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Part1
Hasse-Minkowski theorem

1 Introduction to the p-adic integers Z,,

Our motivation is the local study of Diophantine equations. A Diophantine equation has form F(X;,..., X,) = 0 for
some F(Xy,...,Xy) € Z[X,..., X,], and we are interested in its integral solutions (xj, ..., x;;) € Z". Assume we have
such a solution. Then trivially the following holds:

1. The equation F(Xj,..., X;) = 0 has a real solution x € R".

2. Foreach m=1,2,3,... the congruence F(Xj,...,X;) =0 (mod m) has a solution.

The question is whether the converse is true, i.e. do the two conditions above imply existence of a solution in
7'? In general the answer is no, even for equations in one variable.

Example 1.1. Consider an equation (X2-13)(X%2-17)(X%-13-17)=0. It obviously has a real root; further one
can check that it has solutions modulo m for each m (exercise). As we see, there are still no integer solutions. A

Our goal is to show the following result.

Theorem 1.2 (Hasse, Minkowski). Let F(Xj,...,X,) € Z[X1,..., X;] be a quadratic form (i.e. a homogeneous poly-
nomial of degree two). Assume that

1. The equation F(Xy, ..., Xy) = 0 has a nontrivial solution x € R".

2. Foreachm =1,2,3,... the equation F(Xy,...,X,) =0 (mod m) has a nontrivial solution.

Then F(X;,..., Xy,) =0 has a nontrivial solution x € Z".

Our proof of this result will be conceptual and elaborate. We start from recalling some basic facts and intro-
ducing the p-adic numbers.

Proposition 1.3 (Chinese remainder theorem). Let m = m;my with my and my relatively prime integers. A con-
gruence F(X) =0 (mod m) has a solution iff both congruences F(X) =0 (mod m;) and F(X) =0 (mod my) have
solutions.

Recall that the statement above comes from a ring isomorphism

ZImZ=7ZImZx2ZImyZ,

x+— (x mod my, x mod my).

So since every m is a product pfl -~-pfs of prime powers, it is enough to consider only congruences modulo
p*. And this is where the p-adic numbers come into play.

Example 1.4. Consider a congruence X?=2 (mod 7%) fork=1,2,3,...
e If k =1, then the solutions are x = +3 (mod 7).

e If k =2, then the equation is X2 =2 (mod 72), so that x2 = 72- u+2, and x should be also a solution of X% =2
(mod 7), thatis x = +3 (mod 7).

Suppose x = xp =3 (mod 7), so x =7u+ 3. We have



7u+3?%=2 (mod 7%,
2:3-7u+9=2 (mod 7%),
2:3-7u+7=0 (mod 7?),

6u+1=0 (mod 7).

So we conclude « =1 (mod 7), and the corresponding solution of X? =2 (mod 72)is x; =7-1+3 = 10.

* Proceeding as above for k = 3, we look for x, = 7% . u+ x; such that x% =2 (mod 7°).

(7 u+x)?=2 (mod7%),
2~72-u~x1+xf52 (mod 7%),
2.7%.1-10+2-72=0 (mod 7°),
20u+2=0 (mod 7).

So we conclude u =2 and x, =72-2+ 10 = 108.

Continuing in this manner, we have a sequence of numbers x; (with k=0, 1,2,...) such that xi =2 (mod 7"“)

and x; = x;_; (mod 75). The sequence starts with xyp =3, x; = 10, x, = 108, ... It looks like an approximation to V2
digit by digit, but it is not decimal, it is 7-adic! A

Definition 1.5. Let p be a prime number. We say that a sequence of integers (xp, X1, X2,...) gives a p-adic integer if

Xp=Xp-1 (mod p™) foreveryn=1,2,3,... *)

Further we say that two sequences (xo, X1, X2,...) and (xg, X}, x5,...) define the same p-adic integer if x, = x),
(mod p*!) forall n=0,1,2,... We write (x,) ~ (x},) in this case.

This is an equivalence relation, and the set of p-adic integers Z, is defined to be the set of all integer sequences
(x0, X1, X2, ...) satisfying (*), modulo this equivalence.

To each integer x € Z corresponds a p-adic integer given by the sequence (x, x, x,...) (modulo the equivalence).
This gives an embedding Z — Z,,.

Of course every p-adic integer can be defined by a sequence (x,) where x, € {0,1, ...,p”“ —1}. We call it a
canonical sequence.

Now consider a sequence (xp, X1, X2,...). We have x; = xy (mod p), so that x; = xp + a; p. If we assume that
0 < xp < p, then we have 0 < a; < p — 1. Proceeding in this manner,

X1=ap+ap,

2
Xo=apt+arp+axp-,

Xn=ao+a p+arp*+---+a,p",

where a; € {0,1,..., p—1}. This is called the p-adic expansion of (xy, X, x2,...), and it is unique.

Remark 1.6. Here is how one can calculate p-adic expansions in PARI/GP (http://pari.math.u-bordeaux.
fr/):


http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

? -1 + 0(7710)
%l = 6 + 6%7 + 6%7A2 + 6%7A3 + 6%7A4 + 6%7A5 + 6%7A6 + 6%7A7 + 6%7A8 + 6%7A9 + 0(7+10)

? sqrt(2+0(7+10))
%2 = 3 + 7 + 2%7A2 4+ 6%7A3 + 724 + 2%7A5 + 776 + 2%7A7 + 4*7A8 + 6*749 + 0(7710)

So every element of Z;, corresponds bijectively to a sequence (ay, ai, az,...) with a; € {0,1,..., p—1}. This set is
really big, it has cardinality of the continuum.
The p-adic integers Z, form a commutative ring. For two numbers x = (x;) € Z,, and y = (yn) € Z), we define
the sum and product by
xX+y:=&Xnp+tyn), x-y:i=Xnyn)

One checks that this does not depend on the choice of sequences representing x and y.

Note that we define addition and multiplication for sequences and not for p-adic expansions. Adding and
multiplying p-adic expansions is tricky: one should think about carrying digits, just like for the long multiplication
of the usual integers written in, say, base ten.

Finally, we note that all the definitions above can be summarized as follows: Z, is the inverse limit of rings
ZIp"Z:
Z,=1limZ/p"Z.

n

Remark 1.7. The construction of p-adic integers can be generalized to the so-called ring of Witt vectors. For
instance, Z, is the ring of Witt vectors W (F,,) of the finite field [ ,. See J.—P. Serre, Corps locaux, SIL6.

Theorem 1.8. A p-adicinteger x = (x,) is invertible in Z , iff xo is invertible modulo p, i.e. whenever xo #0 (mod p).

Proof. Assume x is invertible, so that xy = 1 for some y € Z,. Then they are represented by sequences x =
(X0, X1, X2,...) and y = (Jo, ¥1, ¥2,...) such that x,, y, =1 (mod p”**'). In particular, this means that xo 0 (mod p).

In the opposite direction, assume that xy # 0 (mod p). We have x, = x,-; (mod p™), and thus x, = x,-;
(mod p),

Xp=Xp-1=Xp2=-=Xx%0 (mod p).

n+1) I’H-l)
) )

Xp #0 (mod p) means that x,, is invertible (mod p so there exists y, such that x,y, =1 (mod p
meaning that (x,) - (y,) ~ 1. We have to check that (y,) gives a p-adic integer. Indeed,

n+1
))

Xpyn=1 (modp
Xp-1Yn-1=1 (mod p"),
Xn=Xp—1 (mod p™),
Xn-1Yn=Xn-1Yn-1=1 (mod p"),

Yn=Yn-1 (mod Pn)-

Corollary 1.9. Every x € Z is invertible in Z, iff x #0 (mod p).

Example 1.10. 2 is invertible in Z3, so let us compute % € Z3 as a sequence (xo, X1, X2,...).
We should have 2 xy =1 (mod 3), so xp = 2.
Then2x; =1 (mod 3%). Since x; = xo+3u=2+3u, we get

2-2+3w=1 (mod 3%,



so u=1and x; =2+1-3 =5. Proceeding in this manner,
Xx=2+1-3+1-3%+.-.
Thatis, xo =2, x; =2+1-3=5, x, =2+1-3+1-32 = 14, and so on. We have indeed

2x=2+2(1+3+3%+--)=2-1=1.
-1/2

Where we compute the infinite sum using the “geometric progression formula”

) 1 1
1+3+3°+o=——=—=
1-3 2
(formulas as Y. xk = ﬁ make sense for p-adic numbers when p | x; more precisely, when | x|, < 1—see below the
0<k
discussion of absolute values and convergence). A

In general, Z, contains the set of “p-integral numbers”
a
QNnzZ, :{E la,beZ, ptb}.

Theorem 1.11. Every number a € Z,, a # 0, can be uniquely represented as p"e wheren =0,1,2,... ande € Z,.

Proof of the theorem. Look at the p-adic expansion of a:
a=ay+a\p+ap*+--
Let n be the smallest index i such that a; # 0. Then we have
a=anp"+an1 p" + anap" 4= pan+ Ani p+ ansa pt ).
The number €:= a, + an4+1 p+ an+2 p2 + .-+ is a unit since a, # 0.

Now we need to show that the presentation p”e¢ is unique. Assume a = p" e = p*n for some integers n and s
and some units € and 7.

2 ! I ! 2
Pn(gn+an+1p+an+2p +-~-)=ps(as+as+1p+as+2p +-0).

€ n

By uniqueness of p-adic expansions, we should have n = s and a; = a; for all i. |
Corollary 1.12. Z,, is an integral domain, i.e. fora,f € Z, ifa =0 thena =0 or f =0.
Proof. Assume a # 0 and § # 0. We have a = p"¢, B=p*n,and a f = p™* *en= p"™**0 for some unit 6 := €.
af=pm*s (gm+s +amisr1 Pt Amsi2 p2 )
0
We have a,,,+5 #0and so a  #0. [ ]

If a = p"e is the representation of a p-adic number as above, then we define the p-adic order of a to be
vp(a) := n. We also put v, (0) := co. It satisfies the following properties:

* vp(a) =ocoiff a =0.

* vp(af)=vpla) +vy(B).



* vp(a+ ) = min{v,(a),v,(B)}, with equality when v, (a) # v, (B).

Indeed, let a = p" e and B = p°n. Suppose n > s. Then

a+pB=p°(p" Se+n).

We claim that p”~%¢ + 7 is a unit. Indeed, p" e =0 (mod p) andn #0 (mod p), so p"*e+n =0 (mod p). So
vp(a+P) =s=min{v,(a),v,(B)}
For n = s in general we have only v, (a + ) = s—it can be the case that € + 7 is not a unit.

Proposition 1.13. Leta,f€ Zy. Thena | B inZ, iff vp(a) < vp(P).

Proof. If a| Bthen f=ay,sovy(B) =vp(@)+vpy(y) 2vy(a).
In the other direction, if v, (a) = v, (), then we have a = p"eand B = p’nwith s = n.
B=p"epne =ay.
————
::'}/
]

Recall that if R is an integral domain, then we say that an element a # 0 is irreducible if « ¢ R* and a = By
implies B € R or y € R*. That is, a is not a product of two non-units. We see that the only irreducible element in
Z, is p (up to multiplication by a unit).

Proposition 1.14. The only maximal ideal inZ, is pZ,, and all ideals in Z, are powers of the maximal ideal.

Proof. Let I be an ideal in Z),. Consider n:= min{v,(a) | « € I}. We claim that I = p"z,.
There exists a € I such that v, (@) = n, namely a = p” ¢ for some € € Z,. Now p" = aelel thusI2 p"Z,.
If e I, then = p’n, withs=v,(B) =n. So f=p"ywithy=p"*nand fe p"Z,. Hence I < p"Z,,.
In particular, the only maximal ideal is pZ,,. |

This means that Z, is a discrete valuation ring. Knowing that all ideals in Z, have form (p™), it is natural to
ask what are the quotient rings Z,,/ (p™).
First we see that there is a surjective map

YA Zy Zyl(p™),
X — (x,X,...) — (x,x,...) mod p"

Here we take an integer x and then look at it as a p-adic number (represented by a sequence (x, x, x,...)),
modulo p". The surjectivity is clear: any p-adic number

a=ag+a\p+ap*+--+an1p" ra,p"+--

modulo p” is equivalent to agp + a; p+ -+ + a,—1 p’* !, which is an ordinary integer. On the other hand, it is clear
that the map sends x to 0 € Z,,/(p") iff x is divisible by p". Thus the kernel is p"Z, and

Z,l(p")=2Z/p"Z.



2 Field of p-adic numbers Q,

Definition 2.1. The field of p-adic numbers Q,, is the fraction field of Z,.

Proposition 2.2. Every a € Qy, is represented in a unique way as p" € wheren € Z ande € Z}, is a p-adic unit.

Proof. We have a = % for some units €,{ € Zy and so @ = p"~* 6, where 6 :=e{ "
For the uniqueness assume a = p" 0 = p°n. Take r big enough such that r + n and r + s are both nonnegative.
Then

pra=p™t0=p " nez,.
By uniqueness of the corresponding representation for the p-adic integers, we conclude n = sand 6 = 1. |
The p-adic order v, (-) extends to Qp, and we have amap v, : Q, — ZU{oo}. It satisfies the following properties:
1. vp(a) =ocoiff a =0.
2. vpap) =vp(@) +v,(P).
3. vpla+ f) = min{vy(a),v,(B)}, with equality if v, (a) # v, ().

This means that we have a discrete valuation on Q. With respect to this valuation,

Zp={a€Qp|vpla)=0}

3 Topology and convergence on Q,

Intuitively, a p-adic number a € Q, is “small” if it is divisible by a high power of p. That is, if v, (a) is large. So
to define the p-adic absolute value on Q,, we pick p € (0,1) and put |a|, := pvﬁ(“). This satisfies the following
properties:

* |lalp=0iffa=0.

s laplp=laly-1Blp.

* |a+ Blp < max{laly, | By} with equality if |al, # | Blp.

This defines a metric on @, with distance d(a, §) := |a — B|. That is, the following properties are satisfied:
s d(a,p)=d(p,a).

e d(a,p)=0iffa=p.

e dla,y) =d(a,p)+d(p,y).

Actually, instead of the triangle inequality, a stronger ultrametric inequality d(a,y) < max{d(a, B), d(B,7)}
holds.

With respect to this metric, the subspace Z,, of p-adic integers is the unit ball centered in 0:

Z,={aeQy|lal, <1}

Note that the choice of p € (0, 1) above does not affect the topological properties of Q; for arithmetical reasons,
later on we will fix p = 1/p (see p. 12).



Definition 3.1. A sequence of p-adic numbers (a) is said to converge to a € Q, if
lim vy (ap—a) =oo;
n—oo
equivalently,
[iLn lan—alp=0.
n—oo

This is the same as convergence in the metric space (Qp, d).
Example 3.2. The sequence p, p, p3,... converges to 0 in Q p since v, (p") = n tends to oo. A

Example 3.3. Leta € Z, be a p-adic integer represented by a sequence (xo, X1, X2,...) with X, = x,_1 (mod p"). So
Xn—Xp—1 =0 (mod p"), meaning Vp(Xy — Xp-1) = n. Thus the sequence (x;, — x,-1) converges to 0in Z,,. A

Example 3.4. Let a € Z, be a p-adic integer represented by a sequence (xo, X1, X2,...) with x,, = x,-1 (mod p").

Consider a sequence of p-adic numbers (a — x,,). One has v, (a — x;,) = n+ 1, which tends to oo as n — oco. This is
clear if we look at p-adic expansions:

Xo = do,
X1=ap+ap,

2
Xo=ap+ap+axp-,

a=a0+a1p+a2p2+---

Soif @ € Z, is represented by a sequence (xo, X1, X2,...), then this sequence converges to a.
This also gives a precise sense to p-adic expansions a = “Y,,»9 a, p"” that were introduced as formal expres-
sions: the sum on the right hand side indeed converges to a, treated as a limit of partial sums x, = (X o<i<, @i p*)n-
A

From this example we see that each « is a limit of a sequence of integers. Thus Z is dense in Z,, and similarly
Q is dense in Q. Now we investigate other topological properties of @, and Z, as its subspace.

Theorem 3.5. 7, is sequentially compact. That is, every infinite sequence in Z , contains a convergent subsequence.

Proof. Let (@) be an infinite sequence in Z,, with terms

2
Op=danpo+ap1p+ap2p +---

There exists an infinite number of 7 such that the 0-th p-adic digit of a, is some a; o = ap. We take the subse-
quence (a(,?)) of such numbers. Similarly, there should be a subsequence (a!”) with 1-st p-adic digit being equal
to some aj, and so on. So there is a chain of such subsequences (aﬁ?)), (a(,,l)), (a(,,Z) ),.... One can take the “diagonal
sequence” (By) with B := agck), which is a subsequence of (@) by construction. Also by construction, it converges

to the p-adic number

B=ay+a\p+ap*+--

Corollary 3.6. Q) is locally compact. That is, every bounded sequence in Q, has a convergent subsequence.

Proof. Let (ay,) be abounded sequence in Q. This means that |a |, = pvﬂ(“”) < Afor some A€ Rxy.

Take some s big enough such that |p°|, < %. Consider the sequence (p°a,)n. Then [p*ayl, = [p%lp - lauly <
%A =1, thus p*a, € Z,. By the previous theorem, the sequence (8,) = (p® @), has a convergent subsequence
(Bn) k- That s, there is some § € Z, such that v, (f - 5,) — oo as k — co. The sequence (@, ) is a subsequence of
(@y) n, and it converges to the p-adic number B/ p* since v, (B/ p*—ap,) = vy (B! p*—Pn, ! p*) = v,/ p*-(B—Bn)) =
vp(1/p®) + v, (B~ Bn,), which tends to co as k — co. ]



Theorem 3.7. A sequence (a,) in Qp converges iff (@, — ap—1), converges to zero.

Proof. Assume (a;) converges to some a € Q. Then |a, — al, — 0. That is, for each € > 0 there exists N such that
la, —al, <eforall n= N. But now

lani1 —anlp =(@ns1 — @) + (@ — an)lp <max{la,+1 — alp, la—anlpt <e,
soa,—an—1 —0.

Assume now that (a, — a@,-1), converges to zero. This means that the sequence (a, — a,-1), is bounded. We
can choose A such that |aglp, < Aand |a, — ap-1lp < Aforall n = 1. So this means

lanlp =lapn—an-1 + Ap-1—ap-1 + -+ ay—apg+aply
=|(an—ap-1)+(@p-1—ap-1) +---+ (@1 — ag) + aolp

smax(la, — an-1lp,...,la1 —aolp, laolp) < A,

and (a;) is a bounded sequence in Q,. It has a subsequence (&, ) converging to some a, because Q) is locally
compact. So for each € > 0 there exists K such that |@ — ay|, <€ for all k = K. But a,, — a,-1 converges to zero, so
there exists N such that |a, — a1l <€ forall n = N. Thus for n = N and n = nx we have

|an_a|p =lap—ap1+ap tot+ Opgrl _anK'f'anK_alp

= maXHan - an—l'pw-'r |an[<+1 - ank|p;|ank - a'p} <e€.
So |a, — alp <€ for n big enough, and (a,) converges to a. [ |

Remark 3.8. The last theorem actually means that Q, is a complete metric space, that is, a sequence converges
in Q,, iff it is Cauchy, meaning that for each € > 0 there exists N such that |a, — a;y| <eforall n,m = N.

The Cauchy condition of course always implies that @, — a,-1 — 0, but actually for Q, the latter is equivalent
to the Cauchy condition, since

lan—amlp=lan—an-1+an-1—An2+-+Am+1 — Amlp smaxflan, — an-1lp, ..., [Cm+1 — Cmlp}.

Note that this depends strongly on the ultrametric inequality |x + y|, < max{|x|p,|y|p}, and in the proof of the
theorem above we use the same trick.

The last theorem is not true for all complete metric spaces. For example, in R with the usual Euclidean metric
the sequence (X 1<j<y %) n satisfies the condition from the theorem, but it is not Cauchy, and indeed the harmonic
series Y 51 % diverges.

Corollary 3.9. The series Y. >0 @, converges in Q) iff the sequence (a) converges to zero.

Proof. The series is by definition given by the sequence (3_g<j<p, @), soit converges iff 3 g<j<p @i—X 0<i<n—1®&i)n =
(@), converges to zero. |

4 Fields with absolute values

Definition 4.1. Let K be a field. An absolute value is a function | - |: K — R satisfying the following properties:
1. la|=0iff &« =0.
2. Multiplicativity: |a B| = |a|-|B| forall @, B € K.

3. Triangle inequality: |a + 8| < |a|+ || for all a, § € K.

10



In particular, multiplicativity implies that 1| = 1.

Example 4.2. ¢ The usual absolute values on Q, R, C give examples of absolute values in the sense of the defi-
nition above.

* The p-adic absolute value ||, on Q, is an absolute value. It is also an absolute value on the subfield Q@ < Q.
* There is always the trivial absolute value given by |a| := 1 for all a # 0.

e If K = F(t) where F is another field, then for x € F(¢) the order of vanishing at a € F is given by ordyq x := m
such that (f — a) ™" has no zeroes and no poles at a.
So ord, x > 0 if x has a zero at & and ord, x < 0 if x has a pole at a.
|-|q :=ordg () is an absolute value on F(f).
A

A field K with an absolute value |- | is a metric space with respect to the distance d(a, ) := |a — §|. We call K a
complete field if it is complete as a metric space (i.e. every Cauchy sequence converges).

Example 4.3. ¢ @ is not complete. The completion of @ with respect to the usual absolute value |- | is R. The
completion of Q with respect to a p-adic absolute value |- |, is Qp.

» For R we can take C, its algebraic closure. It is again complete with respect to the usual absolute value on C.

* Qp is not algebraically closed. If we take the algebraic closure (Q p)alg, then is not complete, but its comple-
tion is algebraically closed; it is usually denoted by Cp,.

¢ The completion of F(#) with respect to |- |y := ordy(:) is the field of Laurent series F((?)).
A

For every field K we can consider the subring Zx generated by 1 (the smallest subring). It is isomorphic either
to ZifcharK=0ortoF, if charK = p > 0.

Definition 4.4. We say that the absolute value |- | on K is archimedian if it is not bounded on Zg, and nonarchi-
median otherwise.

Trivially, a field of characteristic p > 0 has only nonarchimedian absolute values.
Observe that a nonarchimedian absolute value should satisfy | x| < 1 for all x € Zg, otherwise the absolute value
of |x"| is not bounded.

Example 4.5. The usual absolute value is archimedian.
The p-adic absolute value |- |, the trivial absolute value, the absolute value ||, on F(#) are all nonarchimedian.

A
Theorem 4.6. Let K be a field with an absolute value| -|. The following are equivalent:
1. |-| is nonarchimedian.
2. |a+ Bl <max{|al,|Bl}.
Proof. Clearly (2) implies (1): forn=1+1+---+1€ Zg one has
|n| < max{[1],[1],...,|1]} = 1.
In the other direction (1) = (2) — an exercise. |

11



Remark 4.7. For a nonarchimedian absolute value | - | one has

la + Bl = max{|al,|fl} for |al#]|Bl

Indeed, assume |a| > |B|. Then |a + | < |al, but also |a| = [(a + B) — Bl < max{|a + BI,|6]} = la + BI. Thus
la+ Bl =lal.

Definition 4.8. Let |-|; and |- |, be absolute values on K. Then we say that they are equivalent, |- |, ~ |- [, if they
define the same topology on K (that is, every sequence (a,) converges to a with respect to |- |; iff it converges to «
with respect to | - |2).

Example 4.9. Consider the absolute value |- |12 on R or @ given by |al|;/2 := lall/2. Tt is equivalent to the usual
absolute value.

Define a p-adic absolute value on Q by |- |, := p"?@ for p € (0,1). Different choices of p lead to different but
equivalent absolute values. A

In general, if | - | is an absolute value, then |- I;L is an absolute value equivalent to | - |, if holds
e 1€ (0,1] when |-|is archimedian,
e 1€ (0,+o00) when || is nonarchimedian.

Theorem 4.10. Let|-|y and|-|» be absolute values on K. The following are equivalent:

Loy~ 2.

2. There exists A € Rxq such that|-|> = |- I{L.
Proof. (2) = (1) is clear, (1) = (2) is an exercise. |
Theorem 4.11 (Weak approximation theorem). LetK bea field. Let|-|1,...,|:|m be pairwise nonequivalent absolute

values (finitely many). Let ay, ..., &, € K and lete > 0. Then there exists a € K such that

la—aili,...,la—amlm <e€.
Proof is left as an exercise (rather tricky).

Example 4.12. Let K =Q and let py,..., py, be distinct primes and sy, ..., S;;; be natural numbers. For ay,...,a,, € Z
there exists a € Z such that

a=a; (mod py),

a=a, (modp)".
So the weak approximation theorem generalizes the Chinese remainder theorem. A
Let K; be the completions of K with respect to the absolute values |- |;. We may consider the diagonal embed-

ding

K<—>K1 x...me’

a—(a,...,a).

The weak approximation theorem is equivalent to saying that the image of this map is dense.
We know the following examples of absolute values on Q: the usual |- |, the p-adic |- |, for each prime p, and
the trivial one. In fact, that is all.
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Theorem 4.13 (Ostrowski). Every nontrivial absolute value on Q is equivalent either to |-, or to |- |, for some p.

Proofis left as an exercise (easy for nonarchimedian absolute values; a bit harder to show that there is only the
usual archimedian absolute value).

We denote by Mg the set of all absolute values on Q up to equivalence. We want to pick convenient represen-
tatives in every equivalence class:

e |-|is the usual archimedian absolute value.
* For every prime p take |al, := p"»® with p = 1/p. That s, |al, := p~"»@.,

Now by Mg = {2,3,5,7,11,...}U{oc} we denote the set of “normalized” absolute values. We treat |-| as an absolute
value | - |oc coming from an “infinite prime”.

Theorem 4.14 (Product formula). Leta € Q*. Then

IT lalp=1.

p€M@

Proof. Consider a function ¢(a) := 1_[][,€ Mg lalp. It is multiplicative, so it is enough to verify the statement for the
generators of Q*, that is for prime numbers.

-1

q 5, P=4q
lglp =4 4 p =00,
1, otherwise.

[T lglp=q"q=1.

pEM@
[ ]
Example 4.15. Let @ = —12/5. Then we have
lal ! lal ! lals =5, |al 12
aly=—, lalz ==, lals =5, |aleo = —,
2 4 3 3 5 0o 5
lalp, =1 for p#2,3,5.
And so indeed
11 12
[T lalp==-=-5-—==1.
peMq 437 5
A

The product formula can be generalized to any number field K/Q—see p. 61.

5 Equations over p-adic numbers

We relate equations over p-adic numbers to congruences modulo p*.

Theorem 5.1. Let F(X,...,X,) € Z[Xy,..., X,] be a polynomial with integer coefficients. Let p be a prime number.
The following are equivalent:

1. Forallk=1,2,3,... the congruence F(X,...,X,) =0 (mod pX) has a solution.

2. Theequation F(Xy, ..., Xy) = 0 has a solution in Z,,.

13



Proof. Suppose & = (a1,..., @) € Z}; is a solution of an equation F(X) = 0. Then looking at the identity F(a) =0
modulo pk, we have a congruence F(a) =0 (mod pk) with some a € Z" (recall that Zp/(pk) = Z/ka).

Now suppose that for k = 1,2,3,... there exists a sequence of integers a® = (aﬁk), e a%k)) such that F(a®) =0
(mod p*). Since Z p is sequentially compact, we may assume that this sequence is convergent to some a € ZZ (by
replacing it with some subsequence). Now F(a) = liI_nkﬂooF(g(k)) =0, because |F(a'®)| < p~. [ |

Moreover, if F is, say, a quadratic form, then nontrivial solutions of F(X) = 0 correspond to nontrivial solutions
of F(X) =0 (mod pk). Now we can restate our goal, the Hasse-Minkowski theorem (1.2), in the following way:

Theorem 5.2 (Local-global principle; Hasse, Minkowski). Let F(Xy,...,X,) € Z[Xy,..., X,] be a quadratic form. The
following conditions are equivalent:

1. Local: F(X) = 0 has a nontrivial solution in Q}, for each2 < p < oco.

2. Global: F(X) =0 has a nontrivial solution in Q".

6 Hensel'slemma

Here we will prove the Hensel’s lemma, a vital tool which will be used in many subsequent proofs.

Theorem 6.1 (Hensel's Lemma, first form). Ler f(X) € Z,[X] be a p-adic polynomial and assume there exists ag €
Z, such that f(ao) =0 (mod p) but f'(ag) 0 (mod p). Then there exists a unique a € Z,, such that f(a) = 0 and
a=ap (mod p).

Example 6.2. There exists a € Z7 such that > =2 (mod 7) and a =3 (mod 7).

For this apply the Hensel’s lemma to f(X) = X?>—2and &y = 3. We have f(ag) =7=0 (mod 7) and f'(ag) =6 0
(mod 7).

This is the 7-adic square root of 2:

V2=3+7+272+6-7+7"+2.7°+7542.77+4. 78 +6. 77+ ...
We already saw this in example 1.4. A
Sometimes the stated Hensel’s lemma is not enough and one should use its generalization:

Theorem 6.3 (Hensel's Lemma, strong form). Let f(X) € Z,[X] be a p-adic polynomial and assume there exists
@ € Z), such that f(ag) =0 (mod p?k* 1y but f'(ag) 20 (mod p¥*l). Then there exists a unique a € Z, such that
fl@)=0anda=ay (mod pk+1).

(Usually k =1 is enough.)

Actually Hensel’s lemma is valid for any complete nonarchimedian field. Suppose K is complete with respect
to a nonarchimedian absolute value | - |. Consider its ring of integers

Ox:={xeK||x|<1}.

Theorem 6.4 (General Hensel). Suppose f(X) € Ox[X] is a polynomial, and a € Ok is such that | f(ag)| < 1 and
|f'(ao)| = 1. Then there exists a unique a € Ok such that f(a) =0 and |a — ap| < 1.

Theorem 6.5 (General Hensel, strong form). Suppose f(X) € Ox[X] is a polynomial, and ay € Ok is such that

[ flap)l < If’(ao)lz. Then there exists a unique « € Ok such that f (@) =0 and |a — ag| < |‘ff,((‘z%))|| .
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Remark 6.6. In fact Hensel’s lemma is about complete rings:
Let R be a ring that is complete with respect to the ideal m. Suppose f(X) € R[X] is a polynomial, and o € R is such
that f(ap) =0 (mod f'(ag)?>m). Then there exists a € R such that f(a) =0 and a = ag (mod f'(ao) m). Further, if
Qo is not a zero divisor in R, then « is unique.

See Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Chapter 7 and Atiyah, Macdonald,
Introduction to Commutative Algebra, Exercises 10.9, 10.10.

We are interested only in the case R = Ok, where K is a complete nonarchimedian field.

Proof of the first statement (theorem 6.1). So we suppose we have a polynomial f(X) € Z,[X] and ag € Z, such
that f(ag) =0 (mod p) and f'(ap) 0 (mod p). We want to find & € Z,, such that f(a) =0 and @ = ap (mod p).
Moreover, we want to show that such a is unique.

We construct a sequence (a,),z0 such that a, = a,-1 (mod p”) and f(a,) =0 (mod p”“). All terms in our
sequence will satisfy a,, = ag (mod p). In particular, f'(ay) = f'(@p) 20 (mod p).

Assume a1 is defined and f(a,-1) =0 (mod p™) and f'(a,-1) # 0 (mod p). We need to define a, of the
form a,,—1 + p" u for some u. Look at the “Taylor expansion” around a,,_1:

flan) = flan-1)+ f'(@n-1) (@n—ap-1) + (@n — an-1)* g(@n, an-1).

Here g(X,Y) € Z,[X, Y] gives the rest of the expansion.
We should have a;,, — a1 = p" u for some u, so

flan) = flan-1)+p" uf (@n-1) +p*" u* glan, an-1) = flanp-1)+p"uf(a,—1) (mod p*™).

Asrequired, f(a,) = f(ay—1) =0 (mod p).

Since f(a@;-1) =0 (mod p"), wehave f(a,-1) = vp", andin a, = a,_1+p" uwe can substitute u:= —v/ ' (a,-1),
that is take
f(an—l) %
Api=Qp1————.
n n-1 f’(an—l) *

Now |a, — ap-1lp — 0 as n — oo, so our sequence converges to some a € Z,. For this @ we have f(a) =
lh—nn—wof(an) =0. Since a, = ¢p (mod p), we have @ = ap (mod p).

Now we found the requested «, and it remains to show its uniqueness. Assume we have also 8 such that
fl@)=f(B)=0and a = f=ag (mod p). Since f'(ay) #0 (mod p), we have f'(a) 20 (mod p). As before, we look
at a “Taylor expansion”. We have an identity in Z),

fB =fl@+f(@PB-a)+(B-a)’gl,p).
D S
=0 =0

Since f’(a) is a unit, we have

B-a=-(B-a)’glap)f@ .

We compute p-adic norms of both sides: the term g(«, 8) f’(a)’1 gives some norm |g(a, B) f’(a:)’1 l[p =1,s0we
have a bound
B-al,<Ip-al.
But since | — al, < 1, this inequality means | — a|, =0, and so = a. |

Observe that in the proof above we used the formula (*), which is the same as in the Newton’s method for
finding a root of f in R. So we see that in the nonarchimedian case Newton’s method always converges.
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Proof of the general Hensel (theorem 6.5). We have a polynomial f(X) € Og[X] and @ € Ok is such that | f(a)| <
If’(ao)lz. We look for a € Ok such that f(a) =0and |a — ag| < ||j]:,((‘;%))‘| . We will show that such «a exists and we omit
the proof of its uniqueness.

Denote

_|f(ao)l

T

We recursively define a sequence (&) ;>0 such that the following formulas hold:

If (@)l <82 1f (@), M
lan—an-11 <8 1f (@), @n
If (@) =1f"(ao)l. B)n

Assume we have a,,_;. We define the next term again by the Newton’s formula

We should show that (1) 5, (2) 5, (3) ; follow from (1),,—1, (2) 11, (3) n—1. With this definition of a, we deduce

2n—1

|f(an-1)l - 6% |f (ap)? _

< 62"*1 ’ .
|f'(ap-1)l | (o) |f (a0l

|an—anal=
Next we have
flan) = flan-1) +(@n=an-) f'(@n-1) +(@n = an-1)* g(@n, n-1),

~

=0

and this gives an estimate
n
f@n)l <lan—anl” <6 |f (o).

We have another estimate »
an—ap-11=6>  |f (@)l <|f (@o)l.

We apply this to the formula
fan) = f'(@o) + (@n — ao) h(an, a)

and get
|f'(@n) = (@) = lan— aol - [h(an, ao)l < | f (@)l

Now | f'(a,)| = | f' (ao)l, since otherwise the last bound becomes

max{| f'(@n)l, | f (@o)} = | f'(@o)| < | f (o).

The Hensel’s lemma can be generalized to multivariate polynomials.

Theorem 6.7. Let F(Xy,...,X,) € Zp[Xy,..., Xu] be a polynomial in n variables and lety = (y1,...,Yn) € Zz be such
that F(y) =0 (mod p2k“) and there is some i = 1,...,n such that Fg(i (y) #0 (mod pk“). Then there exists a € Z;",
such that @ =y (mod p**!) and F(a) = 0.

This reduces to the usual Hensel’s lemma. We may assume i = 1. Consider f(X) := F(X,Y2,...,Y) and take
Bo:=7v1. Then f'(Bo) = F)’(1 (y) and we can conclude that there exists a unique  such that = fy (mod p**!) and
f(B) =0. Take a:= (B,Y2,...,Yx), and we are done.

As an application of the Hensel’s lemma, we investigate the squares in @;.
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. X
7 Squaresin Q)
In the group of units Q, there is a subgroup, which we denote by (@;)2, formed by squares:

@) :={a”|a€Q}}.
We would like to determine the subgroup index [(I]);J : (Q);)Z].

The easiest case is p = co. The subgroup of squares (R*)? is the multiplicative group of positive numbers, and
R*: (R)?] =2.

Assume that 2 < p <oco. Consider a unite € Z,,. When is it a square?
Proposition 7.1. Assume p # 2. Thene is a square in Z, ife mod p is a square in[F .

Proof. We apply Hensel’s lemma (6.1) to a polynomial f(X) = X2 —e¢. Its derivative is f'(X) = 2 X. If there exists
7o such that n(z) =e¢ (mod p), then automatically f'(19) =21 0 (mod p), and by Hensel there exists € Z,, such
thatn® =e.

(Note that the derivative is 2 X, so our argument depends on the assumption p # 2!) |

We have Z,/(p) =Fp, and [, is a cyclic group of order p — 1. The subgroup of squares ([F;)2 has index 2. Now
€ € Z, is asquare iff the image of € in F, is a square. Hence [Z}, : (Z;)Z] =2.
An element a € Q; has form a = pTe foree Z,,. Itis a square iff m is even and ¢ is a square. Hence [Q), :

@))% =4.
The situation becomes most complicated for p = 2, because of the well-known principle:
all primes are odd and 2 is the oddest.
Proposition 7.2. Aunite € Z5 isasquareinZ; iffe=1 (mod 8).

Proof. Assume € = 1 (mod 8). Apply the Hensel’s lemma (the strong form, theorem 6.3) for f(X) = X2 —¢ and
no = 1. We have F(no) =0 (mod 8) and f'(no) =2 # 0 (mod 4). So there exists 7 such that n> —e =0 and n = 1o
(mod 8). [ ]

Now we have Z,/(8) = Z/8Z and (Z/8Z)* = C, x C,. So [Z} : (Z3)*] =4 and [Q} : (@})%] =8.

To sum up our calculation,

2, p=oo,
[Q;:(@)*1={ 4, 2<p<oo,
8, p=2

8 Quadratic forms and quadratic spaces
Now we are going to develop some basic theory of quadratic forms that we will need later.

Let K be a field and let U be a vector space over K. Consider a symmetric bilinear form y: U x U — K (recall
that this means that v (u, v) = ¢(v, u), and (-, v), ¢y (u,—): U — K are both linear maps).

We can define a quadratic form ¢(u) := w(u, u); if char K # 2, then this in turn defines v, e.g. via the polariza-
tion identity

1
y(u,v) = Z((b(u+ V) +p(u—1)).

Indeed,
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v (u, u) =:p(u),

2y (u,v) = du+v)—du) —p(v),
2y (u,v) =¢w) +Pw) —p(u—1),
4y (u,v) =Pp(u+v)—pu—").

So from now on we impose the restriction char K # 2 and we willuse ¢: U x U — K and ¢: U — K interchange-
ably for a bilinear form and the corresponding quadratic form.

Proposition 8.1. Assume v is not identically zero. Then neither is ¢ identically zero.
Proof. This is immediate from the polarization identity: if v (u, v) # 0, then either ¢(u+v) #0orw(u—v) #0. N

Definition 8.2. A pair (U, ) consisting of a K-vector space U and a symmetric bilinear map y: U x U — K is called
a quadratic space. We say that a quadratic space is regular if 1 is nondegenerate; that is, if for each u # 0 the linear
map v — ¥(u, v) is nonzero.

U — U" :=Hom(U, K),

u— (v—vyu,v)).

We will work with finite dimensional vector spaces. We will also treat both (U,w) and (U,¢) as the same
quadratic space.

Proposition 8.3. The following are equivalent:

1. (U,vy) is regular.

2. Ifw,..., uy is a basis of U, then det(y (u;, uj)] #0.
(A proof can be found in any linear algebra textbook.)

We call the number 6(¢p) = 6 (y) := det[y(u;, u;)] the discriminant of the quadratic form. It is not well-defined
since there is no canonical basis for U. We consider it modulo squares, i.e. as an element of K* /(K *)2.

Example 8.4. Let dimU =2 and u, v be some basis of U. Define in this basis ¢: U x U — K as follows:

y(u,v)=vy(,u) =1,
y(u,u)=y(,v)=0.

[ )

The quadratic space (U, y) is regular, but the subspaces (1) and (v) are not regular, since y restricted on them
is identically zero. A

Definition 8.5. Let (U, v) be a quadratic space. For a subspace V < U the orthogonal complement (with respect
to ) is defined to be

VLzz{ueUlul(u,v)zoforallveV}.

Proposition 8.6. If (U, v) is regular, then dim V + dim V* = dim U.
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Proof. Consider a basis v,..., v, of V and define a map

u-V,
u— (yu,v),...,vu,vy)).
Since 1 is regular, this is a surjection. The kernel is V*. |
It is not always the case that V' n VL = {0}, however we always have the following.
Proposition 8.7. Assume U is regular and V is its subspace. Then (V)L = V.

Proof. Itis clear that V < (vhHt,
On the other hand, we have

dimV +dimV* =dimU,
dim V* +dim(V+)* = dim U.
Thus dim V = dim(V4)L. ]
Proposition 8.8. Assume V is a regular subspace of (U,y). ThenU =V & V.
(We do not assume that U itself is regular.)

Proof. Take u € U and consider a map

f:V—-K,

v—y(u,v).

Since V is regular, there exists w € V such that f(v) =y (w,v) forallve V.

We have a decomposition u = w+ (u—w), and u— w € V* since w(u— w,v) = y(u, v) —y(w,v) =0forall ve V.
SoU=V+V+

Since V isregular, V' n V4L =10}, andhence U=V & V-, [ |

Proposition 8.9. Assume U is regular and V is its subspace. The following are equivalent:
1. Visregular.
2. Vnvt={o.
3. V%tisregular
Definition 8.10. A basis u,..., u, for U is called orthogonal (with respect to v) if w(u;, u;) =0 for i # j.
(N.B. we do not talk about an orthonormal basis, just orthogonal.)
Proposition 8.11. Every quadratic space admits an orthogonal basis.

Proof. If y is identically zero, then any basis will do. If not, there is a vector u; such that ¢p(u;) # 0. Consider a
subspace V := (uy); it is regular, U = V@ V+, and dim V* < dim U. By induction on dim V+, the whole U admits
an orthogonal basis uy, ..., U,. [ ]

If (U, ) is a regular quadratic space and uy, ..., 4, is an orthogonal basis, then ¢(u;) # 0.
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Isotropy

Definition 8.12. A nonzero vector u such that y(u, u) = 0 is called isotropic (with respect to ).
We say that a quadratic space (U, ) is isotropic (or that v is isotropic) if there exists an isotropic vector u € U.

Example 8.13. If (U, v) is not regular, then it is isotropic. A

In example 8.4 we saw isotropic space with ¥ given by a matrix ((1) (1)), that is, in a basis u, v we have ¢(xu +
yv) =2xy. This space is called the hyperbolic plane and it plays a special role:
Proposition 8.14. Let (U, ) be a regular isotropic space. Then U = V & V- where V is the hyperbolic plane.
Proof. Since v is isotropic, there exists a nonzero vector u € U such that ¥ (u, u) = 0. Since v is regular, there exists
w such that ¥ (u, w) # 0. We may assume v (u, w) = 1. Consider a vector v = Au+ w where 1 € K.
v v) =y Alu+w) =Ay(u,u) +yuw) =1.

Now

v, v)=yvAlu+w Alu+w) = /lzw(u, w2 Ay (u, w)+y(w, w) =21 +y(w, w).
—— ———
=0 =1

Sowe take A = — % v (w, w) and now (v, v) = 0 (we use our usual assumption char K # 2).
Thus V = (u, v) is the hyperbolic plane. Since V is regular, U = V & v+, [ ]

Definition 8.15. We call a quadratic space (U, y) universal if for any a € K™ there exists u € U such that ¢ (u, u) = a.
We say in this case that ¥ represents a.

Example 8.16. For K =R it is well-known that any quadratic form is equivalent to

X2 ook X2 — (X2, + o+ X2).

It is isotropic iff 0 < r < n and it is also universal iff 0 < r < n. Is it always the case and being universal corre-
sponds to being isotropic? A

Proposition 8.17. Any regular isotropic space is universal.
Proof. This follows from the fact that the hyperbolic plane is universal. |
The converse is not true: in general universality does not imply isotropy.

Theorem 8.18. Let K be a finite field with char K # 2. Then any regular quadratic space over K of dimension = 2 is
universal.

Proof. Itis sufficient to consider dim U = 2. Let u, v be an orthogonal basis for U. We have

dxu+yv)= xz(p(u) +y2(/)(v).

Here ¢(u), p(v) #0.
Now if K =, then K™ is a cyclic group of order g — 1, and the subgroup of squares in K* has order
qg-1

#FH? =1 —.
(F3)* ==

So there are totally qTH squares in [, taking into account also 0. We count the number of elements of the form
2
x“¢p(u):

#a p(u) | xeF ) = qT“.
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Now for some a € Fj; count the elements of the form a — 2 p(v):

+1
#{a—yz(p(v) lyelgt= qT

The number of elements sum up to g + 1, meaning that the sets are not disjoint. So there exist some x,y € [
such that

o) =a—-y* o).
Thus for any a € F; we have a = % p(u) + y? p(v) = p(x y + y v) for some x, y € Fy. |
On the other hand, not every two-dimensional space over a finite field is isotropic. To see it consider f € [
which is not a square. Fix an orthogonal basis u, v with ¢(x) = 1 and ¢(v) = —B; thatis ¢(X,Y) = X? — Y2. Then
dxu+yv) :xz—ﬁy2 #0 for (x,y) #(0,0).

Proposition 8.19. Let (X1, ..., Xy,) be a regular quadratic form over K and a € K*. The following are equivalent:

1. ¢ represents .
2. ¢(Xy,..., Xp) — a Y? is isotropic.

Proof. (1) implies (2) obviously without assumption that ¢ is regular.
Now assume ¢(X) — a Y2 is isotropic, meaning that there exist (x, y) € K**! such that ¢(x) — a y* = 0.
If y#0, then y 2 ¢p(x) = p(y ' x) = a.
If y =0, then x # 0 and ¢ is isotropic (and regular), and thus universal. |

Corollary 8.20. Any quadratic form in = 3 variables over a finite field is isotropic.

Proof. We may assume that ¢ is diagonal and regular:
(X1, X2, X3) = a1 X{ +az X5 + as X3,

where a1, @, a3 # 0.
Now a; X12 +as X22 is universal. In particular, it represents —as. ]

Proposition 8.21. Let f(X) and g(Y) be regular quadratic forms over K. Suppose f(X) — g(Y) is isotropic. Then
there exists a € K* represented by both f and g.

Proof. By assumption we have (x, y) # (0,0) such that f(x) = g(y) = B. Without loss of generality assume x # 0. If
B # 0, then we are done. - -

If =0, then f(x) =0, so f isisotropic, and thus universal, representing any element. We can take any element
a € K™ represented by g. |

Transforming orthogonal bases

Here we will show a technical result that will be used laterin § 11.

Proposition 8.22. Let (U,¢) be a quadratic space with two orthogonal bases ti = (uy,...,u,) and U = (vy,...,Vp).
There exists a sequence of orthogonal bases

=9 g®

a0, a®, a0 =7,

U

where 1P and "V differ by at most two vectors.
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Proof. For an induction step it is enough to transform @ = (u,, ..., ;) into some basis of the form (v, v; e Un).
Write vy = @y uy +--- + @, u,. Without loss of generality (after changing the order) we can assume a;,...,a5#0
and ag41,...,a, =0,s0 that v; = @y uy +---+ as us. We should have a # 0.

* If s=1, then v; = @ u;, and we take vy = up, ..., v}, = Uy.

e If s = 2 and ¢(a; u; + az up) # 0, consider u’1 = aq u; +asuy. Find u’2 of the form B, u; + B2 uy such that
w(uy, uy) =0.

y(uy, uy) =ylan uy + az up, Br ug + P2 Up)
=a) fry(ur, ur) + a1 B2 wu, w) +az Br wug, ) +az Bow(uz, us)
————
=0 -0

= ay B1p(u1) + az B2 d(up).

S(; we take 1 = az Pp(up) and B2 = —a; ¢p(u1). We have (81, B2) # (0,0) since ¢p(a) u; + as up) = a%(p(ul) +
a; $(up) #0.

Consider a new basis u’l, ué, us,..., Uy. We have v = u’1 +aguz +--- + ag U, alinear combination of s —1
vectors. So we reduced s to s — 1, and we can use induction.

e If s=2and ¢(a; u; + ay up) =0, then it is not possible for s =2 (since v = a1 u; + a2 U is not isotropic), and
we should have s = 3. Consider the following three vectors:

aup+as i,
a1 U +asus,

a2 Uy + a3 U3.

We claim that at least one of them is not isotropic. Indeed, assume it is not the case. Then

a? p(uy) + a3 plup) =0,
a? p(u) + ai pluz) =0,

a5 dup) + ad ¢luz) = 0.

But this implies af = a3 = a3 = 0, contradicting a # 0.

Witt’s lemma

Definition 8.23. An isometry of quadratic spaces (Uy,¢;) and (Us, ¢p») is a linear map p: U; — U, such that the
following diagram commutes:

U, -~ u,

| A

K

If there is an invertible isometry p: U; — U,, then we say that the quadratic spaces (Uy,¢;) and (Ua, ¢») are
isometric and the corresponding quadratic forms ¢; and ¢, are equivalent.
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For equivalent quadratic forms the discriminant is the same: if ¢p; ~ ¢2, then 6(¢p;) = 6(¢p2) (as elements of
K*/(K*)?). Obviously the dimension of isometric quadratic spaces must be the same.

We will need the following important result:

Theorem 8.24 (Witt’s lemma). Let f1(X3,...,Xm), o(X1,--, Xm), &1(N1,..., Y), g8(V1,...,Y,) be quadratic forms
with fi and f> regular. Assume f1(X) ~ fo(X) and fi(X)+g1(Y) ~ o(X)+ g2(Y). Then g,(Y) ~ g2(Y).

This essentially says that one has the “cancellation property” f + g1 = f + g2 = g1 = g for equivalence classes
of quadratic forms. To prove this we need to discuss isometries of quadratic spaces.

An isometry (U, ¢) to itself is called an autoisometry. That is, it is a map p: U — U such that ¢po p = ¢b.
Suppose (U, ¢) is regular. Then the autoisometries of (U, ¢) are all invertible and they form a subgroup of
GL(U), denoted by O (U).

Proposition 8.25. For p € Oy(U) one has detp = +1.

Proof. Let uy,..., u, be abasis of U. Consider the matrix S = (y/(u;, u})); ;. If T is the matrix of p in this basis, then
the matrix of po p is given by TS T = S, and

det("TST) = (det T)? det S = det S.
Since det S # 0, we conclude det T = £1. [ |

Consider a subgroup of Oy (U) given by

0,(U) = {p € Op(U) | detp = +1}.

We have [Oy(U) : O(};(U)] = 2. Indeed, the index is either 1 or 2, and we can find an element p € Oy (U) with
detp = —1. (As before, we assume char K # 2, otherwise +1 = —1.)

Example 8.26. Take u such that ¢(u) # 0. We have U = (u) + (u)*. Define a map

pu:U—-U,
u— —u,
v—1 forve(uw’t.

We have detp, = —-1.
In general, the reflection through the hyperplane orthogonal to u is given by

w(u,v) ”

pu(v) = v—2w(u) ”

(“Reflection” is understood with respect to the bilinear form v.)
In particular, if ¢(u) = ¢(v) and ¢p(u— v) # 0, then
Pu—v(W)=v, pyu—p(v)=u.
Indeed, by the definition of reflection

o Yu-vu _
Pu-v(W)i=u zw(u—v,u—v) (u—v).

By bilinearity,
yu—vu)=yu,u) -y, u.
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By bilinearity together with the assumption ¢(u) = ¢(v),
vu-vu-v)=yuuw) -2y u+yvv)=2ww uw -y u),

hence
w(u—v,u)

Pu—v) = u—Zm (u-vy)=u—-(u-v)=uo.
Proposition 8.27. Suppose u, v € U are such that ¢(u) = ¢p(v) # 0. Then there exists p € Oy(U) such that p(u) = v.
Proof. e If ¢(u—v) # 0, then take a reflection p,_, (u) = v.

e If ¢p(u+ v) # 0, then we have a reflection p,, (1) = —v and we take its composition with another reflection:
PvPu+v(U) =v.

e We claim that both ¢p(u — v) and ¢(u + v) cannot be zero under our assumptions. Indeed,

Gu+v)+P(u—v) =2¢w) +2Pp(v) = 4p(v) £0.
|

If dim U > 1, then in the proposition above we may actually take p to be a product of two reflections, so that
pE O:/; (U). Indeed, in this case there exists w L u such that ¢(w) # 0, and

* pu—vpw(u) =vif (u—v) # 0—this is because p,, (1) = u, since we reflect u with respect to the hyperplane
orthogonal to w, but u is in that hyperplane;

* pyPusy(u) =vasbeforeif p(u+v) #0.

Theorem 8.28. Assume V1, Vo € U are two regular quadratic subspaces of U and they are isometric via somep: Vi —
Vu. Then this p can be extended to an autoisometry of U.

Proof. Since V) is regular, there exists vy € V; such that ¢(v1) # 0. By proposition 8.27 there exists o € Oy (U) such
that o(p(v1)) = v;. We may replace V, with 0V, and p with op, so that v; € Vi nV, and p(v) = v;.
For dim V; = 1 we are done. Otherwise we use induction on dim V;. Consider

U=, V/=Unwn, V,=Un.

We have dim V{ =dim V) — 1 and dim V, = dim V, -1 and p V] = V;. By induction hypothesis, there is an autoi-
sometry p’ of U’ such that p’ | v, = p- From this we can define an autoisometry on the whole U by

o:U—-U,
Ve,

u—p'(u) foruet'.
|

Corollary 8.29. Assume Uy and U, are isometric quadratic spaces and V) < Uy, Vo € Us, with V1, V, regular and
isometric subspaces. Then VIJ- is isometric to VZJ-.

Proof. By assumption there is an isometry p: U; — U> is an isometry. We can replace U; with pU; and V; with
p V1, and assume that (Uy, ¢1) = (Uz, ¢2) = (U, @) is a single quadratic space and V; and V5 are its regular subspaces
isometric via some p: V7 — V5. Then we know by the previous theorem that the is an autoisometry o extending p.
But then oV} = V5, and lel = VZJ-. [ ]
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This corollary proves the Witt’s lemma (theorem 8.24). Indeed, assume we have equivalent quadratic forms
fl(le---;Xm) + gl(Yl)---’ Yn) ~ fZ(Xl»---me) +82(Y1;---, Yn)y

with f1 and f, regular and equivalent. Consider a quadratic space U; having quadratic form f; (X) + g1(Y) and a
quadratic space U, having quadratic form f,(X) + g2(Y). Then f; and f, correspond to regular isometric subspaces
V1 € Uy and V2 c U,. The quadratic forms g; and g» correspond to subspaces VIJ- and VZl that should be isometric
as well. |

9 Quadratic forms over Q,
Proposition 9.1. Suppose p > 2 is a finite prime and ¢ is a regular quadratic form over Q.
1. Suppose the dimension is = 3. If ¢ has a diagonal form
Gp=a1 X +ay X2 +azXg+--
with ay, az, as being units (equivalently, v, (a;) = 0), then ¢ is isotropic.
2. Any quadratic form over Q, of dimension = 5 is isotropic.

We note now that the first assertion is false for p = 2 (a counterexample will follow, see p. 28). The second
assertion is still true for p = 2, and we will see a proof of this later (theorem 11.2).

Proof. 1. Itis a typical application of Hensel. There exists a = (ay, a, a3) such that a # 0 and ¢(a) =0 (mod p),
because over [, any quadratic form of dimension = 3 is isotropic. Without loss of generality assume a; #
0. Then ¢>’X1 (@) =2a; #0 (mod p) (and here we use the assumption p # 2). Now by the Hensel’s lemma

(theorem 6.7) there exists b € Zf, such that b=a #0 (mod p) and ¢(b) =0.

2. We may assume n =5 and that ¢ = a; X12 +--+as X52 Also without loss of generality (by multiplying by p*
and applying a variable change) v, (a;) € {0,1}. Thus ¢ = ¢; + p¢2, where the coefficients of ¢; and ¢, are
units. Now dim¢; = 3 or dim ¢, = 3, so we have isotropy by the previous proposition (that is why we ask that
p # 2, but this restriction can be removed).

]

10 Hilbert symbol
From now on p denotes a prime, possibly 2 or infinite.
Definition 10.1. Let a,§ € Q. The Hilbert symbol (a, f), is defined as follows:

(@, B)y:= +1, aX?+pY?-Z2isisotropic,
GEPp =1 21, aX?+pY?- 72 is anisotropic.

In the definition above “a X2 + B Y2 — Z? is isotropic” can be replaced with “Z? — a X? represents ”. Indeed,
suppose ax®+ ﬁyz — z2 = 0 for some (x, ¥,2) #(0,0,0). If y =0 then Z2—aX?is isotropic, and thus universal, so it
represents . If y # 0, then we get

(z1y)* —a(xly)* =B,

so the form Z2 — a X? indeed represents S.

Here are some immediate properties of the Hilbert symbol:

1. (a»ﬁ)p = (ﬁ» a)p-
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2. (a,—a)p =1 (for this observe that a X* — a Y? — Z? is isotropic; take X = Y =1 and Z =0).
3. (a,1)p =1 (since a X* + Y? — Z? is isotropic; take X =0, Y = Z = 1).

4. (a, }/2,6),, = (a, B)p (one can make a variable change Y’ := Y /7).

5. (@,YY)p=(a,Dp=1

There is one more equivalent definition of the Hilbert symbol:

(a,f)p =1 <= Pisanorm of some element in Q,,(va)/Qp.
Indeed, if @ € (@;)2, then this is trivial and the symbol (a, ), is always 1, just as for the definition above. Now

ifag (@;)2, then for an arbitrary element z+ x \/a € Q,(a)* we compute its norm

Z ax
ZZZ—(XXZ.
X

So it is the same as asking 8 to be represented by Z2 — a X? (even though the symmetry between a and f3
becomes less evident this way).

Proposition 10.2. Hilbert symbol is multiplicative with respect to each variable:

(alaZy ,B)p = (al!ﬁ)p ° (aZ)ﬁ)p)
(a, B1B2)p = (@, B1)p - (@, B2) p.

We will first show the following:
Proposition 10.3. Fixa. Then Gq :={f | (a,p)p = 1} is a subgroup of Q,, of index 1 or 2.

The proposition 10.2 follows easily from the proposition 10.3. Suppose G, is a group of index one or two. For
B1, B2 € Q, We have the following three cases:

1. B1,B2 € Gy. Then (a, f1)p - (@, B2)p = (@, f1B2)p = 1.
2. ﬁl € Ga, ﬁz ¢ Ga;- Then (arﬁl)p =1and (a)ﬁZ)p = (a) ﬁlﬁZ)p =-L

3. B1, B2 ¢ Gy. Then since [QJ; 1G] =2, one must have 16, € Gq. So (@, B1)p = (@, B2)p = —1 and (a, B162)p =
1. ]

Proof of the proposition 10.3. If a € (@;)2 then (a, ), =1forall S @;, and we have nothing to prove (in this case
Ga =Qp).
So we may assume « ¢ (Q;)z, in which case [Q,(v/a) : Q,] = 2. The norm N@,,(\/a)/@,, is a homomorphism

Qp( Va)y* — @;, so it is clear that its image, which is G, is a subgroup in Q);. Our goal is to show that the index of
this subgroup is 1 or 2.
From the properties above we see that (@;)2 < Gg, where (@;)2 is the group of squares in Q;. So the index

[@; : Gq] should divide the index [Q; : (@;)2], and the latter is
e 2 for p =o0;
* 4for2<p<oo;

e 8forp=2.
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In case p = oo we are done. The index is

x |1, ifa>0,
[QW'G“]_{Z, ifa<o0.

Now for 2 < p < co we show that [Q), : Go] = 2. Itis enough to find an element f € G4 such that f ¢ (@;)2 (which
would prove [(I;D,X7 : Go] #4) and another f € @; such that 8 ¢ G, (which would prove [@; 1 Gl £1).
Since we consider a modulo squares, we may assume that v, (a) =0 or 1.

* In case v, (a) = 0 for each § with v, () = 0 the form a X%+ BY? - 72 is isotropic (all coefficients are units),
SO Z; < Gg. Now for a being a unit also —a is a unit, so —a € G,. On the other hand, —a ¢ (Q;)Z.

If v, (@) = 0, then the form a X? + p Y? — Z? is anisotropic. Indeed, otherwise aX? — Z? would be isotropic
modulo p, but « is not a square modulo p. Thus p ¢ Gg.

* If vp(a) =1, then a = pn for some unit 7). Take a unit y € Z,, which is not a square in Z,. We claim that
the form pn X% +yY? — Z? is anisotropic and so y ¢ G,. Indeed, if it is isotropic, then y Y2 — Z2 is isotropic
modulo p, but y is not a square.

So we conclude that [Q}, : Gg] =2 for2 < p <oo.
Finally, for p = 2 a similar analysis gives [Q, : Go] = 2. |

Now we can write down the values of the Hilbert symbol (-,-), for various p. In case p = oo the form (over the
field R of real numbers) aX? + BY? — Z? is anisotropic iff « < 0 and 8 < 0, so

[ 41, a>00rpB>0,
(a,ﬁ)oo—{ -1, a<O0Oandp<0.

We summarize it in the following table:

Now assume 2 < p < oco. The subgroup of squares (@;)2 in Q}, has four cosets represented by 1,¢, p, pe, where
is some nonsquare unit in Z;.

¢ Ifboth a and g are units then aX?+ ﬁY2 —7%is isotropic, so (a, B)p = 1.

* If a is a unit then (a, p), = (%), the Legendre symbol

+1, ifaisasquare mod p,

a .
(—) = 0, ifa=0 mod p,
p -1, ifaisnotasquare mod p.

This is because a X? + pY? — Z? is isotropic iff aX? — Z? is isotropic modulo p.
c (P =p=plp-(p-Dp=(p,-1)p= 3]
* By multiplicativity (pe,€)p = (p,€)p - (€,€)p = (p,€)p = (%) = —1, since € is a nonsquare in Z;.
* Similarly (p, pe)p = (p,€)p - (p, P)p = (%) . (%) = (_76) == (_—,})

* Finally, (pe, pe)p = (pe, p)p - (pe,€)p = (’Tf) . (%) = (’71)
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We summarize our computations in the following table:

Q|1 € p pe
1 +1 +1 +1 +1
e | +1 +1 -1 -1

_ =1 B e §
p | +1 1 + » )
_ (=1 =1
pe | +1 1 » 7

Recall that

-1 _(_1)”7‘1_ +1, p=1 (mod 4),
p) “1 -1, p=3 (mod4).

A similar table can be constructed for p = 2. Recall that Z; /(ZZX)2 can be identified with (Z/82)*, which is
represented by residues {1,3,5,7} modulo 8 (multiplicatively these form a group isomorphic to C, x C»). The group
Q3 /(Q; )? is represented by numbers {1,3,5,7,2,6, 10, 14}. Investigating the values (a, ), forall a, 8 € {1,3,5,7,2,6,10, 14},
one can obtain

Q2 1 3 5 7 2 6 10 14
1/+1 +1 +1 +1 +1 +1 +1 +1
3|+1 -1 +1 -1 -1 +1 -1 +1
5/+1 +1 +1 +1 -1 -1 -1 -1
7/+1 -1 +1 -1 +1 -1 +1 -1
2/+41 -1 -1 +1 +1 -1 -1 +1
6/+1 +1 -1 -1 -1 -1 +1 +1

10(+1 -1 -1 +1 -1 +1 +1 -1

4(+1 +1 -1 -1 +1 +1 -1 -1

To understand how one can compile such a table, see below the characterization of isotropic ternary forms over

Q.

One could start with defining the Hilbert symbol as a function on @,/ (@;)2 given by such tables and prove all
its properties by routine verifications. However, it would not be very instructive.

Product formula

Fix @, f € Q™. Observe that (a, ), = 1 for all but finitely many p because if p is odd and a, § € Z3, then (a, §),, = 1.
So the product ]'[p(a, Blpis well-defined.

Theorem 10.4 (Product formula).

1—[ (a;ﬁ)p =1

2=p=oco

In other words, (a, B), = —1 for even number of p’s.

Example 10.5. Consider (5,14),. One has
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(6,14)2 =1,
(6,14)3 =(2,2)3-(2,73-3,2)3- (3,73 =1-1-(-1)-1=—-1,

(6’14)5 = 1,
(6,14)7=(2,2)7-2,7)7-3,2)7-3,77=1-1-1-(-1) = -1,
(6) 14)11 = 1)
(6,14)00 = 1.

A

An analogue of this product formula is the product formula for valuations on a global field K (generalizing
theorem 4.14); see p. 61.
First we derive a corollary from theorem 10.4:

Corollary 10.6. Let ¢ be a ternary quadratic form over Q. Then the set

{p | ¢ is anisotropic over Qp}

is finite and has even cardinality.

Proof. If ¢ is not regular, then ¢ is always isotropic.
If ¢ is regular, then it has form y (@ X? + f Y2 — Z?), and the latter is anisotropic iff (a, f), = —1. [ |

Proof of theorem 10.4. Since the Hilbert symbol (a, §),, is multiplicative in both variables, we may consider only
the following cases:

a=-1,p=-1,
a=-1,=2,

a=-1, f=qanodd prime,

a=2,6=2,
a=2,06=q,
a=q,p=q

a=gq,B=q withg+q'.

Since (&, @)y = (@, —1)p, the cases (2,2), and (g, q) , reduce to the other ones.

1.

Leta=-1, f=—1. For 2 < p <oo we have (=1,-1)p = 1. For p=ocowe have (—1,-1)go = —1.

Finally, to compute (—1,—-1),, observe that the quadratic form —X2-Y2-72is anisotropic over Q2. Indeed, if
itis isotropic, then we have a nonzero triple x, y, z € Z, such that X2+ y2 +z2=0. We may assume gcd(x, y, z) =
1, so, say, x and y are odd and z is even. But now x? + y? + z> =2 (mod 4), which is a contradiction.

H (-1,-1Dp=(-1,-De-(-1,-1)2=1.

2<p=<oo

Now let us make a little deviation to see when in general quadratic forms over @, are isotropic. We just seen
that X2 + Y2 + Z? is anisotropic over Q,, which shows that the first assertion of proposition 9.1 is wrong for

p=2.

Let ¢ = aX? + BY? +yZ? be a quadratic form. We may assume v» (a), v2(B), v2(y) € {0,1}. We have two cases:
eithera,B,y€ Z5 ora,feZ;,ye2Z;.
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e If @, B,y are all units, then assume there is (x, y, 2) € Z3, (x,y,2) # 0 such that ax® + y* + yz* = 0. Two
of x, y, z are odd and one is even, e.g. x and y are odd and z is even. Then a + =0 (mod 4). Similarly
for the other combinations x, z and y, z, we get

a+pf=0 (mod 4)
or

¢ isotropic <= { a+y=0 (mod 4)
or

B+y=0 (mod4)

We would like to show the opposite implication “«<”. Assume, say, « + f = 0 (mod 4). Then either
a+pf=0 (mod 8) ora+ =4 (mod 8).

Ifa+ =0 (mod 8), take xo =1, yo = 1,290 = 0. We have ¢(xo, yo,2p) =0 (mod 8) and gb’X(xo,yo,zo) 0
(mod 4). So the Hensel’s lemma (theorem 6.7) provides us the desired (x, y, z), and ¢ is isotropic.
Ifa+ B =4 (mod 8), then similarly we can take xo =1, y9 = 1,29 = 2.

* Suppose a and f§ are units and y € 2Z; . By an argument similar to the one above we can show that

a+f=0 (mod 8)
¢ isotropic <= or
a+f+y=0 (mod 8)
2. Leta=-1,8=2.

We compute (—1,2)o = 1 and (-1,2),, = 1 for 2 < p < oo since —X? +2Y? — Z? is isotropic (has units as its
coefficients). On the other hand, —X? +2Y? — Z? is also isotropic over Q. So (-1,2), = 1 for each prime p,
and the product formula holds.

3. Leta=-1, f =g an odd prime.

The form - X? + gY? - Z? is isotropic for 2 < p <coand p # ¢, so (-1,¢) , = 1. For p = g the form is isotropic

iff X? + Z? is isotropic modulo g, which happens whenever —1 is a square modulo 4. So (-1, qq= (‘71)

Over R the form —X? + qu —7%is isotropic, and over Q; it is isotropic iff g =1 (mod 4), so (-1, 9)2 = (_71)
Finally we have

(2} )

The case a =2, f = q can be checked similarly.

4. Leta=gq,B=q withg#q'.

Consider the form g X? + q' Y2 — Z2. It is isotropic over R, and it is also isotropic over @, whenever p # g, q'
and2 < p <oo.

Now, as we seen above, g X> + q' Y2 — Z? is isotropic over Q iff

Gg+q'=0 (mod4) or g—1=0 (mod4) or g'-1=0 (mod 4).

The first congruence is not the case for g and g’ being distinct primes; so g X? + g’ Y? — Z? is isotropic over
Qy iff g or ¢’ is 1 modulo 4, giving

g-1 q'-1

q,q)2=(-1)"z 7.
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Further, g X + q' Y? - Z? is isotropic over Qg if ' Y? — Z? is isotropic over F, so

q q
(qu’)q:(;)) (q)ql)q/:(a).
Finally the product formula becomes

M @d)=n= "= (%).(i).

2=p=<oo

The latter expression is 1 by the quadratic reciprocity law.
]

The most interesting case in the proof above is of (g, g'), with g # ¢', and we see that the product formula for
the Hilbert symbol is equivalent in a certain sense to the quadratic reciprocity law.

11 Hasse invariant

Let ¢ be a regular quadratic form over Q,. We know two of its invariants: the dimension dim¢ (the number of
variables) and the discriminant §(¢) € Q,,/(Q ;)2. We are going to define the third invariant of ¢.
Write ¢ in a diagonal form

(p:a1X12+a2X22+---+anX,21.

Define the Hasse invariant of ¢ to be

cp)i= J] (aiajpp.

l<i<js<n

We claim that it is indeed an invariant:
Theorem 11.1. c(¢) does not depend on diagonalization of ¢.
Further, the Hasse invariant reflects the property of a quadratic form to be isotropic.
Theorem 11.2. Let p be a finite prime (possibly 2). Let ¢ be a regular quadratic form over Qp in n variables.
1. Ifn=2, then ¢ is isotropic iff 6 (p) = —1 in Q;/(@;)z, i.e. whenever —4(¢) is a square.
2. If n=3, then ¢ is isotropic iff c(¢p) = (=1,-6(P)) p.
3. Ifn=4, then ¢ is anisotropic iff c(¢p) = (-1,-1), and 6(¢p) € (@;)2, i.e. is a square.
4. Ifn=5, then ¢ is always isotropic.

Finally, we will not prove it in these notes, but it is true that dim¢, 6 (¢p), and c(¢p) together give a full system of
invariants for quadratic forms over Q, with p being a finite prime.

Lemma 11.3. Let ¢ be a regular binary form. Then ¢ is isotropic iff§(p) = —1 in K/ (K*)?.

Proof. We may consider ¢ = a X + $Y2. Then 6(¢p) = a B. Now ¢ is isotropic iff a ¢ is isotropic, and a ¢ is equiva-
lent to X? + &§(¢p) Y2. The latter is isotropic iff —&(¢p) is a square. [ |

Lemma 11.4. Let ¢ be a binary form over Q. Then there exists € = €(¢) € {+1} such that

B €Q,, is represented by p <= (B,-0())p =e.
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Proof. We may assume that¢ = a; X12 +ay X22 is in diagonal form. Now f is represented by ¢ iff ¢p— fY? is isotropic,
which is the same as % Xl2 + % XZ2 — Y2 being isotropic. We compute the corresponding Hilbert symbol:

(5-5),~een{mg) (5) (53]
ﬁyﬁp L&2)p l’ﬁpﬁ,zp ﬁyﬁp-
Since (8,7)p - (1/8,7)p = (1,7)p = 1, we can replace 1/ with S

(061 as

B’ ?)p = (a1, a2)p- (al»ﬁ)p'(ﬁ’ “2)p'(ﬁ’ﬁ)p'

Now observing that (5, ,B)p =B,-Pp-B,-Dp=(B —l)p, we get
(ﬂ %

B’ B

So we see that § is represented by ¢ iff (8, —6(P)) p = (a1, @2) p. |

) =(a1,@2)p- (B, —a1a2)p = (a1,a2)p - (B, —6(P) p.
p

* From the proof we see that (a1, a2)p is the same for any diagonalization of ¢. In particular, c(¢) is well-
defined for binary forms.

¢ The proof shows that the number ¢ in the lemma is actually c(¢).

Now we are ready to prove theorem 11.1. We have to show that if two forms f:= a; X2 +-++a, X2 and g := 1 X? +
-+++ B, X2 are equivalent, then

[T@iap,=11Bib)p-

i<j i<j

We may assume that a; = §; for all i, with at most two exceptions (cf. proposition 8.22):

f=a1X12+a2X22+a3X§+---+anX,2,,

g=P1 X+ B Xe+az X+ +a, X2

By Witt's lemma (theorem 8.24), if f ~ g, then a; X12+a2 Xg‘ ~ b1 X12+ﬁ2 X2, and so from the proof of lemma 11.4
we know that (a1, @2)p = (1, B2) p. Moreover, a) a2 = 1 f2 modulo squares (@;)2.

[T@iap,=6B162p [[(@az,ap)p [ (@iap)p=BuB2p [1B1B26)p [1 BiB)p=11BiB)p-
j=3

i<j Jj=3 3<i<jsn 3<i<jsn i<j
]

So the Hasse invariant is indeed an invariant of a quadratic form.

Lemma 11.5. Let f(X) = f(Xy,...,X;y) and g(Y) = g(Y1,...,Yy) be two quadratic forms. Then for their sum f(X) +
g(Y) (as a quadratic formin Xy,...,Xm, Y1,...,Y,) holds

dim(f+ g) =dim f +dimg,
o(f+8=06()-6(g),
c(f+g)=c(f)c(g)(6(f),6(8)p-
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Proof. Only the last assertion is not completely obvious. Suppose the forms are in diagonal form a; X12 +otam, X2,
and B, le ++--+ B, Y2. Then

cf+9= J] @iapp- [I BiBpp: [] @iBjlp=c(f)-c(@-©6(),6(8)p.
1<i<jsm l<i<jsn lléljisle

Now we go back to theorem 11.2. We assume that p is a finite prime.

1. Let ¢ be a binary regular quadratic form. ¢ is isotropic iff 6(¢p) = -1 in Qp,/ (@;)2.
We have seen this in lemma 11.3.
2. Let ¢ be a ternary regular quadratic form. ¢ is isotropic iff c(¢p) = (=1,-6(P)) .
We may assume that ¢ = a; X7 + ap X7 + a3 X°. Now it is isotropic iff % X2+ f‘—;s XZ - X2 is isotropic. The

corresponding Hilbert symbol is (& “—23) , and the Hasse invariant is
P

—113’—05

a;  ar ay a ay a2
@ =S5 2] (L) (£ ) (222 o),
e —a3z —az/p \—as p \—a3 p \~as —asjp ¢ P

v

3. Let ¢ be a quaternary regular form. ¢ is anisotropic iff c(¢p) = —(=1,-1) , and 6(¢p) € (Q);)Z.

We use the following nice trick: write ¢ = f(X;, X») — g(¥1, Y») for two binary forms f (X, X») := a; X12 +ay XZ2
and g(Y1, Y2) := B1 Y2 + B2 Y2

We want ¢ to be anisotropic, so this amounts to asking that f and g are both anisotropic, and they do not
represent simultaneously some y € Q. By the previous points, this amounts to requiring that

s —a1az ¢ (@) and —f1 52 ¢ (Q})* (lemma 11.3).
* There is no y € Q}, such that both

c(f) = (a1, a2)p = (y,—ar1a2)p, ™
c(g) = (f1,B2)p = (y,—B1B82)p- **)

are satisfied (lemma 11.4).
Since —a a2 and - B> are nonsquares, the symbols (y,—aiaz), and (y,—B162)p are not identically 1 as

functions of y. Precisely, for half of the classes of y € Q,/(Q ;)2 each symbol gives +1, and for the other half it
gives —1. Thus these halves must be disjoint for (*) and (**). This is equivalent to

araz =162 (mod (@)%,

(a1, a2)p = —(B1,B2)p.

These two conditions can be written as

5(p) = a1z f1 2 € (@),
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The second identity is derived from multiplicativity of the Hilbert symbol:

c(P) = (a1,a2)p - (= P1,—P2)p - (@102, B1B2)p
[
=(p1B2,61P2)p
=(an,a2)p- (B1,B2)p (B, —Dp-(=1,=B2)p - (B1B2, b182)p
-1
=—(=1,-B182)p - (B1B2, B1B2)p
=—(=1,61B2)p- (=1,-1)p - (B1B2, 182)p
=—(=p1B2,6182)p - (=1,-1)p = —=(=1,=1)p.

Corollary 11.6. A regular ternary form represents all classes in Q},/ (@;)2, except for perhaps one.

Proof. Let ¢(X, Xz, X3) be a ternary form. It does not represent some a € Qj; iff ¢(X;, Xz, X3) -« Y?is

anisotropic. The latter requires that 5(¢p — a Y?) = —a§(¢) is a square. So the only class in Q! (@;)2 that
is probably not represented is the inverse of —§ (¢b). |

4. Ifn=5, then a regular quadratic form ¢(Xy, ..., Xy) is always isotropic.

It is enough to consider the case n = 5. Write ¢ = f (X1, X2, X3) — g(Y1, Y2) where f(Xi, X», X3) is a ternary
form and g(Y;, Y») is a binary form. We know from the last corollary that f represents all classes modulo
squares, except for perhaps one. g =7y (le -a YZZ) represents at least half of the classes. If p < oo, then there
are at most four classes in Q,/ (@;)2, so there must be some  which is represented by both f and g.

12 Geometry of numbers

Proposition 12.1 (Blichfeld’s lemma). LetS cR" be a set of Lebesgue measure p(S) > 1. Then there exist two distinct
points x,y € S such thatx =y (mod Z").

Proof. Consider the “reduction modulo Z"”. Namely, for each point x € R” denote by |x| € Z" its integral part
(Lx1], Lx2],..., xx]). Then define a reduction map by

f:$—10,1"

x— x—lx].

Since p(S) > 1 and p([0,1)™) = 1, there exist two points X,y€ S such that f(x) = f(}_/). [ ]

e AS
W)

N W

Definition 12.2. A subset S = R” is called convex if for each two points x, y € S the interval between x and y lies in
S, that is - -

1-Hx+ tZES for all £ €[0,1].

S is symmetric if for each point x € S also —x € S.
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Theorem 12.3 (Minkowski). Let S € R" be a convex symmetric set of Lebesgue measure p(S) > 2". Then there exists
a nonzero integral point x€ SNZ".

Proof. Consider the set %S. We have

1
W(T) = 5 () > 1.

By Blichfeld’s lemma, there exist two distinct points y,z € T such that y = z (mod Z"). So y — z = x for some
x €Z"\{0}. We claim that x € S.
Since y € %S, there exists ' € S such that y = % y'. Similarly, also taking into account that S is symmetric,

-z =32 for some Z’ € S. By convexity

In the theorem above 2" cannot be improved. To see this one can just take S = (—1,1)", which has 0 as the only
integral point and p(S) =2".

If S is assumed to be closed, then a nonstrict inequality = 2" is sufficient. For this consider the sets S¢ := (1—¢€) S.
We have u(Se) = (1+¢€)" u(S) > 2". Now for each € > 0 there exists x, # 0 such that x_ € SenZ". Among such x, there
is x # 0 that belongs to all S¢, and so x € ¢>0 S¢, and the latter intersection is S, by assumed compactness.

Now we will derive some corollaries from the Minkowski theorem.

Corollary 12.4. Let Ly,..., L, be a system of linear forms onR". Let cy, ..., ¢, € Rso. Assume that |det(Ly,...,Ly)| <
C1 -+ ¢n. Then there exists a nonzero integral point x € Z" \ {0} such that |L;(x)| < ¢; fori=1,...,n.

Proof. We apply the Minkowski theorem to a convex set
S:={xeR"||Li(x)|<¢;, 1<i<n}
The result is immediate after we compute the volume:

Cl...cn

§y=ot
) = 2 ety L)

If in the statement above we replace |L;(x)| < ¢; with |L;(x)| < ¢;, then |det(Ly,...,L,)| < ¢ --- ¢, can be also
replaced with |det(Ly,...,L,)| < ¢1---c,. In fact, it is sufficient to have only |L; (x)| < ¢; and |L;(x)| < ¢; for i =
2,..., 1.

Corollary 12.5 (Dirichlet approximation theorem). Let a € R and let Q > 0. Then there exist x,y € Z, (x,y) # (0,0),
such that|xa—y|< Q1 and |x| < Q.

Sometimes this statement is written in form

This means that one can approximate a real number with a rational fraction % with precision #

Proof of the corollary. Consider linear forms L;(x,y) = ax—y and Ly(x,y) = x. Apply the previous corollary for
—0-1 -
ci=Q "andc; =Q. ]
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One can show that there exist infinitely many rational numbers % € Q such that

1
-] <L
x! x
(Such approximations come from continuous fraction expansions.)

Proposition 12.6. Let L1,...,Ls be linear forms on Z" with coefficients in Z. Let my,...,ms € Z>¢. Let S be a sym-
metric convex set in R". Assume p(S) > 2" my --- ms. Then there existsx€ Z" N S, x # 0, such that

Li(x)=0 (mod m;) i=1,...,s. ™

Proof. Consider

N:={xeZ"| x satisfies (*)}.

It is a subgroup of Z" of index m.
We want to apply a generalized Blichfeld’s theorem (the proof goes the same way, so we omit it).

Claim. LetS < R" be a symmetric convex set. Let m € Zsq. If u(S) > m, then there exist m+ 1 pairwise distinct points

_ n
Xo""’XmESSUChmmX,- XjEZ .

We have p(%S) > m for m:= my --- mg, so in our case there are pairwise distinct points Yooor¥ o € %S such that
Y, _Xj € Z". Among them there must be a pair Yy Xj such that Y, = Zj (mod A), i.e. Y, _Zj €A. [ ]

In the proof above A is a lattice, that is a discrete subgroup of rank n in R”. A lattice has form
A={xj0, + -+ xp0, | x; €7},

where w,,...,0, € Z" are linearly independent over R.
The determinant of A is the volume of its fundamental parallelepiped. It coincides with the subgroup index
[Z": Al

x2

> T

One can formulate the Minkowski theorem for arbitrary lattices.

Proposition 12.7 (Minkowski revised). Let S be a symmetric convex set in R" and let A c R" be a lattice. If u(S) >
2" detA, then SN A has a nonzero point.

(This easily reduces to the usual case A = Z" by a variable change.)
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13 Proof of the Hasse-Minkowski theorem

With the developed tools we can finally prove the Hasse-Minkowski theorem. It can be reformulated as follows in
our new language. Let ¢(X) be a quadratic form over Q. Then

¢ is isotropic over Q <= ¢ is isotropic over Q,, for2 < p < oo.
Let n denote the dimension (the number of variables Xj,..., X},).
For n =1 there is nothing to prove—the form is not isotropic. |

For n = 2, replacing ¢ with a¢ for some a € Q*, we may assume ¢(X,Y) = X2 —aY?. Now X? —aY? is isotropic
over K iff a is a square in K. So we have to show

ae (@) = ac(@))for2<p=oo.

In one direction this is obvious. In the other direction, suppose a € (@;)2 for every prime p. Write a = e[ p"»¥
fore = +1. Since a € (R*)?, we have € = +1. Now since a € (@;)2 for finite p, each v, (a) is even. Thusa € (@*). W

Ternary forms case

Things become really interesting starting from n = 3. The study of this particular case (but of course not our proof
with quadratic forms and geometry of numbers) can be attributed to Legendre.
We may assume that the quadratic form is regular and has form

G(X1, X2, X3) = ay X2 + ap X3 + a3 X3

with a; € Z, a; # 0, and a; a; a3 square-free (if p? | a; for some prime p, this can be ruled out by a variable change
X { := pX;). We claim one can even assume that a;, ay, as € Z with ay, ay, as being pairwise coprime.
Assume p divides both a; and a,. Consider a quadratic form

al ay
pp ~ ?Xf‘+ ?X22+ pang.

. r_ I ’_ 1o 1y layap ag|
Now the coefficients are a; = a1/p, a, = a»/p, a; = pas. We have |a; a, a;| = ===

steps like that we obtain (a;,a;) = 1fori # j.

, so after finitely many

It is clear that if ¢ is isotropic over Q, then it is isotropic over Q,. We want to show the opposite implication.
Assume ¢ is isotropic over Q,, for all p.

We look what does it mean that ¢ is isotropic over Q, with p < oo? If p # 2 and all a; are units, thatis p { a1 az as,
then ¢ is automatically isotropic over Q,, (proposition 9.1). We look at what happens when p | a1 a; az or p = 2.

Suppose p > 2 and p | a; az as. We may assume that p | az. The form ¢ is isotropic if there exist x1, X2, x3 € Qp,
(x1, X2, x3) # (0,0,0), such that a; x% +ap x% + as x% = 0. We can clearly assume that one of x;’s is a unit. Actually,
it must be the case that at least two x;’s are units, so that at least one of v, (x1) and v, (x) is zero. If not, then
vp(x1) 2 1, vp(x2) 2 1, vp(x3) =0, and

2 2 2
vplarxi+azx;) =2, vplazxz) =1,
e 2 2y 2
contradicting vplay x7 + az x3) = vp(as x3).
Now reducing modulo p, we get from our assumptions that alez + a2X22 is isotropic over Fp, and so a; (Xl2 -

b X?) is isotropic for b:= ay a; !, meaning that b = ¢? is a square. So we get

dp=ay(XP-bX?) =L1(X1,X2) - La(X1,X2) (mod p), Ly:=a;(X;—cXy), Lp:=X; +cXo.
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Thus far we have deduced the following: if ¢ is isotropic over Q, for p | a1 az as, p > 2, then there exist linear
forms L?, L(zp) € Z[X] such that ¢ = L(lp) .L(ZP) (mod p). (These forms depend on p, as we have seen above.)

Next we analyze the case p =2 (see p. 28). If 2 { a; a, a3, then
¢ is isotropic over Q2 <= a;+a; =0 (mod 4) for some i # j.
If2| ay ay as, e.g. 2| as, then

a+a=0 (mod 8)
¢ is isotropic over Q, < or
a;+ax+az3=0 (mod 8)

» For every odd prime p | a; ap az we consider congruences

L(lp) (X)=0 (mod p) or L;p) (X)=0 (mod p).

e If2¢ ay ap as and, say, a; + a, =0 (mod 4), consider congruences

Xl = X2 (mod 2), X3 =0 (mod 2).

e If2| ay ay a3, e.g. 2| as, consider congruences

X; =X, (mod 4),

Yoz 0 (mod 2), ifa;+a,=0 (mod 8),
371 X, (mod?2), ifa;+ar+az;=0 (mod 8).

Totally we have a linear congruence modulo p for each odd p | a; az as. For p =2 and 2 1 a; a, as we have two
congruences modulo 2; for p =2 and 2 | a; a» as we have one congruence modulo 4 and two congruences modulo
2. In any case, the product of moduli is

22, ifz)(alagag, _
( l_[ p){ 2-4, if2|6l1d2613. —4|d1d2d3|.

play az as

If p is odd, then the congruence Lg.p) (X) =0 (mod p) implies ¢(X) =0 (mod p).
If a3 +a; =0 (mod 4) and X; = X, (mod 2), X3 =0 (mod 2), then

GX)=a; X2 +aX5=0 (mod 4)

Similarly, if 2 | a; a» as, then the congruences give ¢(X) =0 (mod 8).
So our congruences mean that

d(X)=0 (mod p) forp>2, plaaas,
¢(X)=0 (mod4) for2ta;apas,
¢(X)=0 (mod8) for2|a;a;as,

which implies ¢(X) = 0 (mod 4 - |a; a2 azl). However, we gave this condition by linear congruences, and not
quadratic. This means that we can apply corollary 12.4.
Consider a convex set
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S:={xeR| Iall-xf+|a2|-x§+|a3| 'x§ <4-|\ay ay asl}.
It is an ellipsoid, having volume
n(VETmazas)® 4

u(s) = 8-—7r-|a1a2a3|>23- 4-|lay ap asl
[ —

T V@l Viwl a3

m in corollary 12.4

So S should have an integral point satisfying all the congruences. There is x such that ¢(x) = 0 (mod 4 -
la; az az|). But since x € S, that implies ¢(x) = 0, and ¢ is isotropic over Q. u

Observe that in our argument we actually did not use the condition that ¢ is isotropic over Q. = R. There is no
contradiction because, as we saw in corollary 10.6, there is always an even number of p’s such that a given ternary
quadratic form is anisotropic over Q. So disregarding one prime (in our proof p = co) does not affect the result.

Corollary 13.1. Let f be a regular binary form. Let a € Q™. Then f represents a over Q iff f represents a over Q, for
all primes2 < p < co.

Proof. Consider a ternary form f(X,Y) — a Z2. It is isotropic iff f represents a. |

Quaternary forms case
We will need the following famous result about primes in arithmetic progressions:

Theorem 13.2 (Dirichlet). Let m € Z be a nonzero integer and let a € Z be such that (m,a) = 1. Then there are
infinitely many primes q such that g = a (mod m)

For a proof see any textbook in analytic number theory.

Example 13.3. There are infinitely many primes g such that g =1 (mod 3), or g =3 (mod 4), etc. A

We proceed with the Hasse-Minkowski theorem for quaternary quadratic forms. Consider a quadratic form
f=a Xl2 +ay X22 + a3 X§ +ay Xf with a; € Q. We want to show that if f is isotropic over @, for all 2 < p < oo, then
f isisotropic over Q.

We may assume that a; € Z are squarefree integers. Since f is isotropic over R, the coefficients are not of
the same sign. We may assume a; > 0 and a4 < 0. Write the quadratic form as f = g(X, X») — h(X3, X4), where
g:= a1 X7 +ap X5 and h:= —as X5 — as X;. Consider the set of prime divisors of a;, together with 2 (which is always
a “bad prime” to be treated separately):

S:={plplaaasas}ui2}.

Now if for p € S the form f is isotropic over Q,, then there exists some by, € Q;, represented by both g and h
(proposition 8.21). We may assume v (by) =0 or 1.
Now there exists b € Z such that

b=b, (modp*) forpeS,p+2,
b=b, (mod 16).

So bb;,1 =1 (mod p)forpe S, p#2and bb, =1 (mod 8). Now bby € (@;)2, so b itself is represented by g and
hover Qp, p€S.

We may assume b > 0. Then b is represented by g and & over R (because a; >0, —ay > 0).

Assume ¢ is an odd prime such that g ¢ S, g 1 b. Then b is represented by g and by & over Q,4, because the
coefficients of g(X1, X») —bY?, h(X3,X,;) — b Y? are g-adic units.

Whatif g ¢ S and q | b? We claim that there is at most one such prime.
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Claim. b satisfying the congruences b = b, (mod p?) and b = b, (mod 16) above can be chosen to have at most one
prime divisor q ¢ S.

Assuming this claim, we have that b is represented over Q, for all primes 2 < p < oo by both g and h, except for
perhaps one prime. This means that b is represented over Q, and so f = g — h is isotropic over Q.
It remains to show the claim above.

Proof. Consider the set

S':={peS| plbp}.

Then we have

b= ( I1 P)'b', (b',p)=1forallpeS.
Consider an integer

16T pes p*
Hpes'l? ‘

Now the congruences above are equivalent to b’ = ¢ (mod m) for some c € Z, where (¢, m) = 1. By Dirichlet’s
theorem, we can take a prime b’ = g. |

Forms of dimension = 5

Consider a quadratic form in five variables f = a; X‘f‘ +--4as Xg with a; € Z, which is isotropic over Q,, for all p.
We can assume that a; are square-free, and, say, a; > 0 and as < 0 (since the form is isotropic over R).
We have f = g(X1, Xz) — h(X3, X4, X5) for g := a1 X? + ap X5 and h:= —az X2 — as X; — as X2. Consider the set

S:={p | plaiayasasas}u{2}.

There exists b € Z, b # 0, represented by both g and h over Q, for all p € S, p b and also for p = co. Again, by
Dirichlet’s theorem, we may assume that b has at most one prime divisor g ¢ S.

Since q 1 as a4 as, we have that h is isotropic over Qg4, and g represents b over Q.

Now b is represented over Q, by both g and £ for all primes 2 < p < oo, so b is represented over Q by both g
and &, meaning that f = g — h is isotropic over Q. |

For n > 5 one proceeds by induction. Consider a form f = a; X12 +++-+ay X2. Assume it is isotropic over
Qp for all 2 < p < co. In particular, it is isotropic over R, hence we can consider f = g+ h, where g is a form
in 5 variables isotropic over R (we choose g such that not all its coefficients have the same sign). By the Hasse—
Minkowski principle for n = 5 we have that g is isotropic over @, and we are done by induction. |
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Part II
Intermezzo: more on absolute values

14 Extensions of complete fields

Let K be a field complete with respect to an absolute value | - |. Let L be a finite extension of K. Then
e jtis possible to extend |- | to L,
¢ such extension is unique,
» [ will be also complete with respect to the extended absolute value.

The extension of an absolute value | - | to L is given by

L_)REO)
a— Ny (@)™

Here Nj/k is the norm map of the extension L/K and n = [L: K] is the extension degree.
As a corollary, an absolute value extends uniquely to the algebraic closure K, but one should be careful because
it is not complete anymore. One can take completion of K, and it will be an algebraically closed field.

Theorem 14.1. Completion of an algebraically closed field is algebraically closed.

For archimedian fields the situation is simple, because of the following result, named after Israel Gelfand and
Stanistaw Mazur.

Theorem 14.2 (Gelfand-Mazur). The only archimedian complete fields areR and C.
So we will focus on the nonarchimedian complete fields.

Example 14.3. There are two principally different situations.

The “equal characteristic case” means that Fx and K have the same characteristic. The basic example is K =
F(TY), Ok =FIT], Fx = F.

The “distinct characteristic case” means that Fx has characteristic > 0 and K has characteristic 0. The basic
example of this is K = Qp, Ox = Zp, Fx =Fp. A

We fix the following notation:

¢ Kis anonarchimedian complete field with respect to an absolute value |- |.
¢ Ogx:={aeK||al<1}isthelocal ring of K.

o Jx:={a e K| |a| <1} isthe maximal ideal in Ok.

o Fg := Ok/lIg is the residue field of K.

e T'x:={la| | @ € K*}is a multiplicative subgroup of R~ .

An important case is that of discrete absolute values, when I' is a discrete subgroup, as it happens for @, and
F((T)). In this case it is convenient to consider not the absolute value |- |, but the corresponding discrete valuation
v(+). In such situation we pass from a multiplicative group to an additive group that normalizes to be Z.

Let K be a complete field and let L/ K be a finite extension. We have
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I ]

Ix—— Ox — Fx

Ix = O nlj.
The image of Ox under the quotient map O, — F is the residue field Fg.
Proposition 14.4. F;/Fx is a finite field extension and [Fy, : Fx] < [L: K].

Proof. Letay,...,a, € Fy be linearly independent over Fx. We claim that the lifts a;,...,a, € O are linearly inde-
pendent over K.

Assume Aya; +---+ Ay, =0 for some A4,...,1, € K and (A4,...,1,) # (0,...,0). We may assume (multiplying
the identity by some number) that |1;| < 1 and for some i we have |1;| = 1. Then A; € Or and in Fx holds %161 +
+Zna,, =0 for (11, . ,Zn) #(0,...,0). Contradiction. [ ]

For an extension L/K the group I'k is a subgroup of I';.
Proposition 14.5. [I';:T'x] <[L:K].

Proof. Consider ay,...,a, € L* such that |a;],...,|a,| represent pairwise distinct cosets of I'; /T'x. We claim that
ay,...,a, are linearly independent over K.

Assume for the sake of contradiction that Ay @y +---+ A, @, = 0 for some (14,...,1,) # (0,...,0). We may assume
that A4,...,1, # 0 (by throwing away zero terms). Now each |1; a;| belongs to the same coset in I';,/T'k as |a;|, so
all |A; a;| represent pairwise distinct cosets. Hence Ay a; +::-+ A, @, # 0, since in the nonarchimedian setting
a + -+ a, = 0 implies |a;| = |a;| for some i # j. Contradiction. [ ]

Definition 14.6. Let L/K be a finite extension of complete local fields.
The number f;,x := [Fr : Fx] is called the residue field degree of the extension.
The number ey g := [I' : '] is called the ramification index.

In case of discrete absolute values the group I'k is discrete. We have I'x = {|mk|) where g is the primitive
element generating the maximal ideal Ix < Ok.

Example 14.7. For Q, we have 7 = p. For F((T)) we have 7 = T. A

Every a € K can be uniquely written as 7" for some unit € Og. Then we can define a valuation v, (a) := m
and the corresponding absolute value || := |7|™¥*¥_ This is essentially what we did in § 1 for p-adic integers; the
same works for an arbitrary discrete valuation ring.

The ramification index is e;;x = [|7|Z : |mk| Z]. We have |7'[L|[ =|ngland g = n{n forne Oz.

We have seen that ey g < [L: K] and f7/x < [L: K]. In fact, a stronger fact holds
Proposition 14.8. ey k- fr/x < [L:K].

In the most interesting cases er/x - fr/x = [L : K], e.g. in the case when Fj/Fk is a separable extension (for
instance, when Ff is a perfect field).

Proof. Let ay,...,a, be such that |a,],...,|a.| represent all residue classes of I';/T'x. Let Bl,...,ﬁf € O/l be a
basis of F./ Fx and ..., By are some lifts to Of.
We have ef elements a;; and we claim they are linearly independent over K. Assume it is not the case and

> AijaiBj=0
I<i<e
1<j<f
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for some A;}, not all equal to 0.
Consider the absolute values |1;; a; §;]. Let (i1, j1) be the index such that 6 := |A;,;, a;, B, | is maximal among
all. Consider all other indices giving the same value:

S:={, ) I Aijaipjl =6}

Now since ; € OZ, we have || =1, and for all (i, j) € S the values |A;; «;| are equal. In particular, they belong
to the same class I'; /T'x, meaning that all i’s are the same.

We may assume that [A;, j| < 1forall j and [A; ;| =1 for some j.

We have |A’i1:j aj ﬁ]| = |/1i1,j| Jagl.

Z /lil,jﬁj <l1.

(i, ))es

So reducing ¥ (;;, jes Ai;,j B modulo I, we get
Z Ai, j ﬂj =0,
(i1, ))eS

where notall A;, ; are 0. Contradiction. u

15 Discrete absolute values case

Let K be complete with respect to a discrete absolute value | - |. We claim that in this case ey /g - fr/x = [L: K].

Lemma 15.1. Let R be a principal ideal domain. Let M be a free R-module. Then every R-submodule of M is also
free.

(If M is finitely generated, this follows from the structure of finitely generated modules over a PID. For the infinite
version see Lang, Algebra, Appendix 2, §2, p. 880.)

Lemma 15.2. Let L/ K be an extension of discrete complete local fields. Then Oy, is a free Ox-module of rank [L: K].

Proof. Since | -| is discrete, every ideal of O is generated by 7}’ for m = 0,1,2,... In particular, O is a principal
ideal domain, and we are going to use this fact.
Letay,...,a, be a K-basis of L. We may assume that these elements lie in Or. Consider the Ox-module

M:=0Oga; @& Oxay.

It is an Og-submodule of Oy.
Foranelementa =A; a; +---+ 1, a, € O the coefficients A; € K are given by the linear system of equations

trpr(a;a) =) trypla;aj);.
J

Now try/g(a;a) € OpNK = Ok, so dA; € Ok, where d = det[tr; /x(a; a )] € Ok is the determinant of the linear

system.
We have d O; <€ M. Now M is a free Og-module, and so d Oy, (since Ok is a principal ideal domain!) and Oy. We
must conclude that O; = M is a free Og-module of rank n = [L: K]. [ ]

Remark 15.3. Observe that we used above just that Ok is a principal ideal domain. If K and L are number fields,
then Oy is also a free Og-module of rank [L: K], but Ox may not be a PID.

Lemma 15.4. Op/nx Oy is a[L: K]-dimensional vector space over F.

Proof. We have an isomorphism of Ox-modules O = Of, hence Op/nx O = (Ox/mx Ox)" = F{. [ ]
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Fp:= Or/Ipisan f1,x-dimensional Fx-vector space by the definition of the residue field degree f;,x. Moreover,
the following is true:

Lemma 15.5. For each m the quotient Ii”/[f“rl =n OL/nZ“rl Oy is an f1x-dimensional Fx -vector space isomor-
phic to Fr.

Proof. Consider a homomorphism of Og-modules

m
”L OL
OL ”m+lo
L L
x—nx

This is a surjection and the kernel is 7 Or, hence the isomorphism

Or, an Or
Fp = = T
1 0L 7[21+ Oy,
]
Example 15.6. For p-adic integers we have an isomorphism of [F,-vector spaces
p"Zp Zp
pm+l Zp - p Zp .
A

Theorem 15.7. Let L/ K be an extension of discrete complete local fields. Then er k- fr;x = [L: K].

Proof. OplngOp = FI’(’ where n:=[L: K], as an Fx-vector space.
We have nz = g by definition of e = ey x. Consider a filtration

HKOLZHEOLE?’[E_IOLE"'EHLOLEOL.

Each quotient 7" Op/ nz"“ Op is an f-dimensional Fx-vector space, so we have a tower of such vector spaces

Op/ngOp = Op/n¢ 0y =+ 2 Op/mOp = {0}.
There are e vector spaces in this tower, and on each step the dimension increases by f, so
dimFK OL/JIKOL = ef.
]

Moreover, from the proof we see that if(;l, ... ,Ef is a basis of Fy/Fk, then for some lifts 01,..., Hf to Oy, a basis
of Or as an Og-module is

91'7!}‘, lsi<fux,0<j<epx-—1.

Remark 15.8. For local fields there is only one prime 7mx € Ox and one prime 7, € Oy, so that the factorization into
prime ideals in Oy comes down to

JZKOL = (71'2).

But for example, if L and K are number fields, then there are many prime ideals p < Ok, and for each one we
can consider the unique factorization

pOL =P B *)
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into prime ideals 3; c Or. We define for each 3; the residue field degree to be f; := [Or/P; : Ox/p].
Recall that the norm N(a) of an ideal a € Oy is defined to be the ideal N(a) € Og generated by Nk, (x) for all
X€a.

¢ For a prime ideal ¥; < Or one has N(;) = pfi, where p = Ok N'B; and f; :=[Op/B; : Ox /vl as above.
¢ The norm is multiplicative: N(UAB) = N() - N(B).
From this we see that taking norms in (*) leads to

pllKl = perfi L pesfs,

Hence the identity similar to the one from theorem 15.7 has form
Y eifi=IL:K].
i

Essentially the same formula will appear below in theorem 17.3.

16 Unramified and totally ramified extensions

In this section to simplify things we assume that the fields are complete with respect to a discrete valuation. In this
case [L . K] = eL/K-fL/K.

Definition 16.1. Let L/K be a finite extension of complete fields.

e L/K isunramifiedife;,;x =1, and so [L: K] = fy/k.
e L/K is totally ramified if f;,x =1, and so [L: K] = ey k.
e L/K is tamely ramified if char Fx does not divide ey k. Otherwise we say that L/K is wild.

Proposition 16.2. Assume F1/Fx is a separable extension. Given L/K as above, there exists an intermediate field
K c Ly c L such that Ly/ K is unramified and L/ Ly is totally ramified. (This Ly is actually unique.)

Proof. Since F;/Fg is separable, we have Fj = FK(E) for some 6 € Fr. Let p(T) € Fx[T] be the minimal (monic)
polynomial of 6 over Fk. Let p(T) € Ox[T] be a monic lifting of . The degree of p is fi,k, and it is irreducible over
K.

Let Oy € O be a lifting off ¢ Fr. We have p(6y) =0 (mod I1) and p'(6g) #0 (mod Ir) (because p is separable,
ﬁ’ (8) #0). Now apply the Hensel’s lemma that says that there exists 8 € Or, such that p(f) =0and 6 = 0 (mod Ip).

Take Lo := K(8). We have F,, = Ff and so fi,/x = f1/k. As for the ramification index, [Ly : K] = degp = f1/k, so
ery/k = 1.

frir, =1, 50 L/ Ly is totally ramified. [ ]

Using the Hensel’s lemma in the same way as above, we get the following characterization of unramified exten-
sions, assuming Fk is a perfect field.

Theorem 16.3. Let K be a complete local field. Assume its residue field Fx is perfect. There is 1-1 correspondence
between finite extensions F1 | Fx and finite unramified extensions L/ K.

Ox—— 0O

|

Fx——F;,
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Proof. Assume we have an unramified extension L/K. Then we have F; := Op/(ng) and Fk := Ok/(7wk) and an
extension Fy/Fk.

In the other direction, assume we have an extension Fy/Fx. Since Fx is perfect by the assumption, F; = Fg @)
for some 6 € F;. Let p(X) € Fx[X] be the minimal polynomial of 6. Consider a lift p(X) € Og[X]. It must be
irreducible since P is irreducible. By Hensel’s lemma, there exist a unique 6 € Oy such that p(@) =0 and 6 = 6
(mod mg). Now take L:= K(0). We have [L: K] =degp =degp = [FL: Fx], so L/K is unramified. |

Example 16.4. The field of p-adic numbers Q, has [, as its residue field. By the theorem above, unramified
extensions of Q, correspond to finite extensions of F,. But the latter field has exactly one extension [, /F, for
each degree n, thus there is a unique unramified extension L;/Q, of any given degree n.

Itis L, = Qp(pn-1), obtained by adjoining (p" — 1)-roots of unity. It is a cyclic Galois extension and its Galois
group Gal(Ly,/Qp) is generated by the Frobenius automorphism ¢, which induces the usual Frobenius on Fn /Fp:

Pn(x) = *”"  (mod p) forallxe Oy,.
A

Example 16.5. Let F be a perfect field. Unramified extensions of F((T)) are isomorphic to F((T)) where F is an
extension of F. A

Theorem 16.6. Let L/ K be a totally ramified extension of a discrete complete local field. Then e = er;x = [L: K], and
there exists an Eisenstein polynomial

p(T) = Te+ae_1Te—1 +--+a1T+ag, wherevy (ap) =1, vy (a;))=1fori=1,...,e—1,

such that L is generated by a root of p(T).

(08)]

Proof. Wehave L = K(7;). Let L be a finite Galois extension of K containing L. Let 7 L

of m; over K.

., ¥ € Lbe the conjugates

Claim. Ifa,f eK are conjugate over K, then |a| = |B.

Indeed, let L be a finite Galois extension of K containing a and B. Then there exists an automorphism

o:L—1,
a— B,
fixing K (thatis, o|g = id). Since |- | extends uniquely to L, this o0 must preserve the absolute value.
So In(Li)I = |mr|. Take p(T) to be the minimal monic polynomial of 7;/K. We have q( = in(Ll)u-n(Le), S0 |ag| =
|7 |¢ = |mk]|. Similarly the other a;’s are symmetric functions of n(LD, e n(Le):
_ (e, _@2 (e
ap= D"y b
- D_@ -1 D_ (@2 -2 2) (3
a; = (-1)°! (ﬂ(L)T[(L) -~-n(Le ) +7'[(L)7T(L) ---n(Le )n(Le) +"'+”(L)”(L)"'”(LE))’

ez = —(n(Ll) n(LZ) nf) + n(LD n(LZ) 7'[?) ot ﬂ(Le—z) Jr(Le_l) n(Le)),

ez =0 7P+ 7V a4 7V gD 7P 78, a,
e = —(n(Ll) +7T(LZ) +-~+n(LE)).

We have indeed v (ap) =1 and vy (a;) =1fori=1,...,e—1. [ ]
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Remark 16.7. Actually, an extension L/K of discrete complete local fields is totally ramified if and only if L = K(6)
with 6 being a root of an Eisenstein polynomial.

Proposition 16.8. Let L/ K be a totally ramified tame extension of a discrete complete local field. Then there exists a
primitive element g of K such that n = nx wheree = erx = [L: K]. (That is, ni = nk for these elements, not only
(m1)¢ = (k) for the ideals.)

Proof. For mg and 7y, we have n{ = mx 7 for some n € Oy . Since the extension is totally ramified, F;, = Fx. So there
exists 0 € Oy such that =60 (mod ;). Replacing g with 7x 0 and n with n6~', we may assume =1 (mod 7).

Claim. IfcharF; t m, then every a € O satisfyinga =1 (mod Ip) is an m-th power.

(Indeed, we can apply Hensel to the polynomial f(X) = X™ — a and ag = 1; by the assumption f’(ag) = m 0
(mod Ip,).)

The claim can be applied since L/K is tame. So 7 is an e-th root, 17 = €* for some ¢ € O/. Replacing 7y with
mre™!, we obtain ¢ = k. []

Lemma 16.9. Assume we have finite extensions of complete local fields K c L c M.

M

emiL fmiL

L |emixifmix

GNTinNg

K
Then

vk = fux: fmie
eM/K = eL/K " eM/L-
In particular, M/ K is unramified (totally ramified) iff both M/L and L/ K are unramified (totally ramified).
Proof. By definition e/ := [I'f : T'x]. We have a chain of subgroups I'x < T';, < T'py, and
(Ta:Trl=M0p:Tr]- T Tkl
Now f1,k := [Fr : Fk]. We have field extensions Fx c F, < Fy, and
(Fap: Fxl = [Far: Frl- [Fp: Fgl.
|

Lemma 16.10. Let L/K be an unramified extension and let K1 /K be a finite extension. Assume Fp | Fx is separable.
Then the compositum LK,/ K is unramified.

LK,
/ AN
Ky unram,

\
K
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Proof. Since Fr/Fk is a finite separable extension, we have F; = F () for some 0 € F;. Consider its lifting 6 € O

and its minimal polynomial p(X) € Ox[X]. Reduce this polynomial modulo 7mk: consider p(X) := p(X) mod ng €

Fx[X]. Now we have, under our assumption that [L: K] = [Fy, : Fx],
[FL:Fxl<degp=degp=I[K():K]<[L:K]=I[Fr:Fxl.

Hence L = K(0) and p(X) is the minimal polynomial of 6 over F k. Thus LK; = K7(0).

Let g(x) € Ok, [X] be the minimal polynomial of 8 over K; and let g(X) := q(X) (mod n)g € Fk,[X]. This re-
duced modulo nx polynomial g(X) is separable as a factor of p(X), and so it is irreducible over Fk,, because
otherwise g(X) would be reducible by Hensel’s lemma. Now

[FLKl :FK1] = [LKl ZKl] = degq = degﬁz [FKl (E) IKl] = [FLKl 2FK1].
So [LK; : K1) = [Fik, : Fr, . [ ]

From these lemmas we have the following:

Proposition 16.11. Let L,/K and L,/ K be two unramified extensions. Then their compositum Ly L, is unramified
as well.

L Lz

unram.

unram

Proof. Indeed, the extension L; Ly/L; is unramified as well by lemma 16.10, and so L; L,/K is unramified by
lemma 16.9. [ |

So there exists a unique maximal unramified extension K" of a field, given by the compositum of all finite
unramified subextensions of K%8/K.

Similarly, if L/ K is a finite extension, then, taking the compositum of all its unramified subextensions, we obtain
the maximal unramified subextension Ly/K.

Example 16.12. Let K = F((T)) where F is a perfect field. Then the maximal unramified extension K™ is smaller
than F28((T)): it is given by series whose coefficients lie in a finite extension of F:

K" = (x(T) = Y a, T" € FU((T) | [F(ap, a,...) : F] < oo}

n=0

This is not a complete field: it is easy to give a Cauchy sequence (x,(T)) not converging to an element of K"™;
e.g. one can take

xa(T):= Y. VikT*

O<k<n

If we consider the completion of K", then we obtain F alg (7). A

Example 16.13. The maximal unramified extension of @, is obtained by adjoining all roots of unity ¢, of order n
prime to p (see example 16.4 above; note that (p, n) = 1 implies p?" —1=0 (mod n)). A
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17 Absolute values on incomplete fields

We have mentioned before (p. 40) that for an extension of complete fields L/K an absolute value on K uniquely
extends to L. Now we drop the assumption that K is complete. Suppose it is a field with an absolute value |- |, and
L/K is a finite extension. How | - |, extends to L?

For an absolute value ||, let K;, be the completion of K with respect to |-|, and let K, be an algebraic closure of
this completion. Now |- |, extends uniquely on Kj,, and then on K,. Denote | - |7 the corresponding absolute value
on K_U (but be careful: E is not complete with respect to | - |3).

Now for a finite extension L/ K we can choose an embedding o : L — K, and using this define an absolute value

onlL:
[X|w = lo(X)]5.

One can consider the completion L,, of L with respect to w. There is a (continuous) embedding o: L,, — K,
induced by o

Lw - K_Ur

[iLnxn w.rt. ||y — l(iﬂla(xn) W.L.L |- |5

Extending an absolute value | -|,, to L corresponds to choosing an embedding L — K,, because of the following
commutative diagram:

I o Lwi> K,

L7

For x € L, one must have |x|, = |o(x)|7.

Example 17.1. The main example is given by the absolute values on number fields.
Let K = Q and let L = Q(a) where «a is a root of polynomial T2 — 2. Consider the usual archimedian absolute
value | - |o, on Q. It extends uniquely to C. There are two embeddings of L in C, given by two roots of T2 —2:

O'LZIL—’C,
o1: a~—>+\/§,
[0 a'—>—\/§.

And this gives rise to two distinct absolute values
[Xlw; = 10100y X, = 102(X)|0o-
They indeed differ: for the element x = 1+ @ one has |x|,, = 1+ v2 and |x|,, = V2-1.
Now let a be a root of T? + 1. Then the embeddings are
O12: a— *i.
But 0, and o give rise to the same absolute value, because they are conjugate by the action of Gal(C/R)! A
Now let L/K be a field extension of degree n = [L: K]. Then there are n distinct embeddings

[ LQE,
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leaving K fixed.
Each o; gives rise to an extension of | - |, to L, and every extension of an absolute value is obtained this way. So
we see that there are at most n extensions of an absolute value on K. However, the last example shows that distinct

embeddings L — K, can give rise to the same absolute value.

Theorem 17.2. Letoy,...,0, be embeddings L — K, fixing K. Consider the following equivalence relation: o; ~ o i
ifthereist € Gal(K,/K,) such thatoj=Tto0;.

1<K, X%,

(\_//

gj
There is one-to-one correspondence between extensions of ||, to L and equivalence classes of embeddingso;: L —
K.

Proof. Itis clear that equivalent embeddings give rise to the same absolute values. Indeed, |0 (x)|y = |70 (x)|5 since
conjugate elements have the same absolute value.

Now consider two embeddings ¢;,0;: L — E such that |o; ()7 = |o j(-)l. We want to show that o; and o ; are
conjugate. Consider the isomorphism 7: o;(L) — (L) givenby t:=0j0 0';1. We extend this to an isomorphism
1:04(L)-Ky — 0j(L)- Ky, and then to 7: K, — K,, leaving K, fixed.

o;(L)isdensein o;(L)- K, so every element x € 0;(L) - K, can be written as a limit

x= lim o;(x;,)
am
n—o00

for some sequence (x,) which belongs to a finite subextension of L. Now since |o; (-)|7 = |0 ; ()|, the sequence

lim 0;(xp) = lim 7(0;(xp))
n—oo n—oo

converges to some element 7(x) in 0 ;(L) - K. This correspondence gives a well-defined isomorphism

1:0;(L)-Ky — 0j(L)- Ky,

X— T(X)

(we check that it does not depend on the choice of the sequence (x,)), which leaves K, fixed. This extends to an
automorphism 7 € Gal(K,/K,), and 0j =T o0;. ]

_Let L/ K be a separable extension, so L = K(a). Let f(T) be the minimal polynomial of , having roots aj, ..., an
in K. Then there are n embeddings
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o;i: L—K,,
a— ;.

Now pairwise nonequivalent embeddings correspond to roots «; that are pairwise nonconjugate over K,,. This
means that over K, the minimal polynomial factors into irreducible polynomials

F(D) = [T fs(D),

where «a; is a root of f;. So picking roots of fi(7),..., fs(T), we obtain different extensions of the absolute value
[“lwy-- | lw,. One has deg f; = [Ky (a;) : Kp).

Theorem 17.3. Let L/K be a finite separable extension and let|-|, be an absolute value on K. Let |- |y, ,...,||w, be
extensions of | -|, to L. Then

Y [Ky(a): K] =[L:K].

1<iss

Indeed,

Y [Ky(ap):K,)= ) degf;=degf.

1<is<s l<iss

So the sum of local degrees equals the global degree. This is a principle occurring in many areas of mathematics!
See the remark on p. 43 for an example in the number field case.
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Part III
Skolem-Mahler-Lech theorem

In § 19 we are going to see another interesting theorem which is proved using p-adic numbers. We will need to
work with expressions like “A™”, but in the p-adic setting, where both A and n are p-adic numbers. To make sense
of this, we can introduce exponential and logarithm and put “A”” = exp(n logA). As usual (for p = co) these can be
defined using the well-known power series, but we need some work to establish convergency and basic properties.

18 Nonarchimedian logarithm and exponential

Now let K be a complete nonarchimedian local field of characteristic 0 (we will manipulate with power series
having n or n! in denominator, so this restriction is vital). Let Fx be its residue field, having characteristic char Fx =
p>0.

We have the minimal subfield Q@ c K, and since K is complete with char Fx = p, the absolute value on K re-
stricted to Q is p-adic, thus K contains Q,. We normalize the absolute value to coincide with the standard p-adic
absolute value on Qy, i.e. [pl, = |plp = %.
In the subsequent proofs we will need an upper bound on the p-adic valuation v, (n!) of a factorial. First, it is

easy to see that
vp(nl) = {EJ + {%J + {%J 4+ (*)
p p p

This is better to demonstrate by a concrete example. Suppose we want to compute v, (10!). Then we should
count all even numbers 2,4,6,8,10, two numbers 4,8 divisible by 22, and number 8 divisible by 23, so totally
vo(10) =54+2+1=8.

Example 18.1. Let us calculate how many zeros there are at the end of the decimal expansion of 100!, which is a
huge number.

100 100
V5(100!) = \\TJ + \‘—J =24.

52
—— =
20 4
(1001) 100 N 100 N 100 N 100 . 100 N 100 97
v N=|— — —_— —_ ki | =97
2 2 22 23 24 25 26
—— Y Y= Y= Y
50 25 12 6 3 1
So we conclude that there are min{v5(100!), v, (100!)} = 24 zeros at the end. A

The sum (*) appears to be infinite, but of course it ends with zero terms, since we take |-]. Looking at the
corresponding infinite sum, we obtain a strict upper bound

n
p-1

| 1 1
vp(n) <n ;+F+~-- =

The same inequality for absolute values looks like

1
|n'|p > PZ, where Pp=p p-1,
We will need a similar bound (with non-strict inequality):

Lemma 18.2.

v (n')<n_—1
p =

Thatis, |nl|, ZpZ‘l.
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Proof. For n =2 we obviously have v2(2!) = 1 and v, (2!) = 0 for p > 2, so the lemma holds.
If p  n, then v, (n) = 0 and by induction v, (n!) = v,((n - 1)) < Z—j.

If p| nbut p2 1 n, then v, (n) = 1. Observe that

n=n-p)l-(n—-p+1)---(n-1)-n,

not divisible by p

so we get (using v, ((n — p)!) < %)
n-p n-1
vpnl)=vp((n—-p)h+1= b .

If v,(n) =2, then
n!:(n—pz)!‘(n—p2+1)---(n—1)~n.

~~

The multipliers (n — p2 +1), (n- p2 +2),..., n—1, nin the “tail” modulo p2 give 1,2,..., p2 —1, 0. One has

2

V) =vp(n-pP+(p-D+2< 2P 4y =271
PR ’ T op-1 p-1
Along the same lines, for v, (n) = k one gets
k k
- -1 n-1
vp(n!):vp((n—pk)!)ﬂn"‘l+p"‘2+---+,}9+15np_p1 +’;_1 :Z_l.

Remark 18.3. One can also show the following: if 7 has p-adic expansion ag + a; p + az p? + --- + ay. p*, then

n—(apg+---+ag)
vpnl) = ———.
p-1
Since among ay, ..., ai at least one is nonzero, this gives the bound that we just proved.

Definition 18.4. The exponential of z € K is given by the power series

exp(z) = ) Z

n
n!’
n=0 "t

For |zlp < pp this series converges, since in this case

(B 2=
Pp

Zﬂ

n!

So we consider the exponential on the disk D(0, pp) centered in 0 having radius p,. Observe that D(0, p ) is a group
under addition, since |z1| < pp, and |zz| < p), implies |z1 + z2| < pp.
The usual properties of exponential hold—because they are proved by formal manipulations with power series.
For instance,
exp(zy) -exp(zy) = exp(z; +z2) for z1, 22 € D(0, Pp).

Indeed,
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Zk Z[

k=0 =0
k
nl zy z,

n=0k+0=n nt k! ¢!

= ——— =exp(z1 + 22).

In particular, exp(—z) = exp(z) !, and we have a group homomorphism
exp: (D(0,pp),+) — K.
Lemma 18.5. Forze D(0,pp) one has | exp(z) — 1lp =lzlp.

Proof. Consider

ZVl
exp(z)—1=z+ rg'z; ™

We claim that each sum term has p-adic absolute value less than |z|,. Indeed,

| | Zn—l
~ 1y n!

n |dp n-1
S|Z|p' - <|Z|p
Pp

|
n.p

p

(where we use the bound |n!|, = p ;‘,‘1 proved above). Now taking absolute values of the left hand side and the right
hand side of (*), we are done. u

From this we see that
exp(z) =1 <= z=0 forzeD(0,pp),

so the exponential is a monomorphism (D(0, pp), +) — K *. Moreover, the inequality
lexp(z) —1lp =lzlp < pp

means that the image of exponential is in D(1, pp), and the latter is a group under multiplication: if |z; — 1|, < pp
and |z, — 1|, < pp, then |z12, — 1|, < pp and |27 = 1| < p,,.
So we can look at the exponential as a group homomorphism

exp: (D(0,pp),+) — (D(, pp),-).

Our goal is to show that this is actually an isomorphism, that is, to find the inverse to the exponential. But as
we know, the inverse is the logarithm!

Definition 18.6. For z € K the logarithm is given by the power series

1\
log(2):= Y (-1 ! E-U7

n=1

This series converges for |z — 1|, < 1. To see this, recall some analysis.
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Proposition 18.7. For a p-adic power series o &, 2" the radius of convergence is given by

L 1
"= limsu Ln’
p |an|p
1. The series converges if |zl <T.
2. The series diverges if |z|, > 1.
3. If the series converges (diverges) for some zo with |zo|, = r, then it converges (diverges) for all z with |z|, = r.

Proof. This is because one has

lzlp)"
n n p
lanz |p=|an|p'|z|p2(7 .

Example 18.8. Let’s compute the radius of convergence for the power series

z" z"
exp(z):= Y. —, logz+1):= Y (-)" 1=,
n=0 n! nx=1 n
For the exponential we get
. 1/n ] nesm\1/n
limsup e , =11msup(p p-1 )

where s(n) is the sum of p-adic digits of n (remark 18.3 above), so

1/n 1-s(m)/n 1

=limsupp P! =prI,

limsup

1

and the radius of convergence for the exponentialis p 7T =: p,,.

For the logarithm
1/n

=limsup pvf’(”)/" =1,
p

limsup

so the radius of convergence is 1.

Our p-adic logarithm has the expected properties, e.g.

log(z; z2) =log(z1) +1og(z»).

The series converges on D(1,1); however, defined on this domain, the logarithm has a nontrivial kernel.

Example 18.9. Let p =2. Then —-1€ D(1,1) since |- 1-1|, = % Now
log(—1) +log(-1) =log((—1) - (1)) =logl1 =0,

thus log(—1) = 0. Similarly, if {,, € G;Tp is a p-th root of unity, thenlog{, = 0.

To fix the issue, we look at the logarithm on the disk D(1, o).
Proposition 18.10. If|z—1|, < pp, then |logzl, = |z—1|p. In particular,logz =0 iff z=1 on D(1, pp).
(Actually, |¢', — 11, = pp, so the proposition cannot be improved.)

piid
n

Lemma 18.11. If0<|z|, < pp, then

<lzlp forn=2.
p
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This lemma implies immediately the proposition, because one can take absolute values of the equation

_1\n
logz=(z-1)+ Z(—l)”‘l(z—l).

nz2
Proof of the lemma. Assume 1< n < p. Then |n|, =1and

n

= |zl <lzlp.
Now assume 7n = p. Then

Next (using |n|, = n™!)

n n-1

1 n—1
n-1 1 n-1 nn-1
<lzlp-n-lzlyt <laly (n7 T pp) =lalp || <12l
1

pr-

=lzlp-

p p

Further, by manipulations with power series we can check that

logexpz =2z, for|zl, <pp,

explogz=2z, forlz—1|,<pp.

Thus we finally obtained a group isomorphism
exp
D(0,pp) —><l_ D1, pp)
og

If char Fx = 0, then one can define exp(z) for |z| < 1 and log(z) for |z—1| < 1, giving an isomorphism D(0,1) =
D(,1).

19 Skolem-Mahler-Lech theorem

We are going to discuss certain properties of the so-called “linear recurrences”.

Definition 19.1. A sequence of complex numbers (1) ez, Uy € C is called a linear recurrence of order m if there
exist numbers ay,...,a;; € C, where agy,a,, #0, such thatforall ne Z

AoUp+ A1 Uy + -+ Ay Upym = 0.

Example 19.2. Probably the most famous example are the Fibonacci numbers. They are defined by a linear rela-
tion Uy, + Uy — Up+2 =0 and we set ug :=0, up :=1.

U-_s U_y u-3 Uu_s u_ Ugp uy 2% us Uy Us
5 -3 2 -1 1 0 1 1 2 3 5

A

For a linear recurrence (u,) we are interested in the set {n € Z | u,, = 0}. We will say that it is the solution of the
equation u, = 0 (with respect to n). In the case of Fibonacci numbers, this is just {0}. But of course this can be an
infinite set as well.
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Example 19.3. A linear recurrence given by 42 — u, =0 and 1 :=0, u; := 1 is the sequence

- 0, neven,
" 1, nodd.

In this case the solution is 2Z. Similarly, for any N =1,2,3,... and a € Z, the set a+ NZ can occur as a solution.
A

If (u;) and (v,) are linear recurrences, then (u, v,) and (u, + v,) are linear recurrences as well. If A is the
solution of (u,) and B is the solution of (v;), then AU B is the solution of (i, v;,).

Remark 19.4. The following are equivalent:

(1) (up)isalinear recurrence, i.e. it is given by relations ag u, + a; Up+1 +- -+ & Up+m = 0.
() up=ZX1<i<spi(n) A} for some numbers 1; € C and polynomials p; € C[X].

pX)

(3) The generating function }_,>q u, X" is rational, i.e. equal to 7

for some p, g € C[X].

In particular, the implication (1) = (2) will be seen below. From (2) it is clear why for linear recurrences ()
and (v,) the product (u, v,) is again a linear recurrence. Observe that for (3) this gives an interesting property:
if Ym0 un X" and Y50 v, X" are rational generating functions, then their “Hadamard product” Y 5o u, v, X" is
rational as well.

From the example above we see that a linear recurrence can give a solution which is a finite union of “residue
classes” a+ NZ. Also some finite set trivially can be a solution. Is it possible to have something more sophisticated?
For instance, can there be a linear recurrence having as its solution the squares 1,4,9,16,25,..., or the primes
2,3,5,7,11,...2 The answer is no.

Theorem 19.5 (Skolem—Mahler-Lech). Let(u,) be a linear recurrence. Then thereexists N € Z>1 andS< {0,1,...,N—
1} (possibly S = @) and a finite set T < Z such that

U, =0 <<= neTu(S+N2Z).

The theorem is named after a Norwegian mathematician Thoralf Skolem (who gave a proof for linear recur-
rences over Q; 1933), a German mathematician Kurt Mahler (who gave a proof for @; 1935), and a Swedish math-
ematician Christer Lech (who gave a proof for any field of characteristic 0). For historical matters see Christer
Lech, A note on recurring series, Arkiv for Matematik 2 (1953), issue 5, 417-421, http://dx.doi.org/10.1007/
BF02590997

We are going to see a very interesting proof which uses p-adic analysis. We start with some general facts about
linear recurrences.

Example 19.6. Recall that for the Fibonacci sequence we have the formulas giving the n-th term explicitly:

_a"-pr  1+V5 . 1-45
—\/g,a._z,ﬁ.—z.

Up

We can write down such a formula for any linear recurrence.

Fix ag,..., a;,; € C and let
U:={(up)nez | @otp+-+-+ & Upym =0}

This is a C-vector space of dimension m, since each sequence is completely determined by uy, ..., u;—1. We
are interested in a nice basis for U.
Consider the polynomial y(T) = ap, T™ +---+ a1 T + ap. If Lis aroot of y(T), then (1) ez € U, because
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am/ln+m +am_1/1n+m—l +etag= A”X(/D =0.
If x(T) has m distinct roots Ay,..., Ay, then {(A1)}1<;<m forms a basis of U. Assume now that A is a multiple
root of y(T), i.e. ¥(A) = x'(A) = 0. Then the polynomial 7" y(T) also has A as a multiple root, so (T" x(7))’;_, =0.
A (A M)A @ (e m-DA 2 4 paonAT =0,

So (nA" Y e U, and also (nA™) € U. If A is a root of order = 3, then (n2A") € U, and so on. If A is a root of order
1, then (mkAm e Ufork =0, 1,...,,u—1..Thuswhen)((T) hasroots 11,...,As of order yy, ..., us (with gy +---+ps = m),
there is a basis of U given by (n* /1:.’)(1)3;;‘_1.

Theorem 19.7. Let (u,) be a linear recurrence of order m. Then there exist numbers A1,...,As and polynomials
p1(T),..., ps(T) with ) 1<i<s;(degp; + 1) < m such that

Up=p1(MA +---+ ps(n) A},

From now on we are going to work with recurrences of this form. So the fact that is equivalent to the Skolem-
Mahler-Lech theorem is the following.

Let p1(T),..., ps(T) € C[T] be some polynomials and let A1,...,As € C* be pairwise distinct numbers. Then there
exists Ne Z>1 and S {0,1,..., N — 1} together with a finite set T < Z such that

prMAT +--+ps (WAL =0 < ne TU(S+N2).

We will prove this under an additional assumption that p(T) € @[T] and 14,...,A5 € @X. The general case can
be reduced to this, but we are not going to discuss the reduction.

Under our assumption, there is some number field K such that p;(T) € K[T] and 1; € K*. The rough idea of
the proof is that one can consider the equation

u(n):=prm A+ + ps(m AL =0,

but treating u(n) as an analytic function on Z,, not as a function on Z. For this one should make sense of taking
exponents “A?”. Of course “A = exp(nlogA;)”, and we have seen what is the exponential and logarithm in the
nonarchimedian setting. However, log is defined only on the disk D(1, pp), and this is a problem one has to fix.

Let us make it precise what an analytic function is.

Definition 19.8. Let K be a complete nonarchimedian field. A function f: D(a,r) — K on some disk of radius r
with center in a is called analytic if

f@=Y arz-aF,

k=0
where the series converges for all z € D(a, r).

We need the following property of analytic functions:

Proposition 19.9. Assume that f is not identically zero. Then the set of zeros of f is discrete, in the sense that if
f(20) =0, then f(z) # 0 in a punctured neighborhood of z.

Using the compactness of Z,, we obtain from this the following.
Corollary 19.10. Let f be an analytic function on Z,, not identically zero. Then it has at most finitely many zeros.

Now we go back to the Skolem-Mahler-Lech theorem. We have a function u(n) := p1(n) A] +---+ ps(n) A{ with
A,..,As€ K* and py(T),..., ps(T) € K[T]. There exists a nonarchimedian absolute value |- |, on K such that

A1y =+ =1Asly = 1.
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This v extends the p-adic absolute value on Q. The completion K, with respect to |- |, is a finite extension of
1

Qp. We want log A; to be defined, and for this we need |1; - 1|, <p, =p 7T.

Let p, be the prime ideal of Ok,. Then [A - 1|, < p,, is equivalent to A =1 (mod p}}) for some m € Z5, i.e. to
the fact that the image of A in the finite ring Ok, /p}} is 1. Since |A|, = 1, we have A € OIX<U. By the Fermat’s little
theorem,

AN =1 (mod p), where N =#(Ok,/p™*.

So AV,...,A¥ lie in the disk D(1, pp,). For each number r € {0,1,..., N — 1} we can put

ur(2):= Y. pi(r+Nz)A exp(zlogAl).

1<iss

This is well-defined for z€ Z,. If n=r (mod N), then n=r + Nk such that u(n) = u, (k).

u(k)="Y. pi(r+NK)A} exp(klogAl)

1<is<s

= Y pimA; explogA™*)

1<iss

= Y pimaa

1<iss

= Z pi(m) A = u(n).

1<is<s
Now fix r. There are two cases.
1. u,(z) isidentically 0. Then u(n) = 0 for n=r (mod N). This corresponds to r € S in the theorem.

2. u,(z) is not identically 0. Then u(n) = 0 for finitely many n = r (mod N). This corresponds to the finite set
T in the theorem.

So these considerations finish our proof of the Skolem—Mahler-Lech theorem. An interesting feature of it is
that we use properties of analytic nonarchimedian functions to conclude that 7T is some finite set, but we do not
construct T explicitly. All the proofs known thus far are not effective in this sense, apart from some particular cases.
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PartIV
Sprindzuk’s theorem

20 Statement of Sprindzuk’s theorem

We are going to discuss a theorem of a Belarusian mathematician V. G. Sprindzuk (1936-1987), which is related to
the following classical result.

Theorem 20.1 (Hilbert’s irreducibility theorem). Let F(X,T) € Q[X, T] be a polynomial irreducible over Q. Then
there exist infinitely many integers T € Z such that F(X, 1) € Q[X] is irreducible.

Example 20.2. Consider a polynomial F(X, T) = X2 — T. The polynomial F(X, 1) is irreducible iff 7 is not a square.
So the theorem says there are infinitely many nonsquares (which is not surprising). A

But in fact, a stronger result holds. Consider the set
Hp:={r€Z|F(X,7) isirreducible}.
It is not just infinite, but has density 1. That is,

#HpN [-X,X]) x—oc0
2-x

1;

for instance, a big random number is almost never a square. It is harder to show but still true is that #(Hr N [0, x]) =
x+0x'?).

Our ultimate goal is to prove the following fact:

Theorem 20.3 (SprindZuk’s irreducibility theorem). Let F(X,T) € Q[X, T] be a polynomial irreducible over Q. Fur-
ther assume that

1. F(0,0) =0, so that F has no free term.

2. FS((O, 0) #0, so that some term is linear in X.

Then for all but finitely many primes p the polynomial F(X, p) is irreducible over Q.

One can refine the statement above and replace primes p with prime powers p¥, so that F(X, p¥) is irreducible
for all but finitely many prime powers p*. Further, one can show that F(X, %) is irreducible for all but finitely many
n € Z. We put this together and restate the theorem.

Theorem 20.4 (SprindZzuk’s irreducibility theorem II). Let F(X,T) € Q[X, T| be a polynomial irreducible over Q.
Assume F(0,0) = 0 and F}:(0,0) # 0.
Consider the set

1
Q:= {pk | p is prime, k = 1’2’3""}U{E |n=2,3,4,...}.
Then F(X, a) € Q[X] is irreducible over Q for all but finitely many a € Q.

Observe that the elements of Q satisfy the following property: for a € Q one has |a|, < 1 exactly for one place
v € Mg =12,3,5,...,00} (possibly the infinite one). Denote

Sa:={veMg | lal, <1}

For a = pk we have Sy = {p}, and for a = % we have S, = {oo}.
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Example 20.5. Consider a = —%. Then S, = {2,3}.
For a = —15—2 one has S, = {5,00}.
For a = % one has S, = {3}—in particular, we see that {a | |Sq| =1} 2 Q. A

A more general result due to Sprindzuk is the following:

Theorem 20.6 (Sprindzuk’s decomposition theorem). Let F(X, T) € Q[X, T] be a polynomial irreducible over Q. As-
sume F(0,0) =0 and F)’( (0,0) #0. Lete > 0. For a € Z write down the factorization of F(X, a) € Q[X] into irreducible
polynomials:

FX,a)=fi(X): f(X).

Then for all but finitely many « € Z one can write a = a --- a, with a; pairwise relatively prime such that

logla;| _ degfi | __
logla| degyF

In particular, when a = pF is a prime power, this implies the Sprindzuk’s irreducibility theorem. We are going
to discuss only the latter, but the decomposition theorem is proved similarly. Later on we will give a more general
statement of the decomposition theorem where a is a rational number, not an integer (see § 26).

We will use heights, which are a vital tool in Diophantine geometry. Now we make a long detour to define
heights and establish their basic properties.

21 Heights on number fields

Informally, a “height” of an algebraic number is a measure of its complexity. We want it to satisfy the following
properties.

(1) Height H(a) of an algebraic number a € @ is a nonnegative real number.

(2) Heights behave well with respect to addition and multiplication. Thatis, H(a + ) and H(« ) can be reason-
ably estimated in terms of H(a) and H(f).

(3) The Northcott’s property (discreteness) holds: there are finitely many algebraic numbers of bounded height
and bounded degree.

For a € Z taking H(a) := |a|, the usual absolute value, gives such a “height”. However, on @ this does not satisfy

the last property (3). For instance, the number % is “complicated”, but its absolute value is small. This suggests

that on rational numbers a right notion of height is the following.

Definition 21.1. Let a € Q where a = { with a, b € Z relatively prime. Then the height of « is given by H(a) :=
max{lal,|l}.

In particular, for @ € Z we have H(a) = max{|«a|, 1}.
This behaves well for products and sums, in the sense that there are bounds

H(ap) < H(a) H(P),
H(a+p) <2 H(a) H(P).

We want to extend the notion of height to algebraic numbers « € Q. The first idea that comes to mind is that
for @ one should consider its primitive minimal polynomial f(X) € Z[X]:

FX)=apX"+ap 1 X" 1+ +a; X +ay, where (ap,...,a,) =1.
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And one can put Y(a) := maxf{|agl,...,|a,l}. Itis possible to study this height Y1 and show nontrivial results about
it, however it is difficult to estimate Y(a ) and Y(a + B) in terms of H(a) and H(p). So this idea is wrong (that is
why itis “H” and not “H”).

The second idea comes from the following observation: if a € @, then

H(a) = [] max{L|al,},
vEMyg

where My are the usual absolute values (normalized by |p|, = 1/p).

Example 21.2. Fora =— 15—2 the absolute values are

1
) V= 27
4
1
Py V= 3’
3

lalv=3 5 ,_s
12
— V=00,
5
1, otherwise.

Now HUGM@ max{l,|a|,} = 12, which is the height of a. A

In general, for a = % one has
[] max{1,lal,}=bl.
U€M@
V#00

And max{l, |a|,} = max{l, %}, SO

[ max{1,lal,} = max{|bl,|al} = H().
VEMg

Now let K be a number field and M be the set of places on K. We assume that the places are normalized such
that on Q they give the standard p-adic absolute values. Recall that for @ € Q one has the product formula

[T ety =1.

VEMg
For an arbitrary number field the product formula for a € K™ is

[] laly? =1, whered,:=[K,:Q,l.
veMyg
This can be immediately verified for @ € Q*. In this case for p € Mg one has several places v € Mg coming from
p, and
d Zy dy K:
[T laly” =laly"" " = alF.

p
veMg
vip

So finally



by the usual product formula for Q.
In general for @ € K we have an embedding K — K, and the corresponding absolute value is given by

. 1/d
laly := [Nk, i1q, (@], "

So Ial’g” =Nk, /g, (@)]p. We have

[T1aly” = 1INk, 9, @1y = INksg@)lp,
vlp vlp

since the product of local norms Nk, g, gives the global norm Ngq.
Thus everything reduces to the usual product formula for Q:

[T 1als’ = [] INkg@l,=1.

veMg pEM@

Remark 21.3. Sometimes one normalizes the absolute values by local degrees d, putting || x|, := |x|”lf", so that the
product formula reads [],ep, llally = 1. We do not use this normalization, so be careful reading other books and
articles.

Now the product formula for number fields suggests the following definition.

Definition 21.4. Let K be a fixed number field. The height of a number a € K is

Hy(a):= [] max{1,lal,}%.

veEMyk

Taking logarithms, we get the logarithmic height

hx(@):= ) dylog*laly,

veEMk
where log™ x := max{0,log x}. We assume log* 0:=0.

The whole point of taking logarithms is just that it is easier to write sums instead of products in various in-
equalities involving heights. In what follows we will mostly use “h” instead of “H”. .
The last definition of Hgx and hg depends on K, so we should correct it to define heights on the whole Q.

Proposition 21.5. Let L/ K be a finite extension anda € K. Then hy(a) = [L: K]-hg(a), and correspondingly Hy (a) =
HK (a) [LIK] .

Proof. Consider a place w € My coming from v € M. We have |a|,, = |a|,, and
dw=I[Ly:Qul =[Ly: K] [Ky:Qy].
N——
dy
Now

Y dwlogtlaly =) [Ly:K))-dylog*|al, = [L:K]-d,log" |al,,

w|v wl|v

since ¥,y [Lw : Ky] = [L: K]. And finally,

Y dwlogtlaly=I[L:K]- Y dylog”|al,=I[L:K] hg(a).

weMy veMg

So the right definition of height is the following
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Definition 21.6. Let a € Q be an algebraic number. Then its height (logarithmic height) is given by

H(a) = Hy (a)""9),

h(a):=

h ,
K-Q] k(@)

where K is some number field containing a.

The definition is correct thanks to the last proposition. Indeed, if @ € Kj and «a € K5, then there is L containing
both K; and K> and

hi(a) =[L: Ki]- hg, (@) = [L: K] - hi, ().

i
L
N
K K

AN yd
Q(a)
|

Q

hi, (@) _ hi(@) _ hg, (@)
(K1:Q] [L:Q] [K2:Ql

So we finally have a right height function h: Q — Rx.

22 Projective and affine heights

Let K be a field. We have the affine space A" (K) with coordinates {(ay,...,a;) | @; € K} and the projective space
P"(K) with projective coordinates (ag: a; : - : ay), where

(ao:ay::ay)~Aag:Aay:---:Aa,) forleK™.

Definition 22.1. The projective height of a point @ = (ap: a;:---: a,) € P*(Q) is given by

1
hp(@):=—— Y d,loglal,,

[K: @] veMk
where ||, := max{|agly,...,|anl,}, and K is some number field containing ay,...,a,.
(We write log instead oflogJr since the point “(0:0:---:0)” is not in P".)

This does not depend on the field K and it is well-defined on IP”(@), i.e. hp(@) = hp(Aa) for 1 € @X, since

hp(Aa) = hp(a) + Y dyloglAly.

1

(K:Ql ,é&nre

[ —
=log[TI1AI% =0

Definition 22.2. For a point & = (a1, ...,a,) € A"(Q) the affine height h is given via the embedding

AMQ) —P"(@),
(a1,...,ap)— Q:ay:--:ap).
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In other words,

— . e — 1 +
ha(@) =hp(l:ay:---tay) = K 0] VEXA:/IKdv log™ |al,.

Finally, we will need a notion of projective and affine height for a polynomial with coefficients in a number
field.

Definition 22.3. For a polynomial F(X;,..., X,) = Zii ai,..i Xf‘ "-X;',” € K[Xj,..., X,] we put

----- in

hp(F) := hp(ai,,..iy)i;, .. ins
ha(F):=ha(ai,,. ip)i;,...in-
For A € K* one has hp(AF) = hp(F). There is an inequality hp(F) < ha(F), and one has hp(F) = ha(F) when
one of the coefficients of F equals 1.

23 Properties of heights

Now we summarize and prove some basic properties of the height of an algebraic number /() defined above:

h(a) =

1 1
h =— d, log" .
[K:Q] K@ [K:Q] ve;@ vlog™laly

(1) h(a)=0forany a€ Q.

(2) h(ay---am) < h(a)+--+hlany).

(3) h(a1+---+a;,) <h(ay)+--+h(ay) +logm.

(4) h(a™ =|n|-h(a). In particular, h(a™) = h(a) for a #0.

(5) If o and B are conjugate over Q, then h(a) = h(f).

(6) The Northcott’s property: for fixed constant C > 0 and fixed degree d = 1,2,3,... the set

{a| h(a) < C and [Q(a) : Q] < d}
is finite.

(7) The first Kronecker’s theorem: h(a) =0 iff @ = 0 or a is a root of unity.
We begin with the first, easier properties. The property (1) is obvious.
For the estimate (2), write

lay - amly =111y - |@mly <max{l,|a;ly}---max{l, |a;,ly}.

Taking logarithms, we get
log" a1+ amly <log” la1ly + -~ +1og" |amly,

which implies (2). |

Similarly we show (3), but one should distinguish archimedian and nonarchimedian absolute values:
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et ], < max{|aily,..., |&mlv}, v nonarchimedian
! Y= memaxilagly,...,la@mly), varchimedian
- max{l,|ail,}---max{l,|a;m;l}, v nonarchimedian
m-max{l,|aily}---max{l,|a,,|,}, v archimedian
Taking logarithms,
i " i 0, v nonarchimedian
log"la; +---+a;,l<log” || +---+log |am|+{ logm, v archimedian
Thus )
h(ay++++am) < h(ay) +--+ hlany) + K- Y dylogm = h(a1) + -+ h(am,) +logm,
. v|oo
since Y. 00 dy = [K: Q). ]

Now for (4) observe that h(a™) = |n|- h(a) for n > 0 since max{l, |a"|,} = max{l, |a|,}".
The key case is (4) for n = —1. We have log* la1, = —log™ |a|, where log™ x := min{0,log x}. Now

1
ha™) - h(a) = —— dylog"|al, + log™ lal, | = —— dy,loglal, =0
[K: Q] %K vo8 1 ;u,( S BT ST ;w,( v ORIy

by the product formula.
If n < —1, then from what we have proved, h(a™") = h((@™ )™ = |n|-h(a™!) = |n|- h(a). [ ]

Now we show (5). Suppose a and f are conjugate. That is, let K/Q be a Galois extension containing both @ and
B and let o € Gal(K/Q) be such that o (a) = 8.
The Galois group Gal(K/Q) acts on the set of places Mg. Each o € Gal(K/Q) induces a permutation

Mg — Mk,

v— 17,

where we define |x|,o := |o(x)],. On Q the absolute value |- |,s coincides with |-|,. The inverse map is given by
v 19" We have

1 1 1
hpB)=——— Y dylog"fly=—— Y dylog*lalw =—— Y dylog*lal, = h(a),
06) K 0] VEX]:VIK vlog™ 1By K0 u§41( vlog” |al, K0 v;j}( vlog* |al, = h(a)

using the fact that Gal(K/Q) just permutes the places, and that d, = dyo. |

Example 23.1. Consider K = Q(y) where y is a root of X? —2. There are two real embeddings of K, and so there are
two extensions of | - |, from Q to K:

K—R,
U+:/)/’—’+\/§,
U_:'}"—’—\/E.

Consider two conjugate numbers ¢ =147y and f=1-7y. One has
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1 1 1
h(a) = = (log” |al,+ +log" |al,-) = = (log™ |1+ V2| +log" |1 - V2|) = =log|1 + V2|.
2 2 2

=0

1 1 1
h(B) = = (log* |Bl,+ +log* 1Bl,-) = = (log™ 11— V2| +1log™ |1+ V2|) = —log|1 + V2|.
2 2= 2

=0

Now we are going to show the Northcott’s property (6). For this it is enough to show that for a fixed C >0 and a
fixed degree d the set _
A={aecQ|h(a)<C, [Qa):Q] =d}

is finite. We already know that this is the case when d = 1.
Let a € A. Consider the minimal polynomial f(X) € Q[X] of a:

FX) =X+ ag 1 X+ -+ a1 X + ap.

Leta; = a,...,a4 be the conjugates of a (that is, the roots of f) and write down the Vieta’s formulas:

ap=CD%aaz---ay,

d-1
a=FD)"(araz-rag1+ar1az-agoag+...+a2a3- - ag),

ag-3=—-(@1a2a3+a1 Q204+ +ag-20%q-1Aq),
ago=a1a2+a1az+--+a1xg+axaz+---+ag-1xa4,
ag-1=—(a1+ax+---+agqg).

Since a;, ..., a4 are conjugate, we have
h(a1) = h(az) =--- = h(ag) <C,

and from these identities and the properties (2) and (3)

h(ag) < C%,
h(ay) <dC% ' +logd,

h(ag_s) < (Z) C3 +log (d),

a\ ., d
I’l(dd_g)i(z)c +log(2),

h(ag—,) =dC+logd.

w

Thus the heights of the coefficients ay, ay, ..., a4 € Q are bounded in terms of C and d, which means there are
finitely many choices for ay, ..., a4, hence finitely many choices for f(X) and finitely many choices for a. |

Finally we show the first Kronecker’s theorem (7). If @ = 0, then h(a) = 0. If a” = 1 for some 7, then

0=h() = ha™ =|n| h(a).
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In the other direction, assume that h(a”) = 0 for some n. Consider the numbers 1, a, a2, a3,... Their degree
[Q(a¥) : Q] is bounded by [Q(a) : Q] = d and their height is bounded since i(a™) = 0. So in this sequence there are
finitely many numbers, and there are some k and ¢ such that a* = a, which implies that a = 0 or « is a root of
unity. ]

We are done with proving the properties (1)-(7) and now we discuss some related results. There is also the
second Kronecker’s theorem, related to the first theorem.

Theorem 23.2 (Second Kronecker’s theorem). For each d there exists a constant C(d) > 0, such that for any a € @X
which is not a root of unity, [Q(a) : Q] < d implies h(a) = C(d).

Proof. Consider the set

={eQ|Q(P:Ql<d, h(B) <1}

This is a finite set, having ©; := | A| elements. Consider a sequence

1,a, az,...,aed.

These numbers are pairwise distinct, since a # 0 and « is not a root of unity by our assumptlon But there are
©,4+1 numbers, so there is some k < ©,4 such that af ¢ A, so that h(a¥) > 1 and h(a) > k = @ . Now put C(d) := 1
and we are done.

The estimate for C(d) produced in the proof above is very poor. The Lehmer’s conjecture states that C(d) =
where C is some universal constant. The smallest known candidate to be C is the largest real root of a polynomial

I
_cC
d

X044 x0-x"-x5-x°-x*-Xx3+Xx+1.

This root is = 1.176280818... A special feature of this example is that the minimal polynomial of @, which is
given above, is palindromic. An algebraic number « is called reciprocal if « and a™! are conjugate over Q (which
means the minimal polynomial of « is palindromic). One result towards the Lehmer’s conjecture is the following:

Theorem 23.3 (Chris Smyth, 1971). Ifa is nonreciprocal and [Q(a) : Q] = d, then h(a) = log0/d wheref = 1.324717957....

is the real root of X® — X — 1, and it is the best possible estimate (for nonreciprocal numbers).

As for reciprocal numbers, the conjecture still remains open, and the best know result is due to Dobrowolski
(1978):

loglogd
ha)= = ( 508 )
d\ logd
loglogd

3
In some practical applications one can neglect the multiplier ( Togd ) , although it seems to be difficult to
remove it or at least improve.

h(a)

Let @ € Q™ be a rational number a = % with (a,b) = 1. Then |a| = % and b < H(a) = e™*. So we have the

so-called Liouville’s inequality

la| = e~ @

This easy observation generalizes to any number field K and any absolute value |- |,,.

Proposition 23.4. Let K be a number field. Let v € M. Then for a € K one has

|a|5u > e—[K:Q]'h(a)‘

More generally, for a set of places S € Mg one has

|a|dv - e—[KiQ]‘h(Ué)
| | v = .
vesS
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Proof. We have the product formula

[T lalfr =1.

veMg
So if we take a product outside some subset S ¢ Mg, there is an inequality

d -0]-
[T ety = [ maxillal}® < [] max{l,lal,}? = Hx(a) = S H@,
veMg\S veMg\S veEMg

Now

-1
d -[K:Q]-
H|a|vv:( H |a|vv) >e [K:Q] h(Ul)‘

vesS veEMg\S

]
Finally, we want to show a relationship between the height /() of an algebraic number « € Q and the height

of a polynomial f € Q[X] having «a as its root; and also with the heights of the values of the polynomial.

Lemma 23.5. Let f(X) = an X" +---+ a1 X + ag € K[X] be a polynomial and |- |, be an absolute value on K. Set
| fly :=max{lagly,...,|lanl,}. Let & be aroot of f(X). Then

a 'l” , U archimedian.
niv

Proof. To simplify the notation, we write just |- | instead of | - [,,.

al ||¢{||v’ v nonarchimedian,
aly, < plv
2

Since | f] is by definition the maximum of |a;|, we have i“ >1.If|a| <1, then

|a|<m<2 |/l

- )
lanl lanl
and we are done.

Now for |a| = 1 we consider the expression

a=- Z ﬂcx’..

0<i=n-1 4n

We take the absolute values | - | and estimate the right hand side. In the nonarchimedian case

Y o

0<i=n-19n

la|” =

< ﬂ|a|"—1

—_ »
[anl

thus |a| < % (In the bound we indeed used that |a| = 1.)

In the archimedian case we do the same estimates, but we have to use the triangle inequality. Observe that we
can assume |a| > 2, otherwise the claimed inequality is trivially true.

a' .
lal"=| ). Lall <

0<i=n-19n

Z |ai| Iali

o<i=n—11anl

Sl Yy g

o<izn—1 lanl

1

Slan*1|ﬂ(l+_+_2+...+—_l)

lan| lal ol la|"

1 1 1

sla"‘llm(1+—+—+—+-~-

|an| 2 4 8
sz|a"—1|—'f' .

|anl
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(Note the interesting trick we used; a simple-minded application of the triangle inequality gives immediately |a| <
If1
n —_—

]’ but we were able to replace “n” with “2”.) [ |

Proposition 23.6. Let f(X) € @[X] be a nonzero polynomial and a € @ be its root. Then h(a) < hp(f) +log2.

Proof. Let f(X) = anX"+a,_1 X" ' +---+a, X + ap. We have

1 R v nonarchimedian,
laly<q -
2 an IUV , v archimedian.
Thus
0, v nonarchimedian,
log" |a|, <log 1w + i ,
lanly log2, v archimedian.
And so

h(a) < hp (ai) +log2 = hp(f) +log?2.

n

]
Remark 23.7. A stronger estimate can be proven. If a;,..., a, are all roots of f then
hp(f)— Y. hla)|<cn).
l<i<n
For some constant c(n) depending on n.
Proposition 23.8. Let f(X) € Q[X] be a nonzero polynomial of degree m and let a € Q. Then
h(f(a)) <=mh(a)+ ha(f) +log(m+1).
Proof. Let f(X) = amX™+ apm 1 X" ' +---+ a1 X + ay. We have
1, v nonarchimedian,
If @)y Smax{laoly,...,lamly}-{ m+1, v archimedian. }
So
1, v nonarchimedian,
max{l,lf(a)ly}Smax{l,laolv,...,lamlv}-{ m+1, v archimedian. }
h(f (@) < ha(f) + mh(a) +log(m+1).
[ ]

Similarly one can show the following:

Proposition 23.9. Let F(X, T) € Q[X, T| be a polynomial of degrees degy F=n,degr F=m. Leta,f € Q. Then

h(F(B,a)) < mh(B)+nh(a)+ ha(F)+log((m+1)-(n+1)).
Finally, we show another bound for polynomials in two variables.

Proposition 23.10. Let F(X, T) € Q[X, T] be a polynomial of degrees degr F=m,degy F=n. Leta,f € Q be such
that F(B,a) = 0 and F(X, a) is not identically zero. Then

h(B) < mh(a)+ hp(F) +log2 (m+1).
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Proof. Put f(X) := F(X, a). Itis a polynomial in one variable having  as its root. So h(f) < hp(f) +log2 by propo-
sition 23.6. It remains to show a bound on hp(f).

Let F(X, T) = gu(T) X" +---+ g1(T) X + go(T) for some go, ..., gn € Q[T]. Then f(X) = gn(a@) X" +---+ g1 (@) X +
go(@). Let K be a number field containing @ and let v € Mg be a place on K. Consider g;(T) = a;,, T"+---+a, T+ ay
one of the polynomials gy, ..., gn-

1, v nonarchimedian, }

m
Ig(@)ly = max{l, |al,}- 18l { m+1, varchimedian.

Since |gl|, < |F|,, we get

hp(f) < _ Y dylog"|fl, < mh(a)+ hp(F) +log(m+1).
(K: QI enp,

Now substituting this in the bound k() < hp(f) +log2, we get the desired result. |
Remark 23.11. The proposition above does not give the optimal bound. One can show that

Ha) _ hep)
n  m’

where m = deg; F, n = degy F, and = is a “quasi-equivalence of heights” (the difference of heights is “small”; we
omit the details).

24 Fisenstein theorem about algebraic power series
Let x(T) € Q[[T]] be a formal power series

x(T)=a0+a1T+a2T2+~~, aiE@.

We say that x(T) is algebraic if it is algebraic over Q(7); that is, there is some polynomial F(X, T) € @[X , T] such
that F(x(T), T) = 0 in the ring Q[[T]}:

F(x(T), T) = go(T) + g1(T) x(T) + -+ + gn-1 (D) xN (D) + gn(T) xN(T) =0, for some g;(T) € Q[T].

If x(T) is an algebraic power series, then it lies in a finite extension of Q((7)), so the residue field of Q((T)) (x(T))
is finite over Q. This means that the coefficients a; belong to some number field K.

Example 24.1. x(T) =1+ V2T +V3T?+ VAT3+--- isnotan algebraic power series, since the coefficients do not
lie in a finite extension of Q. A

Example 24.2. Consider a power series

1 11 1 Tk
x(T) = == ==y —.
2-T 2 1-T/2 2z 2k

This is not just algebraic, but rational. In the denominators we have powers of 2. A

Example 24.3. Now consider a power series

x(N)=1+N"=Y 2 r,
k=0 k

Compute the binomial coefficients
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k Kl
k: 0 1 2 3 4 5 6 7 8 9
172y . 1 1 1 5 7 21 33 429 715
() 1 +3 -3 +3 —3 +% —m +mjr 5 o

The key observation one makes from looking at the denominators is that 4% - (1 ]/Cz) is always an integer (try to
prove this). This is a general property of algebraic power series. A

Theorem 24.4 (Eisenstein). Let x(T) = Y=o ar T~ be an algebraic power series with a; € K. Then there exists an
integer c € Ok such that ck ay € Ok.

is means that the denominators in an algebraic power series must have a very special “exponential” form.
Th that the d t Igeb t h. 1“ tial” f

Example 24.5. Consider the logarithm power series

Tk
log1+1) =Y (-nF1—.
k=1 k

The denominators are not powers of some integer, so it is not an algebraic power series. Similarly the exponent

Tk

exp(T) = —_—
k=0 k!

is not an algebraic power series. A

Let us give another statement of theorem 24.4. It says that for any nonarchimedian place v € Mk one has
lakly < (Icl;)¥. So the following holds:

Theorem 24.6 (Esenstein-2). Let x(T) = Y=o ax T* be an algebraic power series with a; € K. Then for any place
v € My there exists a number A, € R, A, = 1, such that |ay|, < A’;, and A, =1 for all but finitely many v.

Remark 24.7. To see why theorem 24.6 is equivalent to theorem 24.4, recall what are the absolute values on a
number field. For every x € K we can look at the fractional ideal factorization

xOK = H pr @ )

p<Ok
nonzero prime

and by definition the number v, (x) € Z is the valuation of x at p. It defines in turn an absolute value | x|, := pvl’m.
Any nonarchimedian absolute value on K is equivalent to some | - |, (and the archimedian absolute values come
from embeddings K — C, as we saw in § 17).

Further,

Okp=1{xeK||x|, =1}

Ok = N Okp=1{xe€K||xlp,<1forall p< Okl
pcOk

nonzero prime
Thus, assuming that |ag|, < 1 for all but finitely many finite places v € Mk and |ag|, < A’,ﬁ for finitely many v,
we can find ¢ € Og with small enough absolute values with respect to each of these v (take a product of big powers
of corresponding primes):

1
k k
Icl,,_A— sothat [c"akly =lcl},-lagly, = 1.
v
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Note that if the place v € Mk is infinite, then we can consider x(7T) as an analytic function. It is regular at 0 (hav-
ing no poles and no ramifications), so it converges in some disk centered at 0. This means that the absolute values
lakl, grow at most exponentially. So in the statement above by “any place v € Mx” we really mean archimedian
places as well.

Corollary 24.8. For each v the power series x(T) converges v-adically in some disk, and for all but finitely many v
it converges in the unit disk.

Observe that while the Eisenstein theorem implies this convergence property, there is no implication the other
way round: for instance, the logarithm converges, but it contradicts the Eisenstein theorem.

25 Proof of the SprindZuk’s theorem

Now we go back to the SprindZuk’s theorem to prove it. Recall that for @ € Q* we defined the set Sy := {v € Mg |
la|, <1} and

1
Q::{pklpisprime, k:1,2,3,...}u{; |neZ\{0}}c{aeQ” | |Sq| =1}

Let F(X,T) € Q[X, T] be an irreducible polynomial over @ satisfying F(0,0) = 0 and F&(O, 0) # 0. Then we want
to conclude that for all but finitely many a € Q the polynomial F(X, @) € Q[X] is irreducible over Q.

Claim. There exists a unique power series x(T) € Q[[T1] such that x(0) = 0 (there is no free term) and F(x(T), T) = 0.

This actually follows from the Hensel’s lemma. We apply it to a polynomial f(X) := F(X, T) € Q[T1[X] with
coefficients in a complete ring Q[[T]]. One has f(0) =0 (mod (T)) since F(0,0) =0, and f'(0) #0 (mod (7)) since
F3(0,0) #0. So the conditions of the Hensel’s lemma are satisfied, and there is unique x(7) € Q[[T]], as we want.

To this power series x(T) = a; T + a, T? + a3 T° + --- we apply the Eisenstein’s theorem: for any place v € Mg
there exists a number A, =1 (and A, = 1 for all but finitely many v) such that |a|, < A,’ﬁ.

Claim. Atall but finitely many T = a € Q the series x(T) absolutely converges v-adically for v € S,.

k

_ 1.
Proof. x(a) =Y =0 ara” converges whenever ||, < e

k k k k k k—oo
lara”|y =lagly-lal, < Ay -lal, < (Ay-laly)” —— 0.

Assume that |a|, = LU Then we can bound the height of a by

h(a@)=ha™Y) = Z log* |a|;1 < Z log* A,.
vEMK veMg
Now for all but finitely many v € Mg one has A, = 1, so the sum on the right hand side is finite. Moreover, the
numbers A, depend only on the polynomial F(X, T) and not on a, so by the Northcott’s property there are only
finitely many «a such that |a|, = A,. [ ]

Let B8 denote the v-adic sum of x(T) at T = a for v € S,. Since F(x(T),T) = 0, we get F(B,a) = 0 (using
the absolute convergence), so f is a root of F(X,a), and it is actually an algebraic number. We may assume
degy F(X,a) = degy F = n—this degree goes down when «a satisfies some algebraic equations, so it is enough
to disregard finitely many a@. Now F(X, ) is irreducible over Q iff [Q(8) : Q] = n.

So for K := Q(f) we look at the degree d := [K : Q]. We will show that d = n for all but finitely many «, and it will
establish the SprindZuk’s theorem.

The idea is to construct an auxiliary polynomial G(X, T) € Q[X, T] such that y = G(B, @) is “very small” v-
adically. More precisely, we want the following properties:

* G(X,T)isnotidentically 0.
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* degy G=n-1,where n:=degyF.
* deg; G < N, where N is some fixed big integer (later on we will set it), much bigger than m and n.
* G(x(T),T) has a high order zero at 0.

The coefficients of G(x(T), T) are linear combinations of coefficients of G, so vanishing of G(x(T), T) at 0 of
order u is equivalent to u linear equations imposed on the coefficients of G.

To find G with order of vanishing at least u, we must have p < n (N + 1), where N is the maximal degree of g;’s
in

GX,T)=gn1(D X" 4+ g1 (T) X + go(T).

So each g; gives N + 1 coefficients.
To simplify the formulas, we may take u = N n. So by “vanishing of high order” we will mean order at least N n:

G(x(T),T) = y(T) = by, tN" + higher order terms.

Let y := G(B, a) be the v-adic sum of y(T) at T = a. For all but finitely many a we have y # 0. Indeed, if
Y =0, then F(B,a) = 0 and G(B, a) = 0. But these two polynomials have no common factor in Q[X, T1, and so they
have only finitely many common roots (F is irreducible by our assumption, and F 1 G since degy G < n—1 and
degy F =n).

Proposition 25.1 (Baby algebraic geometry). Let K be a field. Let F(X,T),G(X,T) € K[X, T] be two polynomials.
Assume that F and G have no common factor. Then the system of equations F(x,t) = G(x,t) = 0 has only finitely
many solutions in (x, t) € K?.

Now by Eisenstein’s theorem, for all v € My there exists B, = 1 (and B,, = 1 for all but finitely many v) such that
|bl, < BE. If v is nonarchimedian and B, = 1, then |bg|, <1 and

ly(@ly <lal)™.

If v is nonarchimedian and B,, > 1, then we may assume |a|, < B; ! by disposing finitely many a (by the North-
cott’s property as above). After that one has

|brakl, < By -lal)* < By -lal)N" < C-lal)",

where C is some constant depending on F and G, but not on a.
If v is archimedian, then we may assume |a|, < (2 B, L.

b |, < (B, -lal,)* <

N | =

y@ly< Y By-laly)* =By lal,)N" <2(By-lal,)N" < Cy-lal)".

k=nN 1-By-laly

Here C, =1 for all but finitely many v and it is some constant depending on F and G. So we have an upper
bound for y := G(B, @) B (proposition 23.9):
Y1y < Cy-laly™.
We have also a lower bound given by the Liouville’s inequality

—-dh
lyl, = e 4m0,

We want to get a contradiction from e~dhy < lYly<Cy- IaIJUV”. For this we write h(y) in terms of @. We use the

bound
h(y)<sh(e) N+ h(B)(n+1)+C,
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where C is a constant depending only on G. The upper bound |y|, < C, - IaI{Y” can be written as |y|, < Ce Nnhia)

where C is a constant depending on F and G. If we forget for a while about the term “h(f) (n + 1)” above, then the
bounds indeed give a contradiction if d < n:

e—th(a) -nN h(a)

<Ce

Now we take care of the term “h(f) (n+1)”". Since F(a, ) = 0, we have h(f) < mh(a) + Op(1), where Og(1) is
something does not depending on 3 (proposition 23.10). Now

h(y) < (N+m(n—-1)) h(a) +C,

where C is a constant depending only on F and G.

So we get

|Y|U > Ce*d(N+mn)h((l).

The inequalities become
G e—nNh(a) > |Y|v >C e—d(N+mn)h(a).

To obtain a contradiction for d < n and big enough h(a), we need d (N + mn) < nN. If we take N = m n?, we

are done, in thiscase (n—1)(N+mn) <nN.
This finishes our proof of the Sprindzuk’s theorem. |

A typical Diophantine approximation proof splits into the following steps:

(1) Constructing an auxiliary function with high vanishing order at some “anchor points” (in our case it was 0).

(2) Ananalytic step: evaluating the auxiliary function at a point near one of the anchor points (in our case a was
v-adically close to 0) and showing that this value y is very small.

(3) Showing that the value y is not zero. Usually it is the hardest part.

(4) Using Liouville-type inequalities to show that y cannot be too small, contradicting (2).

26 SprindZuk’s decomposition theorem

Now we go back to theorem 20.6. Recall its statement. Let F(X,T) € Q[X, T] be a polynomial irreducible over
Q. Assume F(0,0) = 0 and FS((0,0) #0. Lete > 0. For a € Q write down the factorization of F(X, @) € Q[X] into
irreducible polynomials:

FX,a) = i(X)--- fr(XD.

Then for all but finitely many a € Z one can writea = a, - -- &, with a; pairwise relatively prime such that

log|a;|  degfi
loglal degyF

We want to generalize it for a € . Of course log|a| should be replaced with the height

h(a)=h@™) =) logla |y,

VESy

where S, := {v € Mg | |al, < 1}. Factorization “a = a;---a,” does not make sense anymore if @ € Q. The right
generalization is the following:
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Theorem 26.1. Let F(X, T) be as above. For all but finitely many « € Q there exists a partition (depending one)
Se=T1u---UTs, iNnTj=@ fori#j and n=d +---+ds,

such that for each i
ZVET[ logla_1|v di
_— — —|<e
h(a) n

The proof goes among the same lines. It is sufficient to show that for all but finitely many a there exists a
partition such that

Yoerlogla™, _ d;
- >— -
h(a) n

. Yver, logla™| .
Indeed, that is because ¥ <;< % =land ¥ << % =1.

For v € S, we define v € T; if the v-adic sum g of x(¢) at £ = « is a root of g;. We have [Q(f) : Q] = d;. By the
same argument with auxiliary functions, we produce inequalities

-1
e~ 4 (N+Clmm) h(a) o 1‘[ Iyl < e N Xver;logla™ |y

veT;

For details see Yuri F Bilu, David Masser, A Quick Proof of Sprindzuk’s Decomposition Theorem, http://dx.
doi.org/10.1007/978-3-540-32439-3_2

76


http://dx.doi.org/10.1007/978-3-540-32439-3_2
http://dx.doi.org/10.1007/978-3-540-32439-3_2

Conclusion

During this course we used p-adic numbers to prove interesting theorems that actually do not mention p-adic
numbers in the original statements: the Hasse-Minkowski theorem, the Skolem-Mahler-Lech theorem, and the
Sprindzuk’s theorem. These three examples are of different kind.

The Hasse-Minkowski theorem is a local-global principle that connects equations over Z with equations over
Z,, for all p. We note that it is valid for the case of quadrics, and studying obstructions to the local-global principle
in the other cases is a topic of the ongoing research.

The Skolem-Mahler-Lech theorem was proved locally—that is, by looking at Z,, for only one suitable p and
using certain properties from p-adic analysis.

Finally, the Sprindzuk’s theorem was proved using heights. It is another kind of an argument, which is some-
what quantitative: we claim that some statement holds for all but finitely many numbers «a, and this actually comes
from some bound on k(a).

7



A Proof of the Eisenstein theorem

* This will be probably merged with the main text. *
The source is essentially J. W. S. Cassels, Local Fields (London Mathematical Society Student Texts N. 3, 1986), p.
28-30.

Theorem. Let x(T) = Y. a, T" € K[[T]] be a formal power series with coefficients in a number field K and suppose
n=0
there is a nonzero polynomial F(X,T) € K[X, T]

FX,T)i=go(D) +g (D) X+ +gn-1 (D XN+ gn(T) XN e KIX, T), go(T),...,gn(T) € K[T]
such that

F(x(T), T) = go(T) + g1(T) x(T) + -+ + gn-1(T) xN (1) + gn (1) xN (T) = 0. @

Then there are algebraic integers u, v € Ok, u#0, v # 0 such that uv" a, € Ok for all n.

Proof. We add another formal variable Y and compute

FX+Y,T)=F(X,T)+F(X,T)Y +---+Fy(X, ) YV, )
where F; (X, T) € K[X, T] are some polynomials. To simplify the notation we write F;(X) for F; (X, T).

Without loss of generality we may assume that F; (x(7)) # 0, since otherwise we could operate with F;(X) in-
stead of F(X).
Consider the power series F; (x(7T)) € K[[T]]. Let m be its valuation:
m:=v(F;(x(T))) := {n| n-th coefficient of F; (x(T)) is # 0}.

Now we separate x(T) in two parts: the lower terms u(T) € K[T] of degree < m + 1 and the “tail” v(T) € K[[T]]:

X(T) = (ag+++am T™ + @mer T™ ) + T (@i T+ Aas T +-+) 3)

=:u(T) =v(T)

It is enough to show that the tail v(T) satisfies the claimed property for coefficients.

By (1), (2), (3) we have

0=F(x(T) = F(T) + T"™* v(1) = F(T) + T Fy(T)) - v(T) + Y TV F(w(D) - v(T),
j=2

where F(u(T)), F1(u(T)), Fj(u(T)) € K[T] are certain polynomials. All the summands except for perhaps the first
are divisible by T>"*! by our choice of m, and so F(u(T)) should be divisible by T?"*! as well (in K[T]). Dividing
the identity by T>*!, we obtain

0=f(D)+ filD) v(D) + foT) (T +-+-+ fy(T) (DY, 4

where f(T), fi(T),..., fn(T) € K[T] are some polynomials, and by our choice of m their free terms are
¢:= f1(0) #0and f;(0) =0 for j > 1.

After multiplying (4) by certain algebraic integer, we may assume that f, fi,..., fzv € Ox[T].
Observe that by its construction, in the power series v(T) = Y. b, T" (where b,, = a,+m+1) the constant term

n=1

is 0. We want to show that ¢ b,, € O.
We look at the coefficients of T" in (4):

78



0=f(T)+f1(T)-(Z b, T"

n=1

+fz<T)-(z( 3 bb)T)

n=1\n+nx=n

fN(T)'(Z( Y bnl---bnN)T").

n=1\ni+-+ny=n

Using the fact that the free term of fi(T) is £ and it is 0 for f>(7T),..., fn(T), we can express ¢ b, as the sum of

terms of the type ¢ ] bf.ci , where ¢ € Og. Now ¢" b, € Ok follows by induction.
i<n
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