, paraxial rays, and
change of independent variable

While a rigorous analysis of classical motion can be performed, as discussed
above, using canonical momenta and coordinates within the confines of the
Hamiltonian formalism, one often finds it useful in practice to use a more
physically transparent description. This is obtained by use of paraxial rays,
vector representations of the local trajectory which, by definition, have an angle
with respect to a design trajectory that is much smaller than unity. Trajectories
of interest in beam physics are always paraxial—one must confine the beam
inside of small, near-axis regions, such as the drift tubes shown in Fig. 1.1.

Both the paraxial ray and the design trajectory are illustrated in Fig. 1.8. In
this figure, an example of a design trajectory, defined as the ideally preferred
trajectory—a locally straight or curved line— through the system, is displayed.
As we shall see, one defines the coordinate system for analyzing beam physics
problems locally by use of the design trajectory. As a result, the coordinate
systems we encounter in this text may naturally be locally Cartesian, or locally
curvilinear (i.e. inside of bend magnets). Curvilinear coordinate systems are
obviously found in circular accelerators where the design trajectory is closed
upon itself and is often referred to as the design orbit.

Fig. 1.8 Design trajectory and examples of
small angle paraxial rays.

�

Design trajectory

Paraxial rays
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Figure 1.8 also displays examples of paraxial rays. The ray is a useful visual-
ization tool and can be described mathematically by a coordinate offset, and an
angle θ . In a locally Cartesian coordinate system,8 we take the distance along 8When the design orbit is derived from recti-

linear motion, we will choose z as the distance
along the design orbit, in part to easily con-
nect to field descriptions written in cylindrical
coordinates. When the design orbit is bent, we
will emphasize the curvilinear nature of the
coordinate system by using the variable s as
the distance along the design orbit.

the design trajectory to be z. In this system, a horizontal offset is designated by
x and the horizontal projection of the angle is θx. This angle is given in terms
of the momenta as

tan θx = px

pz
= vx

vz
. (1.68)

Analogous definitions hold for the other transverse offset and angle, which
we term vertical and indicated by the variable y. We are ultimately interested
in a description of particle dynamics that uses the distance along the design
trajectory as the independent variable. The reason for this is straightforward; in
an optics system (for charged particles or photons) the forces encountered are
always specified in space and not in time. Thus, a spatial description is more
efficient and natural.

In order to use z as the independent variable, we must be able to write
equations of motion in terms of z. This is accomplished by writing total time
derivatives (written in compact notation as (.) ≡ d/dt) in terms of total spatial
derivative in z,

( )′ ≡ d

dz
= 1

vz

d

dt
. (1.69)

The derivative of a horizontal offset with respect to z is given by

x′ = dx

dz
= tan(θx). (1.70)

When analyzing beams, which are by definition are collections of rays localized
in offset and angle near the design orbit, it can be seen from Eq. (1.70) that
the transverse momentum (normal to the design orbit) is much smaller than the
longitudinal momentum, px,y � pz ∼= |�p|. As a consequence, we may in most
cases use the small angle, or paraxial, approximation, which allows us to
write a series of useful approximate expressions,

x′ = tan(θx) ∼= θx ∼= sin(θx) � 1. (1.71)

It is not immediately apparent how this assumption restricts the offset from the
design orbit. As we shall see, all particle beam optics systems that focus and
control the rays fundamentally resemble simple harmonic oscillators, where
the transverse force is linear in offset, Fx = −Kx. Using this analogy, we can
write a model equation for the transverse offset

ẍ + ω2x = 0, (1.72)

whereω2 = K/γm0. Further, Eq. (1.72) can be cast in terms of a ray description,
using Eq. (1.70), to obtain

x′′ + k2x = 0. (1.73)

Here, k ≡ ω/vz is the characteristic oscillation wavenumber of the optics
system. The solutions of Eq. (1.73) are of the form x = xm cos(kz+φ), yielding
an approximate angle of kxm sin(kz + φ), and so the paraxial approximation is
obeyed for offsets xm � k−1. Another restriction on the validity of a paraxial
description is relevant in the case of a curvilinear design orbit. In this case, we
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must require that xm � R (where R is the local radius of curvature of the design
trajectory) for the paraxial approximation to hold.

When one uses paraxial equations of the physically transparent form shown
in Eqs (1.72) and (1.73), the analysis strays somewhat from a rigorous phase
space description. In fact, one often uses this paraxial formalism instead of a
canonically correct approach, even to the point of replacing a momentum (e.g.
px) with the angle (x′) in phase plane plots. In this case, when we make a plot of
the trajectory in, for example, the (x, x′) plane, which is an example of a trace
space, we construct what is termed a trace space plot. This does not introduce
complications in understanding the motion at constant values of pz, because we
can always recover the transverse momentum by using px = pzx′ ∼= βγm0cx′.
If longitudinal acceleration occurs, however, the angle is diminished and an
apparent damping (so-called adiabatic damping, see Section 2.6) of the motion
is observed.

With a change of independent variable evidently of high interest to particle
beam physics, we must revisit the question of Hamiltonian analysis in this
context. In order to proceed with transformation of the Hamiltonian into one
with a new independent variable, we first note that the symmetry of Eqs (1.62)
and (1.64) (in which the energy and momenta are on equal footing) is suggestive
of a notion—the choice of the energy function as the Hamiltonian is a bit
arbitrary as well. We could just as naturally have chosen one of the momenta
as the Hamiltonian from which we derive equations of motion, and the form
of Eq. (1.62) would remain the same, except for a minus sign. The process
of changing the Hamiltonian from an energy-based function to a momentum-
based function also requires that the independent variable be changed from t
to the coordinate canonical to the new Hamiltonian. This can be illustrated by
referring to the stationary property of the action integral (Eq. (1.11)) which
gives rise to the equations of motion,

δ

∫ t2

t1

L dt = δ

∫ t2

t1

(�pc · �̇x − H) dt = 0. (1.74)

We can accomplish the change of independent variable, from t to z, by rewriting
Eq. (1.74) as follows:

δ

∫ z(t2)

z(t1)

(pc,xx′ + pc,yy′ − Ht′ + pc,z) dz = 0, (1.75)

where again the prime indicates differentiation with respect to the new inde-
pendent variable, ( )′ ≡ d/dz. In Eq. (1.64), the role of the new Hamiltonian is
obviously played by −pc,z ≡ G,

G = −pc,z =
√
(H − qφe)2 − (pc,y − qAy)2c2 − (pc,x − qAx)2c2 − (m0c2)2,

(1.76)
the role of the third coordinate is taken by−t, and the role of the third momentum
by H. Note that this statement implies that H and −t are canonically conjugate.

This type of independent variable transformation is a canonical transforma-
tion by design, and is used in applications, such as particle beam dynamics,
where the applied forces are described more naturally by functions of a spatial
coordinate than by functions of time. Because the transformation is canonical,
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the Hamilton’s equations of motion are obtained in the usual fashion,

p′
c,x = −∂G

∂x
= ∂pc,z

∂x
, p′

c,y = −∂G

∂y
= ∂pc,z

∂y
, H ′ = ∂G

∂t
= −∂pc,z

∂t
,

x′ = ∂G

∂pc,x
= − ∂pc,z

∂pc,x
, y′ = ∂G

∂pc,y
= −∂pc,z

∂pc,y
, t′ = − ∂G

∂H
= ∂pc,z

∂H
.

(1.77)

For problems in which one of the spatial coordinates (z in particle beam physics)
is taken to be the independent variable, it is assumed that the motion can be
followed monotonically in this coordinate. Note that this is always the case for
time as an independent variable (as far as we know!). If the trajectory describing
the motion is not a monotonic function of the independent variable, then it is
not uniquely described by this variable. Fortunately, in particle beams this
assumption is also always correct.

1.7 Summary and suggested reading

In this chapter, we have motivated much of the contents of this book by intro-
ducing particle accelerators in their scientific and historical context. In order to
build up the tools needed to analyze the dynamics of charged particle beams,
we have reviewed methods in Lagrangian and Hamiltonian dynamics as well
as special relativity, in a unified way. These general subjects gave way to con-
cepts more specific to describing the motion charged particles in beams. We
have examined the notion of phase space, and the conservation of its density
in Hamiltonian systems—the Liouville theorem. We introduced the concept
of the design trajectory, an ideal trajectory through an accelerator or transport
system, which allows nearby trajectories (paraxial rays) to be defined. The
design trajectory also gives one the freedom to analyze the motion using dis-
tance along such a trajectory as the independent variable, instead of time. This
way of approaching description of trajectories is natural in beam optics and
other problems in beam physics.

The subject of classical mechanics can be reviewed in a recommended
number of texts:

1. K.R. Symon, Mechanics (Addison-Wesley, 1971). A classic and readable
undergraduate text that introduces variational methods.

2. J.B. Marion and S.T. Thornton, Classical Dynamics of Particles and
Systems (Harcourt Brace & Company, 1995). A more expansive treatment
of mechanics for advanced undergraduate readers.

3. H. Goldstein, C. Poole, and J. Safko, Classical Mechanics (Addison-
Wesley, 2002). One of the best graduate treatments of variational
principles in mechanics.

4. L. Michelotti, Intermediate Classical Mechanics with Applications to
Beam Physics (Wiley, 1995). A fairly complete introduction to modern
methods in nonlinear dynamics, with an excellent array of problems and,
as a bonus, has detailed examples in beam physics. Written at the graduate
level.
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Electromagnetic theory is central to this book, and provides the natural
context for introducing special relativity. A selection of useful texts includes:

5. R. Wangsness, Electromagnetic Fields (Wiley, 1986). A complete, junior
level introductory text.

6. R. Resnick, Introduction to Special Relativity (Wiley, 1968). A nice
primer on special relativity.

7. M.A. Heald and J.B. Marion, Classical Electromagnetic Radiation
(Harcourt Brace & Company, 1995). An advanced undergraduate
course book.

8. J.D. Jackson, Classical Electrodynamics (Wiley 1975). The standard in
graduate texts.

9. L.D. Landau and E.M. Lifschitz, The Classical Theory of Fields
(Addison-Wesley, 1971). A dense, deep investigation for graduate
students.

10. J. Schwinger, L.L. Deraad, and K. Milton, Classical Electrodynamics
(Perseus, 1998). This text is a fine alternative to Jackson’s, and a bit
more modern.

This chapter has introduced some of the more basic notions of particle accel-
erators, including phase space descriptions and the design trajectory. Other
recommended introductory texts, which will also serve as references to the
following chapters, may include:

11. M.S. Livingston, Particle Accelerators, Advances in Electronics I,
pp. 269–331 (Academic Press, 1948). This monograph gives an over-
view of the history of particle accelerators until 1948, and has an excellent
reference list pointing to the primary articles in early accelerator scient.
It anticipates the rise in importance of the proton synchrotron.

12. D. Edwards and M. Syphers, An Introduction to the Physics of High
Energy Accelerators (Wiley, 1993). A fine primer on high-energy
devices, and good reference book, especially on circular accelerators.
Written at senior undergraduate level.

13. H. Wiedemann, Particle Accelerator Physics I: Basic Principles and
Linear Beam Dynamics (Springer-Verlag, 1993). Very comprehensive
and rigorous book, concentrating on circular accelerators. Written at the
graduate level.

14. S.Y. Lee, Accelerator Physics (World Scientific, 1996). A compre-
hensive and sweeping introduction, especially in the areas of circular
accelerators. Written at the graduate level.

15. M. Reiser, Theory and Design of Charged Particle Beams (Wiley, 1994).
An in-depth treatment of beam optics and transverse collective effects,
with emphasis on rigorous analytical methods. Written at the graduate
level.

16. S. Humphries, Jr., Principles of Charged Particle Acceleration (Wiley,
1986). This is a strongly pedagogical text with good physics underpin-
ning.

17. M. Sands, The Physics of Electron Storage Rings: an Introduction
(Stanford, 1970). A ground-breaking book, with clear explanations of
basic storage ring physics and radiation damping effects. Written at the
graduate level.
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There are a number of books one may examine to get a flavor for collective
effects in charged particle beams, subjects that have been deemed to lie outside
of this text’s scope:

18. J.P. Lawson, The Physics of Charged Particle Beams (Clarendon Press,
1977). Very physics oriented, with excellent melding of plasma physics
notions into the text. Written at the graduate level.

19. S. Humphries, Jr., Charged Particle Beams (Wiley, 1990). A unified
presentation of the physics of high power and high brightness beams.
Written at the graduate level, it is a companion to Ref. 16, by the same
author.

20. R. B. Miller, Intense Charged Particle Beams (Plenum, 1982). A good
first look at very high current beams, with collective forces emphasized.
Written at the graduate level.

21. A. Chao, Physics of Collective Beam Instabilities in High Energy Accel-
erators (Wiley, 1993). A classic treatment of instabilities, very broad in
scope and rigorous in approach. Written at the graduate level.

The are some general references that will aid a student or practitioner in the
field:

22. A. Chao and M. Tigner, editors, Handbook of Accelerator Physics and
Engineering (World Scientific, 1999). Not a text, but a vade mecum
for the accelerator field, with summaries of basic principles, and useful
formulae covering almost every conceivable aspect of accelerators. For
professional use.

23. The Particle Data Book, an annually-updated updated reference for high-
energy physics, available from Lawrence Berkeley National Laboratory
at http://pdg.lbl.gov/.

Exercises

(1.1) Consider the three-dimensional simple harmonic oscil-
lator where T = 1

2 m�̇x2 and V = 1
2 K�x2.

(a) Construct the Lagrangian of this system in Cartesian
coordinates, �x = (x, y, z).

(b) Derive the canonical momenta and construct the
Hamiltonian for this system. Show that the total
energy of the system is conserved, along with
the energy associated with motion in each phase
plane.

(c) Construct the Lagrangian of this system in cyl-
indrical coordinates (r, z,φ), noting that �̇x = ρ̇ρ̂ +
żẑ + ρφ̇φ̂ and that �x2 = ρ2.

(d) Construct the Hamilton for this system in cylindrical
coordinates. From inspection of the Hamiltonian,
deduce any constants of the motion associated with
the angular momentum.

(e) Construct the Lagrangian of this system in spher-
ical polar coordinates (r, θ ,φ), noting that �̇x =
ṙr̂ + rθ̇ θ̂ + r sin θφ̇φ̂ and that �x2 = r2.

(f) Construct the Hamilton for this system in spherical
polar coordinates. From inspection of the Hamilto-
nian, deduce any constants of the motion associated
with angular momenta.

(1.2) In order for the motion to be stable in the simple harmonic
oscillator case illustrated in Fig. 1.4, the force must be
restoring or K > 0. Assuming an unstable system, how-
ever, we have K < 0. Plot the curves corresponding to
H = − 1

8 , − 1
2 , and − 2 in (x, px) phase space. Note that

the curves are not closed, indicating unbounded motion.

(1.3) While the forces most commonly associated with charged
particle motion in accelerators are of the form of a simple
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harmonic oscillator, meaning they are linearly propor-
tional to distance from an equilibrium point (i.e. Fx =
−Kx), other types of forces may be present. For instance,
in a sextupole magnet, the force is of the form, Fx = −ax2,
where a is a constant.

(a) What is the Hamiltonian associated with one-
dimensional motion under this applied field?

(b) Draw some representative constant H curves in
(x, px) phase space for this Hamiltonian. Comment
on whether the motion is bounded or unbounded (see
Example 1.2).

(c) In an octupole-like field, the force is of the form
Fx = −ax3. Construct the Hamiltonian and plot
some constant H curves. Consider the effect of chan-
ging the sign of the constant a and discuss whether
the motion is bounded or unbounded.

(1.4) Consider an undamped oscillator consisting of a weight
hanging from a spring. This spring is set in motion and has
a certain action J and frequencyω. If a window to the cool
outside air is opened in the room containing this oscillator,
the spring becomes colder and more rigid, causing ω to
slowly rise. As J is an adiabatic invariant, the total energy
in the oscillator grows as the thermal energy is removed
from the spring! Explain. (Hint: consider the microscopic
internal degrees of freedom of the spring.)

(1.5) Show, by Taylor expansion of the particle mechanical
energy, U = γm0c2 in terms of the velocity when v � c,
that this total energy is approximately the sum of the
particle rest energy and the non-relativistic expression for
the kinetic energy.

(1.6) The Thomson backscattering analysis of photons by elec-
trons given above is only approximate and applies when
the incident photon energy is very small compared to the
rest energy of the electron, m0c2 = 0.511 MeV. This ana-
lysis, referred as Compton scattering, should be familiar
to the reader. One can thus recognize that Thomson scat-
tering, where the scattered photon has the same frequency
as the incident photon in the electron rest frame, is only an
approximate description—a limit of the general Compton
scattering phenomenon for low-energy photons.

(a) The usual Compton scattering analysis is per-
formed in the electron rest frame. From the
Lorentz transformation above, find an expression
of electron energy γmec2 and incident (counter-
propagating) photon energy h̄ω such that the
photon energy in the electron rest frame is less
than 10 per cent of the electron rest energy, h̄ω′ <
mec2/10.

(b) By first performing (in the electron rest frame)
the usual Compton scattering analysis of scattered
wavelength λ′ as a function of angle θ ′, and then
performing a Lorentz transformation on the results

back to the lab frame, find the scattered wavelength
as a function of laboratory angle.

(c) Now consider the photon to be incident in the lab
frame at some arbitrary angle θi, where θi = 0
is defined as the counter-propagating case. Find
the angle and energy of the incident photon in the
electron rest frame by Lorentz transformation. Find
the energy of the backscattered light (copropagat-
ing with the electron velocity) as a function of θi,
using a full Compton analysis.

(d) With the Thomson assumption that (in the elec-
tron rest frame) the frequency does not change
during the scattering event, perform the same
analysis as in part (c). For an energy in the elec-
tron rest frame of h̄ω′ = mec2/10, compare the
backscattered energies given by the Thomson and
Compton analyses.

(1.7) Using the Lorentz transformation of the �P four-vector,
generalize the addition of velocities expression given by
Eq. (1.51) to account for any arbitrary angle (set to zero
in Eq. (1.51)) between the particle and frame velocities.

(1.8) Consider a stationary uniform cylinder of charge that has
charge density ρe up to a radius a, and then vanishes
outside of this radius.

(a) From Gauss’ law, find the radial electric field
associated with this charge distribution.

(b) Now assume that this distribution is in motion along
its symmetry axis with speed v and with respect to
the lab frame. From Lorentz transformation-derived
rules for determining the fields (Eq. (1.58)), find
the electric and magnetic fields in the lab frame
associated with the moving charge distribution.

(c) From Lorentz transformation of the charge–current
four-vector, find the density ρ ′

e and current density
J ′

e,z associated with the moving charge distribution.
(d) Using Gauss’ and Ampere’s law directly, calculate

the radial electric field, and the azimuthal magnetic
field associated with the moving charge distribution.
Compare with your answer in part (b).

(e) What is the net radial force on a particle inside of
the beam (that has velocity v)?

(1.9) For a beam particle acted upon by the forces given in
Exercise 1.8:

(a) Determine the scalar and vector potentials. (Hint:
find the scalar potential in the rest frame of the beam
first.)

(b) Construct the Lagrangian for this system.
(c) Derive the Hamiltonian for the system in

Exercise 1.8(c).
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(d) Derive the radial equations of motion for this
particle.

(e) If you change the sign of the particle but not its
velocity, the radial motion of the particle is approx-
imately simple harmonic for motion for ρ < a.
Under what conditions on ρe, v, and a is this approx-
imation valid? Assuming these conditions, plot the
phase space using constant H curves both inside and
outside of the beam.

(1.10) Non-equilibrium solutions to the Vlasov equation are gen-
erally quite difficult, but it is possible to make a very
powerful statement about solutions for cases in equilib-
rium, where ∂f /∂t = 0. As an example of the analysis of
a Vlasov equilibrium, show that for a time-independent
Hamiltonian, H(�x, �p),

f (�x, �p) = g[H(�x, �p)],
is an equilibrium solution to the Vlasov equation, where
g is any differentiable function of the Hamiltonian. This
result will be important to the discussion of equilibrium
distributions in Chapter 5 (cf. Ex. 5.2).

(1.11) A practical check on the paraxial approximation is to
see that the error made in assuming that the longitudinal
velocity is approximately the total velocity, vz

∼= v, is
small.

(a) Assuming px,y � pz, write v as a function of px ,
py, and pz. Taylor expand this expression to second
order in px/pz and px/pz (x′ and y′).

(b) For what ratio of
√

p2
x + p2

y/pz is the error in the

expression vz
∼= v kept to 0.1 per cent?

(1.12) For the Hamiltonian derived in Exercise 1.9 for the
unlike-sign particle case:

(a) Perform a canonical transformation to use z as the
independent variable.

(b) Derive the equations of motion for the radial and
angular coordinates and momenta with z as the
independent variable.

(c) Assuming the angular momentum of the particle is
zero, construct (r, r′) trace space plots for motion
both inside and outside of the beam.

(d) What is the equation of motion for H? What about t?
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Many of the physical scenarios that unfold in the sometimes complex-looking
world of particle beams and accelerators can be understood by first referring to a
simplified situation, from which the essential physics can be extracted. The pur-
pose of this chapter is to survey the most illustrative of these situations, where
only static fields play a role. We thus examine the motion of charged particles
in: uniform (dipole) magnetic and electric fields, both separately and in com-
bination; magnetic dipole fields that have periodic longitudinal variation of the
dipole orientation (undulators); and magnetic and electric quadrupole fields.
These analyses will serve to both introduce physical concepts, and to develop
mathematical techniques which are needed for the discussions in following
chapters.

2.1 Charged particle motion in
a uniform magnetic field

In a uniform (dipole) magnetostatic field, with field direction chosen along
the z-axis, �B = B0ẑ, the Lorentz force equation governing the time evolution
of the momentum can be written in two components, one parallel and one
perpendicular to the field,

dpz

dt
= 0,

d�p⊥
dt

= q(�v⊥ × �B) = qB0

γm0
(�p⊥ × ẑ). (2.1)

One immediately sees from Eq. (2.1) that pz is a constant of the motion and, fur-
ther, since the magnetic force does no work on the particle, the total momentum

p =
√

p2
z + p2⊥ (and therefore the total energy γm0c2) is also constant. Thus

the transverse momentum must also be constant in amplitude, but changing
in direction. It is well known that this implies circular motion in the plane
perpendicular to the magnetic field. In general, therefore, the motion is the
superposition of a circular orbit and a uniform drift normal to the circle—in
other words, it is helical. Although the circular orbit traced by the particle in the
plane perpendicular to the field is familiar from non-relativistic mechanics, we
now examine this motion in more detail in the context of relativistic particles.

One approach is to write the differential equations governing the transverse
velocities,

dvx

dt
= qB0

γm0
vy,

dvy

dt
= − qB0

γm0
vx. (2.2)
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Taking the time derivative of Eq. (2.2) and combining the results with the
original expressions yields simple harmonic oscillator equations,

d2vx

dt2
+ ω2

c vx = 0,
d2vy

dt2
+ ω2

c vy = 0, (2.3)

where we have substituted in the relativistic cyclotron frequency,

ωc ≡ qE0

γm0
. (2.4)

The relativistically correct transverse velocities are, from Eq. (2.3), obviously
harmonic functions of time, having angular frequency ωc. This definition of the
cyclotron frequency differs from its non-relativistic analogue by the presence
of the factor of γ in the denominator. This factor of γ is due to the relativistic
change to the inertial mass (cf. Eq. 1.50)—the particle appears to be heavier, and
the “fictitious force” associated with centripetal acceleration becomes larger,
mv2/R → γmv2/R. This point is explored further in the exercises.

Equations (2.2) and (2.3) taken together indicate harmonic oscillations of
equal amplitude in x and y, which are 90◦ apart, having the general solution

vx = −vm sin(ωct + φ), vy = vm cos(ωct + φ). (2.5)

Equation (2.5) can be integrated to find the transverse motion in its most
general form:

x = R cos(ωct + φ)+ x0, y = R sin(ωct + φ)+ y0. (2.6)

One can easily deduce from Eq. (2.6) that the particle orbit is a circle of radius
R = vm/ωc centered at (x0, y0).

We have not yet established the dependence of R on other physical parameters
of the system. To do this, we note that balancing of radial force and centripetal
acceleration implies

γmv2⊥
R

= qv⊥B0, or p⊥ = qB0R. (2.7)

This relationship between the transverse momentum component and the
magnetic field is often written in a form which is useful for easy calculations,

p⊥(MeV/c) = 299.8 · B0(T)R(m). (2.8)

Equation (2.8) recasts the second of Eq. (2.7) in the “engineering” units of
high-energy accelerators.

In this discussion we have described the relativistically correct helical motion
of a charged particle in a uniform magnetic field, which is the spring-board for
examining two situations of present interest: the circular accelerator, and the
focusing solenoid.
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Fig. 2.1 Helical orbit with small pitch angle
(0.1) in uniform magnetic field.
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2.2 Circular accelerator

The results of the previous section can be applied to discussion of the circular
accelerator if the pitch angle (θp = tan−1(pz/p⊥)) associated with the motion
is small, as is shown in Fig. 2.1. In fact, for simplicity of analysis, we must
begin the discussion by assuming that the pitch angle vanishes, thus allowing
us to initially ignore the out of bend plane motion. To see why this is so, we
reintroduce in this context the notion of the circular design orbit, the trajectory
in the accelerator that the ideal particle—the one tracing the exact trajectory that
the designer desires—follows. Because this orbit must be closed in the circular
accelerator, we are clearly restricted to in-plane motion, with pz = 0. In the
example of Fig. 2.1, we may think of the design orbit as being in the z = 0
plane (the bend plane), with radius R = 5 centered on the point x = 0, y = 0.

The motion of charged particle trajectories near the design orbit may be stable
(tending to remain near the design orbit) or unstable (tending to diverge from
the design orbit). In some circular accelerators, it is necessary that the charged
particles be stored in the accelerator near the design orbit for more than 1010

revolutions, or turns, so it is obviously of paramount importance that motion
near the design orbit be stable.
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Fig. 2.2 Design (solid line) and transversely
perturbed (dashed line) orbits in uniform
magnetic field.

It is obvious from Fig. 2.1 that the vertical motion (along the z-axis, out of
the bend plane) is not at all stable—the motion in this system is unbounded in
the z-dimension. We shall return to this point in Section 3.1 when we discuss
motion in a nonuniform magnetic field, and resolve the problem of unbounded
motion in the dimension normal to the plane containing the design orbit.

Concentrating now on the motion in the bend plane, there are two possible
ways in which this motion can be perturbed from the design orbit—first, by an
error in center of curvature of the orbit, and second, by an error in the value of
the radius of curvature, which is, of course, equivalent to a deviation in particle
momentum from that of the ideal (design) particle. The first type of perturbation
is illustrated in Fig. 2.2, which shows two orbits, with the second (perturbed)
orbit having the same radius, but with center offset from the design orbit center
by a small amount in y. It can be clearly seen that this perturbed orbit displays
stability, as it passes through the design orbit twice per turn around the circle.
Two different classes of perturbations, both leading to an error in the center
of curvature, are displayed in Fig. 2.2: pure angle errors at x = 0, 10 and
y = 5; pure offset errors at x = 5 and y = 0, 10. The errors at all other points
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R

x

s

y Fig. 2.3 Locally defined right-handed
coordinate system used with bending design.
Here s is the distance along the design orbit,
x is the distance from this orbit along the
radius of curvature, and y is the distance from
the design orbit out of the bend plane.

along the trajectory are a superposition of angle and offset perturbations. From
these observations, we may strongly suspect that the perturbed trajectory is
a harmonic oscillation, but we must first develop the proper analysis tools to
verify this suspicion.

As stated in Chapter 1, as we will typically take the distance along the design
orbit to be the independent variable (in this case indicated by s), we implicitly
wish to analyze the charged particle dynamics near the design orbit. In the
present case, this orbit is specified by a certain radius of curvature R (and
thus a certain momentum p0 = qB0R), and center of curvature, (x0, y0). With
this choice of analysis geometry, we can locally define a new right-handed
coordinate system (x, y, s), as shown in Fig. 2.3. In this coordinate system,
x is the distance of the orbit under consideration from the design orbit, in the
direction measured along the radius and normal to s. The distance y (formerly
indicated by the coordinate z in Section 2.1) is measured from the design orbit
to the particle orbit under consideration, in the direction out of the bend plane.1 1This convention, in which the symbol y is

defined to be the distance out of the bend plane
is typical of the American literature. European
beam physicists more often use the symbol z
instead, but we do not follow this conven-
tion even though it connects more naturally
to our previous discussion. This is because
our adopted convention makes subsequent
derivations somewhat easier to understand,
and also because it allows the connection
between linear accelerator and circular accel-
erator coordinate systems to become more
obvious.

The choice of a right-handed system in this case is a function of the direction
of the bend, and in simple circular accelerators, one is free to construct the
curvilinear coordinates once and for all. On the other hand, when we encounter
bends in the opposing direction, as in chicane systems (see Chapter 3), we
will choose to consistently define the coordinate x, so that it is positive along
the direction away from the origin of the bend. As we will also choose to leave
the vertical direction unchanged in this transformation, a left-handed coordinate
system will result when the bend direction is changed.

The coordinate system shown in Fig. 2.3 is quite similar to a cylindrical
coordinate system, with x related to the radial variable ρ by the definition
x ≡ ρ− R, s replacing the azimuthal angle φ (ds = R dφ), and y, as previously
noted, replacing z. Thus we can write the equations of motion for orbits in this
system by using the Lagrange–Euler formulation (see Problem 2.1), as

dpρ
dt

= γm0v2
φ

ρ
− qvφB0, (2.9)

where vφ = ρφ̇ is the azimuthal velocity.
Equation (2.9) can be cast as a familiar differential equation by using x as

a small variable (x  R, which is also equivalent, as will be seen below, to
the paraxial ray approximation) to linearize the relation. This is accomplished
through use of a lowest order Taylor series expansion of the motion about the
design orbit equilibrium (px = pρ = 0) at ρ = R,

dpx

dt
∼= −γ0m0v2

0

R2
x. (2.10)
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Using Eq. (2.7), we write the design radius as R = γ0m0v0/qB0, to obtain

d2x

dt2
+ ω2

c x = 0, (2.11)

where p0 = γ0m0v0 is the design momentum. Equation (2.11) indicates simple
harmonic motion with the same frequency as that of the cyclotron motion
describing the design orbit.

Equation (2.11) is written in more standard form by using s as the inde-
pendent variable, with shorthand designation of differentiation ( )′ ≡ d/ds =
(1/v0) d/dt, as

x′′ +
(

1

R

)2

x = 0. (2.12)

The simple harmonic oscillations about the design orbit described by Eq. (2.12),
associated with the perturbed orbits of particles having the same momentum
as the design particle, are termed betatron oscillations, because they were first
described in the context of the betatron.

These oscillations may seem to be a bit of a mystery at this point, even
though the mathematical derivation leading to Eqs (2.11) and (2.12) is straight-
forward. The question may be asked: if the force and effective mass of the
charged particles on and off of the design orbit are the same, how does the
“restoring force” arise? This question can be answered most easily by looking
at the description of the motion using s as the independent variable, and using
the picture shown in Fig. 2.4.

The total momentum transfer of the particle on an arbitrary offset orbit, as
shown in Fig. 2.4, is calculated as follows:

	px = −q
∫ t2

t1

v0B0 dt = −q
∫ s2

s1

B0

(
1 + x

R

)
ds. (2.13)

The momentum transfer for offset orbits is different in this case because the
integration path length is different—integration of the force equation with s
as the independent variable is equivalent to using the angle along the design
orbit, as parameterized by ds = R dθ . Integration of the force over the offset
path length for a given angular increment covers a larger differential length
dsx = (R + x)dθ . For this reason, the focusing effect described by Eqs (2.11)
and (2.12) is sometimes termed path length focusing. This type of focusing

Fig. 2.4 Path length difference between
design orbit and offset betatron orbit.

x

design orbit
path lengths

R x

Path length  s(1+(x/R))           

Design orbit 
path length s
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forms the basis of so-called weak focusing systems, which are discussed in the
next chapter.

As a final comment in this cursory introduction to circular accelerators, we
remind the reader that the betatron motion (which we indicate by the subscripted
variable xβ ) is that due only to trajectory errors for particles that have the design
momentum. The displacement of an arbitrary particle from the design orbit has
another important component, that due to deviations from the design momentum
δp ≡ p−p0. An analysis which treats the particle dynamics only in a first-order
Taylor series in both betatron (angle and offset) and momentum errors (which
requires both xβ  R and δp/p0  1) is by assumption a description which is
additive in these quantities, that is,

x = xβ + ηx
δp

p0
. (2.14)
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Fig. 2.5 Momentum dispersion in a uniform
magnetic field.

The coefficient ηx is termed the momentum dispersion (in this case in the
x-direction, or horizontal momentum dispersion), and is, as we shall see,
generally a detailed function of the magnetic field profile, with variation in s.
In the case of the uniform magnetic field that we have been studying, however,
it is a constant, as can be seen by the schematic shown in Fig. 2.5. Because the
radius of curvature of each momentum component is linear in p, the momentum
dispersion function in this case is constant,

ηx = ∂x

∂
[
δp
p0

] = p0
∂R

∂p
= R(p0). (2.15)

The momentum dispersion about the design orbit is simply the radius of
curvature of the design orbit (at the design momentum) in the case of a uniform
magnetic field.

Even though this section is devoted to discussion of charged particle motion
under the influence of static magnetic fields, because we have discussed circular
design orbits we refer the reader to an exercise at this point which illustrates
acceleration in a time-varying magnetic field in the betatron, Exercise 2.2.

2.3 Focusing in solenoids
1
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0.2
0.

–0.5

–0.5–1

0.5
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1
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x, y, z

Fig. 2.6 Helical orbit typical of a solenoid,
where the pitch angle is large.

The motion of a charged particle in a focusing solenoid magnet is conceptu-
ally the complement of that in the circular accelerator. This can be seen by
noting that in the solenoid, the design orbit is that which travels straight down
the longitudinal axis of the device (the z-direction), the direction parallel to
the uniform magnetic field. Thus only off-axis orbits with non-zero angular
momentum—defined about the z-axis—are deflected by this solenoid field.
The assumption of paraxial orbits means that pz � p⊥, and the pitch angle of
the helical orbit is very large, as illustrated by Fig. 2.6. The key to understand-
ing the motion of a charged particle in a focusing solenoid is to recognize how
the angular momentum, which drives this helical motion, arises. To do this we
must violate the assumptions of the previous two sections slightly, and ask what
happens when the charged particle moves from a region where the magnetic
field vanishes to one where it is uniform.
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Fig. 2.7 Fringe field region of solenoid, with
initially offset particle trajectory encountering
radial component of magnetic field.
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Magnetic field
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Charged particle
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Iron for magnetic
flux return

In this transitional region, the magnetic field must “fringe” to satisfy the
divergence-free criterion, �∇ · �B = 0. Assuming a cylindrically symmetric
geometry, this criterion becomes

1

ρ

∂

∂ρ
ρBρ = −∂Bz

∂z
. (2.16)

Thus, as the charged particle enters the region where the solenoid field Bz

rises and ∂Bz/∂z is non-vanishing, a radial component of the magnetic field is
encountered. This is illustrated in Fig. 2.7, in which the fringe-field region of a
solenoid is schematically shown.

Particle
trajectory

Initial position

x
�L �c

Later position

y

yL

xL

Fig. 2.8 Transverse trajectory of charged
particle with no initial transverse momentum
(before magnet) in a solenoid. The rotat-
ing Larmor frame is defined by the xL-axis
passing through the charged particle that
begins its motion on the x-axis.

In order to integrate Eq. (2.16), we assume the lowest order approximation
on the form of the longitudinal field, that it is independent of radius. Because of
symmetry, this approximation is good to second order in ρ, that is Bz(ρ, z) ∼=
B(0, z)[1+αρ2 +· · · ], where α is a constant. Assuming in the region of interest
that |αρ2|  1, we may write

Bρ ∼= −ρ
2

∂Bz

∂z

∣∣∣∣
ρ=0

. (2.17)

Further, using the paraxial approximation, we may obtain an excellent estimate
of the total angular momentum imparted to a charged particle as it passes through
the fringe field region of a solenoid by evaluating the force integral assuming a
constant radial offset ρ0,

	pφ ∼= q
∫ t2

t1

vzBρ dt = q
∫ z2

z1

Bρ dz = −q
ρ0

2

∫ z2

z1

∂Bz

∂z

∣∣∣∣
ρ=0

dz

= −q
ρ0

2

∫ z2

z1

dBz

dz

∣∣∣∣
ρ=0

dz = −q
ρ0

2
[Bz(z2)− Bz(z1)] = −q

ρ0

2
B0.

(2.18)

Here we have explicitly assumed that the particle velocity does not change
significantly in direction or magnitude while passing through the magnetostatic
fringe field region enclosed in the interval (z1, z2). Equation (2.18) is sometimes
known as Busch’s theorem.

It is important to note that the total transverse momentum2 “kick” imparted2Note that here we are examining the trans-
verse momentum “kick” in the angular dir-
ection. This should not be confused with
the angular momentum, which has a spe-
cific meaning in the context of Hamiltonian
dynamics—it is the momentum which is
canonical with the azimuthal coordinate φ
(see Ex. 2.4), and of course has units of
momentum times length.

to a particle entering the solenoid, 	pφ ∼= qρ0B0/2, gives rise to subsequent
transverse motion with radius of curvature R = 	pφ/qB0 ∼= ρ0/2. Therefore,
a charged particle with no initial transverse motion displays helical motion
inside of the solenoid, with radius of curvature such that the particle orbit
passes through the axis (ρ = 0). This somewhat surprising result is illustrated in
Fig. 2.8, where both the particle trajectory in this case, and the proper coordinate
system for further analysis of the problem, are shown.
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If the particle begins its trajectory offset in x (x = x0), but not in y, and with
no transverse momentum before the magnetic field region, the angle that this
particle’s trajectory makes with respect to the x-axis is the Larmor angle θL. As
can be seen from Fig. 2.8, the Larmor angle is simply related to the cyclotron
angle of the motion (centered on x = x0/2) by 2θL − θc = 0, or θL = θc/2.
Since the cyclotron angle grows linearly in time, so does the Larmor angle, and
thus we can define the Larmor frequency,

ωL ≡ dθL

dt
= ωc

2
= qB0

2γm0
. (2.19)

The Larmor frame can now be introduced—it is simply the frame that rotates
about the z-axis with the Larmor frequency, as illustrated in Fig. 2.8.

In the Larmor frame, the motion in xL is simple harmonic with the Larmor
frequency,

xL = x0 cos(θL) = x0 cos(ωLt). (2.20)

The central advantage of introducing the Larmor frame is that the motion is
simple harmonic for both of the transverse dimensions in this frame. To see
this, we note that the coordinates in the Larmor frame can be written in compact
form as (

xL

yL

)
=
(

cos(ωLt) sin(ωLt)
− sin(ωLt) cos(ωLt)

)(
x

y

)
. (2.21)

Thus, we have, using Eqs (2.2) and (2.21),

ẍL + ω2
LxL = 0 and ÿL + ω2

LyL = 0. (2.22)

These equations describe simple harmonic oscillations in both xL and yL as
observed in the Larmor frame. Thus, the motion in a solenoid can be described
as a rotation about the origin that proceeds at the Larmor frequency, with simple
harmonic (betatron) oscillations occurring in the rotating frame, also proceeding
with angular frequency ωL.

The last point to be made in discussing solenoid focusing concerns cast-
ing of the problem in standard accelerator physics form, with the distance z
down the axis of the solenoid used as the independent variable. In the paraxial
approximation, we take vz ∼= v, and thus

x′′
L + k2

LxL = 0, (2.23)

y′′
L + k2

LyL = 0, with kL = ωL

vz
= qB0

2pz

∼= qB0

2p
. (2.24)

The inverse of the wave number associated with the betatron harmonic motion
in the Larmor frame is approximately twice the radius of curvature R = p/qB0

of a charged particle of the same momentum traveling normal to the solenoid
field.

2.4 Motion in a uniform electric field

The substitution of a uniform electric field �E = E0ẑ for the uniform magnetic
field changes our point of view quite dramatically, as the energy of the particle is
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no longer constant, but increases due to longitudinal acceleration. The equations
of motion in this case, with �B = 0, read

dpz

dt
= qE0,

d�p⊥
dt

= 0. (2.25)

Since the momentum transverse to the electric field is conserved we may, for
the moment, ignore its effects and concentrate on the one-dimensional problem
of the motion in z.

The most straightforward way to accomplish this is to note that the electro-
static field �E = E0ẑ may be derived from a potential, and thus the potential
energy is

qφe = −qE0z. (2.26)

The Hamiltonian, which in this case is the total energy (see Section 1.4), is

H = γm0c2 + qφe = γm0c2 − qE0z. (2.27)

Because the Hamiltonian is independent of t, it is a constant of the motion, and
it can be evaluated at given initial conditions, H|z=0. The particle’s mechanical
(rest plus kinetic) energy is therefore given by

γm0c2 = H|z=0 + qE0z, (2.28)

or in normalized form,

γ (z) = H|z=0

m0c2
+ γ ′z, (2.29)

where γ ′ ≡ qE0/m0c2, and the initial conditions-derived constant H|z=0 =
γ |z=0m0c2. Note that the energy increases linearly in z, as dU = �v · d�p, or for
one-dimensional motion

dU

dz
= dp

dt
= qE0. (2.30)

This simple relation helps clarify some jargon encountered in the particle beam
physics field, that the amplitude of the accelerating force (change in momentum
per unit time) is referred to as an acceleration gradient, or spatial energy
gradient, commonly quoted in units of MeV/m. The normalized acceleration
gradient γ ′ defines a scale length for acceleration Lacc = γ ′−1, over which the
particle gains one unit of rest energy.

In this simple scenario, other relevant dynamical quantities can be derived
from knowledge of γ (z),

p(z) = βγm0c =
√
γ 2(z)− 1m0c, (2.31)

and

v(z) = βc = p(z)c2

U(z)
= c

√
1 − 1

γ 2(z)
. (2.32)

The deduction of the velocity fromγ is of prime importance because it allows the
transformation of independent variable from t, which enters naturally into the
equations of motion, to z.
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In the analysis given in this section, we have effectively adopted z as the
independent variable. It is also interesting to explore acceleration from the
point of view of explicit time dependence. In this case, we can write the first of
Eq. (2.25) as

dpz

dt
= m0c

d(βzγ )

dt
= m0c[γ + β2

z γ
3]dβz

dt
∼= γ 3m0c

dβz

dt
= qE0, (2.33)

or

dvz

dt
= qE0

γ 3m0
, (2.34)

where we have assumed in Eq. (2.33) that βz ∼= β, the motion is predominantly
along the z direction. Equation (2.34) seems to indicate that the effective mass of
a relativistic particle in accelerating parallel to its velocity vector is γ 3m0. This
longitudinal mass effect will be revisited when we discuss charged particles’
longitudinal oscillations in accelerators.
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Fig. 2.9 Longitudinal phase plane
(γ ′z, pz/m0c) trajectories for uniform
acceleration.

Let us now examine a phase plane plot of uniform acceleration, as illustrated
in Fig. 2.9. The curves of constant H are hyperbolae, which look locally para-
bolic near pz = 0, the region of the non-relativistic limit. Asymptotically in
large pz/m0c, the ultra-relativistic region, the curves approach straight lines.

In Section 2.3, we found that edge effects—the effects of moving from a field-
free region to one with field present—were very important in understanding the
transverse motion of a charged particle in a longitudinal magnetic field. This
is also true for the case of entry into a uniform electric field. The analysis
proceeds just as in Eqs (2.16)–(2.18), and begins with an expansion near the
axis of Eq. (1.17),

1

ρ

∂

∂ρ
ρEρ = −∂Ez

∂z
. (2.35)

Integration of Eq. (2.35) outward from the axis yields

Eρ ∼= −ρ
2

∂Ez

∂z

∣∣∣∣
ρ=0

, (2.36)

which can be further used to find the radial momentum kick imparted to the
particle as in passes through the fringing field region where Eρ is non-zero,

	pρ = q
∫ t2

t1

Eρ dt = q

v

∫ z2

z1

Eρ dz = −ρq

2v

∫ z2

z1

∂Ez

∂z

∣∣∣∣
ρ=0

dz

= −ρq

2v

∫ z2

z1

dEz

dz

∣∣∣∣
ρ=0

dz = −ρq

2v
[Ez(z2)− Ez(z1)] = −ρq

2v
E0. (2.37)

We have assumed in Eq. (2.37) that the particle moves from a field-free region
to one with uniform longitudinal electric field E0. For an accelerating field
(qE0 > 0), this effect is obviously focusing, with the momentum kick tend-
ing to push the particle towards the axis. When a particle leaves the uniform
accelerating field region, however, the lines of force fringe outward instead of
inward and correct evaluation of Eq. (2.37) in this case yields a defocusing
momentum kick.
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2.5 Motion in quadrupole electric and
magnetic fields

In our discussion of beam optics thus far we have seen that one can use solenoidal
magnetic fields for focusing particles during linear transport, and path length
focusing in circular accelerators. These forms of focusing have introduced some
basic concepts, such as harmonic betatron oscillations about the design orbit,
but do not include the most widely used magnetic focusing scheme, that which
employs transverse quadrupole fields.

Since we are using a coordinate system with one preferred longitudinal
axis (z), we use cylindrical coordinates (ρ,φ, z) to evaluate the form of the scalar
potentials from which either static transverse electric or magnetic3 fields can3If there is no current density �J = 0 in

the region of interest, the magnetic field can
be derived from a scalar potential. The case
where the current density is non-vanishing is
treated in Chapter 6.

be derived. Let ψ be such a potential, which, in the limit of a device long com-
pared to its transverse dimensions, approximately obeys the two-dimensional
Laplace equation

�∇2⊥ψ = 0. (2.38)

The solutions to this equation are of a form that is well behaved on axis (ρ = 0)

ψ =
∞∑

n=1

anρ
n cos(nφ)+ bnρ

n sin(nφ), (2.39)

Let us discuss the first few of the n multipole forms of the solution. For n = 1,
we have

ψ1 = a1ρ cos(φ)+ b1ρ sin(φ) = a1x + b1y (2.40)

and the fields are of the dipole form. Let us now assume we are talking about
magnetic fields, so �B = −�∇ψ , and

�B1 = −�∇ψ1 = −a1x̂ − b1ŷ. (2.41)

The form given in Eq. (2.41) is referred to as a dipole field because it can
be formed with a magnet possessing only two poles. Such magnets will be
discussed further in Chapter 6. They are the devices that yield the uniform
fields that we have analyzed in Sections 2.1–2.3.

For n = 2, we have

ψ2 = a2ρ
2 cos(2φ)+ b2ρ

2 sin(2φ) = a2(x
2 − y2)+ 2b2xy (2.42)

and the associated magnetic field is

�B2 = 2a2(−xx̂ + yŷ)− 2b2(yx̂ + xŷ), (2.43)

If the potential coefficient a2 is non-vanishing, there is a force on a charged
particle traveling in the z direction, directed in the x dimension and which is
proportional to y, and vice versa. This type of force is called skew quadrupole,
and gives rise to generally undesirable coupling between the x and y phase
planes. The coefficient b2 indicates the presence of normal quadrupole fields,
from which one obtains a force in the x dimension proportional to x, and a force
in y that is proportional to y,

�F⊥ = qvz�z × �B2 = 2qvzb2(yŷ − xx̂). (2.44)

Assuming qb2 is positive, this force is focusing in the x dimension and defo-
cusing in y. Obviously if qb2 is negative, these focusing/defocusing roles are
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reversed. Since the coefficient b2 measures the gradient in magnetic field
away from the axis, one often gives its strength in terms of this gradient
b2 = −∂xBx/∂y ≡ B′/2. The term “quadrupole” can be understood by looking
at Fig. 2.10, which shows a design for a quadrupole built at UCLA, with its
four poles excited by current-carrying coils in alternating polarity. The design
principles of this magnet are discussed in Chapter 6. Let us content ourselves
at the present to point out that the iron poles, whose surfaces form magnetic
equipotentials, are hyperbolae, as suggested by Eq. (2.42).

Fig. 2.10 Quadrupole magnet showing iron
pole tips and yoke (hatching), current wind-
ings (gray), and orientation of magnetic field
lines.

If we assume paraxial motion near the z-axis, we may write the transverse
equations of motion for a particle of charge q and momentum p0 as

x′′ = Fx

γm0v2
0

= −qB′

p0
x, (2.45)

and

y′ = Fy

γm0v2
0

= qB′

p0
y. (2.46)

These equations are written in standard oscillator form as

x′′ + κ2
0 x = 0 (2.47)

and
y′′ − κ2

0 y = 0. (2.48)

The square wave number κ2
0 ≡ qB′/p0 is sometimes known as the focus-

ing strength K . It can be simply calculated by using the handy shortcut
qB′/p0 = B′/BR where BR(Tm) = p0(MeV/c)/299.8 (cf. Eq. 2.8) is known
as the magnetic rigidity of the particle.

Assuming κ2
0 > 0, one has simple harmonic oscillations in x,

x = x0 cos[κ0(z − z0)] + x′
0

κ0
sin[κ0(z − z0)], (2.49)

and the motion in y is hyperbolic,

y = y0 cosh[κ0(z − z0)] + x′
0

κ0
sinh[κ0(z − z0)]. (2.50)

If κ2
0 < 0, the motion is simple harmonic (oscillatory) in y, and hyperbolic

(unbounded) in x. Focusing with quadrupoles alone can only be accomplished
in one transverse direction at a time. Ways of circumventing this apparent limita-
tion in achieving transverse stability, by use of alternating gradient focusing,
are discussed in the Chapter 3.

As noted in Chapter 1, it is much easier to build transverse field magnets than
transverse electric field-supporting electrode arrays that impart equal force upon
charged particles traveling nearly the speed of light. Therefore, the transverse
electric field quadrupole is found mainly in very low energy applications such
as the electron microscope. Note that an electric quadrupole that produces
decoupled forces in analogy with the magnetic forces of Eq. (2.41) has an
electrode array with hyperbolic surfaces rotated by 45◦ from that shown in
Fig. 2.10. In this case we may say that from the viewpoint of electric forces, if
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the same form of the solution for the electrostatic potential φe is used as was
taken for ψ (Eq. 2.3), then a2 is the coefficient of normal electric quadrupole,
and b2 is the coefficient of the skewed electric quadrupole.

The paraxial ray equations in the case of an electric quadrupole are identical
to those given in Eqs (2.47) and (2.48), with κ2

0 ≡ qE′/p0v0. When the motion
is focusing in x it is defocusing in y, as before. The differences between the two
cases lie in the deviations from the assumptions of the paraxial approximation.
In the case of magnetic forces, the energy and total momentum are constant,
but the longitudinal momentum pz, and thus the longitudinal velocity vz may
change, which in turn forces a small modification of Eqs (2.47) and (2.48). With
electric forces the situation is slightly different—the energy is not constant, as
work may be performed on a particle with transverse motion, but the longit-
udinal momentum pz is now constant. In this case the longitudinal velocity vz

may also change non-negligibly when the paraxial approximation is not valid.

2.6 Motion in parallel, uniform electric and
magnetic fields

In the case of a uniform electric field, �E = E0ẑ, and a parallel uniform mag-
netic field, �B = B0ẑ, the electric field provides uniform acceleration while
the magnetic field provides solenoidal focusing. This example scenario shows
the combination of acceleration and focusing well, nicely illustrating the phe-
nomenon of adiabatic damping of transverse oscillations. The equations of
motion in this field configuration are

dpz

dt
= qE0

d�p⊥
dt

= q(�v⊥ × �B) = qB0

γm0
(�p⊥ × ẑ). (2.51)

Equation (2.51) are coupled by the presence of γ in the second equation, and
so the method of solution offered previously for the transverse motion must be
re-examined.

On the other hand, as the amplitude of �p⊥ is invariant, the energy may still
be trivially found as a function of z,

U(z) = γ (z)mc2 =
√
(p2⊥ + p2

z |z=0)c2 + (m0c2)2 + qE0z. (2.52)

In the paraxial limit, one may ignore the transverse momentum contribution to
the energy, and Eq. (2.52) gives

U(z) = γ (z)mc2 =
√

p2
z |z=0c2 + (m0c2)2 + qE0z. (2.53)

After the energy and the longitudinal momentum are determined by Eqs (2.53)
and (2.31), one can begin to write the transverse equations of motion in the
Larmor frame (rotating with local frequency ωL(z) = qB0/2γ (z)m0) through
the definition

x′
L ≡ pxL

pz
, (2.54)

with an analogous expression in yL. Since pxL is a Cartesian projection of
the constant amplitude �p⊥, we expect the maximum angle in xL (and yL) to be
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secularly—meaning on a time scale longer than the relevant (Larmor) oscillation
period—damped by the acceleration, as x′

L ∝ p−1
z .

Concentrating on the motion in xL, we differentiate Eq. (2.54) to obtain

x′′
L + pxL p′

z

p2
z

− p′
xL

pz
= 0, (2.55)

or using the paraxial approximation pz ∼= p,

x′′
L + (βγ )′

βγ
x′

L +
(

qB0

2βγm0c

)2

xL = 0. (2.56)

If we look only at highly relativistic motion, β ∼= 1, we can further approximate
Eq. (2.56),

x′′
L + γ ′

γ
x′

L +
(

bγ ′

2γ

)2

xL = 0. (2.57)

The solution to this homogeneous equation is of the form

xL(z) = xL,0 cos

[
b

2
ln

(
γ (z)

γ0

)]
+ 2γ0

bγ ′ x′
L,0 sin

[
b

2
ln

(
γ (z)

γ0

)]
, (2.58)

where b = B0c/E0 and the initial offset, angle, and Lorentz factor are xL,0 , x′
L,0

,
and γ0, respectively. Thus the solution appears as a harmonic oscillator with a
logarithmically (as opposed to linearly) increasing argument in the oscillatory
trigonometric functions. We now compare this system to that of the simple
harmonic osciallator.

Simple harmonic motion is associated with two invariants: the angular fre-
quency ω and the value of the Hamiltonian (the total oscillator energy). As
discussed in Sections 1.3 and 2.3, these quantities are related through

H = 1

2m
[p2

x + m2ω2x2] = Jxω, (2.59)

where the action Jx = ∮
px dx/2π = A/2π = xmaxpx,max/2, is the area in the

phase plane over 2π , enclosed by the elliptical trajectory of the oscillator (see
Fig. 1.4).

An analogue to the action in trace space can be defined as Jx,trace ≡
xmaxx′

max/2. For the system under study we obtain the angle in xL from Eq. (2.58)
as,

x′
L(z) = −xL,0

bγ ′

2γ
sin

[
b

2
ln

(
γ (z)

γ0

)]
+ γ0

γ
x′

L,0 cos

[
b

2
ln

(
γ (z)

γ0

)]
. (2.60)

Setting x′
L,0 = 0 for simplicity, one can see that

Jtrace ≡ xL,maxx′
L,max

2
= x2

L,0
γ ′

γ

b

2
, (2.61)

and the action in trace space damps as γ−1. According to Eq. (2.60), it is clear
that this apparent damping is due to the diminishing of x′

L with acceleration. This
diminishing should have the functional dependence on momentum of (βγ )−1.
We have only approximately obtained this value by assuming the limit β = 1
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for the purposes of solving the paraxial equation of motion, Eq. (2.56), exactly.
It should be equally clear that the true phase plane action variable is constant
in this case.

As mentioned in Section 1.6, the role of the action in the general theory of
oscillators is that they are adiabatic invariants. This means that if the oscillator
parameters are changed on a time scale that is slow compared to the oscillation
period, then the action is conserved. The true phase plane action is an adiabatic
invariant and is conserved, not damped, under slow acceleration. On the other
hand, the apparent action in trace space is damped. Because of the guaranteed
adiabatic invariance of the phase plane action under slow acceleration and con-
comitant changing of the oscillation frequency, the damping of the trace space
action is termed adiabatic.

Use of the term adiabatic damping to describe this phenomenon is thus actu-
ally a bit of a misnomer. It is especially so in the context of the system described
in this section, where the transverse motion under acceleration is not required
to be an adiabatic process at all. It was only required to be one in which the
transverse momentum is constant and the longitudinal momentum grows.

2.7 Motion in crossed uniform electric and
magnetic fields*

Let us now consider the case where there are crossed uniform electric and
magnetic fields, which we choose as �E = E0ŷ, and �B = B0ẑ. In this case, there
is a particular solution to Eq. (1.11) obtained when the Lorentz force vanishes,
given by

�E + �v × �B = 0. (2.62)

The velocity that is consistent with Eq. (2.62) is termed the drift velocity, and
is found by taking the cross-product of Eq. (2.62) with �B, to give

�vd = �E × �B
�B2

= E0

B0
x̂. (2.63)

The drift velocity is normal to both the magnetic and electric field directions.
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Fig. 2.11 Cycloid motion in crossed electric
and magnetic fields: �E = E0 ŷ, �B = B0 ẑ.

The general motion in this case can be deduced by transforming the Lorentz
frame traveling with the drift velocity using Eq. (1.58) to obtain

�E′⊥ = γd(�E⊥ + �vd × �B⊥) = 0

�B′ = γd(�B⊥ − 1

c2
�vd × �E⊥) = γdB0

(
1 − �v2

d

c2

)
ẑ = B0

γd
ẑ.

(2.64)

The field is purely magnetic and uniform in the new frame. This means that
any motion in this frame is simply that of the helical cyclotron form discussed
in Section 2.1. Looking down the axis (z) of the magnetic field, a direction in
which there is no net force, the motion appears cycloidal, in other words cyclic
motion with a secular velocity (the drift velocity) superimposed, as shown in
Figure 2.11.

The drift velocity and associated cycloid motion is not as important of an
effect in accelerators as those encountered in previous sections. Such behavior
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is notably found in an analysis of intense beam rotation in solenoids due to the
longitudinal magnetic field and the radial self-electric field of the beam (see Ex.
2.14). The drift velocity is, however, quite important in plasma physics, and in
separation devices—a particle with the correct velocity passes through a crossed
electric and magnetic field region, regardless of charge. This is an important
technique in experimental physics, and can be used for velocity identification of
a particle. The cross-field configuration, in tandem with traversal of a region of
uniform magnetic field, in which the momentum of the particle is determined,
allows the mass and energy of the particle to also be determined.

2.8 Motion in a periodic magnetic field*

As a final scenario for this chapter, let us consider the case of a spatially periodic
(in the z-direction) static magnetic field. There are two possible configurations
of this undulator magnetic field, a planar or helical polarization, names that
refer to analogous electromagnetic wave polarizations. In this section we will
discuss the planar undulator, leaving analysis of the helical configuration for
the exercises. Also, we will emphasize here the bending-plane motion of the
particle, of the undulator, with the out-of-plane motion examined further in
Chapter 3.

N

S N S N S

S N S N S

N

S

N

y

z

�u

Fig. 2.12 Schematic representation of the
magnetic field lines in a planar undulator
configuration.

The periodic, vertically polarized magnetic field of interest here can be
described mathematically by

�B = B0 sin(kuz)ŷ (2.65)

where ku = 2π/λu is the wave number associated with the undulator
wavelength λu of the field. This expression is valid only in the symmetry plane
of the field, which we take to be y = 0. For the planar configuration, there must
be an additional longitudinal field component, as illustrated in Fig. 2.12, and
analyzed in the Exercise 2.15.

As can be seen by the results of Exercise 2.15, Eq. (2.65) is approximately
correct if the vertical offset from the symmetry plane is much smaller than
an undulator wavelength, kuy  1. Let us now examine the electron beam
dynamics in the undulator field under this additional constraint, which can be
considered an extension of the paraxial approximation. We will formulate the
problem in Hamiltonian style. To begin, we write the canonical momenta

pc,x = βxγm0c + qAx = βxγm0c − q
B0

ku
cos(kuz) cosh(kuy),

pc,y = βyγm0c,

pc,z = βzγm0c,

(2.66)

from which we can derive the relativistically correct Hamiltonian,

H =
√(

pc,x + q
B0

ku
cos(kuz) cosh(kuy)

)2

c2 + p2
c,yc2 + p2

c,yc2 + (m0c2)2,

(2.67)
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where the electrostatic potential φe vanishes. Viewing z as the independent
variable, we write the new form of the Hamiltonian function as

G = −pz,c =
√

H2 − (pc,y − qAy)2c2 − (pc,x − qAx)2c2 − (m0c2)2

=
√

U2 −(pc,y − qAy)2c2 −
(

pc,x + q
B0

ku
cos(kuz) cosh(kuy)

)2

c2 − (m0c2)2,

(2.68)

where we have substituted the numerical energy U for the old Hamiltonian
functional energy H. This new Hamiltonian is independent of x and t, and
thus the canonical x component of the momentum pc,x is a constant of the
motion, as is the total mechanical energy U (or equivalently, the total mechanical
momentum p0), which is always the case in magnetostatic systems.

The first integrals of the Hamiltonian system (the momenta) are thus as
follows:

pc,x = constant = px0 ⇒ βx γm0c = −qAx + px0 = q
B0

ku
cos(kuz)+ px0,

(2.69)

pc,y = βy γm0c = 0 (by assumption, taking y = 0), (2.70)

and

pc,z =
√

p2
0 −

(
q

B0

ku
cos(kuz)+ px0

)2

. (2.71)

This analysis has been done formally, with the aid of the Hamiltonian, in order to
make more advanced analysis of the motion in undulators possible in following
chapters.

The most important step remaining in the analysis is to find the second integral
in x, which is obtained by integrating the paraxial equation

x′ = − ∂G

∂px,c

∼= qB0

p0ku
cos(kuz)+ px0

p0
= qB0

p0ku
cos(kuz)+ x′

0, (2.72)

to give, with initial (evaluated before entry into the undulator field) horizontal
offset and angle (x0, x′

0),

x ∼= x0 + x′
0z + qB0

p0k2
u

sin(kuz). (2.73)

It can be seen from Eq. (2.73) that the amplitude of the undulating portion
of the transverse motion is qB0/p0k2

u , and from Eq. (2.72) that the maximum
angle associated with the undulating part of the motion is qB0/p0ku. This angle
is typically much smaller than unity (the bends are paraxial) for magnets ref-
ered as undulators. Furthermore, we note that Eq. (2.73) shows that there is
no restoring, or focusing force in the x-direction associated with this config-
uration of magnetic field—an initial error x′

0 �= 0 is not corrected, and leads
eventually to a trajectory with large horizontal offset x.
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The conservation of total momentum combined with Eq. (2.69) gives
Eq. (2.71), which indicates that the longitudinal momentum, and therefore
the longitudinal velocity, must diminish in the undulator, approximately as

pz =
√

p2
0 −

(
q

B0

ku
cos(kuz)

)2 ∼= p0

[
1 − 1

2

(
qB0

kup0
cos(kuz)

)2
]

, (2.74)

for paraxial bends. Averaging Eq. (2.74) over a period of the motion, we have
simply

〈pz〉 ∼= p0

[
1 −

(
qB0

2kup0

)2
]

. (2.75)

This “slowing” of the particle in its z-motion is an important effect in free-
electron lasers, which are discussed in Chapter 8.

2.9 Summary and suggested reading

This chapter has been concerned with introducing a number of model prob-
lems, based on the relativistic motion of charged particles in static electric and
magnetic field configurations. These configurations have included:

1. Uniform (dipole) magnetic fields, in which we deduce many aspects of
the motion in both circular accelerators and focusing solenoids from the
general case of helical motion. In both scenarios, we found variants of
simple-harmonic betatron oscillations.

2. Uniform electric fields, in which acceleration of charged particles to
relativistic energies are introduced.

3. Quadrupole magnetic and electric fields, where the motion is simple
harmonic in one transverse dimension, and divergent in the other.

4. Superpositions of uniform electric and magnetic fields, which produce
damped oscillations when the fields are parallel, and drift motion when
the fields are crossed.

5. The periodic magnetic dipole field, or magnetic undulator. This device is
shown to produce transverse undulating motion, which forms the basis of
the free-electron laser.

These model problems also allowed us to introduce some rudimentary
examples of analyses that are based on both relativistic and Hamiltonian form-
alisms. These analyses will help form the basis of more complex investigations
of charged particle motion in the coming chapters.

Many texts in electromagnetism also introduce aspects of charged particle
motion in electric and magnetic fields. Readers wishing to review the theory of
electrostatic and magnetostatic fields may also wish to review such texts. The
following texts may be recommended as a supplement to this chapter:

1. R. Wangsness, Electromagnetic Fields (Wiley, 1986). There are many
examples of dynamics calculations in this book, including useful
appendices.

2. J.R. Reitz, F.J. Milford, and R.W. Christy, Foundations of Electro-
magnetic Theory (Addison-Wesley, 1993). Another fine undergraduate
electromagnetism text with examples.
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3. J.D. Jackson, Classical Electrodynamics (Wiley, 1975). A wealth of
assigned problems are relevant to our discussions here.

4. L.D. Landau and E.M. Lifschitz, The Classical Theory of Fields
(Addison-Wesley, 1971).

5. S. Humphries, Jr., Principles of Charged Particle Acceleration (Wiley,
1986). This text also examines many model problems as a path to
understanding accelerator behavior.

6. J.D. Lawson, The Physics of Charged Particle Reams (Clarendon Press,
1977). There are many clear explanations of basic problems in charged
particle motion.

7. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion:
Plasma Physics (Plenum, 1984). The field of plasma physics has a wide
variety of physical effects it addresses, and some differing dynamics
problems are addressed in this excellent introduction.

8. J.B. Marion and S.T. Thornton, Classical Dynamics of Particles and
Systems (Harcourt Brace & Company, 1995).

9. H. Goldstein, C. Poole and J. Safko, Classical Mechanics (Addison-
Wesley, 2002). Dynamics in electromagnetic fields using modern mech-
anics at a sophisticated level.

Exercises

(2.1) The mass increase implied by Eq. (2.4) can be
obtained by using the relativistically correct Lagrangian
(Eq. 1.60) to write the problem in cylindrical
coordinates,

L(�x, �̇x) = −m0c2

γ
+ q�A · �̇x.

(a) Show that the cylindrically symmetric vector
potential for a uniform magnetic field is �A =
(B0ρ/2)φ̂.

(b) Write the Lagrangian in cylindrical coordinates
(ρ,φ, z).

(c) Derive the Lagrange–Euler equations to show that
the transverse motion (centered at the z-axis) is
circular, with appropriate angular frequency and
radius of curvature.

(2.2) In the betatron, the design orbit of the electrons is circu-
lar, with constant radius R, but the vertical magnetic field
at the design orbit increases in time. This is described by
the relation

p0(t) = eB0(t)R (i)

which indicates that the design momentum must be
increased in proportion to the strength of the guiding
field. The acceleration for electrons traveling in a strictly

circular orbit is given by

dp0

dt
= −eEφ , (ii)

where Eφ is the azimuthal electric field, tangential to the
electron path.

The betatron condition occurs when these require-
ments are consistent with each other. In order for this to be
true, the field normal to the bend plane (Bz in cylindrical
coordinates) must not be constant, but it should be a func-
tion of ρ, as shown in a representative way in Fig. 2.13.
To derive the betatron condition, employ the following
steps:

(a) Differentiate the expression (i) with respect to
time, and
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Fig. 2.13 Example of magnetic field profile as a function of
radius in a betatron.
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(b) Calculate the induced electric field from Stokes theorem
applied to

�∇ × �E = −∂ �B
∂t

.

The betatron condition is often given as B0(t) = B̄(t)/2,
where B̄ ≡ (

∫ �B · d �A)/(πR2) is the average normal mag-
netic field over the disk whose boundary is the design
orbit. Is this the most general form of the betatron con-
dition? Note that the betatron condition implies that the
field is as shown in Fig. 2.13, having larger amplitude for
ρ < R. This point is returned to in the next chapter.

(2.3) The cyclotron spoken of in Chapter 1 is schematic-
ally shown in Fig. 2.14. It consists of two opposing
D-shaped iron magnet pole pairs (so-called Ds), giving
rise to a roughly constant magnetic field B0 normal
to the diagram inside of the Ds. This field bends the
particles inside of the D-regions in semi-circular tra-
jectories. The Ds also are excited by a time-dependent
voltage source of constant angular frequencyωrf such that
V(t) = V0 sin(ωrf t), where rf stands for radio-frequency.
Thus, when the particles cross the gap between the Ds
they can be accelerated by the electric field between
the two different potential regions, so that their energy
is maximally incremented by 	U = qV0 per crossing.
This occurs only when the motion is synchronous with
voltage wave-form, requiring ωc ∼= ωrf . Note that the
particles have larger radius of curvature as they gain
energy and are eventually ejected from the machine.

~

V

Iron “D”s

Particle
source

Fig. 2.14 Schematic diagram of magnetic field regions, voltage
application, and design trajectory in a cyclotron. The particles
are embedded in an approximately uniform magnetic field inside
of the Ds, and accelerated by an electric field between the Ds.

(a) Assuming the particles are non-relativistic protons
(γ ∼= 1) and the magnetic field B0 = 1.5 T, what
is the rf frequency needed for the voltage supply?
You may ignore the gap distance in this calculation.

(b) Assume the initial proton kinetic energy from
the source is 150 keV, V0 = 150 kV, and the
radius of curvature of the outside of the Ds is
0.75 m. Approximately how many passes through

the system does a proton circulate for before it is
ejected?

(c) What is the value of γ of the proton at the machine
exit? Can you estimate the total phase slippage of
a proton with respect to the applied voltage dur-
ing acceleration due to relativistic changes in the
cyclotron frequency?

(2.4) The Tevatron at Fermi National Accelerator Laboratory is
a circular proton (colliding with counter-propagating anti-
protons) accelerator that uses high field superconducting
dipole magnets. It is approximately 1 km in radius, and
accelerates protons to 900 GeV in total energy.

(a) What is the average magnetic field needed to keep
900 GeV protons on the design orbit?

(b) What is the circulation (cyclotron) frequency in
this accelerator? The protons are injected into the
Tevatron at 150 GeV. What is the circulation fre-
quency at this energy? What is the circulation
frequency at 900 GeV?

(c) If electrons were to be stored in the Tevatron for
collision with the 900 GeV protons instead of anti-
protons, what would their energy be? Be careful
with round-off errors due to calculators in this
problem.

(2.5) Busch’s theorem can also be derived by use of the
Hamiltonian formalism.

(a) Using the results of Exercise 2.1, write the
Hamiltonian inside of a solenoid in terms of cyl-
indrical coordinates. Hint: Be careful in handling
the vector potential component of the angular
momentum.

(b) Show that the canonical angular momentum is
conserved in this case.

(c) Assuming the canonical angular momentum is
zero (why?), what is the value of the mechan-
ical momentum at radial offset ρ? Compare this
to Eq. (2.18).

(2.6) If the transverse momentum is not small compared to the
total momentum, we may not assume p ∼= pz and the
betatron wave number in the solenoid is not as given by
Eq. (2.24).

(a) Derive a general expression for the wave number
as a function of initial offset radius at the entrance
to the solenoid. Hint: Normalizing the initial off-
set radius to p/qB0 may make the answer more
physically meaningful.

(b) At a certain radius, the particle cannot penetrate
the interior of the solenoid. This is because all of
its longitudinal momentum is given up to angular
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motion in the fringe field and the particle is reflec-
ted. For an electron with 100 keV kinetic energy,
and B0 = 1 T, what is this radius?

(2.7) By differentiation of Eq. (2.21) twice, derive Eq. (2.22).

(2.8) The high-energy linear collider at Stanford contains a lin-
ear accelerator of length L = 3 km, which uses electric
fields in radio-frequency cavities to accelerate electrons
(and positrons) to 50 GeV. The average longitudinal
electric force performing work on the electrons in the
accelerator is 16.7 MeV/m. The proper time τ , as observed
in the frame of the accelerating electron, is related to the
time measured in the laboratory t by dt = γ · dτ .

(a) Show that the time for the electrons to go from rest
to final energy is

t = L

c

[√
γf + 1

γf − 1

]
≈ L

c

(b) Show that the proper time for the electrons to go
from rest to final energy is

τ = L

c(γf − 1)
cosh−1(γf ).

(c) What is the effective length of the linear acceler-
ator as seen by the electrons at final energy? How
long would it take to traverse this length at the final
velocity of the electrons?

(2.9) Instead of writing the motion in terms of the variable vz,
consider the motion as a function of γ .

(a) Show that

dγ

dt
=
√
γ 2 − 1

γ

qE0

mc
.

(b) Integrate this equation and compare to the results
of directly integrating the first of Eq (2.25).

(2.10) For magnetic focusing channels that use quadrupoles, the
motion is the same for particles of like charge but differ-
ent mass if the momentum of each species is the same.
This can be seen by examination of Eqs (2.42) and (2.43).
Now consider the motion of particles with equal charge but
unequal mass in electric quadrupoles. What is the condi-
tion on dynamical quantities of the different species so that
they can be focused identically in the electric quadrupole
channel? Show, in the relevant non-relativistic limit, that
this condition reduces to the equality of kinetic energies
in the two species.

(2.11) For magnetic focusing channels, show that a particle trav-
eling in a certain direction in z has the same equation of
motion as its antiparticle of the same momentum travel-
ing in the opposite direction in z. This is the basic optics
principle behind particle/antiparticle colliding beam rings.

How do the paraxial optics change for these species if
electric quadrupoles are used?

(2.12) In deriving Eq. (2.58) as a solution to Eq. (2.57), it is
helpful to initially transform the independent variable to
u = ln(γ (z)), with inverse transformation γ = exp(u).
This is known as a Cauchy transformation.

(a) Show that this transformation allows Eq. 2.58 to be
written as

d2xL

du2
+
(

b

2

)2

xL = 0.

(b) Using the equation derived in part (a), construct
Eq. (2.58).

(2.13) Can you solve the paraxial equation of motion (analogous
to Eq. 2.55) for the case when the electric field is con-
stant, but the magnetic field is zero? You may start with
x′ ≡ px/pz and px = constant, then integrate.

(2.14) For cylindrically symmetric, intense beams propagating
in equilibrium in solenoids there is an electric self-field in
the radial direction that produces both an outward radial
force and an azimuthal rotation of frequency ωr . This fre-
quency may or may not be equal to the Larmor frequency,
and the related rotation may be viewed as an example of
the �E × �B drift discussed previously.

(a) Show, for a uniform density (nb) beam that this
radial space-charge electric force on a particle of
charge q and rest mass m0 is

Fe = qEρ = q2nb

2ε0
ρ ≡ m0

ω2
p0

2
ρ,

where we have introduced the non-relativistic
plasma frequency ωp0 = √

q2nb/ε0m0. Find the
net (beam-induced) force, including the magnetic
force, on the particle, and write it in terms of the
electric force and the particle’s axial velocity v0.

(b) When the beam rotates, there are two radial forces
that are introduced. One is due to centripetal accel-
eration, and the other is the radial component of
the solenoidal force. Equilibrium (net radial force
equal to zero) can be established only when the
beam rotates in a certain direction because both
the centripetal forces and the space-charge forces
are outward. Show that the condition on ω which
produces equilibrium can be written as

ω2
r + ω2

p

2
= ωrωc,

where the relativistically correct plasma frequency
is given by ω2

p = ω2
p0/γ

3.
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(c) Illustrate this equilibrium condition by plotting
ωp/ωc as a function of ωr/ωc. What rotation fre-
quency ωr maximizes the equilibrium density of
the beam?

(2.15) The magnetic field given in Eq. (2.65) can be derived from
a vector potential,

�A = −(B0/ku) cos(kuz)x̂,

in the y = 0 plane. Unfortunately, this vector potential
does not satisfy the Laplace equation in the current-free
region, ∇2 �A = 0, as required by the Maxwell relations,
and so it cannot be valid.

(a) Show that the following appropriate potential (uni-
form in x, symmetric in y)

�A = −(B0/ku) cos(kuz) cosh(kuy)x̂

obeys the Laplace equation.
(b) Find the field components associated with this

vector potential.

(2.16) A helically polarized magnetic undulator has an on-axis
field profile given by

�B(z) = B0√
2
[sin(kuz)x̂ + cos(kuz)ŷ].

It is typically constructed as shown schematically in the
Fig. 2.15, with two main counter-rotating helical windings
(bifilar helical undulator).

(a) The vector potential which gives rise to this field
can be written in cylindrical coordinates as

Aφ = B0

ku
[I0(kuρ) + I2(kuρ)] cos(φ − kuz)

and

Aρ = −B0

ku
[I0(kuρ) − I2(kuρ)] sin(φ − kuz).

Here I0 and I2 are modified Bessel functions.
Show that these components satisfy the Laplace

equation, ∇2 �A = 0.

z

I

Fig. 2.15 Schematic of a bifilar helical undulator.

(b) Find the field components for this vector potential
and verify that they give the correct field profile
on axis.

(c) Write the Hamiltonian and equations of motion,
using z as the independent variable, for the hel-
ical undulator. Show that in the limit kuρ 
 1,
there exists an orbit that is a perfect helix, in which
the mechanical angular momentum is a constant.
Note this is not true for the helix in the solen-
oid, where the canonical angular momentum
is constant (the Hamiltonian is independent of
azimuth).
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The phenomenon of stable transverse motion of charged particles near a
design trajectory has been introduced in Chapter 2. Simple harmonic betatron
oscillations were encountered in the examples of the focusing solenoid, the
quadrupole, and in the circular accelerator. The general physical and mathem-
atical tools for describing betatron oscillations are developed in this chapter.
The discussion begins, appropriately enough, within the historical context of
the betatron, where the ideas of path length focusing and quadrupole focusing
are used to provide simultaneous stability in both transverse dimensions. After
introduction of this type of first-order (in the field strength), or weak, focusing
we will move to the discussion of second-order, or strong, focusing. We end this
chapter with a discussion of the first-order effects in transverse motion due to the
dispersion of particles having total momenta deviating from the design value.

3.1 Weak focusing in circular accelerators

The motion of a charged particle in a uniform magnetic field has been shown
to exhibit effective focusing in the bend (horizontal, x) plane. In a descrip-
tion based on examination of trajectories along the circular design orbit, this
effective focusing is ascribed to differential path lengths taken by particles on
differing betatron orbits. Such path length focusing is effective in stabilizing
the horizontal motion, but not the vertical motion, which is completely uncon-
strained in a uniform magnetic field. On the other hand, in our initial discussion
of acceleration in the betatron (see Ex. 2.2), we have seen that the vertical com-
ponent of the magnetic field is not uniform, but diminishes with distance away
from the axis.

At the design orbit, which defines a curvilinear coordinate system, it is most
natural to adopt the lowest order (in x ≡ ρ − R) approximation of the variation
in the vertical component of the field as,

By(x) = B0 + B′x + · · · . (3.1)

The field gradient is negative, B′ < 0, in the case of the betatron. Equation (3.1)
implies, along with Ampere’s law, that a horizontal component of the field
exists,

Bx(x) =
∫ y

0

∂By

∂x
dỹ ∼= B′y. (3.2)

In this coordinate system, it is apparent that, near the design orbit, the mag-
netic field appears as a superposition of vertically oriented dipole and vertically
focusing (horizontally defocusing) quadrupole fields. Since the field is not
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Iron

R

Paraxial region

Field line

Fig. 3.1 Configuration of magnetic field in
betatron, showing superposition of dipole and
vertically focusing quadrupole components in
vicinity of the design orbit.

designed to be a pure multipole in this case, but a superposition of two multi-
poles, it is termed a combined-function magnetic field (illustrated in Fig. 3.1)
configuration.

Following the derivation of the horizontal equation of motion in the uniform
magnetic field leading to Eq. (2.12), and using the equations of motion in a quad-
rupole (Eqs (2.42)–(2.43)), we can write the following equations describing
paraxial motion in this combined function field:

x′′ +
[(

1

R

)2

+ B′

B0R

]
x = 0, (3.3)

and

y′′ − B′

B0R
y = 0, (3.4)

where we indicate differentiation with respect to the independent variable s as
[ ]′ = d/ds. If we normalize the focusing strengths in these equations to R−2,
we can write the resultant expressions in standard form,

x′′ +
(

1

R

)2

[1 − n]x = 0, (3.5)

and
y′′ + n

R2
y = 0, (3.6)

where the field index is given by n ≡ −B′R/B0.
Equations (3.5) and (3.6) are often termed the Kerst–Serber equations, as

they were deduced by D.W. Kerst and F. Serber during initial development of
the betatron. From these relations, the condition for simultaneous stability in
horizontal and vertical motion (both focusing strengths are positive) is simply
given in terms of the field index,

0 < n < 1. (3.7)

The simultaneous stability in x and y is clearly achieved by partially, but not
fully, removing the natural path length focusing in the horizontal dimension
through the introduction of a defocusing quadrupole field component. This
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component yields a force that is focusing in the vertical dimension, as can be
seen in Fig. 3.2.

The Kerst–Serber equations are often written, especially in the context of
simple magnetic optics systems, with the azimuthal angle θ = s/R around the
design orbit as the independent variable,

d2x

dθ2
+ [1 − n]x = 0 or

d2x

dθ2
+ ν2

x x = 0, (3.8)

and
d2y

dθ2
+ ny = 0 or

d2y

dθ2
+ ν2

y x = 0. (3.9)

The forms of the Kerst–Serber equations displayed in Eqs (3.8) and (3.9) are
illustrative, because they give a direct normalization of the betatron oscillation
frequency in terms of the circulation frequency. The tunes (normalized frequen-
cies), νx = √

1 − n and νy = √
n, are the number of betatron oscillations per

revolution in the horizontal and vertical dimensions, respectively. Assuming
stability in both dimensions, the tunes are restricted to be smaller than unity.
This restriction on the oscillation frequency is the source of the term “weak
focusing.” The weakness of the focusing becomes apparent when one attempts
to scale the circular accelerator to larger design momenta and concomitant lar-
ger radii of curvature. For a given angular error of beam particle x′ launched
from the design orbit, the maximum offset found in the device is xm = Rx′/νx.
Thus, the size of the beam that is contained in the machine scales with the
radius of curvature. This scaling has serious implications in the design of the
magnets and vacuum systems of the device. If the beam size, and thus the large
clear aperture between magnetic poles becomes too large, the magnet becomes
difficult, if not impossible, to build. Given a way to introduce stable oscilla-
tions with much higher tunes νx,y � 1, the size of the beam could be greatly
reduced. The discovery of such a method based on quadrupole magnets, termed
strong focusing, has, therefore, allowed the development of very large radius
of curvature circular accelerators. We will next introduce the tools needed to
analyze strong focusing.

Fy

Fx

Fy

Fx

Design orbit

Fig. 3.2 Close-up view of paraxial region
shown in Fig. 3.1, illustrating the vertically
focusing components of the magnetic field at
vertically offset positions.

3.2 Matrix analysis of periodic focusing systems

The betatron oscillations of a particle in a weak focusing system can be intuit-
ively understood, as they are merely examples of simple harmonic motion. This
motion is characterized by having an oscillator (focusing) strength, κ2

0 , which
is of second-order in field strength and/or the field gradient (parameterized by
n in Section 3.1). Specifically, in a weak focusing circular accelerator, the path
length focusing, when combined with a quadrupole gradient, allows simultan-
eous stability in x and y, yielding a focusing strength that is of second-order
in the magnetic field amplitude B0, κ2

0 ∝ B2
0. In a simple quadrupole, how-

ever, the motion is not simultaneously stable in both transverse dimensions.
Even though quadrupoles have a focusing strength that is of first-order in field
gradient, strong focusing systems—based on arrays of quadrupoles and not
dependent on combination with path length focusing—are also second-order
focusing systems. We also note that systems based on solenoids have a focusing
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strength that is also of second-order in the field amplitude. We may infer from
these examples that most focusing systems that are simultaneously stable in
both transverse directions are of second order in field gradient or amplitude. In
fact, this is characteristic of all focusing schemes that have no charge or current
present within the beam channel.1 1An electric focusing system based on a uni-

form column of charged particles (opposite
in sign to the beam particles) lying along the
beam axis produces a lens with cylindric-
ally symmetric electric focusing fields (see
Ex. 2.14), and is, therefore, stable in both
transverse directions. This type of focusing
(ion focusing) has a strength that is of first-
order in the resultant electric field. A similar
device based on magnetic fields can be created
by using a current carrying plasma column
(plasma lens).

The purpose of this section, as well as in Section 3.3, is to introduce some
analysis methods associated with strong focusing, in cases where the restoring
force is periodic. We indicate this periodicity in the equation of motion by
writing

x′′ + κ2
x (z)x = 0 with κ2

x (z + Lp) = κ2
x (z). (3.10)

The assumed period length, Lp, must be, in the context of a circular accelerator,
no larger than the circumference C of the accelerator. Most large accelerators
are made up of several (Mp) identical modules and, therefore, have a peri-
odicity of Lp = C/Mp. Also, in linear accelerators and transport lines, this
periodic focusing (often termed alternating gradient focusing) is used by typ-
ically employing a very simple array of quadrupole magnets with differing sign
field gradients. In fact, because the act of bending the design orbit introduces
an asymmetry between the focusing in the bend (x) direction and non-bend
( y) direction (as seen in Section 3.1), focusing in rectilinear—as opposed to
curvilinear—transport is inherently simpler. For this reason, and to make the
discussion as general as possible, we adopt z as the independent variable for
the description of the motion in this section as well as in Sections 3.3 and 3.4.

There are two cases of interest that can be readily analyzed: (a) the focusing
is piece-wise constant, as in magnetic quadrupoles, and (b) the focusing is
a sinusoidally varying function in z. The first case is quite straightforward,
as for a piece-wise constant value of the focusing strength, κ2

x (z) = κ2
0 in

Eq. (3.10), the problem is reduced to that of the simple harmonic oscillator.
The only generalization involved is that the focusing changes its oscillator
characteristics in discrete steps at a finite number of points in z. Thus, the
solution to the entire problem will involve “stitching together” a number of
simple harmonic oscillator solutions. This is a straightforward process based
on a matrix description of the dynamics.

The second case requires a perturbative analytical approach, which cannot
be used for all conceivable physical parameters, so it is by nature a bit more
problematic. In this section, we only discuss the first case and leave the second
case for Section 3.4. The problem of the sinusoidally varying oscillator strength
is encountered in more esoteric situations in charged particle dynamics (e.g.
focusing of particles due to radio-frequency waves, ponderomotive forces in
laser fields), but is of high conceptual value, since it illuminates the physical
basis of the matrix results.

We now consider a piece-wise constant, periodic focusing described by a
focusing strength (κ2

0 ) that may be positive, negative, or vanishing. Physically,
these cases may correspond, for example, to a focusing quadrupole, a defocus-
ing quadrupole, and a force-free drift, respectively. For κ2

0 > 0, Eq. (3.10) is
a differential equation that describes a simple harmonic oscillator, where the
solution can be written, with the constants of integration determined in terms
of an initial state vector (a vector defined in trace space),

�x(z0) ≡
(

x

x′

)
z=z0

=
(

xi

x′
i

)
,
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as

x(z) = xi cos(κ0(z − z0)) + x′
i

κ0
sin(κ0(z − z0)). (3.11)

By differentiating Eq. (3.11), we also obtain the angle

x′(z) = −κ0xi sin(κ0(z − z0)) + x′
i cos(κ0(z − z0)). (3.12)

Equations (3.11) and (3.12) can be conveniently represented by a matrix
expression, illustrating the relationship between the initial state vector �x(z0)

and final state vector �x(z) as

�x(z) = MF · �x(z0) with MF =
[

cos(κ0(z − z0))
1
κ0

sin(κ0(z − z0))

−κ0 sin(κ0(z − z0)) cos(κ0(z − z0))

]
.

(3.13)

For the transformation of the vector �x through a focusing section (lens) of
length l, the matrix describing the transformation is simply

MF =
[

cos(κ0l) 1
κ0

sin(κ0l)
−κ0 sin(κ0l) cos(κ0l)

]
. (3.14)

In the case of a defocusing lens, we have κ2
0 < 0 in Eq. (3.10), and the

solution to this equation takes the form,

x(z) = xi cosh(|κ0|(z − z0)) + x′
i

|κ0| sinh(|κ0|(z − z0)), (3.15)

with

x′(z) = |κ0|xi sinh(|κ0|(z − z0)) + x′
i cosh(|κ0|(z − z0)). (3.16)

Thus, the transformation matrix describing the propagation of the vector �x
through a defocusing lens of length l is written, in analogy with Eq. (3.14), as

MD =
[

cosh(|κ0|l) 1
|κ0| sinh(|κ0|l)

|κ0| sinh(|κ0|l) cosh(|κ0|l)
]

. (3.17)

Two interesting cases can be obtained by taking the limits of Eqs (3.14) and
(3.17). The first is the force-free drift, in which case it is obvious that we are
taking the limit that the force disappears, κ0 → 0. As a result, both Eqs (3.14)
and (3.17) yield the same limit,

MO =
[

1 Ld

0 1

]
, (3.18)

where Ld is the length of the drift space. In a drift, the position x changes while
the angle x′ does not.

The other case of interest is the so-called thin-lens limit, where κ2
0 l is kept

finite and constant, while l → 0 in Eqs (3.14) and (3.17). As a result, we have

MF(D) =
[

1 0
− 1

f 1

]
, (3.19)

where the lens focal length is defined as f ≡ (κ2
0 l)−1, and is positive for focusing

lenses and negative for defocusing lenses. In the thin-lens limit, the change in
position x is negligible and only the angle x′ is transformed.
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Two properties of the formalism developed so far should be noted. First,
all of the transformation matrices—the focusing, defocusing, drift, and thin-
lens matrices—have determinant equal to 1. This is a general property of
linear transformations, which are precisely those that can be written as matrix
transformations (see Ex. 3.8). The property of unit determinant transformation
matrix is also a manifestation of Liouville’s theorem, as is discussed later in
this section.

The second notable property of the matrix formalism is that the full solution
of the motion through a number of focusing elements (regions of constant κ2

0 )
can be written in terms of the component element matrices’ product. To clarify
this, consider the example of a periodic system composed of a thin focusing
lens, followed by a drift, a thin defocusing lens, and a final drift. In this case,
the full transformation through one period of the system is written as

�x(Lp+z0) = �x(2Ld+2l+z0) = MO·MD·MO·MF · �x(0) ≡ MT · �x(z0). (3.20)

The total transformation matrix MT, being the product of matrices all of unit
determinant, also has the property det(MT) = 1. Note that the matrix product
given in Eq. (3.20) is written in reverse order from that in which the component
matrices are physically encountered in the beam line. Confusion on the ordering
of matrices is the most common mistake made in the matrix analysis of beam
dynamics!

For the example of Eq. (3.20), the total transformation matrix can be explicity
written as

MT =
[

∂x
∂xi

∂x
∂x′

i
∂x′
∂xi

∂x′
∂x′

i

]
=


1 − Ld

f −
(

Ld
f

)2
2Ld + L2

d
f

−Ld

f 2
Ld
f + 1


 . (3.21)

Note that in the first display of the matrix elements in Eq. (3.21), we indicate
their general meaning as the first partial derivatives of the final conditions with
respect to the initial conditions. The partial derivative form of the matrix shows
explicitly that it can also be interpreted as a generalized linear transformation
of coordinates in trace space. The determinant of this matrix is known, in the
context of coordinate transformations, as the Jacobian of the transformation;
it is the ratio of differential area elements of the final and original coordinates,
det MT = dx dx′/dxi dx′

i . The fact that this determinant is unity in all linear trace
space transformations indicates that they are area preserving, as anticipated
by application of Liouville’s theorem to trace space.

A few salient aspects of the transformation can be deduced by inspection of
Eq. (3.21). The matrix element MT11 is the spatial magnification (∂x/∂xi), and
it can be seen in this case to be strictly less than one in our example. Further, if
this matrix element is zero, this indicates a parallel-to-point transformation of
the trajectory. The “focusing” matrix element MT21 (∂x′/∂xi) can be compared
to that found in Eq. (3.19), to deduce an equivalent thin-lens fthin = f 2/Ld that
is always positive (focusing). The focusing indicated by MT21 is of second-
order in the lens strength f because the two first-order contributions, due to
the focusing and defocusing lenses, respectively, cancel. The second-order
focusing naturally disappears when Ld → 0, as it must when two thin-lenses
of equal and opposite strength are directly joined. If the two lenses were of
unequal strength, a first-order effect would appear, but it would be focusing
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in x and defocusing in y, or vice versa. Thus, in order that there be equal net
focusing in both transverse dimensions x and y, the focusing and defocusing
lens strengths in a two-lens system should be equal. When the matrix element
MT12 vanishes, this indicates the point-to-point imaging condition, where the
final offset is independent of the initial angle. Finally, MT22 is the magnification
in x′; when it vanishes, this indicates a point-to-parallel transformation.

Thus far, we have not explicitly required that the matrix transformations
discussed correspond to periodic systems. In many scenarios in charged particle
optics (e.g. circular accelerators and storage rings) and in light optics (e.g.
laser resonators, cf. Section 8.3), the particles are stored in a periodic focusing
system like that described by Eq. (3.20) for many traversals of the system. In
a large colliding beam storage ring, this may mean billions of turns around
the machine. It is, therefore, of primary interest to find out what the effect
of negotiating this system many times is on the particle motion—in particular,
whether or not the motion is linearly stable. Assurance of the stability of particle
motion under forces that are linear in displacement from the design orbit (as
in Eq. (3.10)) is a necessary, but not sufficient, condition for absolutely stable
motion. Nonlinear forces may also cause unstable orbits to appear at large
amplitude in an otherwise linearly stable system.

In order to begin this analysis, we first note that the transformation
corresponding to n passes through the system can be written as

�x(NLp + z0) = Mn
T · �x(z0). (3.22)

This expression is simplified if we note that the transformation of the vector can
be written in terms of eigenvectors (akin to the familiar normal mode vectors
of coupled oscillator systems) as

�x(Lp + z0) = MT · �x(z0) = a1λ1�d1 + a2λ2�d2. (3.23)

In Eq. (3.23), the eigenvectors �dj have the defining property that the matrix
transformation only changes them by a constant factor, MT · �dj = λj�dj. The
coefficients defined in Eq. (3.23) are the projections aj = �x(z0) · �dj of the initial
conditions. Using the eigenvectors, we can recast Eq. (3.22) as

�x(NLp + z0) = Mn
T · �x(z0) = a1λ

n
1
�d1 + a2λ

n
2
�d2. (3.24)

We will see below the physical meaning of these eigenvectors. Before dis-
cussing them, we first note, from Eq. (3.24), that the eigenvalues of the
transformation must be complex numbers of unit magnitude, or the motion will
be exponential—meaning either unbounded (positive exponent), or decaying
(negative exponent). In either of these cases, the motion is termed unstable.

To find the eigenvalues, we write the transformation of an eigenvector through
one period as

(MT − λjI) · �dj = 0, (3.25)

where I is the identity matrix. Requiring the determinant of the matrix operating
on the eigenvector vanish, we have

λ2
j − (MT11 + MT22)λj + (MT11MT22 − MT12MT21) = 0, (3.26)
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or, using the fact that det(MT) = 1,

λ2
j − (MT11 + MT22)λj + 1 = 0. (3.27)

Recognizing that the eigenvalue is of unit magnitude, |λj| = 1, when the motion
is stable, we now choose to write it as λj = exp(±iµ). Here µ, when it is real,
is referred to as the phase advance per period. With this choice, the solution
to Eq. (3.27) becomes

exp(±iµ) = cos(µ) ± i sin(µ) = Tr(MT)

2
± i

√
1 −

(
Tr(MT)

2

)2

, (3.28)

and we have employed in Eq. (3.28) the definition of the trace of the trans-
formation matrix, Tr(MT) ≡ MT11 + MT22. It is clear that the absolute value
| exp(±iµ)| = 1 if |Tr(MT)| ≤ 2, and, furthermore, the value of µ is real under
the same condition. Thus, the condition for stable motion, in short, is

|Tr(MT)| = |λ1 + λ2| ≤ 2. (3.29)

For the case of the focus-drift–defocus-drift, or FODO, array (in the context
of periodic systems, the term FODO lattice is applied) discussed above, this
stability criterion becomes

Ld

f
≤ 2, (3.30)

which provides an upper limit on the defined phase advance. This limit is given
in the FODO system by

cos(µ) = Tr(MT)

2
= 1 − 1

2

(
Ld

f

)2

. (3.31)

Note that the maximum stable phase advance per period is µ = π . Also, it
may be remarked that since the eigenvalues of stable motion are complex, the
eigenvectors are generally complex.

The meaning of the phase advance per period and the associated eigenvectors
can be illustrated with a few examples of ray tracing, as in Figs 3.3 and 3.4.
In these ray plots, the conventional representation of focusing and defocusing
lenses as thin convex and concave forms, respectively, is used. The first example,
shown in Fig. 3.3, is the case µ = π/2 (λj = ±i), where (the real component of )
an eigenvector trajectory (1) with pure offset initial conditions (midway through

z
(1)
(2)

Fig. 3.3 The real components of the eigen-
vector rays for the case µ = π/2 (L/f = √

2)

in a FODO periodic array. Ray (1) is the
cosine-like trajectory and ray (2) is the sine-
like trajectory (beginning propagation in the
center of the first lens).

Fig. 3.4 The real component of the eigen-
vector ray for the case µ = π (L/f = 2) in a
FODO periodic array, showing limits of sta-
bility. The eigenvalues are degenerate (both
equal to −1) in this case.
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the first focusing lens), (x, x′) = (xi, 0), is converted to a trajectory with pure
angle and no offset in final (conditions midway through the final focusing lens,
(x, x′) = (0, x′

f)). This behavior is reminiscent of the cosine function over the
first 90◦ of phase advance. Note that trajectory (2) is the converse of trajectory
(1) since it begins with only an angular deviation (x, x′) = (0, x′

i), and ends
with only an offset (x, x′) = (xf , 0), just as a sine function does over its initial
90◦. This example illustrates why the initial conditions of type (1) are said to
generate the cosine-like solution to the motion and the initial conditions of type
(2) give rise to the sine-like solution.

This point of view suggests yet another alternative notation for the
transformation matrix, indicating the matrix elements as the coefficients of
the cosine- and sine-like orbits (C and S), and their derivatives (C′ and S′),

MT =
[

C S
C′ S′

]
. (3.32)

The cosine-like component begins in Fig. 3.3 midway through the first focusing
lens with a parallel, unit-offset ray, and the sine-like component begins at this
point with an on-axis ray having unit angle(!). These are just mathematical
definitions; one need not be concerned with a unit angle being a violation of the
paraxial ray approximation, as, in practice, the coefficient (initial angle) that is
multiplied by S will always be small compared to unity.

The case of µ = π , where Tr(MT) = −2 and is therefore directly at the limit
of stability, is shown in Fig. 3.4. It is revealed that there is only one non-trivial
eigenvector corresponding to the degenerate eigenvalue λ = −1. With only one
eigenvector, there can only be one type of stable trajectory, that which enters
and exits the focusing lens with equal and opposite angles, and passes through
the axis at the defocusing lens position. One can see that, as this situation is
approached, µ → π , and the particles tend to undergo very large excursions at
the focusing lens position, while having very small offsets near the defocusing
lens. In a beam composed of many particles, this implies that the beam will be
much larger near the focusing lens than it is near the defocusing lens.

It should be noted that the trace of the matrix describing a period of the
motion is independent of the choice of initial position z0—the proof of this
assertion is left for Exercise 3.5. Thus, the eigenvalues and phase advance µ

are independent of this choice. The eigenvectors, in contrast, are dependent on
choice of z0.

3.3 Visualization of motion in periodic
focusing systems

In a periodic focusing system such as the FODO lattice introduced in the previ-
ous section, the motion in x, when plotted continuously at every point in z (see
Fig. 3.5) shows a simple harmonic oscillator-like behavior, with some notable
local “errors” in the trajectory. In fact, these errors can be seen to be due to a
fast, yet small-amplitude, oscillation about a slower, secular simple harmonic
motion. The period of the fast oscillatory motion is clearly identical to that of
the FODO lattice, due to the alternating sign of the focusing and defocusing
forces in a FODO period, while the secular oscillation period is much longer.
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Fig. 3.5 Motion of a particle in a FODO chan-
nel with µ = 33◦. Lenses are at positions
marked with diamond symbols. Note the devi-
ation from simple harmonic motion occurring
with the FODO period.
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Fig. 3.6 Motion of a particle in a FODO
channel of µ = 33◦, plotted in trace space.
The fast deviations from simple harmonic
motion occurring with the FODO period have
a large angular spread.

As we shall see below, the fast motion is due to first-order (in the applied field
amplitude) forces, while the slower motion may be ascribed to second- (or
higher-order) forces that become apparent when averaging over a period of the
fast oscillation. The fast motion, despite its small spatial amplitude, will also
be seen to have relatively large angles associated with it.

The continuous plotting of the motion in a periodic focusing system is espe-
cially troublesome if one follows the motion in trace space, as shown in Fig. 3.6.
In this plot, the fast errors in the trajectory have large angular oscillations, and
the trace space plot fills in a distorted annular region, yielding unclear informa-
tion about the nature of the trajectory. On the other hand, if one only plots the
trace space point of a trajectory once per FODO period, a method of graphical
representation known as a Poincaré plot, then the motion is regular. It is in
fact an ellipse in trace space, as illustrated by Fig. 3.7, and is thus reassuringly
reminiscent of a simple harmonic oscillator. This “stroboscopic” method of
plotting allows the secular motion to be displayed without the interference of
the fast oscillations so dramatically illustrated in Fig. 3.6.
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By examining the eigenvalues and eigenvectors of the matrices for a period of
the system, it is clear why the secular motion of a particle in a periodically focus-
ing system is very nearly simple harmonic. The eigenvalues are λj = exp(±iµ),
and so both indicate motion with a single spatial frequency ksec = µ/Lp, where
Lp is the length of one period. This motion is therefore simple harmonic about
the real components of the eigenvector directions, which are the major and
minor axes of the ellipse shown in Fig. 3.7. Since the real components of the
eigenvectors are not in general parallel to the (x, x′) axes, the simple harmonic
motion does not necessarily yield an ellipse aligned to these axes, but one that
is aligned to the eigenvector axes.
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Fig. 3.7 Poincaré plot of the motion of a
particle in a FODO channel of µ = 33◦,
shown previously in Fig. 3.6, but here plotted
only at the end of every FODO array.

This discussion brings up the question of which quantities are independent
of where in the period one chooses to interrogate the motion while performing
a matrix analysis, or generating a Poincaré plot. As discussed above, and in
Exercise 3.5, the trace of a matrix is independent of where in the period z0 one
chooses to begin the transport description. Thus the eigenvalues of the motion
and the phase advance per period are independent of the choice of z0. This is
intuitively obvious from Fig. 3.5—the average, secular motion frequency cannot
depend on which point in the fast periodic motion one begins the analysis. On the
other hand, the eigenvectors depend on the choice of z0, and so the orientation
of the ellipse typified by that shown in Fig. 3.7 is also dependent on choice of
z0. The area inside of the ellipse, being related to the action, and therefore the
energy of the slow, secular oscillation (see Chapter 1), is independent of z0.
This area and its physical meaning will be discussed further in this chapter, as
well as in Chapter 5.

If one is concerned primarily with the approximate secular focusing effects
of a periodic lattice, they can be taken into account by use of the smooth
approximation, in which only the average focusing effect is used in the equation
of motion,

x′′ + k2
secx = 0. (3.33)

This approximation will be used in several upcoming analyses of oscillatory
forces in beam physics phenomena. A direct analytical method for deriving the
smooth (secular), focusing strength k2

sec will be presented in Section 3.4. For
now, we restate that the average focusing strength employed in Eq. (3.33) can be
simply deduced from ksec = µ/L. In the case of an alternating, focus–defocus
(no drift) lattice (see Ex. 3.6), the phase advance is given exactly by

cos(µ) = cos

(
κ0Lp

2

)
cosh

(
κ0Lp

2

)
. (3.34)

For small phase advance per period, µ � 1, Eq. (3.34) can be approximated as

1 − µ2

2
∼=

(
1 −

(
κ0Lp

2

)2
)(

1 +
(

κ0Lp

2

)2
)

or µ ∼= 1

4
√

2
(κ0Lp)

2,

(3.35)
and the average focusing strength is given by

k2
sec

∼= 1

32
k4

0L2
p . (3.36)

Assuming magnetic quadrupole focusing, Eq. (3.36) indicates that the focusing
strength is proportional to the applied field squared, k2

sec ∝ B′2. This is similar to
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the situation we have found in solenoid focusing, and it again points to a general
result mentioned above—all linear focusing that is equal in both transverse
dimensions, and occurs in a macroscopic charge and current-free region, has an
average strength that is second-order in the applied field strength. The reasons
for this result in the context of quadrupole focusing will be more apparent after
the discussion in Section 3.4.

3.4 Second-order (ponderomotive) focusing

As we noted at the beginning of Section 3.3, periodic focusing lattices can
be analyzed in a number of ways. In many situations encountered in charged
particle optics the forces are piece-wise constant, and the matrix methods of
Section 3.3 provide an exact and powerful description of the motion. On the
other hand, there are situations where the periodic focusing is not piece-wise
constant, and another method is appropriate, one based on a Fourier decom-
position of the periodic forcing function κ2(z). The basis of this analysis is
an examination of purely harmonic, or sinusoidally varying, focusing. To be
specific, we consider an equation of motion of the form

x′′ + κ2
0 sin(kpz)x = 0, (3.37)

where we have chosen the phase of the focusing function for ease of further
analysis,2 and defined the wave number associated with the focusing strength 2This form indicates that we will always be

choosing the phase of the focusing function so
that it is odd with respect to the origin. Since
we are interested only in finding the averaged
second-order focusing in this analysis, no loss
of generality in the discussion is suffered due
to this assumption.

period, kp = 2π/Lp.
Equation (3.37) is classified in mathematics texts as a form of Hill’s equation

(an oscillator with periodic “focusing” coefficient), and also more specifically a
form of the Mathieu equation (an oscillator with a component of sinusoidally
periodic focusing). The exact solutions to the Mathieu equation have been
studied in detail, but these solutions are not terribly useful or illuminating. For
our purposes, therefore, we would like to use approximateperturbativemethods
from which we can learn some lessons about the physics of this system. This type
of equation of motion is often found in electrodynamics, most commonly in the
case of a charged particle oscillating in a spatially non-uniform electromagnetic
wave, e.g. a free-electron near the focus of a powerful laser. We will return to
this example later.

The discussion of Section 3.3, where we saw that the secular simple harmonic
motion in a periodic lattice has a small, fast “error” trajectory overlaid upon it,
motivates our choice of analysis method. The approximation we will employ
here assumes that the motion can be broken down into two components, one
which contains the small amplitude fast oscillatory motion (the perturbed part
of the motion), and the other that contains the slowly varying or secular, large
amplitude variations in the trajectory. This is written explicitly in one transverse
direction as

x = xosc + xsec. (3.38)

By this assumption, we expect the case described by Eq. (3.37), to display
motion that looks qualitatively similar like the example given in Fig. 3.8.
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Fig. 3.8 An example of fast, small amplitude
oscillatory motion superimposed upon slow,
large amplitude, secular oscillation.
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The oscillatory component is analyzed by making the approximation that the
offset x = xsec ∼= constant (x′′

sec � x′′
osc) over an oscillation in the second term

on the right hand side of Eq. (3.37),

x′′
osc + κ2

0 sin(kpz)xsec = 0, (3.39)

where we have used the assumed |xosc| � |xsec|.
Since we will eventually add the secular solution xsec to the perturbed com-

ponent xosc, we do not have to examine the full solution to Eq. (3.39) at this
point, only the inhomogeneous solution. We can add the homogeneous com-
ponents along with xsec later, when we apply the initial conditions to the full
solution.

The inhomogeneous component of the solution to Eq. (3.39) is

xosc = sin(kpz)
κ2

0

k2
p

xsec. (3.40)

This solution for the oscillatory portion of the motion is accurate if the
assumptions leading to it are valid, requiring that

|xosc|
|xsec| � 1 or

κ2
0

k2
p

� 1. (3.41)

In short, if the fast oscillation amplitude is small compared to the secular ampli-
tude, then we expect the approximate solution to Eq. (3.39) to be accurate. This
will be true if κ2

0 /k2
p � 1, implying that the focusing is weak, in the sense

that no significant part of a secular oscillation can occur during the focusing
strength period 2π/kp. This condition, of course, also implies that the secular
phase advance per period is small, µ � 1.

With Eq. (3.40) in hand, it is now possible to substitute it into Eq. (3.39) to
obtain

x′′ = −κ2
0 sin(kpz)x ∼= −κ2

0 sin(kpz)

[
1 + sin(kpz)

κ2
0

k2
p

]
xsec. (3.42)
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The next step in the analysis is to convert Eq. (3.42) into an averaged expression
that will give us the behavior of the secular component of the motion, xsec ≡ 〈x〉,
where the indicated average is over a period Lp. We now obtain, by averaging
Eq. (3.42) over one period of the fast oscillation,

x′′
sec ≡ 〈x′′〉 = −〈κ2〉xsec ∼= −κ2

0

2

κ2
0

k2
p

xsec (3.43)

or, in standard simple harmonic oscillator form,

x′′
sec + κ4

0

2k2
p

xsec = 0. (3.44)

Equation (3.44) predicts simple oscillations having a spatial frequency (wave
number) ksec = √〈κ2〉 = κ2

0 /
√

2kp. The derivation of these oscillations can
be viewed as an algorithm for extracting the smooth approximation picture
equivalent to Eq. (3.37). Note that one of the assumptions used in generating
Eq. (3.39) was that x′′

sec � x′′
osc, which we now see implies κ4

0 /2k2
p � k2

p—
essentially the same criterion as given by Eq. (3.41). Equation (3.44) is derived
through an averaging technique that is reminiscent of the stroboscopic visual-
ization analysis given in the Section 3.3; the slow oscillations in an alternating
periodic focusing system become easily apparent if one examines the system
only once per period, á la Poincaré.

The full solution to Eq. (3.37) is, assuming that our analysis is valid for the
parameters of interest,

x =
[

1 + sin(kpz)
κ2

0

k2
p

][
A cos

(
κ2

0√
2kp

z

)
+ B sin

(
κ2

0√
2kp

z

)]
, (3.45)

where A and B are constants of integration. These constants, as mentioned
above, can be used to ensure that the initial conditions are properly taken into
account.

Note that, unlike our discussion in Section 3.3, we have no predictions con-
cerning the values of the focusing amplitude that will produce instability, as
Eq. (3.44) always indicates stable, simple harmonic motion. This is because
Eq. (3.44) loses validity in precisely the parameter range where the system
would be found unstable, κ2

0 ≈ k2
p . In this range, one observes that the oscilla-

tions behave as in the thin/thick lens alternating focusing system (see Ex. 3.6) in
an unstable regime—x may change wildly in amplitude during a single focusing
period.

For cases where our approximations are valid, one can trivially predict the
phase advance per period µ. This quantity can be seen to be merely the argument
of the sinusoidal functions in the secular component of x,

µ ∼= κ2
0 Lp/

√
2kp = √

2π(κ2
0 /k2

p) = κ2
0 L2

p/
√

8π , (3.46)

which is nearly the same as that given by Eq. (3.36). It should be noted again
that this approximation is useful only for small values of µ since the validity
of the analysis implies κ2

0 � k2
p . In fact, if we examine the treatment of the

thin-lens FODO system discussed in Section 3.3, we see that the stability limit
is reached when µ = π . Thus, the estimate given in Eq. (3.46) is valid when we
are far below the stability limit. If one is near the stability limit, then the actual
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value of µ can be obtained by integrating Eq. (3.37) numerically over a period.
One algorithm to follow involves starting from a maximum or minimum in the
focusing (kpz0 = 0, π), which gives the correct symmetry in focusing with the
initial conditions (x, x′)|z=z0 = (1, 0) to yield the cosine-like orbit. The phase
advance is then found numerically, through µ = cos−1(x(z0 + Lp)).

Once one has developed this approximate analysis of a sinusoidal focusing
function, a much more general result follows immediately—the secular oscillat-
ory behavior of an arbitrary periodic focusing function κ2(z) can be predicted.
Using of a Fourier series representation, one can write (for odd symmetry
functions κ2(z))

κ2
x (z) = κ2

0

∞∑
n=0

an sin(nkpz), (3.47)

where the Fourier coefficients

an = 2

Lpκ
2
0

∫ LP

0
κ2

x (z) sin(nkpz) dz. (3.48)

Employing the same derivation methods as those given in Eqs (3.38)–(3.43)
yields an averaged expression similar to Eq. (3.44),

x′′
sec + κ4

0

2k2
p

[ ∞∑
n=1

a2
n

n2

]
xsec = 0. (3.49)

This expression can be used to more accurately compare to the results of the
matrix analysis introduced in Section 3.3. For the case of a thick-lens focusing
described in Exercise 3.6, we have

κ2(z) =
{

κ2
0 , 0 ≤ z < Lp/2,

−κ2
0 , Lp/2 ≤ z < Lp,

(3.50)

and the Fourier coefficients are

an =
{

4/(πn), n odd,

0, n even.
(3.51)

The secular focusing in this case is simply described by

x′′
sec + 8κ4

0

π2k2
p


 ∞∑

n=1,n odd

1

n4


 xsec = 0. (3.52)

The sum in Eq. (3.52) is very close to unity,
∑∞

n=1,n odd n−4 = 1.015. Therefore,
the focusing is almost exclusively due to the fundamental harmonic n = 1,
which gives an average focusing strength 〈κ2〉 = 8κ4

0 /π2k2
p . The predicted
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approximate phase advance per period, including all harmonics, is

µ ∼=
√

〈κ2〉Lp = 4
√

2.03κ2
0 /k2

p = 5.70 · κ2
0 /k2

p . (3.53)

The exact phase advance per period can be found by matrix techniques
(Eq. (3.34)) and is

µ = cos−1(cos(κ0π/kp) cosh(κ0π/kp)) ∼= π2κ2
0 /

√
3k2

p
∼= 5.70 · κ2

0 /k2
p ,

(3.54)

which is in complete agreement with Eq. (3.53). We have a curious ancil-
lary result from this exercise, a fundamental mathematical artifact obtained
by comparing Eqs (3.53) and (3.54): the series summation

∑∞
n=1,n odd n−4 =

π4/96.
This type of system, with a sinusoidally time-dependent focusing force, or

more generally, a sinusoidally time-dependent force having a linear gradient
in the direction of the force, is found in many situations in physics. A simple
example is that of a spatially localized electromagnetic wave (e.g. a laser beam).
In this case, a charged particle oscillates under the influence of the light wave,
but the force is slightly smaller during the half-cycle that the particle spends
in the weaker field region. By this mechanism, the particle is pushed secularly
towards regions of smaller wave intensity or energy density. This effect is
known as a ponderomotive force, and is always characterized by having a
secular force (the focusing strength in this case) that is second-order in the
applied field amplitude.

We will also see that the results of this section are directly applicable to
analyzing the focusing experienced by charged particles accelerating in radio-
frequency linear accelerators. In this case, the transverse electromagnetic forces
are oscillatory and quickly varying and give rise to a second-order secular, or
ponderomotive, focusing effect. It is also interesting to note that a similar
second-order ponderomotive effect occurs in the longitudinal dynamics of the
electrons in a free-electron laser.

3.5 Matrix description of motion in
bending systems

The discussions in Sections 3.3 and 3.4, in which the focusing optics are
assumed to be periodic functions of the independent variable, have clearly been
motivated by desire to understand circular accelerators, where the periodicity
is enforced every turn around the device. Most of the tools needed to under-
stand the motion in circular systems, which of necessity contain magnets that
bend the particle trajectories, have been introduced by now, but a few remain.
Here we discuss two of these tools: the method of analyzing entrance and exit
effects in magnets, and a more detailed discussion of the dispersion function
introduced in Chapter 2. Note that we change our notation convention slightly
in this section, with the independent variable indicated by s and not z, as we
have already done once before for our weak focusing analysis.

We must first examine the coordinate conventions that we are to use before
we develop the description of the motion in bends. When one encounters a bend
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magnet, the most common convention dictates that positive x is in the direction
away from the center of curvature. If one has started the calculation of the optics
with the opposite convention, it is necessary to flip the coordinates by use of
the negative identity matrix, �x = −I · �x = −�x before proceeding.3 Then the3Note we have already indicated in Chapter 2

that this transformation is by convention not
applied to the vertical (y) direction simul-
taneously, and that an initially right-handed
coordinate system will then be left-handed.

matrix of a finite-length magnet can be broken up into three separate matrices

Mmag = MexitMbendMentrance, (3.55)

where the bend matrix in a combined-function magnet can be deduced simply
from Eqs (3.3) and (3.4) to be

Mbend =
[

cos(κbl) 1
κb

sin(κbl)
−κb sin(κbl) cos(κbl)

]

=
[

cos(
√

1 − n θb)
R√
1−n

sin(
√

1 − n θb)

−
√

1−n
R sin(

√
1 − n θb) cos(

√
1 − n θb)

]
. (3.56)

Here the focusing wave number is given by κx = κb = √
1 − n/R, and the bend

angle is θb = l/R.
The edge matrices can be constructed by careful consideration of fringe field

and differential path length effects. These effects will be treated here in the thin-
lens approximation, meaning that the momentum kick imparted to the particle
occurs in such a short distance that the particle does not change its transverse
position appreciably during the transit of the edge regions. The horizontal kick
can be understood purely in terms of differential path length, as illustrated in
Fig. 3.9, which gives a more detailed picture of the magnet entrance edge region
shown in Fig. 3.10. The offset trajectory integrates a different total magnetic
force, which is linearly dependent on the amount of horizontal offset x, than
the design trajectory. This integrated kick is written, following the discussion
leading to Eq. (2.13), as the amount of deflecting momentum impulse (force
integral) encountered due to the differing path length inside of the magnet edge
at a given offset x,

�px,edge = −q
∫

edge
B0

(
1 + B′x

B0R

)
ds ∼= qB0 tan(θE)x. (3.57)

In Eq. (3.57), we have only included terms linear in x (due to the field index),
dropping quadratic terms in this small quantity. The additional path length
for the offset particle is seen to be (θE)x, where the angle θE, defined as the
angle from the (outward) edge normal to the incoming trajectory, is taken to be
positive when it points toward the center of curvature in the magnet. A positive
θE indicates that, for a positive offset x, there is a “missing” field region, and
the effect of the edge is defocusing. For a negative θE, there is “additional” field
encountered, and the edge has a focusing effect. For the exit angles, the same
convention apply, and the angular kick encountered at an edge is given by

�x′
edge = tan(θE)

R
x. (3.58)

The thin-lens matrix associated with an edge is thus found to be

Medge =
[

1 0
tan(θE)

R 1

]
. (3.59)
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Bend magnet

Design
trajectory

Offset trajectory

�E

�E Fig. 3.9 Geometry for defining edge angles
and considering the horizontal focusing
effects of entrance and exit angles.

�E

Design
trajectory

Offset trajectory

x

Edge normal

“Missing” field

“Additional” field

Fig. 3.10 Close-up picture of magnet
entrance region showing differential path
length encountered by offset trajectory. In
this case, the offset trajectory sees less field
region, and is defocused by the edge.

The focal length of the edge is f = −R/ tan(θE) and is, by convention, positive
in the focusing case, θE < 0.

As an example of this focusing, the magnet shown in Fig. 3.9 is a rectangular
wedge magnet. For a field index equal to zero (flat-field magnet), it has the
following total matrix transformation in x:

MT, x = MedgeMbendMedge

=
[

1 0
tan(θE)

R 1

] [
cos(θb) R sin(θb)

− 1
R sin(θb) cos(θb)

] [
1 0

tan(θE)
R 1

]
.

(3.60)

For the symmetric trajectory shown in Fig. 3.9, the edge angle θE = θb/2, and
the transformation is written as

MT, x =
[

1 R sin(θb)

0 1

]
. (3.61)

Note that this matrix takes the form of a simple drift, and there is no focusing
or magnification associated with it.

In the vertical dimension, the edge transformation can be deduced by noting
that, in the fringe field, the vertical component of the field goes from zero to the
maximum value as one traces along the edge normal (see Fig. 3.10). Terming
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this coordinate ξ , we have ∂By/∂ξ = ∂Bξ /∂y �= 0 in the fringe region, and thus
the field lines have a component in the normal direction, Bξ = ∫ y

0 (∂Bξ /∂y) dy ∼=
(∂By/∂ξ)y=0 y. If the particle enters the fringe field at a non-zero edge angle,
θE, there is a component of Bξ normal to the trajectory, and we have a vertical
force, Fy = qv0 sin(θE)Bξ . This force is gives rise to an integrated angular kick,

�y′
edge = − q

p0

∫
edge

[Bξ sin(θE)] ds = − q

p0

∫
edge

(
∂By

∂ξ

)
y=0

y
sin(θE)

cos(θE)
dz

= −qB0

p0
tan(θE)y ∼= − tan(θE)

R
y. (3.62)

The vertical kick is equal in magnitude and opposite in sign to the horizontal
edge kick.

For the rectangular, flat-field wedge magnet, the focusing lies entirely in the
vertical dimension. The total vertical transformation matrix is written as

MT,y =
[

1 0
− tan(θE)

R 1

] [
1 Rθb

0 1

] [
1 0

− tan(θE)
R 1

]

=

 1 − θb tan

(
θb
2

)
Rθb

− tan
(

θb
2

)
R

[
2 − θb tan

(
θb
2

)]
1 − θb tan

(
θb
2

)

 . (3.63)

This magnet is focusing and has an effective focal length given by

1

fy
= tan

(
θb
2

)
R

[
2 − θb tan

(
θb

2

)]
. (3.64)

The rectangular wedge magnet displays the opposite characteristics of the zero-
edge angle case, which is termed a sector magnet. In this case, the edge matrices
are ignorable, and MT, x = Mbend. The effective horizontal focal length is fx =
R/ sin(θb), which for small angle θb � 1 gives the same value as Eq. (3.64).
The vertical focusing is a small, but perhaps non-negligible effect in this case.
It arises when the charged particle deflects noticeably in the fringe-field region
of the magnet (i.e. when the magnet gap is large). The calculation of this effect
is left as an exercise to the reader.

3.6 Evolution of the momentum dispersion
function

Now that we have essentially concluded our introductory discussion of betatron
motion, where we have been concerned with trajectories of particles possessing
the design momentum, but having offset and angular errors, we can pro-
ceed to the discussion of the effects of momentum errors. To do this, we
must re-examine the momentum dispersion function, which was introduced in
Section 2.2 and defined by the differential relation ηx = ∂x/∂[δp/p0]. This
function allows us to write the horizontal (transverse, in bend-plane) first-
order (in betatron and momentum error amplitude) offset as (see Eq. (2.14))
x = xβ + ηx(δp/p0), with the betatron offset xβ being governed by the ana-
lyses of Sections 3.1–3.5. If one needs to analyze a beam optics system with
bends that do not lie all in one plane, it is also necessary to introduce a vertical
momentum dispersion function, so that y = yβ + ηy(δp/p0).
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The momentum dispersion function, when multiplied by the relative
momentum error δp/p0, is most usefully thought of as the trajectory of a particle
with a (unit) relative momentum error alone, and no betatron error. Therefore,
the dispersion is a normalized trajectory and, to the extent that the momentum
error is small, will behave nearly as a paraxial betatron trajectory when sub-
jected only to focusing forces—it will approximately obey Eq. (3.10) in such a
case. Introducing a bending force on the design orbit produces a qualitatively
different effect, however, because the radii of curvature associated with the dif-
fering momenta are different. Since the differential acceleration of these orbits
is constant, the horizontal dispersion function is also driven by curvature term
x′′
δp/p0

= η′′
x · (δp/p0) = R( p0)

−1 − R( p0 + δp/p0)
−1, giving a new term in the

dispersion evolution equation, η′′
x

∼= R( p0)
−1 ≡ R−1

0 . With the quadrupole and
path length focusing terms included as well, we have a differential equation
governing the evolution of the horizontal dispersion,

η′′
x +

(
1

R2
0

+ qB′

p0

)
ηx = 1

R0
,

or more simply

η′′
x + κ2

b ηx = 1

R0
. (3.65)

Here, R0 = R( p0) is the design radius of curvature and κx = κb = √
(1 − n)/R0

in a bend. The left-hand side of the equation (the homogeneous portion of
Eq. (3.65)) has the same form of solutions as given by Eqs (3.11) and (3.15).
Equation (3.65) has an inhomogeneous component in a bend and, therefore, has
a particular solution in a bend magnet, ηx,part = 1/κ2

b R0. The full solution is,
assuming a (possibly combined-function) magnet with net interior horizontal
focusing (κ2

b > 0, or n < 1), formally

ηx = A cos(κbs) + B sin(κbs) + 1

κ2
b R0

, (3.66)

where the magnet entrance is taken to be s = 0. The full solution can be con-
structed by matching boundary conditions at the entrance of the bend magnet.
Continuity of the horizontal dispersion and its derivative at the entrance to the
magnet requires

ηx(s) = 1

κ2
b R0

+
[
ηx(0) − 1

κ2
b R0

]
cos(κbs) + η′

x(0)

κb
sin(κbs), (3.67)

with

η′
x(s) =

[
1

κbR0
− κbηx(0)

]
sin(κbs) + η′

x(0) cos(κbs). (3.68)

This linear transformation is written in matrix form by using a 3 × 3 matrix
based on the betatron matrix operating on a dispersion state vector with a dummy
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third entry, that is,
ηx(s)

η′
x(s)
1


 =




cos(κbs) 1
κb

sin(κbs) 1−cos(κbs)
κ2

b R0

−κb sin(κbs) cos(κbs) sin(κbs)
κbR0

0 0 1




×

ηx(0)

η′
x(0)

1


 . (3.69)

For defocusing systems with κ2
b < 0, it is straightforward to show that


ηx(s)

η′
x(s)
1


 =




cosh(|κb|s) 1
κb

sinh(|κb|s) − (1−cosh(|κb|s)
|κ2

b |R0

sinh(|κb|sl) cosh(|κb|s) sinh(|κb|s)
|κb|R0

0 0 1




×

ηx(0)

η′
x(0)

1


 . (3.70)

The upper left hand 2 × 2 block in the transformation matrices of Eqs (3.69)
and (3.70) are simply the betatron transformation matrices, M.

When the beam is in a straight section, R0 → ∞, and the upper two elements
of the third column vanish of the matrix—the third column and third row do
not affect the horizontal dispersion or its derivative, as expected. It should be
noted in this regard that, since edge matrices are of negligible length, there is
no bending of the design orbit and the dispersion transformation matrices are
constructed just as in a straight section. That is, the upper left hand 2 × 2 block
in the transformation matrix is the thin-lens matrix, and the final column is
(0,0,1).

As with betatron motion, convention dictates that positive ηx be defined in the
direction away from the center of curvature. If one has started the calculation
of the optics with the opposite convention (for instance, when the direction of a
bend changes from one magnet to the next), it is again necessary to flip the sign
of ηx and η′

x before proceeding with the matrix calculation of the dispersion
and its derivative. In matrix form, this procedure is written

ηx

η′
x

1




new

=

−1 0 0

0 −1 0
0 0 1





ηx

η′
x

1




old

. (3.71)

For cases where the bending field changes continuously in space, it is not
possible to utilize the matrix-based approach to the solution of the dispersion
evolution, and one must solve Eq. (3.65) in another manner. As an example of
this type of scenario, we recall the case of the magnetic undulator introduced in
Section 2.8. In this device, the undulating component of the motion was seen
to be

x = qB0

p0k2
u

sin(kuz), (3.72)

from which we have the relation

∂x

∂p0
= − qB0

p2
0k2

u

sin(kuz), (3.73)
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and

ηx = p0
∂x

∂p0
= − qB0

p2
0k2

u

sin(kuz) ≡ − au

β0γ0ku
sin(kuz). (3.74)

Here, we introduce the undulator parameter au ≡ qB0/kum0c, which we will
see (in Chapter 8) plays a central role in the operation of the free-electron laser.

3.7 Longitudinal motion and momentum
compaction

While this chapter is nominally only concerned with first-order transverse
motion, in this section we open the door to considering the effects of momentum
errors on longitudinal motion by further discussing the effects of momentum
dispersion. As we shall see below, momentum dispersion plays a critical role
in the first-order theory of longitudinal motion and, thus, in the interest of com-
pleteness, we include a discussion of this dispersion-based effect. In particle
transport systems, longitudinal motion in accelerators can be analyzed approx-
imately using a Taylor series expansion of the motion in the relative longitudinal
momentum error. The point of the present analysis is to generate a longitud-
inal equation analogous to the paraxial betatron equations of motion found in
our treatment of transverse motion, for example, Eqs (3.5) and (3.6). In non-
bending systems, this analogy is particularly close, because the paraxial betatron
equations are also based on first-order expansion of the motion in transverse
momentum errors. With bending systems, because of dispersion, the equations
of motion are slightly more complicated.

Since the independent variable has been taken to be distance along the design
trajectory (s or z), the canonical dependent coordinate in the longitudinal dir-
ection is time t, which we then measure in Hamiltonian analyses relative to
the time of arrival of the design particle, τ = t − t0. The variable that plays
the role of the “momentum,” which is canonical to time “coordinate,” is the
particle’s mechanical energy. However, since we will begin our discussion of
longitudinal motion without employing Hamiltonians, and have invested much
effort in the previous analyses based on momentum differences, we will con-
tinue in this somewhat less rigorous way. To make the present analysis connect
more easily to Hamiltonian approaches, we will find it useful to introduce a
parameterization of the time through a spatial variable, ζ = −v0τ . This is the
distance that must be traveled at the design velocity by the design particle, to
reach the position of the temporally advanced (or delayed) particle.

The time of flight of an off-momentum particle to a point along the design
orbit is given by

τ( p) = L( p)

v( p)
, (3.75)

where L(p) is the distance traveled by the particle as a function of its momentum.
The first-order logarithmic expansion of this expression is, assuming the
paraxial approximation,

δτ

t0
= δL

L0
− δvz

v0

∼=
[
αc − 1

γ 2
0

]
δp

p0
. (3.76)
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Here we define the path length parameter αc ≡ (δL/L0)/(δp/p0) and use
δvz/v0 ∼= (1/γ 2

0 )(δp/p0). Equation (3.76) is used to define the momentum
compaction, sometimes termed the time dispersion,

ητ ≡ ∂(δτ/t0)

∂(δp/p0)
= αc − 1

γ 2
0

, (3.77)

which is analogous to the horizontal dispersion discussed in Section 3.6. For a
given section of particle transport, e.g. a complete revolution around a circular
accelerator, there is a certain energy at which the time dispersion vanishes, and
all particles pass through the system in the same amount of time. This energy,
given by

γt = α
−1/2
c , (3.78)

is termed the transition energy. Below transition, particles of higher momentum
pass through the system more quickly, which is the natural state of affairs in
linear systems. Above transition energy they take—somewhat anti-intuitively—
more time to pass through the system, since the added path length of a
higher-momentum trajectory outweighs the added advantage in velocity, which
becomes progressively smaller as particles become more relativisitic.

To lowest order in momentum error, the path length parameter is

αc = 1

s − s0

∫ s

s0

ηx(s̃)

R(s̃)
ds̃. (3.79)

Note that contributions to the integral in Eq. (3.79) vanish in straight sections,
where R → ∞. The path length parameter changes only in bend regions, where
the linear dependence of the radius of curvature on the momentum produces a
first-order difference in path length. Since the dispersion is “naturally” positive
(see Ex. 3.13), one must work at making the dispersion negative and thus
usually αc > 0. It is possible under some circumstances to make αc vanish or
be negative, in which case the transport is always “above transition,” regardless
of energy.

One particular magnetic system, the magnetic undulator, lends itself easily
to path length parameter analysis. From Eq. (3.74), we can derive the paraxial
(small bend limit) expression

αc = − 1

s − s0

∫ s

s0

au sin(kuz̃)

kuβ0γ0R(s̃)
ds̃ ∼= − 1

s − s0

∫ s

s0

a2
u sin2(kus̃)

β2
0γ 2

0

ds̃ = − a2
u

2β2
0γ 2

0

,

(3.80)

and

ητ = − 1

γ 2
0

[
1 + a2

u

2β2
0

]
. (3.81)

This result should be compared with the one that can be directly deduced
from the longitudinal momentum calculation of the paraxial undulator given by
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Eq. (2.75). In this limit we can write, with vz = pzc2/

√
p2

0c2 + (m0c2)2,

ητ = − ∂vz

∂pz

p0

v0
= −

[
1

mγ 3
0

+
(

qB0

2kup0

)2
(

1 + β2
0

β2
0 (γ0mc)3

)]
mγ0

∼= − 1

γ 2
0

[
1 + a2

u

2

]
, (3.82)

in good agreement with Eq. (3.81).

3.8 Linear transformations in six-dimensional
phase space*

Previously in this chapter, we have introduced analyses of the motion based
on linear dependences of the dynamics on errors in the momenta in one phase
plane (actually, one trace space) at a time. In practice, as one needs to keep track
of the motion in the entire six-dimensional phase space at once when designing
an actual accelerator, the 2 × 2 matrices that allow transformation of one two-
entry trace space vector at a time is replaced by a 6 × 6 matrix that contains
all three ((x, x′)( y, y′), (ζ , ζ ′)) trace space planes, plus additional information,
the possible coupling between trace spaces. This generalized transport matrix
transforms the six-entry phase space vector �� ≡ (x, x′, y, y′, ζ , ζ ′), where for
symmetry we have changed our notation somewhat in writing the normalized
longitudinal momentum error, ζ ′ = δpz/p0 ∼= δp0/p0. The standard form of
this transformation is

��(s) ≡ R(s, s0) · ��(s0), (3.83)

where the 6 × 6 R(s, s0) matrix is specified to transform the ��-vector from one
position in the beamline s0 to another s. The matrix R(s, s0) is formally written

R(s, s0) =




∂xf
∂xi

∂xf
∂x′

i

∂xf
∂yi

∂xf
∂y′

i

∂xf
∂ζi

∂xf
∂ζ ′

i
∂x′

f
∂xi

∂x′
f

∂x′
i

∂x′
f

∂yi

∂x′
f

∂y′
i

∂x′
f

∂ζi

∂x′
f

∂ζ ′
i

∂yf

∂xi

∂yf

∂x′
i

∂yf

∂yi

∂yf

∂y′
i

∂yf

∂ζi

∂yf

∂ζ ′
i0

∂y′
f

∂xi

∂y′
f

∂x′
i

∂y′
f

∂yi

∂y′
f

∂y′
i

∂y′
f

∂ζi

∂y′
f

∂ζ ′
i

∂ζf

∂xi

∂ζf

∂x′
i

∂ζf

∂yi

∂ζf

∂y′
i

∂ζf

∂ζi

∂ζf

∂ζ ′
i

∂ζ ′
f

∂xi

∂ζ ′
f

∂x′
i

∂ζ ′
f

∂yi

∂ζ ′
f

∂y′
i

∂ζ ′
f

∂ζi

∂ζ ′
f

∂ζ ′
i




,

(3.84)

where the subscript i indicates the initial value of the vector element at s0, and
the subscript f indicates its final value at s. Equations (3.83) and (3.84) explicitly
give the final state phase space vector components in terms of their first-order
dependences on the initial phase space vector components, e.g.

xf = ∂xf

∂xi
xi + ∂xf

∂x′
i
x′

i + ∂xf

∂yi
yi + ∂xf

∂y′
i
y′

i + ∂xf

∂ζi
ζi + ∂xf

∂ζ ′
i
ζ ′

i . (3.85)

With this form in mind, it is possible to identify the components of R(s, s0)

in terms of familiar quantities. The upper left diagonal 2 × 2 block in R(s, s0)
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is the horizontal betatron transformation matrix; the middle diagonal 2 × 2
block is the vertical betatron transformation matrix; the lower right diagonal
2 × 2 block is the longitudinal linear transformation matrix (which will be
more familiar when we study acceleration in Chapter 4). Other matrix elements
outside of these blocks have also been previously discussed—for example R16

and R26 are ηx and η′
x, respectively, and R56 is −ητ�s. Matrix elements linking

the initial and final x and y phase planes would be non-zero if the planes are
coupled, as happens in the solenoid, where the Larmor rotation completely
mixes the upper left 4 × 4 diagonal block (cf. Ex. 3.20).

The 6 × 6 transport matrix R(s, s0) has much in common with its
2 × 2 diagonal blocks. For instance, in the absence of acceleration, it has unit
determinant, which is a manifestation of Liouville’s theorem concerning phase
space density. The 6 × 6 transport matrix transformation of the ��-vector is
used in most of the computer codes employed for accelerator beam dynamics
calculations.

3.9 Summary and suggested reading

This chapter began with a discussion that deepened the introductory remarks
made on betatron oscillations in Chapter 2, introducing the notion of weak
focusing in circular accelerators. In such a scheme, one can have simultaneous
stability in both vertical and horizontal transverse dimensions.

In order to circumvent the natural scaling of weak focusing, strong focus-
ing based on periodic arrays of focusing and defocusing (alternating gradient)
quadrupoles has been introduced. The piece-wise periodic focusing arising from
these arrays is analyzed by powerful matrix methods. These methods, along with
the stroboscopic Poincaré trace space-mapping visualization tool, have been
explored in detail in this chapter. An alternative approach to understanding peri-
odic focusing, which employs a perturbative analytical technique, has allowed
us to identify alternating gradient focusing as a type of ponderomotive focusing.

Periodic focusing naturally arises in the context of circular machines, so
we, of necessity, examined strong focusing effects, using matrix techniques, in
bending systems. The bending of the design trajectory also introduces a new
class of paraxial trajectory error—momentum dispersion. This phenomenon
was also treated in this chapter by use of matrix methods.

Momentum dispersion couples the longitudinal phase plane with the trans-
verse phase plane, by causing trajectory errors in the bend plane. Likewise,
these trajectory errors can also affect the longitudinal motion of a particle, by
changing its path length through a section of beamline. We have analyzed the
competition between this effect and the change in the velocity of the particle
on the time-of-flight through the system. The results we have obtained will be
needed in Chapters 4 and 5 when we discuss longitudinal motion in circular
accelerators.

Trace (or phase) planes are, in general, coupled by effects like dispersion
and rotation (e.g. in solenoids). Thus, we ended this chapter by introducing the
general six-dimensional square matrix description of the six-dimensional phase
space dynamics of a charged particle.

The material in this chapter contains the core concepts of charged particle
transverse optics. As such, many other texts in accelerator physics also treat
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the subjects we have introduced here. There is a wide variety of approaches to
discussing linear transverse motion and many levels at which the discussion is
given in other books. The following texts may be recommended as a supplement
to this chapter:

1. P. Dahl, Introduction to Electron and Ion Optics (Academic Press, 1973).
A primer on optics.

2. D.C. Carey, The Optics of Charged Particle Beams (Harwood Academic
Publishers, 1987). A complete treatment of transverse charged particle
motion, including an excellent treatment of higher-order (nonlinear)
forces.

3. D. Edwards and M. Syphers, An Introduction to the Physics of High Energy
Accelerators (Wiley, 1993).

4. H. Wiedemann, Particle Accelerator Physics I: Basic Principles and Lin-
ear Beam Dynamics (Springer-Verlag, 1993). The rigor of the presentation
in this text should be helpful in clarifying issues arising from our less
formal presentation.

5. S.Y. Lee, Accelerator Physics (World Scientific, 1996).

A number of texts may be used as an introduction to advanced topics in
transverse beam dynamics:

6. M. Reiser, Theory and Design of Charged Particle Beams. This is an
encyclopedic reference on transverse motion in beams, with and without
collective effects.

7. M. Berz, Modern Map Methods in Particle Beam Physics. Rigorous treat-
ment of modern analytical methods for study of linear and nonlinear beam
dynamics. Written at the graduate-to-professional level.

8. H. Wiedemann, Particle Accelerator Physics II: Nonlinear and Higher-
order Beam Dynamics (Springer-Verlag, 1999). Advanced topics in
nonlinear dynamics, using the first volume in the series as a basis. Written
at the graduate-to-professional level.

Exercises

(3.1) As will be discussed in detail in a following chapter, the
surfaces of the iron in a ferromagnet are roughly mag-
netic equipotentials. Given this fact, what mathematical
form should a combined-function magnet surface like that
shown in Fig. 3.1 have to support a combination of dipole
and quadrupole fields?

(3.2) Assuming a mechanism for equipartion of energy, and
thus temperature equilibrium, between phase planes, so
that the root-mean-square (rms) angle x′

rms = √〈x′2〉 =√
kT/m0c2/βγ = y′

rms, what field index n should one use
to guarantee that the beam sizes in a betatron obey xrms =
2yrms? You can use xrms = Rx′

rms/νx , yrms = Ry′
rms/νy.

(3.3) Explain, in terms of the transverse velocity components
of the motion, why the oscillator strength associated with
betatron oscillations in solenoids is of second-order, even
though the force on the particle is first order in the field
amplitude.

(3.4) Consider a thin-lens system in which there is a repetitive
application of a focusing lens with focal length f , each
separated by a drift of length L.

(a) What is the total transformation matrix correspond-
ing to one period of the system in this case?

(b) What is the relationship between f and L that
guarantees linear stability of the transformation?
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(3.5) To prove that the trace of a matrix M1 is the same as that
of another matrix M2, it is sufficient to show that the two
matrices are related by a similarity transformation,

M1 = A−1M2A,

where A is a matrix of unit determinant. Show that any two
matrices representing a periodic focusing system M1 and
M2, corresponding to two different choices of z0(z0,1 and
z0,2), are related by such a transformation. Hint: examine
matrix A, which is the transformation matrix (M) from
z0,1 to z0,2.

(3.6) Consider a charged particle transport system, created
by two thick lenses of length l, with opposite focusing
strengths κ2

0 and −κ2
0 , so that the matrix mapping for the

focusing and defocusing lenses are

MF =
[

cos(κ0l) (1/κ0) sin(κ0l)
−κ sin(κ0l) cos(κ0l)

]

and

MD =
[

cosh(κ0l) (1/κ0) sinh(κ0l)
κ0 sinh(κ0l) cosh(κ0l)

]
,

respectively. These two lenses are applied repetitively so
that the transformation of the coordinate vector at the nth
step �x = ( x

x′
)

is �xn+1 = MF · MD · �xn.

(a) What is the phase advance per period of the
oscillation as a function of κ0l?

(b) Like the case of a thin-lens-based system, when
κ2

0 becomes large enough the transformation is
unstable. Unlike the thin-lens case, other regions
of stability are encountered when κ2

0 is raised even.
Plot a trajectory from the second stability region
(the one encountered after the first unstable region).
Hint: It is easy to construct this plot from the
piece-wise solutions to the motion if you start with
conditions �x = (xi

0

)
at the middle of one of the

lenses. Can you tell from this trajectory why the
second stability region exists for the alternating
thick lens, but not the alternating thin-lens system?

(3.7) Consider a thin-lens system in which there is a repetitive
application of a focusing lens with focal length f1 and defo-
cusing lens with focal length −f2, each separated by a drift
of length L. Let us examine what happens if f1 �= f2:

(a) What is the total transformation matrix correspond-
ing to one period of the system?

(b) Sketch out the region of stability in the parameters
f1 and f2. This is best accomplished by drawing
the borders of stability on a two-dimensional plot
where the axes are f1/L and f2/L.

(3.8) The Wronskian determinant (or simply, the Wronskian)
of a linear second-order differential equation

x′′ + v(z)x′ + w(z)x = 0

can be formed as the product of the two linearly inde-
pendent solutions of the equation x1 and x2, and their first
derivatives,

W(z) ≡ x1(z)x
′
2(z) − x′

1(z)x2(z).

(a) Derive the differential equation governing the
Wronskian,

W ′(z) + v(z)W(z) = 0.

For v(z) = 0, this clearly implies that the
Wronskian is constant. This constant is determined
in the (simple harmonic oscillator) example of
constant w(z), in which case one has W = 1.

(b) Show that the solution to the Wronskian differential
equation is

W(z) = W(0) exp

[
−

∫ z

0
v(z̃) dz̃

]
.

For the damped oscillator equation describing
betatron oscillations during acceleration in a solen-
oid (Eq. (2.56)), show that the Wronskian damps
along with the trace space area, that is, W(z) =
βγ (0)/βγ (z).

(3.9) Construct a Poincaré plot of a FODO lattice with a phase
advance per period equal to 50◦. Verify that the plot pro-
duces an ellipse aligned to the (x, x′) axes if one begins
the matrix construction in the middle of either the focus-
ing or defocusing lenses. This requires that the thin-lens
matrix of one of the lenses be split into two equal thin-lens
matrices with twice the focal length.

(3.10) Consider the smooth approximation applied to a FODO
lattice. Find the value of k2

sec in the limit that µ � 1. How
does this result compare to that of Eq. (3.36)?

(3.11) Consider a charged particle transport system created by
two repetitively applied thin lenses with opposite focal
lengths f and −f , separated by a distance Ld.

(a) Using matrix analysis, obtain the phase advance
per period µ. In order to compare this result to
part (b), expand Eq. (3.31) for small µ.

(b) Now using the harmonic analysis of Section 3.4,
find the value of µ predicted for this system. In
order to do this, you should take the periodic
focusing to be given by

κ2(z) = −1

f
δ

(
z − Lp

4

)
+ 1

f
δ

(
z − 3Lp

4

)
,

where Lp = 2Ld is the period of the system.
Compare to the result of part (a).
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(3.12) Consider a so-called FOFO particle focusing system
created by periodic application of a thick lens of length l
with focusing strength κ2

0 , followed by a drift of length l.

(a) Using matrix methods, find the phase advance per
period µ as a function of κ0 and l.

(b) If κ0l � 1, find from the matrix result an approx-
imate expression for the smooth approximation
focusing strength k2

sec in this case. Hint: the approx-
imate extraction of µ2 ∼= 4k2

secl2 from the matrix
calculation must include all terms up to fourth order
in κ0 and second-order in µ2.

(c) Now consider the analysis of this system as the
superposition of harmonic (sine) components in
focusing strength. Write the Fourier decomposition
of the focusing strength.

(d) What is the average secular focusing strength of
this system? Hint: this system is a superposition of
a uniform focusing system of strength κ2

0 /2, and
the FD system analyzed at the end of Section 3.4,
also with half-strength ±κ2

0 /2.
(e) Compare the results of parts (b) and (d). (You

should obtain near agreement by using the expan-
sion of 〈κ2〉 found in Eq. (3.49) up to fourth order
in κ0 and exact agreement if you sum the entire
series in Eq. (3.49).)

(3.13) An ultra-relativistic charged particle accelerates uni-
formly under the influence of a longitudinal electric field
�E = E0 ẑ. It is also confined by a sinusoidally varying
gradient focusing quadrupole channel, mathematically
stated as B′(z) = B′

0 sin(kpz).

(a) Using the approximation β ∼= 1 and assuming that
the energy γ m0c2 does not appreciably change over
a period of the focusing, find an expression for the
secular focusing strength.

(b) Write the transverse equation of motion á la
Eq. (2.57) and solve.

(3.14) A common type of spectrometer magnet is shown in
Fig. 3.11. The particles emitted from the point source
are dispersed in momentum by the differences in radius
of curvature. The momenta are well determined at the
horizontal focus after the final drift B.

(a) What is the final edge angle as a function of the
bend angle θb? Hint: refer to Fig. 2.6 to see the
relation between θb and the pole edge orientation.

(b) Write the horizontal matrix transformation includ-
ing the drifts A and B.

(c) Determine the length B that yields a point-to-point
horizontal focus as a function of R, θb, and A. As
one changes R, what curve do these focal points
describe?

Magnet
poleDesign

orbit

Angular error orbits

R

A

B

�b

Fig. 3.11 Flat field spectrometer magnet, showing outline of
pole, and focal properties.

(3.15) In the smooth approximation, one may assign the focus-
ing in an entire strong focusing circular accelerator to be
proportional to the tune, ksec, x = νx/R0. In this case,
the dispersion may also have an average value—deduced
from the particular solution to Eq. (3.65). Find this value
for the Tevatron at Fermilab, in which νx = 19.4, and the
average radius of curvature is R0 = 1 km.

(3.16) The flat-field spectrometer magnet discussed in Exer-
cise 3.14 has interesting dispersive properties that are
displayed schematically in Fig. 3.12.

(a) Show that, in the region after the magnet, the
momentum dispersion is constant, η′

x = 0.
(b) Find the value of ηx in this region as function of θb

and R0.

Magnet
pole Design

orbit

R0

B

�b

A

Off-momentum
trajectory

Fig. 3.12 Flat field spectrometer magnet of Fig. 3.11, showing
dispersive properties.

(3.17) Evaluate αc for the spectrometer magnet in Exercise 3.14.

(3.18) A transport line that translates the beam to the side while
allowing the dispersion and its derivative to vanish at the
second bend exit can be constructed by the deployment
of magnets shown in Fig. 3.13. In this case it can be seen
that the dispersion vanishes at the mid-point between the
bend magnets.



“chap03” — 2003/6/28 — page 80 — #29

80 Linear transverse motion

Sector magnets

Focusing lenses

Off-momentum trajectory

a

s = R�

s = R�
a

2b

Fig. 3.13 Schematic of side-translating beamline with no resid-
ual dispersion at exit.

(a) Derive the focal length associated with the focus-
ing lenses that gives this behavior of the dispersion
as a function of a, b, R, and θ . Hint: it is best to
normalize all lengths in the problem to the radius
of curvature in the dipoles, R.

(b) Evaluate αc for this transport system. Remember
that even though the dispersion function changes
sign in between the bend magnets, the convention
of the sign of the dispersion in the second bend,
with opposing sign radius of curvature, must also
change. If you do not take this into account, αc will
vanish, which is clearly not true, as indicated by the
above picture.

(3.19) A common magnet configuration used to rearrange
particles longitudinally is the so-called chicane, as shown
below in Fig. 3.14. It has flat-field dipoles of magnetic field
into and out of the viewed plane, as indicated. Note that it
is similar to one period of an undulator magnet, but with
a large bend angle (not small compared to unity).

The chicane consists of four bend magnets of equal
strength and size so that, for the design energy, R and θ

are the same in each. The first bends out an angle θ , the
second and third bend in by −θ , and the fourth bends out
again by θ .

+ – – +

R Chicane magnet array
�

Fig. 3.14 Chicane magnet array, with design trajectory.

(a) Find the total matrix transformation in x and y. This
exercise should illustrate that this array of magnets
is equivalent to a drift in x and is focusing in y.

(b) Find the dispersion everywhere inside of the mag-
nets. The quantities ηx and η′

x should disappear at
the end of the fourth magnet.

(c) Find the momentum compaction αc = 1/s − s0×∫ s
s0

ηx(s̃)/R(s̃) ds̃ in this device.
(d) For an electron initially trailing the 20 MeV design

electron by 1 psec, chicane magnets with R =
0.5 m and θ = 30◦, what must its momentum off-
set δp be for it to catch up to the design particle at
the chicane exit?

(3.20) Write the R(s, s0) matrix describing full passage of a
paraxial particle through a solenoid magnet. Hint: write
the matrix as the product of three matrices—an entrance
matrix that projects the initial conditions into the Larmor
frame, a simple harmonic Larmor oscillation matrix
(decoupled in xL and yL phase planes), and an exit matrix
that projects the final Larmor (rotated by the Larmor angle
in the x–y plane) conditions back into the x and y phase
planes.
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Now that we have surveyed the basic concepts of linear transverse motion in
charged particle optics systems, it is time to turn our attention to the problem
of acceleration. This chapter begins with an introduction to acceleration due to
confined electromagnetic waves, as a way of introducing the physics of radio-
frequency linear accelerators (rf linacs). Within this context, it is possible to
study both the strong acceleration typical of electron linear accelerators, and the
comparatively gentle acceleration found in ion linacs. Once the fundamental
ways of analyzing linear acceleration and related longitudinal (along the dir-
ection of beam propagation) dynamics processes are discussed, these methods
are extended to allow an understanding of longitudinal motion in the circular
accelerator based on rf acceleration, the synchrotron. We end this chapter on a
complementary note to the last sections of Chapter 3—we examine the possible
effects of the acceleration process on transverse motion.

4.1 Acceleration in periodic
electromagnetic structures

As will be discussed further in Chapter 7, in free space, the solutions to the
electromagnetic wave equation are transversely polarized waves (the electric
field is transverse to the propagation vector) that have phase velocity c, the
speed of light. These properties are problematic from the viewpoint of charged
particle acceleration, because in order for a charged particle to absorb energy
from an applied electric force, the motion of the charged particle must have
a component parallel to the electric field. This statement is quantified by the
expression that gives the time-rate-of-change of the particle energy,

dU

dt
= q(�v · �E). (4.1)

In all of the cases we consider in this chapter, the motion of the particle in an
accelerating wave will be rectilinear in the z-direction, and thus the electric field
must be rotated to have a longitudinal component in order for acceleration to
occur. This can be accomplished by using a smooth-walled waveguide, in which
case we note the existence of the familiar transverse magnetic (TM) modes.1 1If TEM modes are not familiar, please see

the discussion of electromagnetic modes in
waveguides given in Section 7.3.

These modes have a longitudinal electric field, but have phase velocity larger
than c, and thus cannot remain phase synchronous with a charged particle whose
velocity must always be less than c. This means that in order to allow a traveling
wave to stay in a nearly constant phase relationship with an accelerating particle,
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Fig. 4.1 Bisected view of a cylindrically
symmetric, standing wave linear accelerator
structure. The hatched portion is a conduct-
ing wall, which is typically made of copper,
or a superconducting material. The electric
field lines indicate the structure is operating in
the π-mode, in which the longitudinal electric
field changes sign every structure period.

z

d

the phase velocity of the wave must be slowed down. This is accomplished
by loading the wave-guide with obstructions. An example of this loading is
displayed in Fig. 4.1. Here, disks with irises cut into them about the axis of
symmetry form the obstructions. The irises have two purposes: (1) to allow
flow of electromagnetic energy along the z-axis, and (2) to allow the unimpeded
passage of paraxial beam particles.

The linear accelerator structure2 shown in Fig. 4.1 does not in fact display2Because the electromagnetic waves used in
most linear accelerator structures are in the
radio band, they are often termed radio-
frequency linear accelerator structures, or
more compactly, rf linacs.

a traveling wave, but a standing wave, as can be seen from examining the
longitudinal electric field pattern. The actual dependence of the solutions to the
electromagnetic wave equation in such a structure is examined in detail below,
with the present discussion limited to an idealized, on-axis representation of the
pure harmonic (at the rf frequency) standing wave longitudinal electric field,

Ez(z, t) = 2E0 sin(kzz) cos(ωt) = E0[sin(kzz − ωt)+ sin(kzz + ωt)]. (4.2)

It can be seen from this expression that the standing wave can be written as
the superposition of two traveling waves. The forward wave component of the
standing wave has argument, kzz − ωt = kz(z − vϕ t) where vϕ ≡ ω/kz. The
backward wave component has argument kzz + ωt, and thus has equal and
opposite phase velocity vϕ = −ω/kz. For a standing wave, both forward and
backward wave components have equal amplitude.

It should be noted that the structure shown in Fig. 4.1 is periodic, with period
length d. The two traveling wave components listed in Eq. (4.2) are a subset of
all possible solutions of the wave equation with periodic boundary conditions.
In fact, a theorem due to Floquet states that the spatial component of the
solutions to the Helmholtz equation (the simplified wave equation obtained
after substitution of a harmonic time dependence exp(−iωt)),

[
�∇2 + ω2

c2

] {�E
�B
}

= 0 (4.3)

with spatial periodicity enforced by boundary conditions, can always be written
in the form Ei(z + d) = Ei(z) exp(iψ). Thus, a given solution is characterized
by a phase shift per period ψ .

Simple Fourier decomposition of the on-axis solution then gives the
useful form

Ez(z) = E0 Im
∞∑

n=−∞
an exp

[
i
(2πn + ψ)

d
z

]
. (4.4)

With this general form of the solution, the field can be viewed as the sum of
many wave components, which are termed spatial harmonics, having different
longitudinal wave numbers kz,n = (2πn + ψ)/d, and thus different phase
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velocities vϕ,n = ω/kz,n. A pure traveling wave solution has only one non-
vanishing amplitude coefficient an, whereas a pure standing wave solution has
two non-vanishing an. In general, in order to have the full solution obey the
conducting boundary conditions, all of the components of the Floquet expansion
in Eq. (4.4) must be considered. To settle on a normalization convention, will
take a0 = 1 in this text, so that the average accelerating field at the optimal
phase in the wave will always be E0.

The structure shown in Fig. 4.1 illustrates the concept of the phase shift
per period well, as it clearly shows a field reversal every period, indicating
ψ = π. This is the so π-called-mode, which is a common field configuration
for standing wave accelerators. For a pure harmonic standing wave field, we
have a−1 = −1 and a0 = 1, with all other components vanishing.

If we now consider a charged particle traveling on-axis through an accelerator
structure at approximately constant velocity vz ∼= vϕ,0 = ω/kz,0, and integrate
Eq. (4.1) through an integer number of periods M, we obtain an energy gain
due to each spatial harmonic of the field,

�U =
{

qE0Md sin(ϕ), n = 0

0, n �= 0.
(4.5)

In Eq. (4.5) we have introduced ϕ, the phase of the particle with respect to
the n = 0 wave crest. The n = 0 component is termed the fundamental
spatial harmonic. Because it travels in this case at approximately the same
velocity as the particle (we have ignored the fact that the velocity may change
slightly during the acceleration over the integration interval), it is also termed the
synchronous wave. All other non-synchronous components do not contribute
in this constant-velocity approximation to the secular (averaged over a period)
acceleration occurring over lengths greater than a period of the structure.

What this discussion illustrates is that, for cases where the velocity does
not change appreciably during a period of the structure, in calculating energy
gain, all components of the electric field may be neglected except the syn-
chronous wave. In fact, even in cases where the particle changes velocity
dramatically during passage through a structure, one finds that consideration of
a dominant synchronous component is enough to describe the long-term secu-
lar acceleration of the particle. Any notable effects that are due to backward or
other non-synchronous components are therefore typically localized to a region
smaller than a structure period.

4.2 Linear acceleration in traveling waves

We begin our analysis of acceleration in traveling wave structures by adopt-
ing a Hamiltonian approach. To construct the Hamiltonian, we note that the
longitudinal electric field associated with a single traveling wave in an acceler-
ating structure can be derived from a vector potential with only a longitudinal
component,3

3We have at this point decided on a phase con-
vention in our description of the sinusoidal
traveling wave. There are of course other pos-
sible conventions which are followed in other
analyses (we could have used, e.g. a cosine),
but since we need to discuss such a wide array
of physical scenarios, and since stable motion
will occur at different phases depending on
which scenario is discussed, we will stay with
this convention throughout our analysis.

Az(z − vφ t) = − E0

kzvφ
cos[kz(z − vφ t)], (4.6)

as

Ez(z − vφ t) = −∂Az

∂t
= E0 sin[kz(z − vφ t)]. (4.7)



“chap04” — 2003/6/28 — page 84 — #4

84 Acceleration and longitudinal motion

The Hamiltonian associated with this vector potential can be written as (see
Eq. 1.63)

H =
√(

pz,c + qE0

kzvφ
cos[kz(z − vφ t)]

)2

c2 + (m0c2)2, (4.8)

where we are, consistent with a paraxial ray approximation, only consid-
ering longitudinal motion. This Hamiltonian generates the correct canonical
equations of motion,

dz

dt
= ∂H

∂pz,c
= pzc2√

p2
z c2 + (m0c2)2

= vz (4.9)

and

dpz,c

dt
= −∂H

∂z
= pzc2(qE0/vφ) sin[kz(z − vϕ t)]√

p2
z c2 + (m0c2)2

= qE0vz

vϕ
sin[kz(z − vϕ t)],

(4.10)
where we have used the relationship between the mechanical and canonical
momentum, pz = pz,c − qAz. The equation of motion for the mechanical
momentum is recovered from Eqs (4.6) and (4.10),

dpz

dt
= dpz,c

dt
− q

dAz

dt
= dpz,c

dt
− q

[
∂Az

∂t
+ vz

∂Az

∂z

]
= qE0 sin[kz(z − vϕ t)],

(4.11)
where we have evaluated the total time derivative at the particle position using
the sum of the partial and the convective derivatives, d/dt = ∂/∂t + vz∂/∂z.

The main problem with the form of the Hamiltonian given in Eq. (4.8) is that
it is not a constant of the motion, as its partial time derivative does not vanish.
In order to make phase plane plots of the longitudinal motion, we must convert
the form of the Hamiltonian to one in which it is constant in time. This is done
by use of a canonical transformation (a Galilean, not Lorentz transformation,
as in Section 1.3) of coordinate44This is a Galilean transformation to the wave

frame. It is only a mathematical transforma-
tion, with a precise interpretation in the con-
text of classical mechanics theory. It is not to
be confused with a Lorentz transformation—
it is not a physical, only a mathematical,
change of variable descriptions.

ζ = z − vϕ t. (4.12)

With this choice of new coordinate, the new momentum is set equal to the old
pζ = pz, and the new Hamiltonian is obtained from the old Hamiltonian as

H̃(ζ , pζ ,c) = H(ζ , pζ ,c)− vφpζ ,c

=
√(

pζ ,c + qE0

kzvϕ
cos[kzζ ]

)2

c2 + (m0c2)2 − vϕpζ ,c. (4.13)

It is clear that the new Hamiltonian is in fact a constant of the motion, and can
be used as such. With this choice of coordinate, the equations of motion derived
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from the new Hamiltonian are thus

dζ

dt
= ∂H̃

∂pζ ,c
= pζ ,c + (qE0/kzvϕ)cos[kzζ ]

γm0
− vϕ = pζ

γm0
− vϕ = vz − vϕ ,

(4.14)
and

dpζ ,c

dt
= −∂H̃

∂ζ
= qE0vz

vϕ
sin[kz(ζ )], (4.15)

or, writing Eq. (4.15) in terms of the mechanical momentum,

dpζ
dt

= qE0 sin[kzζ ]. (4.16)

As can be seen from this short discussion, use of canonical variables is a
bit trickier in this case than use of familiar mechanical variables. Because we
have concluded the formal discussion of the Hamiltonian, however, we can
now revert to the mechanical description, to write the constant of the motion
functionally as

H̃(ζ , pζ ) =
√

p2
ζ c2 + (m0c2)2 − vϕpζ + qE0

kz
cos[kzζ ]. (4.17)

This form of the Hamiltonian could even be used (with less than perfect rigor!)
to generate equations of motion, even though it is nominally not written in
terms of the canonical momentum. In fact, the mechanical momentum in this
time-independent case can effectively be treated as if it were canonical, since
the form of Eq. (4.17) is identical to that which would be derived from an
electrostatic potential giving the same acceleration as Eq. (4.16).

Since we have already derived the correct equations of motion in Eqs (4.13)–
(4.16), the more important use of Eq. (4.17) is that it can be used to visualize
the motion of charged particles in the longitudinal phase plane (ζ , pζ ). Before
we move into discussion of specific examples of such motion, let us note that
Eq. (4.17) can be written in normalized form as

H̃

m0c2
=
√
(βzγ )2 + 1 − βφβzγ + αrf cos[kzζ ]. (4.18)

In Eq. (4.18), the quantity

αrf ≡ qE0

kzm0c2
= γ ′

max

kz
(4.19)

is defined as the ratio of the maximum spatial rate of change of the normalized
particle energy (Lorentz factor γ ), to the maximum rate spatial rate of change
of the particle’s phase in the wave.

It will be seen below that the type of behavior one observes in particle accel-
eration by a traveling wave can be divided into two distinct regimes. The first
occurs when αrf � 1, and is typically encountered in heavy particle (proton or
ion) linacs, in which the acceleration is very gentle. The second regime occurs
when αrf is of order unity, or above. This is the regime of violent acceleration,
which occurs in electron linacs. The physics of violent acceleration is discussed
in the next section.
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4.3 Violently accelerating systems

The case of αrf ≥ 1 corresponds to an accelerating wave in which the particle
can gain more than one unit of rest energy by remaining in synchronism with
the wave for a radian or less of spatial propagation, kz�z ≤ 1. This is a violent
acceleration scenario, in the sense that a particle can be picked up from rest
and accelerated to relativistic velocities in less than one wave cycle, thus being
captured by the wave. As illustrated by the examples given in Exercise 4.2,
this type of acceleration in practice can only be achieved by use of the lightest
charged particle, the electron (or its antiparticle, the positron). In analyzing
this system, we make use of the approximation that the phase velocity of the
wave reaches its ultra-relativistic limit, vϕ → c. We adopt this approximation
precisely because the acceleration in this case is violent, and thus the charged
particles are expected to asymptotically (actually, within a few rf wavelengths)
attain ultra-relativistic velocities. If the vϕ is chosen to be noticeably less than
c, the particles can accelerate past this phase velocity, and eventually outrun
the wave to the point where they may enter a decelerating phase.

In the approximation vϕ = c, we may write the mechanical version of the
Hamiltonian relation, Eq. (4.17), simply as

H̃(ζ , pζ ) = m0c2[γ −βzγ +αrf cos[kzζ ]] = m0c2

[√
1 − βz

1 + βz
+ αrf cos[kzζ ]

]
.

(4.20)
This form of the Hamiltonian allows us to both perform rudimentary analysis,
and also to draw modified phase plane plots to illustrate the dynamics of the
acceleration process. An example of such a plot is shown in Fig. (4.2), in which
the momentum axis is parameterized by

χ = m0c2

U − pzc
=
√

1 + βz

1 − βz
, (4.21)

in order to have a positive quantity displayable in a semi-log plot. The vertical
axis chosen to be logarithmic in order to show the large changes in momentum
as the particle becomes relativistic.

Figure 4.2, which illustrates a number of curves of constant H̃, shows sev-
eral interesting aspects of the longitudinal motion. The first is that for the

Fig. 4.2 Modified longitudinal phase plane
plot, with αrf = 1.
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case shown (αrf = 1), particles initially at rest (χ = 1) can, for certain
initial phases in the wave ϕ0 = kzζ0, be accelerated to very high energy
(χ � 1). In addition, at high energy the phase the particle occupies in the
wave is approximately stationary,

H̃ = m0c2[χ−1 + αrf cos[kzζ ]] ⇒ αrf m0c2 cos[kzζ ] = αrf m0c2 cos(ϕf).
(4.22)

Since the Hamiltonian is a constant of the motion, as χ−1 ⇒ 0 the phase of the
particle in the wave asymptotically approaches ϕf . There is no notable further
slippage of the particle in the wave as it becomes ultra-relativistic, (that is as
its velocity approaches the wave phase velocity, v ⇒ c = vϕ), thus giving the
stationary final value of ϕ indicated by Eq. (4.22).

Note that in Fig. 4.2 all motion inϕ is towards the left following the constant H̃
curves, as the particles are always traveling slower than the wave. At times
this velocity difference is significant, and at other times it is imperceptible, in
which case the direction of the curve is near vertical. Since the motion in ϕ is
unidirectional, for positive ϕ the motion is seen to be accelerating, while for
negative ϕ it is decelerating, as could have easily been deduced from Eq. (4.16).

One may ask what the minimum field amplitude is that allows the phe-
nomenon of capture, where a particle starts from rest and is subsequently
accelerated to very high energy. This field value is termed the trapping
threshold, and gives an idea, for example, of when electrons that are field-
emitted from the linac structure walls (so-called dark current) can actually be
accelerated to high energy. An electron that is barely trapped by the acceler-
ating wave will approach the fixed point at (ϕf ,χ) = (0, ∞) (here both the
accelerating field and the particle’s velocity relative to the wave vanish), so the
final value of the Hamiltonian is

H̃ = αrf m0c2 cos(ϕf) ⇒ αrf m0c2. (4.23)

The initial state is given by

H̃ = m0c2[1 + αrf cos(ϕ0)]. (4.24)

We can examine the minimal conditions for trapping by assuming initial phase
ϕ0 = π, at the other vanishing phase of the field. Equating the right-hand sides
of Eqs (4.23) and (4.24) (with ϕ0 = π) gives a value for the field corresponding
to αrf = 0.5. The barely trapped particle is launched at ϕ0 = π and slips back
to at final state at ϕf = 0 for this value of αrf .

4.4 Gentle accelerating systems

The longitudinal motion of a heavy charged particle (a proton, or heavier ion)
in an accelerating wave is not similar to that discussed in the last section for any
reasonable values of the electric field amplitude and wavelength (see Ex. 4.2(b)).
For heavy particles, one always finds that αrf � 1, and the resulting gentle
accelerating motion is qualitatively different. This situation requires a different
approach to the analysis than employed in the previous section. For gentle
acceleration systems, the energy gain over a wavelength of the accelerator is
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much less than the rest mass, and so we are not led to assume that the motion is
ultra-relativistic, nor that the phase asymptotically approaches a constant value.
In fact we will see that the motion in these systems is characterized by simple
harmonic motion near the stable fixed point of the system. At this fixed point,
the accelerating field vanishes, and the particle has the same velocity as that
of the wave. In Sections 4.2 and 4.3, we have assumed that this phase velocity
is constant. While we will begin the discussion of gentle acceleration under
this assumption, we will see that it is necessary to allow this phase velocity
to increase in order for significant, long-range gentle acceleration of particles
to occur. This generalization will also cause our view of the phase plane fixed
point to change somewhat.

We begin by rewriting the Hamiltonian of Eq. (4.17) by expanding it for
small amplitude motion about the design momentum

p0 = γϕmvϕ = mvϕ√
1 − (vϕ/c)2

= mv0√
1 − (vo/c)2

= γ0mv0. (4.25)

which is resonant with the phase velocity of the wave. Keeping terms up to
second order in δp = pζ − p0, we have the expression

H̃(ζ , δpζ ) ∼= γ0m0c2 + v0δp + δp2

2γ 3
0 m0

− v0(p0 + δp)+ qE0

kz
cos(kzζ )

= m0c2

χ0
+ δp2

2γ 3
0 m0

+ qE0

kz
cos(kzζ ). (4.26)

The addition and subtraction of constants in the Hamiltonian have no effect on
the form of the phase plane curves, or on the derived equations of motion. We
therefore are free to reformulate Eq. (4.26) in more suggestive form,

H̃(ζ , δpζ ) = (m0c2)

[
β2

0

2γ0p2
0

(δp2)+ αrf [cos(kzζ )+ 1]
]

. (4.27)

As a check on the derivation of Eq. (4.27), it is instructive to extract the equations
of motion from it by differentiation

ζ̇ = ∂H̃

∂(δp)
= m0(β0c)2

γ0p2
0

δp = δp

γ 3
0 m0

, (4.28)

δṗ = −∂H̃

∂ζ
= αrf kzm0c2 sin(kzζ ) = qE0 sin(kzζ ). (4.29)

The effective longitudinal mass γ 3
0 m0 first encountered in Eq. (2.34) is again

displayed in Eq. (4.26).
It can be seen from Eq. (4.27) that the maximum fractional momentum change

that can be imparted to a particle in this potential is of the order

δpmax

p0

∼=
√

2αrfγ0

β0
.

This quantity is much smaller than one by design, however, as we are assuming
that the particles are only moderately relativistic (γ0 is not many orders of
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Fig. 4.3 Phase plane trajectories showing
the stable region (“bucket”) of vibrational
motion, bounded by a separatrix, with
unbounded phase motion (librational motion)
outside. This case is for β2

0/γ0 = 0.5, and
αrf = 10−4.

magnitude larger than unity), and also that αrf � 1. Also, it can be seen that
the Hamiltonian in Eq. (4.27) is of the form corresponding to a pendulum,
where the stable phase—the minimum “potential energy”—of the pendulum is
chosen as ϕmin = π (as above, the particle phase is defined as ϕ = kzζ ).

The phase plane plot of the pendulum-like trajectories (rigorously, it is a trace
space, as we are normalizing the momentum error to the design momentum) is
displayed in Fig. 4.3 for a physically realistic case, with β2

0/γ0 = 0.5 and
αrf = 10−4. The phase plane, which should look familiar to any student
of Hamiltonian mechanics, is divided into two regions: one having stable,
bounded orbits (vibrational motion) and one displaying unbounded traject-
ories (librational motion). The boundary between the two regions referred to
as the separatrix. Note that the existence of an unstable (unbounded) region in
phase space is due to the nonlinearity of the applied force, as anticipated by the
discussion of Section 3.2.

In the stable region, or bucket, the small amplitude motion in the neighbor-
hood of the fixed point at (ϕ, δp) = (π, 0) is nearly simple harmonic, as is
discussed further below. The motion inside of the bucket at larger amplitudes
is nonlinear—the oscillations slow down as the potential becomes less well
approximated by a parabola, and the longitudinal focusing becomes effectively
weaker. As the amplitude approaches that of the separatrix, the period of the
motion becomes infinite, since on the separatrix the particles are unable to tra-
verse the unstable fixed points at (φ, δp) = (0, 0), and (φ, δp) = (2π, 0). Note
that the motion along the constant H̃ curves in this case is towards positive ζ
for δp > 0, and negative ζ for δp < 0. This is needed for the vibrational orbits
to exist, of course, and also points to the fact that the librational orbits always
proceed in one direction in ζ above the separatrix, and another direction in the
region below.

The equation for the separatrix can be obtained by evaluating the value of
the Hamiltonian at an unstable fixed point, for example,

H̃(0, 0) = 2αrf m0c2. (4.30)

Use of Eqs (4.27) and (4.30) together yields

δpsep

p0
= ± 1

β0

√
2αrfγ0[1 − cos(kzζ )] = ±

√
4αrfγ0

β2
0

sin

(
kzζ

2

)
. (4.31)
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Thus the peak momentum offset encountered in the bucket (at kzζ = π) is
simply

δpmax

p0
= ±

√
4αrfγ0

β2
0

. (4.32)

The area of the stable phase plane (ζ , δp) region or bucket area, Ab, can be
found by integrating the area between the curves of the functions given by
Eq. (4.31),

Ab = 4p0

√
αrfγ0

β2
0

∫ 2π/kz

0
sin

(
kzζ

2

)
dζ = 16p0

kz

√
αrfγ0

β2
0

. (4.33)

These phase plane dynamics are quite unlike those of the transverse motion,
which are stable to all amplitudes under linear transformations of the type
discussed in Chapter 3. Because the longitudinal motion is mediated by a sinus-
oidal force (instead of one linearly proportional to the offset from a stable fixed
point), it is inherently nonlinear. In fact, since the force is periodic, we observe
unstable fixed points one half of a wavelength away from the stable fixed points.
The existence of both types of fixed points implies that only a finite region of
the phase plane about the stable fixed point has vibrational orbits.

Even though this large amplitude motion (with its nonlinear characteristics)
is unfamiliar, the small amplitude motion about the stable fixed point is quite
familiar. If we expand the Hamiltonian near this point, we have

H̃(ζ , δp) ∼= (m0c2)

[
β2

0

2γ0p2
0

(δp2)+ αrf(kzδζ )
2

2

]
, (4.34)

where δζ = ζ −π/kz. This small amplitude Hamiltonian can be used to obtain
the equations of motion for δζ and δp, which can be combined to give a single
simple harmonic oscillator equation, that is,

δζ̈ + αrf(kzc)2

γ 3
0

δζ = 0. (4.35)

Equation 4.35 gives solutions, termed synchrotron oscillations, that are
harmonic with the synchrotron frequency

ωs = kzc

√
αrf

γ 3
0

=
√
αrf

γ 3
0

ω

β0
. (4.36)

As the ratio inside of the square-root sign on the right-hand side of Eq. (4.36) is
much smaller than one, the synchrotron frequency is much smaller than the fre-
quency of the wave ω. Note that we have used time as the independent variable
in writing Eq. (4.35), as opposed to the distance along the design trajectory to
allow simple comparison between the rf and synchrotron frequencies.

4.5 Adiabatic capture

The phase plane plot displayed in Fig. 4.3 only tells part of the story, as it
maps the trajectories of particles in the phase plane given a constant value of H̃.




