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Part I

Hasse–Minkowski theorem

1 Introduction to the p-adic integersZp

Our motivation is the local study of Diophantine equations. A Diophantine equation has form F (X1, . . . , Xn) = 0 for
some F (X1, . . . , Xn) ∈Z[X1, . . . , Xn], and we are interested in its integral solutions (x1, . . . , xn) ∈Zn . Assume we have
such a solution. Then trivially the following holds:

1. The equation F (X1, . . . , Xn) = 0 has a real solution x ∈Rn .

2. For each m = 1,2,3, . . . the congruence F (X1, . . . , Xn) ≡ 0 (mod m) has a solution.

The question is whether the converse is true, i.e. do the two conditions above imply existence of a solution in
Zn? In general the answer is no, even for equations in one variable.

Example 1.1. Consider an equation (X 2 −13)(X 2 −17)(X 2 −13 ·17) = 0. It obviously has a real root; further one
can check that it has solutions modulo m for each m (exercise). As we see, there are still no integer solutions. N

Our goal is to show the following result.

Theorem 1.2 (Hasse, Minkowski). Let F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] be a quadratic form (i.e. a homogeneous poly-
nomial of degree two). Assume that

1. The equation F (X1, . . . , Xn) = 0 has a nontrivial solution x ∈Rn .

2. For each m = 1,2,3, . . . the equation F (X1, . . . , Xn) ≡ 0 (mod m) has a nontrivial solution.

Then F (X1, . . . , Xn) = 0 has a nontrivial solution x ∈Zn .

Our proof of this result will be conceptual and elaborate. We start from recalling some basic facts and intro-
ducing the p-adic numbers.

Proposition 1.3 (Chinese remainder theorem). Let m = m1m2 with m1 and m2 relatively prime integers. A con-
gruence F (X ) ≡ 0 (mod m) has a solution iff both congruences F (X ) ≡ 0 (mod m1) and F (X ) ≡ 0 (mod m2) have
solutions.

Recall that the statement above comes from a ring isomorphism

Z/mZ�Z/m1Z×Z/m2Z,

x 7→ (x mod m1, x mod m2).

So since every m is a product pk1
1 · · ·pks

s of prime powers, it is enough to consider only congruences modulo

pk . And this is where the p-adic numbers come into play.

Example 1.4. Consider a congruence X 2 ≡ 2 (mod 7k ) for k = 1,2,3, . . .

• If k = 1, then the solutions are x =±3 (mod 7).

• If k = 2, then the equation is X 2 ≡ 2 (mod 72), so that x2 = 72 ·u+2, and x should be also a solution of X 2 ≡ 2
(mod 7), that is x ≡±3 (mod 7).

Suppose x ≡ x0 = 3 (mod 7), so x = 7u +3. We have
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(7u +3)2 ≡ 2 (mod 72),

2 ·3 ·7u +9 ≡ 2 (mod 72),

2 ·3 ·7u +7 ≡ 0 (mod 72),

6u +1 ≡ 0 (mod 7).

So we conclude u = 1 (mod 7), and the corresponding solution of X 2 ≡ 2 (mod 72) is x1 = 7 ·1+3 = 10.

• Proceeding as above for k = 3, we look for x2 = 72 ·u +x1 such that x2
2 ≡ 2 (mod 73).

(72 ·u +x1)2 ≡ 2 (mod 73),

2 ·72 ·u · x1 +x2
1 ≡ 2 (mod 73),

2 ·72 ·u ·10+2 ·72 ≡ 0 (mod 73),

20u +2 ≡ 0 (mod 7).

So we conclude u = 2 and x2 = 72 ·2+10 = 108.

Continuing in this manner, we have a sequence of numbers xk (with k = 0,1,2, . . .) such that x2
k ≡ 2 (mod 7k+1)

and xk ≡ xk−1 (mod 7k ). The sequence starts with x0 = 3, x1 = 10, x2 = 108, . . . It looks like an approximation to
p

2
digit by digit, but it is not decimal, it is 7-adic! N

Definition 1.5. Let p be a prime number. We say that a sequence of integers (x0, x1, x2, . . .) gives a p-adic integer if

xn ≡ xn−1 (mod pn) for every n = 1,2,3, . . . (*)

Further we say that two sequences (x0, x1, x2, . . .) and (x ′
0, x ′

1, x ′
2, . . .) define the same p-adic integer if xn ≡ x ′

n
(mod pn+1) for all n = 0,1,2, . . . We write (xn) ∼ (x ′

n) in this case.
This is an equivalence relation, and the set of p-adic integersZp is defined to be the set of all integer sequences

(x0, x1, x2, . . .) satisfying (*), modulo this equivalence.

To each integer x ∈Z corresponds a p-adic integer given by the sequence (x, x, x, . . .) (modulo the equivalence).
This gives an embedding Z ,→Zp .

Of course every p-adic integer can be defined by a sequence (xn) where xn ∈ {0,1, . . . , pn+1 − 1}. We call it a
canonical sequence.

Now consider a sequence (x0, x1, x2, . . .). We have x1 ≡ x0 (mod p), so that x1 = x0 + a1 p. If we assume that
0 ≤ x0 < p, then we have 0 ≤ a1 ≤ p −1. Proceeding in this manner,

x1 = a0 +a1 p,

x2 = a0 +a1 p +a2 p2,

· · ·
xn = a0 +a1 p +a2 p2 +·· ·+an pn ,

· · ·

where ai ∈ {0,1, . . . , p −1}. This is called the p-adic expansion of (x0, x1, x2, . . .), and it is unique.

Remark 1.6. Here is how one can calculate p-adic expansions in PARI/GP (http://pari.math.u-bordeaux.
fr/):
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? -1 + O(7^10)
%1 = 6 + 6*7 + 6*7^2 + 6*7^3 + 6*7^4 + 6*7^5 + 6*7^6 + 6*7^7 + 6*7^8 + 6*7^9 + O(7^10)

? sqrt(2+O(7^10))
%2 = 3 + 7 + 2*7^2 + 6*7^3 + 7^4 + 2*7^5 + 7^6 + 2*7^7 + 4*7^8 + 6*7^9 + O(7^10)

So every element of Zp corresponds bijectively to a sequence (a0, a1, a2, . . .) with ai ∈ {0,1, . . . , p −1}. This set is
really big, it has cardinality of the continuum.

The p-adic integers Zp form a commutative ring. For two numbers x = (xn) ∈ Zp and y = (yn) ∈ Zp we define
the sum and product by

x + y := (xn + yn), x · y := (xn yn).

One checks that this does not depend on the choice of sequences representing x and y .

Note that we define addition and multiplication for sequences and not for p-adic expansions. Adding and
multiplying p-adic expansions is tricky: one should think about carrying digits, just like for the long multiplication
of the usual integers written in, say, base ten.

Finally, we note that all the definitions above can be summarized as follows: Zp is the inverse limit of rings
Z/pnZ:

Zp = lim←−−
n
Z/pnZ.

Remark 1.7. The construction of p-adic integers can be generalized to the so-called ring of Witt vectors. For
instance, Zp is the ring of Witt vectors W (Fp ) of the finite field Fp . See J.–P. Serre, Corps locaux, §II.6.

Theorem 1.8. A p-adic integer x = (xn) is invertible inZp iff x0 is invertible modulo p, i.e. whenever x0 . 0 (mod p).

Proof. Assume x is invertible, so that x y = 1 for some y ∈ Zp . Then they are represented by sequences x =
(x0, x1, x2, . . .) and y = (y0, y1, y2, . . .) such that xn yn ≡ 1 (mod pn+1). In particular, this means that x0 . 0 (mod p).

In the opposite direction, assume that x0 . 0 (mod p). We have xn ≡ xn−1 (mod pn), and thus xn ≡ xn−1

(mod p),

xn ≡ xn−1 ≡ xn−2 ≡ ·· · ≡ x0 . 0 (mod p).

xn . 0 (mod p) means that xn is invertible (mod pn+1), so there exists yn such that xn yn ≡ 1 (mod pn+1),
meaning that (xn) · (yn) ∼ 1. We have to check that (yn) gives a p-adic integer. Indeed,

xn yn ≡ 1 (mod pn+1),

xn−1 yn−1 ≡ 1 (mod pn),

xn ≡ xn−1 (mod pn),

xn−1 yn ≡ xn−1 yn−1 ≡ 1 (mod pn),

yn ≡ yn−1 (mod pn).

■
Corollary 1.9. Every x ∈Z is invertible in Zp iff x . 0 (mod p).

Example 1.10. 2 is invertible in Z3, so let us compute 1
2 ∈Z3 as a sequence (x0, x1, x2, . . .).

We should have 2 x0 ≡ 1 (mod 3), so x0 = 2.
Then 2 x1 ≡ 1 (mod 32). Since x1 = x0 +3u = 2+3u, we get

2 · (2+3u) ≡ 1 (mod 32),
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so u = 1 and x1 = 2+1 ·3 = 5. Proceeding in this manner,

x = 2+1 ·3+1 ·32 +·· ·

That is, x0 = 2, x1 = 2+1 ·3 = 5, x2 = 2+1 ·3+1 ·32 = 14, and so on. We have indeed

2 x = 2+2(1+3+32 +·· ·︸             ︷︷             ︸
−1/2

) = 2−1 = 1.

Where we compute the infinite sum using the “geometric progression formula”

1+3+32 +·· · = 1

1−3
=−1

2

(formulas as
∑

0≤k
xk = 1

1−x make sense for p-adic numbers when p | x; more precisely, when |x|p < 1—see below the

discussion of absolute values and convergence). N

In general, Zp contains the set of “p-integral numbers”

Q∩Zp = {
a

b
| a,b ∈Z, p - b}.

Theorem 1.11. Every number α ∈Zp , α, 0, can be uniquely represented as pnε where n = 0,1,2, . . . and ε ∈Z×
p .

Proof of the theorem. Look at the p-adic expansion of α:

α= a0 +a1 p +a2 p2 +·· ·

Let n be the smallest index i such that ai , 0. Then we have

α= an pn +an+1 pn+1 +an+2 pn+2 +·· · = pn (an +an+1 p +an+2 p2 +·· · ).

The number ε := an +an+1 p +an+2 p2 +·· · is a unit since an , 0.

Now we need to show that the presentation pn ε is unique. Assume α = pn ε = p s η for some integers n and s
and some units ε and η.

pn (an +an+1 p +an+2 p2 +·· ·︸                              ︷︷                              ︸
ε

) = p s (a′
s +a′

s+1 p +a′
s+2 p2 +·· ·︸                            ︷︷                            ︸

η

).

By uniqueness of p-adic expansions, we should have n = s and ai = a′
i for all i . ■

Corollary 1.12. Zp is an integral domain, i.e. for α,β ∈Zp if αβ= 0 then α= 0 or β= 0.

Proof. Assume α, 0 and β, 0. We have α= pm ε, β= p s η, and αβ= pm+s εη= pm+s θ for some unit θ := εη.

αβ= pm+s (am+s +am+s+1 p +am+s+2 p2 +·· ·︸                                        ︷︷                                        ︸
θ

).

We have am+s , 0 and so αβ, 0. ■
If α = pn ε is the representation of a p-adic number as above, then we define the p-adic order of α to be

νp (α) := n. We also put νp (0) :=∞. It satisfies the following properties:

• νp (α) =∞ iff α= 0.

• νp (αβ) = νp (α)+νp (β).
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• νp (α+β) ≥ min{νp (α),νp (β)}, with equality when νp (α), νp (β).

Indeed, let α= pn ε and β= p s η. Suppose n > s. Then

α+β= p s (pn−s ε+η).

We claim that pn−s ε+η is a unit. Indeed, pn−s ε≡ 0 (mod p) and η. 0 (mod p), so pn−s ε+η. 0 (mod p). So
νp (α+β) = s = min{νp (α),νp (β)}.

For n = s in general we have only νp (α+β) ≥ s—it can be the case that ε+η is not a unit.

Proposition 1.13. Let α,β ∈Zp . Then α |β in Zp iff νp (α) ≤ νp (β).

Proof. If α |β then β=αγ, so νp (β) = νp (α)+νp (γ) ≥ νp (α).
In the other direction, if νp (α) ≤ νp (β), then we have α= pn ε and β= p s η with s ≥ n.

β= pn ε p s−n ηε−1︸        ︷︷        ︸
=:γ

=αγ.

■
Recall that if R is an integral domain, then we say that an element α , 0 is irreducible if α ∉ R× and α = βγ

implies β ∈ R× or γ ∈ R×. That is, α is not a product of two non-units. We see that the only irreducible element in
Zp is p (up to multiplication by a unit).

Proposition 1.14. The only maximal ideal in Zp is pZp , and all ideals in Zp are powers of the maximal ideal.

Proof. Let I be an ideal in Zp . Consider n := min{νp (α) |α ∈ I }. We claim that I = pnZp .
There exists α ∈ I such that νp (α) = n, namely α= pn ε for some ε ∈Z×

p . Now pn =αε−1 ∈ I , thus I ⊇ pnZp .
If β ∈ I , then β= p sη, with s = νp (β) ≥ n. So β= pn γ with γ= pn−s η and β ∈ pnZp . Hence I ⊆ pnZp .
In particular, the only maximal ideal is pZp . ■
This means that Zp is a discrete valuation ring. Knowing that all ideals in Zp have form (pn), it is natural to

ask what are the quotient rings Zp /(pn).
First we see that there is a surjective map

Z
� � // Zp

// // Zp /(pn),

x � // (x, x, . . .) � // (x, x, . . .) mod pn

Here we take an integer x and then look at it as a p-adic number (represented by a sequence (x, x, x, . . .)),
modulo pn . The surjectivity is clear: any p-adic number

α= a0 +a1 p +a2 p2 +·· ·+an−1 pn−1 +an pn +·· ·

modulo pn is equivalent to a0 + a1 p +·· ·+ an−1 pn−1, which is an ordinary integer. On the other hand, it is clear
that the map sends x to 0 ∈Zp /(pn) iff x is divisible by pn . Thus the kernel is pnZ, and

Zp /(pn)�Z/pnZ.
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2 Field of p-adic numbersQp

Definition 2.1. The field of p-adic numbersQp is the fraction field of Zp .

Proposition 2.2. Every α ∈Q×
p is represented in a unique way as pn ε where n ∈Z and ε ∈Z×

p is a p-adic unit.

Proof. We have α= pr ε
p s ζ for some units ε,ζ ∈Z×

p and so α= pr−s θ, where θ := εζ−1.

For the uniqueness assume α= pn θ = p s η. Take r big enough such that r +n and r + s are both nonnegative.
Then

prα= pr+nθ = pr+sη ∈Zp .

By uniqueness of the corresponding representation for the p-adic integers, we conclude n = s and θ = η. ■
The p-adic order νp (·) extends toQp , and we have a map νp : Qp →Z∪{∞}. It satisfies the following properties:

1. νp (α) =∞ iff α= 0.

2. νp (αβ) = νp (α)+νp (β).

3. νp (α+β) ≥ min{νp (α),νp (β)}, with equality if νp (α), νp (β).

This means that we have a discrete valuation onQp . With respect to this valuation,

Zp = {α ∈Qp | νp (α) ≥ 0}.

3 Topology and convergence onQp

Intuitively, a p-adic number α ∈ Qp is “small” if it is divisible by a high power of p. That is, if νp (α) is large. So
to define the p-adic absolute value on Qp , we pick ρ ∈ (0,1) and put |α|p := ρνp (α). This satisfies the following
properties:

• |α|p = 0 iff α= 0.

• |αβ|p = |α|p · |β|p .

• |α+β|p ≤ max{|α|p , |β|p } with equality if |α|p , |β|p .

This defines a metric onQp with distance d(α,β) := |α−β|p . That is, the following properties are satisfied:

• d(α,β) = d(β,α).

• d(α,β) = 0 iff α=β.

• d(α,γ) ≤ d(α,β)+d(β,γ).

Actually, instead of the triangle inequality, a stronger ultrametric inequality d(α,γ) ≤ max{d(α,β), d(β,γ)}
holds.

With respect to this metric, the subspace Zp of p-adic integers is the unit ball centered in 0:

Zp = {α ∈Qp | |α|p ≤ 1}.

Note that the choice of ρ ∈ (0,1) above does not affect the topological properties ofQp ; for arithmetical reasons,
later on we will fix ρ = 1/p (see p. 12).
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Definition 3.1. A sequence of p-adic numbers (αn) is said to converge to α ∈Qp if

lim←−−
n→∞

νp (αn −α) =∞;

equivalently,
lim←−−

n→∞
|αn −α|p = 0.

This is the same as convergence in the metric space (Qp ,d).

Example 3.2. The sequence p, p2, p3, . . . converges to 0 inQp since νp (pn) = n tends to ∞. N

Example 3.3. Letα ∈Zp be a p-adic integer represented by a sequence (x0, x1, x2, . . .) with xn ≡ xn−1 (mod pn). So
xn −xn−1 ≡ 0 (mod pn), meaning νp (xn −xn−1) ≥ n. Thus the sequence (xn −xn−1) converges to 0 in Zp . N

Example 3.4. Let α ∈ Zp be a p-adic integer represented by a sequence (x0, x1, x2, . . .) with xn ≡ xn−1 (mod pn).
Consider a sequence of p-adic numbers (α− xn). One has νp (α− xn) ≥ n +1, which tends to ∞ as n →∞. This is
clear if we look at p-adic expansions:

x0 = a0,

x1 = a0 +a1 p,

x2 = a0 +a1 p +a2 p2,

· · ·
α= a0 +a1 p +a2 p2 +·· ·

So if α ∈Zp is represented by a sequence (x0, x1, x2, . . .), then this sequence converges to α.
This also gives a precise sense to p-adic expansions α = “

∑
n≥0 an pn” that were introduced as formal expres-

sions: the sum on the right hand side indeed converges to α, treated as a limit of partial sums xn = (
∑

0≤i≤n ai p i )n .
N

From this example we see that each α is a limit of a sequence of integers. Thus Z is dense in Zp , and similarly
Q is dense inQp . Now we investigate other topological properties ofQp , and Zp as its subspace.

Theorem 3.5. Zp is sequentially compact. That is, every infinite sequence inZp contains a convergent subsequence.

Proof. Let (αn) be an infinite sequence in Zp with terms

αn = an,0 +an,1 p +an,2 p2 +·· ·
There exists an infinite number of n such that the 0-th p-adic digit of αn is some an,0 = a0. We take the subse-

quence (α(0)
n ) of such numbers. Similarly, there should be a subsequence (α(1)

n ) with 1-st p-adic digit being equal
to some a1, and so on. So there is a chain of such subsequences (α(0)

n ), (α(1)
n ), (α(2)

n ), . . .. One can take the “diagonal
sequence” (βk ) with βk :=α(k)

k , which is a subsequence of (αn) by construction. Also by construction, it converges
to the p-adic number

β= a0 +a1 p +a2 p2 +·· ·
■

Corollary 3.6. Qp is locally compact. That is, every bounded sequence inQp has a convergent subsequence.

Proof. Let (αn) be a bounded sequence inQp . This means that |αn |p = ρνp (αn ) ≤ A for some A ∈R≥0.
Take some s big enough such that |p s |p ≤ 1

A . Consider the sequence (p s αn)n . Then |p s αn |p = |p s |p · |αn |p ≤
1
A A = 1, thus p s αn ∈ Zp . By the previous theorem, the sequence (βn) = (p s αn)n has a convergent subsequence
(βnk )k . That is, there is some β ∈Zp such that νp (β−βnk ) →∞ as k →∞. The sequence (αnk )k is a subsequence of
(αn)n , and it converges to the p-adic numberβ/p s since νp (β/p s−αnk ) = νp (β/p s−βnk /p s ) = νp (1/p s ·(β−βnk )) =
νp (1/p s )+νp (β−βnk ), which tends to ∞ as k →∞. ■
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Theorem 3.7. A sequence (αn) inQp converges iff (αn −αn−1)n converges to zero.

Proof. Assume (αn) converges to some α ∈Qp . Then |αn −α|p → 0. That is, for each ε> 0 there exists N such that
|αn −α|p ≤ ε for all n ≥ N . But now

|αn+1 −αn |p = |(αn+1 −α)+ (α−αn)|p ≤ max{|αn+1 −α|p , |α−αn |p } ≤ ε,

so αn −αn−1 → 0.

Assume now that (αn −αn−1)n converges to zero. This means that the sequence (αn −αn−1)n is bounded. We
can choose A such that |α0|p ≤ A and |αn −αn−1|p ≤ A for all n ≥ 1. So this means

|αn |p = |αn −αn−1 + αn−1 −αn−1 + ·· · + α1 −α0 +α0|p
= |(αn −αn−1)+ (αn−1 −αn−1)+·· ·+ (α1 −α0)+α0|p
≤ max(|αn −αn−1|p , . . . , |α1 −α0|p , |α0|p ) ≤ A,

and (αn) is a bounded sequence in Qp . It has a subsequence (αnk )k converging to some α, because Qp is locally
compact. So for each ε> 0 there exists K such that |α−αk |p < ε for all k ≥ K . But αn −αn−1 converges to zero, so
there exists N such that |αn −αn−1|p < ε for all n ≥ N . Thus for n ≥ N and n ≥ nK we have

|αn −α|p = |αn −αn−1 +αn−1 +·· ·+αnK +1 −αnK +αnK −α|p
≤ max{|αn −αn−1|p , . . . , |αnK +1 −αnK |p , |αnK −α|p } < ε.

So |αn −α|p < ε for n big enough, and (αn) converges to α. ■
Remark 3.8. The last theorem actually means that Qp is a complete metric space, that is, a sequence converges
inQp iff it is Cauchy, meaning that for each ε> 0 there exists N such that |αn −αm | < ε for all n,m ≥ N .

The Cauchy condition of course always implies that αn −αn−1 → 0, but actually for Qp the latter is equivalent
to the Cauchy condition, since

|αn −αm |p = |αn −αn−1 +αn−1 −αn−2 +·· ·+αm+1 −αm |p ≤ max{|αn −αn−1|p , . . . , |αm+1 −αm |p }.

Note that this depends strongly on the ultrametric inequality |x + y |p ≤ max{|x|p , |y |p }, and in the proof of the
theorem above we use the same trick.

The last theorem is not true for all complete metric spaces. For example, in R with the usual Euclidean metric
the sequence (

∑
1≤i≤n

1
i )n satisfies the condition from the theorem, but it is not Cauchy, and indeed the harmonic

series
∑

n≥1
1
n diverges.

Corollary 3.9. The series
∑

n≥0αn converges inQp iff the sequence (αn) converges to zero.

Proof. The series is by definition given by the sequence (
∑

0≤i≤nαi )n , so it converges iff (
∑

0≤i≤nαi−∑
0≤i≤n−1αi )n =

(αn)n converges to zero. ■

4 Fields with absolute values

Definition 4.1. Let K be a field. An absolute value is a function | · | : K →R≥0 satisfying the following properties:

1. |α| = 0 iff α= 0.

2. Multiplicativity: |αβ| = |α| · |β| for all α,β ∈ K .

3. Triangle inequality: |α+β| ≤ |α|+ |β| for all α,β ∈ K .
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In particular, multiplicativity implies that |1| = 1.

Example 4.2. • The usual absolute values on Q,R,C give examples of absolute values in the sense of the defi-
nition above.

• The p-adic absolute value | · |p onQp is an absolute value. It is also an absolute value on the subfieldQ⊂Qp .

• There is always the trivial absolute value given by |α| := 1 for all α, 0.

• If K = F (t ) where F is another field, then for x ∈ F (t ) the order of vanishing at α ∈ F is given by ordα x := m
such that (t −α)−m has no zeroes and no poles at α.

So ordα x > 0 if x has a zero at α and ordα x < 0 if x has a pole at α.

| · |α := ordα(·) is an absolute value on F (t ).
N

A field K with an absolute value | · | is a metric space with respect to the distance d(α,β) := |α−β|. We call K a
complete field if it is complete as a metric space (i.e. every Cauchy sequence converges).

Example 4.3. • Q is not complete. The completion of Q with respect to the usual absolute value | · | is R. The
completion ofQwith respect to a p-adic absolute value | · |p isQp .

• For Rwe can take C, its algebraic closure. It is again complete with respect to the usual absolute value on C.

• Qp is not algebraically closed. If we take the algebraic closure (Qp )alg, then is not complete, but its comple-
tion is algebraically closed; it is usually denoted by Cp .

• The completion of F (t ) with respect to | · |0 := ord0(·) is the field of Laurent series F ((t )).
N

For every field K we can consider the subring ZK generated by 1 (the smallest subring). It is isomorphic either
to Z if charK = 0 or to Fp if charK = p > 0.

Definition 4.4. We say that the absolute value | · | on K is archimedian if it is not bounded on ZK , and nonarchi-
median otherwise.

Trivially, a field of characteristic p > 0 has only nonarchimedian absolute values.
Observe that a nonarchimedian absolute value should satisfy |x| ≤ 1 for all x ∈ZK , otherwise the absolute value

of |xn | is not bounded.

Example 4.5. The usual absolute value is archimedian.
The p-adic absolute value |·|p , the trivial absolute value, the absolute value |·|α on F (t ) are all nonarchimedian.

N

Theorem 4.6. Let K be a field with an absolute value | · |. The following are equivalent:

1. | · | is nonarchimedian.

2. |α+β| ≤ max{|α|, |β|}.

Proof. Clearly (2) implies (1): for n = 1+1+·· ·+1 ∈ZK one has

|n| ≤ max{|1|, |1|, . . . , |1|} = 1.

In the other direction (1) ⇒ (2) — an exercise. ■
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Remark 4.7. For a nonarchimedian absolute value | · | one has

|α+β| = max{|α|, |β|} for |α|, |β|.
Indeed, assume |α| > |β|. Then |α+β| ≤ |α|, but also |α| = |(α+β) −β| ≤ max{|α+β|, |β|} = |α+β|. Thus

|α+β| = |α|.
Definition 4.8. Let | · |1 and | · |2 be absolute values on K . Then we say that they are equivalent, | · |1 ∼ | · |2, if they
define the same topology on K (that is, every sequence (αn) converges to α with respect to | · |1 iff it converges to α
with respect to | · |2).

Example 4.9. Consider the absolute value | · |1/2 on R or Q given by |α|1/2 := |α|1/2. It is equivalent to the usual
absolute value.

Define a p-adic absolute value on Q by | · |p := ρνp (α) for ρ ∈ (0,1). Different choices of ρ lead to different but
equivalent absolute values. N

In general, if | · | is an absolute value, then | · |λ is an absolute value equivalent to | · |, if holds

• λ ∈ (0,1] when | · | is archimedian,

• λ ∈ (0,+∞) when | · | is nonarchimedian.

Theorem 4.10. Let | · |1 and | · |2 be absolute values on K . The following are equivalent:

1. | · |1 ∼ | · |2.

2. There exists λ ∈R≥0 such that | · |2 = | · |λ1 .

Proof. (2) ⇒ (1) is clear, (1) ⇒ (2) is an exercise. ■
Theorem 4.11 (Weak approximation theorem). Let K be a field. Let |·|1, . . . , |·|m be pairwise nonequivalent absolute
values (finitely many). Let α1, . . . ,αm ∈ K and let ε> 0. Then there exists α ∈ K such that

|α−α1|1, . . . , |α−αm |m < ε.

Proof is left as an exercise (rather tricky).

Example 4.12. Let K =Q and let p1, . . . , pm be distinct primes and s1, . . . , sm be natural numbers. Forα1, . . . ,αm ∈Z
there exists α ∈Z such that

α≡α1 (mod p s1
1 ),

· · ·
α≡αm (mod p sm

m ).

So the weak approximation theorem generalizes the Chinese remainder theorem. N

Let Ki be the completions of K with respect to the absolute values | · |i . We may consider the diagonal embed-
ding

K ,→ K1 ×·· ·×Km ,

α 7→ (α, . . . ,α).

The weak approximation theorem is equivalent to saying that the image of this map is dense.
We know the following examples of absolute values on Q: the usual | · |, the p-adic | · |p for each prime p, and

the trivial one. In fact, that is all.
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Theorem 4.13 (Ostrowski). Every nontrivial absolute value onQ is equivalent either to | · |, or to | · |p for some p.

Proof is left as an exercise (easy for nonarchimedian absolute values; a bit harder to show that there is only the
usual archimedian absolute value).

We denote by MQ the set of all absolute values on Q up to equivalence. We want to pick convenient represen-
tatives in every equivalence class:

• | · | is the usual archimedian absolute value.

• For every prime p take |α|p := ρνp (α) with ρ = 1/p. That is, |α|p := p−νp (α).

Now by MQ = {2,3,5,7,11, . . .}∪{∞} we denote the set of “normalized” absolute values. We treat |·| as an absolute
value | · |∞ coming from an “infinite prime”.

Theorem 4.14 (Product formula). Let α ∈Q×. Then∏
p∈MQ

|α|p = 1.

Proof. Consider a function φ(α) := ∏
p∈MQ

|α|p . It is multiplicative, so it is enough to verify the statement for the
generators ofQ×, that is for prime numbers.

|q |p =


q−1, p = q,
q, p =∞,
1, otherwise.∏

p∈MQ

|q |p = q−1 q = 1.

■
Example 4.15. Let α=−12/5. Then we have

|α|2 = 1

4
, |α|3 = 1

3
, |α|5 = 5, |α|∞ = 12

5
,

|α|p = 1 for p , 2,3,5.

And so indeed

∏
p∈MQ

|α|p = 1

4
· 1

3
·5 · 12

5
= 1.

N

The product formula can be generalized to any number field K /Q—see p. 61.

5 Equations over p-adic numbers

We relate equations over p-adic numbers to congruences modulo pk .

Theorem 5.1. Let F (X1, . . . , Xn) ∈ Z[X1, . . . , Xn] be a polynomial with integer coefficients. Let p be a prime number.
The following are equivalent:

1. For all k = 1,2,3, . . . the congruence F (X1, . . . , Xn) ≡ 0 (mod pk ) has a solution.

2. The equation F (X1, . . . , Xn) = 0 has a solution in Zp .
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Proof. Suppose α = (α1, . . . ,αn) ∈ Zn
p is a solution of an equation F (X ) = 0. Then looking at the identity F (α) = 0

modulo pk , we have a congruence F (a) ≡ 0 (mod pk ) with some a ∈Zn (recall that Zp /(pk )�Z/pkZ).

Now suppose that for k = 1,2,3, . . . there exists a sequence of integers a(k) = (a(k)
1 , . . . , a(k)

n ) such that F (a(k)) ≡ 0

(mod pk ). Since Zp is sequentially compact, we may assume that this sequence is convergent to some α ∈Zn
p (by

replacing it with some subsequence). Now F (α) = lim←−−k→∞ F (a(k)) = 0, because |F (a(k))| ≤ p−k . ■
Moreover, if F is, say, a quadratic form, then nontrivial solutions of F (X ) = 0 correspond to nontrivial solutions

of F (X ) ≡ 0 (mod pk ). Now we can restate our goal, the Hasse–Minkowski theorem (1.2), in the following way:

Theorem 5.2 (Local–global principle; Hasse, Minkowski). Let F (X1, . . . , Xn) ∈Z[X1, . . . , Xn] be a quadratic form. The
following conditions are equivalent:

1. Local: F (X ) = 0 has a nontrivial solution inQn
p for each 2 ≤ p ≤∞.

2. Global: F (X ) = 0 has a nontrivial solution inQn .

6 Hensel’s lemma

Here we will prove the Hensel’s lemma, a vital tool which will be used in many subsequent proofs.

Theorem 6.1 (Hensel’s Lemma, first form). Let f (X ) ∈Zp [X ] be a p-adic polynomial and assume there exists α0 ∈
Zp such that f (α0) ≡ 0 (mod p) but f ′(α0) . 0 (mod p). Then there exists a unique α ∈ Zp such that f (α) = 0 and
α≡α0 (mod p).

Example 6.2. There exists α ∈Z7 such that α2 ≡ 2 (mod 7) and α≡ 3 (mod 7).
For this apply the Hensel’s lemma to f (X ) = X 2−2 andα0 = 3. We have f (α0) = 7 ≡ 0 (mod 7) and f ′(α0) = 6. 0

(mod 7).
This is the 7-adic square root of 2:

p
2 = 3+7+2 ·72 +6 ·73 +74 +2 ·75 +76 +2 ·77 +4 ·78 +6 ·79 +·· ·

We already saw this in example 1.4. N

Sometimes the stated Hensel’s lemma is not enough and one should use its generalization:

Theorem 6.3 (Hensel’s Lemma, strong form). Let f (X ) ∈ Zp [X ] be a p-adic polynomial and assume there exists
α0 ∈ Zp such that f (α0) ≡ 0 (mod p2k+1) but f ′(α0) . 0 (mod pk+1). Then there exists a unique α ∈ Zp such that
f (α) = 0 and α≡α0 (mod pk+1).

(Usually k = 1 is enough.)

Actually Hensel’s lemma is valid for any complete nonarchimedian field. Suppose K is complete with respect
to a nonarchimedian absolute value | · |. Consider its ring of integers

OK := {x ∈ K | |x| ≤ 1}.

Theorem 6.4 (General Hensel). Suppose f (X ) ∈ OK [X ] is a polynomial, and α0 ∈ OK is such that | f (α0)| < 1 and
| f ′(α0)| = 1. Then there exists a unique α ∈OK such that f (α) = 0 and |α−α0| < 1.

Theorem 6.5 (General Hensel, strong form). Suppose f (X ) ∈ OK [X ] is a polynomial, and α0 ∈ OK is such that

| f (α0)| < | f ′(α0)|2. Then there exists a unique α ∈OK such that f (α) = 0 and |α−α0| ≤ | f (α0)|
| f ′(α0)| .
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Remark 6.6. In fact Hensel’s lemma is about complete rings:
Let R be a ring that is complete with respect to the idealm. Suppose f (X ) ∈ R[X ] is a polynomial, and α0 ∈ R is such
that f (α0) ≡ 0 (mod f ′(α0)2m). Then there exists α ∈ R such that f (α) = 0 and α ≡ α0 (mod f ′(α0)m). Further, if
α0 is not a zero divisor in R, then α is unique.

See Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Chapter 7 and Atiyah, Macdonald,
Introduction to Commutative Algebra, Exercises 10.9, 10.10.

We are interested only in the case R =OK , where K is a complete nonarchimedian field.

Proof of the first statement (theorem 6.1). So we suppose we have a polynomial f (X ) ∈ Zp [X ] and α0 ∈ Zp such
that f (α0) ≡ 0 (mod p) and f ′(α0) . 0 (mod p). We want to find α ∈ Zp such that f (α) = 0 and α ≡ α0 (mod p).
Moreover, we want to show that such α is unique.

We construct a sequence (αn)n≥0 such that αn ≡ αn−1 (mod pn) and f (αn) ≡ 0 (mod pn+1). All terms in our
sequence will satisfy αn ≡α0 (mod p). In particular, f ′(αn) ≡ f ′(α0). 0 (mod p).

Assume αn−1 is defined and f (αn−1) ≡ 0 (mod pn) and f ′(αn−1) . 0 (mod p). We need to define αn of the
form αn−1 +pn u for some u. Look at the “Taylor expansion” around αn−1:

f (αn) = f (αn−1)+ f ′(αn−1) (αn −αn−1)+ (αn −αn−1)2 g (αn ,αn−1).

Here g (X ,Y ) ∈Zp [X ,Y ] gives the rest of the expansion.
We should have αn −αn−1 = pn u for some u, so

f (αn) = f (αn−1)+pn u f ′(αn−1)+p2n u2 g (αn ,αn−1) ≡ f (αn−1)+pn u f ′(αn−1) (mod p2n).

As required, f (αn) ≡ f (αn−1) ≡ 0 (mod p).
Since f (αn−1) ≡ 0 (mod pn), we have f (αn−1) = v pn , and inαn =αn−1+pn u we can substitute u :=−v/ f ′(αn−1),

that is take

αn :=αn−1 − f (αn−1)

f ′(αn−1)
. (*)

Now |αn −αn−1|p → 0 as n → ∞, so our sequence converges to some α ∈ Zp . For this α we have f (α) =
lim←−−n→∞ f (αn) = 0. Since αn ≡α0 (mod p), we have α≡α0 (mod p).

Now we found the requested α, and it remains to show its uniqueness. Assume we have also β such that
f (α) = f (β) = 0 and α≡β≡α0 (mod p). Since f ′(α0). 0 (mod p), we have f ′(α). 0 (mod p). As before, we look
at a “Taylor expansion”. We have an identity in Zp

f (β)︸ ︷︷ ︸
=0

= f (α)︸ ︷︷ ︸
=0

+ f ′(α) (β−α)+ (β−α)2 g (α,β).

Since f ′(α) is a unit, we have
β−α=−(β−α)2 g (α,β) f ′(α)−1.

We compute p-adic norms of both sides: the term g (α,β) f ′(α)−1 gives some norm |g (α,β) f ′(α)−1|p ≤ 1, so we
have a bound

|β−α|p ≤ |β−α|2p .

But since |β−α|p < 1, this inequality means |β−α|p = 0, and so β=α. ■
Observe that in the proof above we used the formula (*), which is the same as in the Newton’s method for

finding a root of f in R. So we see that in the nonarchimedian case Newton’s method always converges.
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Proof of the general Hensel (theorem 6.5). We have a polynomial f (X ) ∈ OK [X ] and α0 ∈ OK is such that | f (α0)| <
| f ′(α0)|2. We look for α ∈ OK such that f (α) = 0 and |α−α0| ≤ | f (α0)|

| f ′(α0)| . We will show that such α exists and we omit
the proof of its uniqueness.

Denote

δ := | f (α0)|
| f ′(α0)|2 < 1.

We recursively define a sequence (αn)n≥0 such that the following formulas hold:

| f (αn)| ≤ δ2n | f ′(α0)|2, (1)n

|αn −αn−1| ≤ δ2n−1 | f ′(α0)|, (2)n

| f ′(αn)| = | f ′(α0)|. (3)n

Assume we have αn−1. We define the next term again by the Newton’s formula

αn :=αn−1 − f (αn−1)

f ′(αn−1)
.

We should show that (1)n , (2)n , (3)n follow from (1)n−1, (2)n−1, (3)n−1. With this definition of αn we deduce

|αn −αn−1| = | f (αn−1)|
| f ′(αn−1)| ≤

δ2n−1 | f ′(α0)|2
| f ′(α0)| = δ2n−1 | f ′(α0)|.

Next we have
f (αn) = f (αn−1)+ (αn −αn−1) f ′(αn−1)︸                                    ︷︷                                    ︸

=0

+(αn −αn−1)2 g (αn ,αn−1),

and this gives an estimate
| f (αn)| ≤ |αn −αn−1|2 ≤ δ2n | f ′(α0)|2.

We have another estimate
|αn −αn−1| ≤ δ2n−1 | f ′(α0)| < | f ′(α0)|.

We apply this to the formula
f ′(αn) = f ′(α0)+ (αn −α0)h(αn ,α0)

and get
| f ′(αn)− f ′(α0)| = |αn −α0| · |h(αn ,α0)| < | f ′(α0)|.

Now | f ′(αn)| = | f ′(α0)|, since otherwise the last bound becomes

max{| f ′(αn)|, | f ′(α0)|} = | f ′(α0)| < | f ′(α0)|.

■

The Hensel’s lemma can be generalized to multivariate polynomials.

Theorem 6.7. Let F (X1, . . . , Xn) ∈Zp [X1, . . . , Xn] be a polynomial in n variables and let γ= (γ1, . . . ,γn) ∈Zn
p be such

that F (γ) ≡ 0 (mod p2k+1) and there is some i = 1, . . . ,n such that F ′
Xi

(γ) , 0 (mod pk+1). Then there exists α ∈ Zn
p

such that α= γ (mod pk+1) and F (α) = 0.

This reduces to the usual Hensel’s lemma. We may assume i = 1. Consider f (X ) := F (X ,γ2, . . . ,γn) and take
β0 := γ1. Then f ′(β0) = F ′

X1
(γ) and we can conclude that there exists a unique β such that β≡ β0 (mod pk+1) and

f (β) = 0. Take α := (β,γ2, . . . ,γn), and we are done.

As an application of the Hensel’s lemma, we investigate the squares inQ×
p .
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7 Squares inQ×
p

In the group of unitsQ×
p there is a subgroup, which we denote by (Q×

p )2, formed by squares:

(Q×
p )2 := {α2 |α ∈Q×

p }.

We would like to determine the subgroup index [Q×
p : (Q×

p )2].

The easiest case is p =∞. The subgroup of squares (R×)2 is the multiplicative group of positive numbers, and
[R× : (R×)2] = 2.

Assume that 2 < p <∞. Consider a unit ε ∈Z×
p . When is it a square?

Proposition 7.1. Assume p , 2. Then ε is a square in Zp if εmod p is a square in Fp .

Proof. We apply Hensel’s lemma (6.1) to a polynomial f (X ) = X 2 − ε. Its derivative is f ′(X ) = 2 X . If there exists
η0 such that η2

0 ≡ ε (mod p), then automatically f ′(η0) = 2η0 . 0 (mod p), and by Hensel there exists η ∈Zp such
that η2 = ε.

(Note that the derivative is 2 X , so our argument depends on the assumption p , 2!) ■
We have Zp /(p) � Fp , and F×p is a cyclic group of order p −1. The subgroup of squares (F×p )2 has index 2. Now

ε ∈Z×
p is a square iff the image of ε in F×p is a square. Hence [Z×

p : (Z×
p )2] = 2.

An element α ∈ Q×
p has form α = pmε for ε ∈ Z×

p . It is a square iff m is even and ε is a square. Hence [Q×
p :

(Q×
p )2] = 4.

The situation becomes most complicated for p = 2, because of the well-known principle:

all primes are odd and 2 is the oddest.

Proposition 7.2. A unit ε ∈Z×
2 is a square in Z×

2 iff ε≡ 1 (mod 8).

Proof. Assume ε ≡ 1 (mod 8). Apply the Hensel’s lemma (the strong form, theorem 6.3) for f (X ) = X 2 − ε and
η0 = 1. We have F (η0) ≡ 0 (mod 8) and f ′(η0) = 2 . 0 (mod 4). So there exists η such that η2 − ε = 0 and η ≡ η0

(mod 8). ■
Now we have Z2/(8)�Z/8Z and (Z/8Z)× �C2 ×C2. So [Z×

2 : (Z×
2 )2] = 4 and [Q×

2 : (Q×
2 )2] = 8.

To sum up our calculation,

[Q×
p : (Q×

p )2] =


2, p =∞,
4, 2 < p <∞,
8, p = 2.

8 Quadratic forms and quadratic spaces

Now we are going to develop some basic theory of quadratic forms that we will need later.

Let K be a field and let U be a vector space over K . Consider a symmetric bilinear form ψ : U ×U → K (recall
that this means that ψ(u, v) =ψ(v,u), and ψ(−, v),ψ(u,−) : U → K are both linear maps).

We can define a quadratic form φ(u) :=ψ(u,u); if charK , 2, then this in turn defines ψ, e.g. via the polariza-
tion identity

ψ(u, v) = 1

4
(φ(u + v)+φ(u − v)).

Indeed,
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ψ(u,u) =:φ(u),

2ψ(u, v) =φ(u + v)−φ(u)−φ(v),

2ψ(u, v) =φ(u)+φ(v)−φ(u − v),

4ψ(u, v) =φ(u + v)−φ(u − v).

So from now on we impose the restriction charK , 2 and we will useψ : U ×U → K andφ : U → K interchange-
ably for a bilinear form and the corresponding quadratic form.

Proposition 8.1. Assume ψ is not identically zero. Then neither is φ identically zero.

Proof. This is immediate from the polarization identity: if ψ(u, v), 0, then either φ(u + v), 0 or ψ(u − v), 0. ■
Definition 8.2. A pair (U ,ψ) consisting of a K -vector space U and a symmetric bilinear mapψ : U×U → K is called
a quadratic space. We say that a quadratic space is regular ifψ is nondegenerate; that is, if for each u , 0 the linear
map v 7→ψ(u, v) is nonzero.

U →U∨ := Hom(U ,K ),

u 7→ (v 7→ψ(u, v)).

We will work with finite dimensional vector spaces. We will also treat both (U ,ψ) and (U ,φ) as the same
quadratic space.

Proposition 8.3. The following are equivalent:

1. (U ,ψ) is regular.

2. If u1, . . . ,un is a basis of U , then det[ψ(ui ,u j )], 0.

(A proof can be found in any linear algebra textbook.)

We call the number δ(φ) = δ(ψ) := det[ψ(ui ,u j )] the discriminant of the quadratic form. It is not well-defined
since there is no canonical basis for U . We consider it modulo squares, i.e. as an element of K ×/(K ×)2.

Example 8.4. Let dimU = 2 and u, v be some basis of U . Define in this basis ψ : U ×U → K as follows:

ψ(u, v) =ψ(v,u) = 1,

ψ(u,u) =ψ(v, v) = 0.

(
0 1
1 0

)
The quadratic space (U ,ψ) is regular, but the subspaces 〈u〉 and 〈v〉 are not regular, since ψ restricted on them

is identically zero. N

Definition 8.5. Let (U ,ψ) be a quadratic space. For a subspace V ⊆U the orthogonal complement (with respect
to ψ) is defined to be

V ⊥ := {u ∈U |ψ(u, v) = 0 for all v ∈V }.

Proposition 8.6. If (U ,ψ) is regular, then dimV +dimV ⊥ = dimU .
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Proof. Consider a basis v1, . . . , vm of V and define a map

U →V ,

u 7→ (ψ(u, v1), . . . ,ψ(u, vm)).

Since ψ is regular, this is a surjection. The kernel is V ⊥. ■
It is not always the case that V ∩V ⊥ = {0}, however we always have the following.

Proposition 8.7. Assume U is regular and V is its subspace. Then (V ⊥)⊥ =V .

Proof. It is clear that V ⊆ (V ⊥)⊥.
On the other hand, we have

dimV +dimV ⊥ = dimU ,

dimV ⊥+dim(V ⊥)⊥ = dimU .

Thus dimV = dim(V ⊥)⊥. ■
Proposition 8.8. Assume V is a regular subspace of (U ,ψ). Then U =V ⊕V ⊥.

(We do not assume that U itself is regular.)

Proof. Take u ∈U and consider a map

f : V → K ,

v 7→ψ(u, v).

Since V is regular, there exists w ∈V such that f (v) =ψ(w, v) for all v ∈V .
We have a decomposition u = w +(u−w), and u−w ∈V ⊥ sinceψ(u−w, v) =ψ(u, v)−ψ(w, v) = 0 for all v ∈V .

So U =V +V ⊥.
Since V is regular, V ∩V ⊥ = {0}, and hence U =V ⊕V ⊥. ■

Proposition 8.9. Assume U is regular and V is its subspace. The following are equivalent:

1. V is regular.

2. V ∩V ⊥ = {0}.

3. V ⊥ is regular.

Definition 8.10. A basis u1, . . . ,un for U is called orthogonal (with respect to ψ) if ψ(ui ,u j ) = 0 for i , j .

(N.B. we do not talk about an orthonormal basis, just orthogonal.)

Proposition 8.11. Every quadratic space admits an orthogonal basis.

Proof. If ψ is identically zero, then any basis will do. If not, there is a vector u1 such that φ(u1) , 0. Consider a
subspace V := 〈u1〉; it is regular, U = V ⊕V ⊥, and dimV ⊥ < dimU . By induction on dimV ⊥, the whole U admits
an orthogonal basis u1, . . . ,un . ■

If (U ,ψ) is a regular quadratic space and u1, . . . ,un is an orthogonal basis, then φ(ui ), 0.
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Isotropy

Definition 8.12. A nonzero vector u such that ψ(u,u) = 0 is called isotropic (with respect to ψ).
We say that a quadratic space (U ,ψ) is isotropic (or that ψ is isotropic) if there exists an isotropic vector u ∈U .

Example 8.13. If (U ,ψ) is not regular, then it is isotropic. N

In example 8.4 we saw isotropic space with ψ given by a matrix

(
0 1
1 0

)
, that is, in a basis u, v we have φ(x u +

y v) = 2 x y . This space is called the hyperbolic plane and it plays a special role:

Proposition 8.14. Let (U ,φ) be a regular isotropic space. Then U =V ⊕V ⊥ where V is the hyperbolic plane.

Proof. Sinceψ is isotropic, there exists a nonzero vector u ∈U such thatψ(u,u) = 0. Sinceψ is regular, there exists
w such that ψ(u, w), 0. We may assume ψ(u, w) = 1. Consider a vector v =λu +w where λ ∈ K .

ψ(u, v) =ψ(u,λu +w) =λψ(u,u)+ψ(u, w) = 1.

Now

ψ(v, v) =ψ(λu +w,λu +w) =λ2ψ(u,u)︸    ︷︷    ︸
=0

+2λψ(u, w)︸     ︷︷     ︸
=1

+ψ(w, w) = 2λ+ψ(w, w).

So we take λ=− 1
2 ψ(w, w) and now ψ(v, v) = 0 (we use our usual assumption charK , 2).

Thus V = 〈u, v〉 is the hyperbolic plane. Since V is regular, U =V ⊕V ⊥. ■
Definition 8.15. We call a quadratic space (U ,ψ) universal if for anyα ∈ K × there exists u ∈U such thatψ(u,u) =α.

We say in this case that ψ represents α.

Example 8.16. For K =R it is well-known that any quadratic form is equivalent to

X 2
1 +·· ·+X 2

r − (X 2
r+1 +·· ·+X 2

n).

It is isotropic iff 0 < r < n and it is also universal iff 0 < r < n. Is it always the case and being universal corre-
sponds to being isotropic? N

Proposition 8.17. Any regular isotropic space is universal.

Proof. This follows from the fact that the hyperbolic plane is universal. ■
The converse is not true: in general universality does not imply isotropy.

Theorem 8.18. Let K be a finite field with charK , 2. Then any regular quadratic space over K of dimension ≥ 2 is
universal.

Proof. It is sufficient to consider dimU = 2. Let u, v be an orthogonal basis for U . We have

φ(x u + y v) = x2φ(u)+ y2φ(v).

Here φ(u),φ(v), 0.
Now if K = Fq , then K × is a cyclic group of order q −1, and the subgroup of squares in K × has order

#(F×q )2 = q −1

2
.

So there are totally q+1
2 squares in Fq , taking into account also 0. We count the number of elements of the form

x2φ(u):

#{x2φ(u) | x ∈ Fq } = q +1

2
.
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Now for some α ∈ F×q count the elements of the form α− y2φ(v):

#{α− y2φ(v) | y ∈ Fq } = q +1

2
.

The number of elements sum up to q +1, meaning that the sets are not disjoint. So there exist some x, y ∈ Fq

such that

x2φ(u) =α− y2φ(v).

Thus for any α ∈ F×q we have α= x2φ(u)+ y2φ(v) =φ(x y + y v) for some x, y ∈ Fq . ■
On the other hand, not every two-dimensional space over a finite field is isotropic. To see it consider β ∈ F×q

which is not a square. Fix an orthogonal basis u, v with φ(u) = 1 and φ(v) =−β; that is φ(X ,Y ) = X 2 −βY 2. Then

φ(x u + y v) = x2 −β y2 , 0 for (x, y), (0,0).

Proposition 8.19. Let φ(X1, . . . , Xn) be a regular quadratic form over K and α ∈ K ×. The following are equivalent:

1. φ represents α.

2. φ(X1, . . . , Xn)−αY 2 is isotropic.

Proof. (1) implies (2) obviously without assumption that φ is regular.
Now assume φ(X )−αY 2 is isotropic, meaning that there exist (x, y) ∈ K n+1 such that φ(x)−α y2 = 0.
If y , 0, then y−2φ(x) =φ(y−1 x) =α.
If y = 0, then x , 0 and φ is isotropic (and regular), and thus universal. ■

Corollary 8.20. Any quadratic form in ≥ 3 variables over a finite field is isotropic.

Proof. We may assume that φ is diagonal and regular:

φ(X1, X2, X3) =α1 X 2
1 +α2 X 2

2 +α3 X 2
3 ,

where α1,α2,α3 , 0.
Now α1 X 2

1 +α2 X 2
2 is universal. In particular, it represents −α3. ■

Proposition 8.21. Let f (X ) and g (Y ) be regular quadratic forms over K . Suppose f (X )− g (Y ) is isotropic. Then
there exists α ∈ K × represented by both f and g .

Proof. By assumption we have (x, y) , (0,0) such that f (x) = g (y) = β. Without loss of generality assume x , 0. If
β, 0, then we are done.

If β= 0, then f (x) = 0, so f is isotropic, and thus universal, representing any element. We can take any element
α ∈ K × represented by g . ■

Transforming orthogonal bases

Here we will show a technical result that will be used later in § 11.

Proposition 8.22. Let (U ,φ) be a quadratic space with two orthogonal bases ũ = (u1, . . . ,un) and ṽ = (v1, . . . , vn).
There exists a sequence of orthogonal bases

ũ = ũ(0), ũ(1), ũ(2), . . . , ũ(`) = ṽ ,

where ũ(i ) and ũ(i+1) differ by at most two vectors.
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Proof. For an induction step it is enough to transform ũ = (u1, . . . ,un) into some basis of the form (v1, v∗
2 , . . . , v∗

n ).
Write v1 =α1 u1 +·· ·+αn un . Without loss of generality (after changing the order) we can assume α1, . . . ,αs , 0

and αs+1, . . . ,αn = 0, so that v1 =α1 u1 +·· ·+αs us . We should have α, 0.

• If s = 1, then v1 =α1 u1, and we take v∗
2 = u2, . . . , v∗

n = un .

• If s ≥ 2 and φ(α1 u1 +α2 u2) , 0, consider u′
1 = α1 u1 +α2 u2. Find u′

2 of the form β1 u1 +β2 u2 such that
ψ(u′

1,u′
2) = 0.

ψ(u′
1,u′

2) =ψ(α1 u1 +α2 u2, β1 u1 +β2 u2)

=α1β1ψ(u1,u1)+α1β2 ψ(u1,u2)︸       ︷︷       ︸
=0

+α2β1 ψ(u2,u1)︸       ︷︷       ︸
=0

+α2β2ψ(u2,u2)

=α1β1φ(u1)+α2β2φ(u2).

So we take β1 = α2φ(u2) and β2 = −α1φ(u1). We have (β1,β2) , (0,0) since φ(α1 u1 +α2 u2) = α2
1φ(u1)+

α2
2φ(u2), 0.

Consider a new basis u′
1,u′

2,u3, . . . ,un . We have v1 = u′
1 +α3 u3 + ·· · +αs us , a linear combination of s − 1

vectors. So we reduced s to s −1, and we can use induction.

• If s ≥ 2 and φ(α1 u1 +α2 u2) = 0, then it is not possible for s = 2 (since v1 =α1 u1 +α2 u2 is not isotropic), and
we should have s ≥ 3. Consider the following three vectors:

α1 u1 +α2 u2,

α1 u1 +α3 u3,

α2 u2 +α3 u3.

We claim that at least one of them is not isotropic. Indeed, assume it is not the case. Then

α2
1φ(u1)+α2

2φ(u2) = 0,

α2
1φ(u1)+α2

3φ(u3) = 0,

α2
2φ(u2)+α2

3φ(u3) = 0.

But this implies α2
1 =α2

2 =α2
3 = 0, contradicting α, 0.

■

Witt’s lemma

Definition 8.23. An isometry of quadratic spaces (U1,φ1) and (U2,φ2) is a linear map ρ : U1 → U2 such that the
following diagram commutes:

U1
ρ //

φ1

��

U2

φ2}}
K

If there is an invertible isometry ρ : U1 → U2, then we say that the quadratic spaces (U1,φ1) and (U2,φ2) are
isometric and the corresponding quadratic forms φ1 and φ2 are equivalent.

22



For equivalent quadratic forms the discriminant is the same: if φ1 ∼ φ2, then δ(φ1) = δ(φ2) (as elements of
K ×/(K ×)2). Obviously the dimension of isometric quadratic spaces must be the same.

We will need the following important result:

Theorem 8.24 (Witt’s lemma). Let f1(X1, . . . , Xm), f2(X1, . . . , Xm), g1(Y1, . . . ,Yn), g2(Y1, . . . ,Yn) be quadratic forms
with f1 and f2 regular. Assume f1(X ) ∼ f2(X ) and f1(X )+ g1(Y ) ∼ f2(X )+ g2(Y ). Then g1(Y ) ∼ g2(Y ).

This essentially says that one has the “cancellation property” f + g1 = f + g2 ⇒ g1 = g2 for equivalence classes
of quadratic forms. To prove this we need to discuss isometries of quadratic spaces.

An isometry (U ,φ) to itself is called an autoisometry. That is, it is a map ρ : U →U such that φ◦ρ =φ.
Suppose (U ,φ) is regular. Then the autoisometries of (U ,φ) are all invertible and they form a subgroup of

GL(U ), denoted by Oφ(U ).

Proposition 8.25. For ρ ∈Oφ(U ) one has detρ =±1.

Proof. Let u1, . . . ,un be a basis of U . Consider the matrix S = (ψ(ui ,u j ))i , j . If T is the matrix of ρ in this basis, then
the matrix of φ◦ρ is given by t T S T = S, and

det(t T S T ) = (detT )2 detS = detS.

Since detS , 0, we conclude detT =±1. ■
Consider a subgroup of Oφ(U ) given by

O+
φ(U ) := {ρ ∈Oφ(U ) | detρ =+1}.

We have [Oφ(U ) : O+
φ(U )] = 2. Indeed, the index is either 1 or 2, and we can find an element ρ ∈ Oφ(U ) with

detρ =−1. (As before, we assume charK , 2, otherwise +1 =−1.)

Example 8.26. Take u such that φ(u), 0. We have U = 〈u〉+〈u〉⊥. Define a map

ρu : U →U ,

u 7→ −u,

v 7→ 1 for v ∈ 〈u〉⊥ .

We have detρu =−1.
In general, the reflection through the hyperplane orthogonal to u is given by

ρu(v) = v −2
ψ(u, v)

ψ(u,u)
u.

(“Reflection” is understood with respect to the bilinear form ψ.)
In particular, if φ(u) =φ(v) and φ(u − v), 0, then

ρu−v (u) = v, ρu−v (v) = u.

Indeed, by the definition of reflection

ρu−v (u) := u −2
ψ(u − v,u)

ψ(u − v,u − v)
(u − v).

By bilinearity,
ψ(u − v,u) =ψ(u,u)−ψ(v,u).
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By bilinearity together with the assumption φ(u) =φ(v),

ψ(u − v,u − v) =ψ(u,u)−2ψ(v,u)+ψ(v, v) = 2(ψ(u,u)−ψ(v,u)),

hence

ρu−v (u) := u −2
ψ(u − v,u)

ψ(u − v,u − v)
(u − v) = u − (u − v) = v.

N

Proposition 8.27. Suppose u, v ∈U are such that φ(u) =φ(v), 0. Then there exists ρ ∈Oφ(U ) such that ρ(u) = v.

Proof. • If φ(u − v), 0, then take a reflection ρu−v (u) = v .

• If φ(u + v) , 0, then we have a reflection ρu+v (u) =−v and we take its composition with another reflection:
ρv ρu+v (u) = v .

• We claim that both φ(u − v) and φ(u + v) cannot be zero under our assumptions. Indeed,

φ(u + v)+φ(u − v) = 2φ(u)+2φ(v) = 4φ(v), 0.

■
If dimU > 1, then in the proposition above we may actually take ρ to be a product of two reflections, so that

ρ ∈O+
φ(U ). Indeed, in this case there exists w ⊥ u such that φ(w), 0, and

• ρu−v ρw (u) = v if φ(u − v) , 0—this is because ρw (u) = u, since we reflect u with respect to the hyperplane
orthogonal to w , but u is in that hyperplane;

• ρv φu+v (u) = v as before if φ(u + v), 0.

Theorem 8.28. Assume V1,V2 ⊆U are two regular quadratic subspaces of U and they are isometric via some ρ : V1 →
V2. Then this ρ can be extended to an autoisometry of U .

Proof. Since V1 is regular, there exists v1 ∈ V1 such that φ(v1), 0. By proposition 8.27 there exists σ ∈ Oφ(U ) such
that σ(ρ(v1)) = v1. We may replace V2 with σV2 and ρ with σρ, so that v1 ∈V1 ∩V2 and ρ(v1) = v1.

For dimV1 = 1 we are done. Otherwise we use induction on dimV1. Consider

U ′ := 〈v〉⊥ , V ′
1 =U ′∩V1, V ′

2 =U ′∩V2.

We have dimV ′
1 = dimV1 −1 and dimV ′

2 = dimV2 −1 and ρV ′
1 =V ′

2. By induction hypothesis, there is an autoi-
sometry ρ′ of U ′ such that ρ′∣∣

V1
= ρ. From this we can define an autoisometry on the whole U by

σ : U →U ,

v 7→ v,

u 7→ ρ′(u) for u ∈U ′.

■
Corollary 8.29. Assume U1 and U2 are isometric quadratic spaces and V1 ⊆ U1, V2 ⊆ U2, with V1,V2 regular and
isometric subspaces. Then V ⊥

1 is isometric to V ⊥
2 .

Proof. By assumption there is an isometry ρ : U1 → U2 is an isometry. We can replace U1 with ρU1 and V1 with
ρV1, and assume that (U1,φ1) = (U2,φ2) = (U ,φ) is a single quadratic space and V1 and V2 are its regular subspaces
isometric via some ρ : V1 →V2. Then we know by the previous theorem that the is an autoisometry σ extending ρ.
But then σV1 =V2 and σV ⊥

1 =V ⊥
2 . ■
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This corollary proves the Witt’s lemma (theorem 8.24). Indeed, assume we have equivalent quadratic forms

f1(X1, . . . , Xm)+ g1(Y1, . . . ,Yn) ∼ f2(X1, . . . , Xm)+ g2(Y1, . . . ,Yn),

with f1 and f2 regular and equivalent. Consider a quadratic space U1 having quadratic form f1(X )+ g1(Y ) and a
quadratic space U2 having quadratic form f2(X )+g2(Y ). Then f1 and f2 correspond to regular isometric subspaces
V1 ⊂U1 and V2 ⊂U2. The quadratic forms g1 and g2 correspond to subspaces V ⊥

1 and V ⊥
2 that should be isometric

as well. ■

9 Quadratic forms overQp

Proposition 9.1. Suppose p > 2 is a finite prime and φ is a regular quadratic form overQp .

1. Suppose the dimension is ≥ 3. If φ has a diagonal form

φ=α1 X 2
1 +α2 X 2

2 +α3 X3 +·· ·

with α1,α2,α3 being units (equivalently, νp (αi ) = 0), then φ is isotropic.

2. Any quadratic form overQp of dimension ≥ 5 is isotropic.

We note now that the first assertion is false for p = 2 (a counterexample will follow, see p. 28). The second
assertion is still true for p = 2, and we will see a proof of this later (theorem 11.2).

Proof. 1. It is a typical application of Hensel. There exists a = (a1, a2, a3) such that a , 0 and φ(a) ≡ 0 (mod p),
because over Fp any quadratic form of dimension ≥ 3 is isotropic. Without loss of generality assume a1 ,
0. Then φ′

X1
(a) = 2 a1 . 0 (mod p) (and here we use the assumption p , 2). Now by the Hensel’s lemma

(theorem 6.7) there exists b ∈Z3
p such that b ≡ a . 0 (mod p) and φ(b) = 0.

2. We may assume n = 5 and that φ=α1 X 2
1 +·· ·+α5 X 2

5 . Also without loss of generality (by multiplying by pk

and applying a variable change) νp (αi ) ∈ {0,1}. Thus φ = φ1 +pφ2, where the coefficients of φ1 and φ2 are
units. Now dimφ1 ≥ 3 or dimφ2 ≥ 3, so we have isotropy by the previous proposition (that is why we ask that
p , 2, but this restriction can be removed).

■

10 Hilbert symbol

From now on p denotes a prime, possibly 2 or infinite.

Definition 10.1. Let α,β ∈Q×
p . The Hilbert symbol (α,β)p is defined as follows:

(α,β)p :=
{ +1, αX 2 +βY 2 −Z 2 is isotropic,

−1, αX 2 +βY 2 −Z 2 is anisotropic.

In the definition above “αX 2 +βY 2 − Z 2 is isotropic” can be replaced with “Z 2 −αX 2 represents β”. Indeed,
suppose αx2 +β y2 − z2 = 0 for some (x, y, z), (0,0,0). If y = 0 then Z 2 −αX 2 is isotropic, and thus universal, so it
represents β. If y , 0, then we get

(z/y)2 −α (x/y)2 =β,

so the form Z 2 −αX 2 indeed represents β.

Here are some immediate properties of the Hilbert symbol:

1. (α,β)p = (β,α)p .
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2. (α,−α)p = 1 (for this observe that αX 2 −αY 2 −Z 2 is isotropic; take X = Y = 1 and Z = 0).

3. (α,1)p = 1 (since αX 2 +Y 2 −Z 2 is isotropic; take X = 0, Y = Z = 1).

4. (α, γ2β)p = (α,β)p (one can make a variable change Y ′ := Y /γ).

5. (α,γ2)p = (α,1)p = 1.

There is one more equivalent definition of the Hilbert symbol:

(α,β)p = 1 ⇐⇒ β is a norm of some element inQp (
p
α)/Qp .

Indeed, if α ∈ (Q×
p )2, then this is trivial and the symbol (α,β)p is always 1, just as for the definition above. Now

if α ∉ (Q×
p )2, then for an arbitrary element z +x

p
α ∈Qp (α)× we compute its norm

NQp (
p
α)/Qp

(z +x
p
α) = det

(
z αx
x z

)
= z2 −αx2.

So it is the same as asking β to be represented by Z 2 −αX 2 (even though the symmetry between α and β

becomes less evident this way).

Proposition 10.2. Hilbert symbol is multiplicative with respect to each variable:

(α1α2, β)p = (α1,β)p · (α2,β)p ,

(α, β1β2)p = (α,β1)p · (α,β2)p .

We will first show the following:

Proposition 10.3. Fix α. Then Gα := {β | (α,β)p = 1} is a subgroup ofQ×
p of index 1 or 2.

The proposition 10.2 follows easily from the proposition 10.3. Suppose Gα is a group of index one or two. For
β1,β2 ∈Qp We have the following three cases:

1. β1,β2 ∈Gα. Then (α,β1)p · (α,β2)p = (α, β1β2)p = 1.

2. β1 ∈Gα, β2 ∉Gα. Then (α,β1)p = 1 and (α,β2)p = (α, β1β2)p =−1.

3. β1,β2 ∉Gα. Then since [Q×
p : Gα] ≤ 2, one must have β1β2 ∈Gα. So (α,β1)p = (α,β2)p =−1 and (α, β1β2)p =

1. ■

Proof of the proposition 10.3. If α ∈ (Q×
p )2 then (α,β)p = 1 for all β ∈Q×

p , and we have nothing to prove (in this case
Gα =Q×

p ).

So we may assume α ∉ (Q×
p )2, in which case [Qp (

p
α) : Qp ] = 2. The norm NQp (

p
α)/Qp

is a homomorphism

Qp (
p
α)× →Q×

p , so it is clear that its image, which is Gα, is a subgroup in Q×
p . Our goal is to show that the index of

this subgroup is 1 or 2.
From the properties above we see that (Q×

p )2 ⊆ Gα, where (Q×
p )2 is the group of squares in Q×

p . So the index

[Q×
p : Gα] should divide the index [Q×

p : (Q×
p )2], and the latter is

• 2 for p =∞;

• 4 for 2 < p <∞;

• 8 for p = 2.
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In case p =∞ we are done. The index is

[Q×
∞ : Gα] =

{
1, if α> 0,
2, if α< 0.

Now for 2 < p <∞ we show that [Q×
p : Gα] = 2. It is enough to find an element β ∈Gα such that β ∉ (Q×

p )2 (which
would prove [Q×

p : Gα], 4) and another β ∈Q×
p such that β ∉Gα (which would prove [Q×

p : Gα], 1).
Since we consider α modulo squares, we may assume that νp (α) = 0 or 1.

• In case νp (α) = 0 for each β with νp (β) = 0 the form αX 2 +βY 2 − Z 2 is isotropic (all coefficients are units),
so Z×

p ⊆Gα. Now for α being a unit also −α is a unit, so −α ∈Gα. On the other hand, −α ∉ (Q×
p )2.

If νp (α) = 0, then the form αX 2 +p Y 2 − Z 2 is anisotropic. Indeed, otherwise αX 2 − Z 2 would be isotropic
modulo p, but α is not a square modulo p. Thus p ∉Gα.

• If νp (α) = 1, then α = pη for some unit η. Take a unit γ ∈ Z×
p which is not a square in Z×

p . We claim that

the form p ηX 2 +γY 2 − Z 2 is anisotropic and so γ ∉Gα. Indeed, if it is isotropic, then γY 2 − Z 2 is isotropic
modulo p, but γ is not a square.

So we conclude that [Q×
p : Gα] = 2 for 2 < p <∞.

Finally, for p = 2 a similar analysis gives [Q×
p : Gα] = 2. ■

Now we can write down the values of the Hilbert symbol (·, ·)p for various p. In case p =∞ the form (over the
field R of real numbers) αX 2 +βY 2 −Z 2 is anisotropic iff α< 0 and β< 0, so

(α,β)∞ =
{ +1, α> 0 or β> 0,

−1, α< 0 and β< 0.

We summarize it in the following table:

R +1 −1
+1 +1 +1
−1 +1 −1

Now assume 2 < p <∞. The subgroup of squares (Q×
p )2 inQ×

p has four cosets represented by 1,ε, p, p ε, where ε
is some nonsquare unit in Z×

p .

• If both α and β are units then αX 2 +βY 2 −Z 2 is isotropic, so (α,β)p = 1.

• If α is a unit then (α, p)p =
(
α
p

)
, the Legendre symbol

(
α

p

)
:=


+1, if α is a square mod p,

0, if α≡ 0 mod p,
−1, if α is not a square mod p.

This is because αX 2 +pY 2 −Z 2 is isotropic iff αX 2 −Z 2 is isotropic modulo p.

• (p, p)p = (p,−p)p · (p,−1)p = (p,−1)p =
(
−1
p

)
.

• By multiplicativity (pε,ε)p = (p,ε)p · (ε,ε)p = (p,ε)p =
(
ε
p

)
=−1, since ε is a nonsquare in Z×

p .

• Similarly (p, pε)p = (p,ε)p · (p, p)p =
(
ε
p

)
·
(
−1
p

)
=

(
−ε
p

)
=−

(
−1
p

)
.

• Finally, (pε, pε)p = (pε, p)p · (pε,ε)p =
(
−ε
p

)
·
(
ε
p

)
=

(
−1
p

)
.
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We summarize our computations in the following table:

Qp 1 ε p p ε
1 +1 +1 +1 +1
ε +1 +1 −1 −1

p +1 −1 +
(
−1
p

)
−

(
−1
p

)
p ε +1 −1 −

(
−1
p

)
+

(
−1
p

)
Recall that (−1

p

)
= (−1)

p−1
2 =

{ +1, p ≡ 1 (mod 4),
−1, p ≡ 3 (mod 4).

A similar table can be constructed for p = 2. Recall that Z×
2 /(Z×

2 )2 can be identified with (Z/8Z)×, which is
represented by residues {1,3,5,7} modulo 8 (multiplicatively these form a group isomorphic to C2×C2). The group
Q×

2 /(Q×
2 )2 is represented by numbers {1,3,5,7,2,6,10,14}. Investigating the values (α,β)2 for allα,β ∈ {1,3,5,7,2,6,10,14},

one can obtain

Q2 1 3 5 7 2 6 10 14
1 +1 +1 +1 +1 +1 +1 +1 +1
3 +1 −1 +1 −1 −1 +1 −1 +1
5 +1 +1 +1 +1 −1 −1 −1 −1
7 +1 −1 +1 −1 +1 −1 +1 −1
2 +1 −1 −1 +1 +1 −1 −1 +1
6 +1 +1 −1 −1 −1 −1 +1 +1

10 +1 −1 −1 +1 −1 +1 +1 −1
14 +1 +1 −1 −1 +1 +1 −1 −1

To understand how one can compile such a table, see below the characterization of isotropic ternary forms over
Q2.

One could start with defining the Hilbert symbol as a function on Q×
p /(Q×

p )2 given by such tables and prove all
its properties by routine verifications. However, it would not be very instructive.

Product formula

Fix α,β ∈Q×. Observe that (α,β)p = 1 for all but finitely many p because if p is odd and α,β ∈Z×
p , then (α,β)p = 1.

So the product
∏

p (α,β)p is well-defined.

Theorem 10.4 (Product formula). ∏
2≤p≤∞

(α,β)p = 1.

In other words, (α,β)p =−1 for even number of p’s.

Example 10.5. Consider (5,14)p . One has
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(6,14)2 = 1,

(6,14)3 = (2,2)3 · (2,7)3 · (3,2)3 · (3,7)3 = 1 ·1 · (−1) ·1 =−1,

(6,14)5 = 1,

(6,14)7 = (2,2)7 · (2,7)7 · (3,2)7 · (3,7)7 = 1 ·1 ·1 · (−1) =−1,

(6,14)11 = 1,

· · ·
(6,14)∞ = 1.

N

An analogue of this product formula is the product formula for valuations on a global field K (generalizing
theorem 4.14); see p. 61.

First we derive a corollary from theorem 10.4:

Corollary 10.6. Let φ be a ternary quadratic form overQ. Then the set

{p |φ is anisotropic overQp }

is finite and has even cardinality.

Proof. If φ is not regular, then φ is always isotropic.
If φ is regular, then it has form γ (αX 2 +βY 2 −Z 2), and the latter is anisotropic iff (α,β)p =−1. ■

Proof of theorem 10.4. Since the Hilbert symbol (α,β)p is multiplicative in both variables, we may consider only
the following cases:

• α=−1, β=−1,

• α=−1, β= 2,

• α=−1, β= q an odd prime,

• α= 2, β= 2,

• α= 2, β= q ,

• α= q , β= q ,

• α= q , β= q ′ with q , q ′.

Since (α,α)p = (α,−1)p , the cases (2,2)p and (q, q)p reduce to the other ones.

1. Let α=−1, β=−1. For 2 < p <∞ we have (−1,−1)p = 1. For p =∞ we have (−1,−1)∞ =−1.

Finally, to compute (−1,−1)2, observe that the quadratic form −X 2−Y 2−Z 2 is anisotropic overQ2. Indeed, if
it is isotropic, then we have a nonzero triple x, y, z ∈Z2 such that x2+y2+z2 = 0. We may assume gcd(x, y, z) =
1, so, say, x and y are odd and z is even. But now x2 + y2 + z2 ≡ 2 (mod 4), which is a contradiction.

∏
2≤p≤∞

(−1,−1)p = (−1,−1)∞ · (−1,−1)2 = 1.

Now let us make a little deviation to see when in general quadratic forms over Q2 are isotropic. We just seen
that X 2 +Y 2 + Z 2 is anisotropic over Q2, which shows that the first assertion of proposition 9.1 is wrong for
p = 2.

Let φ=αX 2 +βY 2 +γZ 2 be a quadratic form. We may assume ν2(α),ν2(β),ν2(γ) ∈ {0,1}. We have two cases:
either α,β,γ ∈Z×

2 or α,β ∈Z×
2 , γ ∈ 2Z×

2 .
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• If α,β,γ are all units, then assume there is (x, y, z) ∈ Z3
2, (x, y, z) , 0 such that αx2 +βy2 +γz2 = 0. Two

of x, y, z are odd and one is even, e.g. x and y are odd and z is even. Then α+β≡ 0 (mod 4). Similarly
for the other combinations x, z and y, z, we get

φ isotropic ⇐⇒


α+β≡ 0 (mod 4)

or
α+γ≡ 0 (mod 4)

or
β+γ≡ 0 (mod 4)


We would like to show the opposite implication “⇐”. Assume, say, α+β ≡ 0 (mod 4). Then either
α+β≡ 0 (mod 8) or α+β≡ 4 (mod 8).

If α+β ≡ 0 (mod 8), take x0 = 1, y0 = 1, z0 = 0. We have φ(x0, y0, z0) ≡ 0 (mod 8) and φ′
X (x0, y0, z0) . 0

(mod 4). So the Hensel’s lemma (theorem 6.7) provides us the desired (x, y, z), and φ is isotropic.

If α+β≡ 4 (mod 8), then similarly we can take x0 = 1, y0 = 1, z0 = 2.

• Suppose α and β are units and γ ∈ 2Z×
2 . By an argument similar to the one above we can show that

φ isotropic ⇐⇒


α+β≡ 0 (mod 8)
or

α+β+γ≡ 0 (mod 8)


2. Let α=−1, β= 2.

We compute (−1,2)∞ = 1 and (−1,2)p = 1 for 2 < p ≤ ∞ since −X 2 +2Y 2 − Z 2 is isotropic (has units as its
coefficients). On the other hand, −X 2 +2Y 2 − Z 2 is also isotropic over Q2. So (−1,2)p = 1 for each prime p,
and the product formula holds.

3. Let α=−1, β= q an odd prime.

The form −X 2 +qY 2 −Z 2 is isotropic for 2 < p <∞ and p , q , so (−1, q)p = 1. For p = q the form is isotropic

iff X 2 +Z 2 is isotropic modulo q , which happens whenever −1 is a square modulo q . So (−1, q)q =
(
−1
q

)
.

Over R the form −X 2 +qY 2 − Z 2 is isotropic, and over Q2 it is isotropic iff q ≡ 1 (mod 4), so (−1, q)2 =
(
−1
q

)
.

Finally we have

∏
p

(−1, q)p =
(−1

q

)
·
(−1

q

)
= 1.

The case α= 2, β= q can be checked similarly.

4. Let α= q , β= q ′ with q , q ′.

Consider the form q X 2 +q ′ Y 2 −Z 2. It is isotropic over R, and it is also isotropic over Qp whenever p , q, q ′
and 2 < p <∞.

Now, as we seen above, q X 2 +q ′ Y 2 −Z 2 is isotropic overQ2 iff

q +q ′ ≡ 0 (mod 4) or q −1 ≡ 0 (mod 4) or q ′−1 ≡ 0 (mod 4).

The first congruence is not the case for q and q ′ being distinct primes; so q X 2 +q ′ Y 2 − Z 2 is isotropic over
Q2 iff q or q ′ is 1 modulo 4, giving

(q, q ′)2 = (−1)
q−1

2
q′−1

2 .
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Further, q X 2 +q ′ Y 2 −Z 2 is isotropic overQq if q ′ Y 2 −Z 2 is isotropic over Fq , so

(q, q ′)q =
(

q ′

q

)
, (q, q ′)q ′ =

(
q

q ′

)
.

Finally the product formula becomes

∏
2≤p≤∞

(q, q ′)p = (−1)
q−1

2
q′−1

2

(
q ′

q

)
·
(

q

q ′

)
.

The latter expression is 1 by the quadratic reciprocity law.

■
The most interesting case in the proof above is of (q, q ′)p with q , q ′, and we see that the product formula for

the Hilbert symbol is equivalent in a certain sense to the quadratic reciprocity law.

11 Hasse invariant

Let φ be a regular quadratic form over Qp . We know two of its invariants: the dimension dimφ (the number of
variables) and the discriminant δ(φ) ∈Q×

p /(Q×
p )2. We are going to define the third invariant of φ.

Write φ in a diagonal form

φ=α1 X 2
1 +α2 X 2

2 +·· ·+αn X 2
n .

Define the Hasse invariant of φ to be

c(φ) := ∏
1≤i< j≤n

(αi ,α j )p .

We claim that it is indeed an invariant:

Theorem 11.1. c(φ) does not depend on diagonalization of φ.

Further, the Hasse invariant reflects the property of a quadratic form to be isotropic.

Theorem 11.2. Let p be a finite prime (possibly 2). Let φ be a regular quadratic form overQp in n variables.

1. If n = 2, then φ is isotropic iff δ(φ) =−1 inQ×
p /(Q×

p )2, i.e. whenever −δ(φ) is a square.

2. If n = 3, then φ is isotropic iff c(φ) = (−1,−δ(φ))p .

3. If n = 4, then φ is anisotropic iff c(φ) = (−1,−1)p and δ(φ) ∈ (Q×
p )2, i.e. is a square.

4. If n ≥ 5, then φ is always isotropic.

Finally, we will not prove it in these notes, but it is true that dimφ, δ(φ), and c(φ) together give a full system of
invariants for quadratic forms overQp with p being a finite prime.

Lemma 11.3. Let φ be a regular binary form. Then φ is isotropic iff δ(φ) =−1 in K ×/(K ×)2.

Proof. We may consider φ=αX 2 +βY 2. Then δ(φ) =αβ. Now φ is isotropic iff αφ is isotropic, and αφ is equiva-
lent to X 2 +δ(φ)Y 2. The latter is isotropic iff −δ(φ) is a square. ■
Lemma 11.4. Let φ be a binary form overQp . Then there exists ε= ε(φ) ∈ {±1} such that

β ∈Q×
p is represented by φ ⇐⇒ (β,−δ(φ))p = ε.
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Proof. We may assume thatφ=α1 X 2
1 +α2 X 2

2 is in diagonal form. Nowβ is represented byφ iffφ−βY 2 is isotropic,
which is the same as α1

β X 2
1 + α2

β X 2
2 −Y 2 being isotropic. We compute the corresponding Hilbert symbol:(
α1

β
,
α2

β

)
p
= (α1,α2)p ·

(
α1,

1

β

)
p
·
(

1

β
,α2

)
p
·
(

1

β
,

1

β

)
p

.

Since (β,γ)p · (1/β,γ)p = (1,γ)p = 1, we can replace 1/β with β:(
α1

β
,
α2

β

)
p
= (α1,α2)p · (α1,β

)
p · (β,α2

)
p · (β,β

)
p .

Now observing that
(
β,β

)
p = (β,−β)p · (β,−1)p = (

β,−1
)

p , we get(
α1

β
,
α2

β

)
p
= (α1,α2)p · (β,−α1α2)p = (α1,α2)p · (β,−δ(φ))p .

So we see that β is represented by φ iff (β,−δ(φ))p = (α1,α2)p . ■

• From the proof we see that (α1,α2)p is the same for any diagonalization of φ. In particular, c(φ) is well-
defined for binary forms.

• The proof shows that the number ε in the lemma is actually c(φ).

Now we are ready to prove theorem 11.1. We have to show that if two forms f :=α1 X 2
1 +·· ·+αn X 2

n and g :=β1 X 2
1 +

·· ·+βn X 2
n are equivalent, then ∏

i< j
(αi ,α j )p = ∏

i< j
(βi ,β j )p .

We may assume that αi =βi for all i , with at most two exceptions (cf. proposition 8.22):

f =α1 X 2
1 +α2 X 2

2 +α3 X 2
3 +·· ·+αn X 2

n ,

g =β1 X 2
1 +β2 X 2

2 +α3 X 2
3 +·· ·+αn X 2

n .

By Witt’s lemma (theorem 8.24), if f ∼ g , thenα1 X 2
1+α2 X 2

2 ∼β1 X 2
1+β2 X 2

2 , and so from the proof of lemma 11.4
we know that (α1,α2)p = (β1,β2)p . Moreover, α1α2 =β1β2 modulo squares (Q×

p )2.

∏
i< j

(αi ,α j )p = (β1,β2)p · ∏
j≥3

(α1α2,α j )p · ∏
3≤i< j≤n

(αi ,α j )p = (β1,β2)p · ∏
j≥3

(β1β2,β j )p · ∏
3≤i< j≤n

(βi ,β j )p = ∏
i< j

(βi ,β j )p .

■
So the Hasse invariant is indeed an invariant of a quadratic form.

Lemma 11.5. Let f (X ) = f (X1, . . . , Xm) and g (Y ) = g (Y1, . . . ,Yn) be two quadratic forms. Then for their sum f (X )+
g (Y ) (as a quadratic form in X1, . . . , Xm ,Y1, . . . ,Yn) holds

dim( f + g ) = dim f +dim g ,

δ( f + g ) = δ( f ) ·δ(g ),

c( f + g ) = c( f ) · c(g ) · (δ( f ),δ(g ))p .
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Proof. Only the last assertion is not completely obvious. Suppose the forms are in diagonal formα1 X 2
1+·· ·+αm X 2

m
and β1 Y 2

1 +·· ·+βn Y 2
n . Then

c( f + g ) = ∏
1≤i< j≤m

(αi ,α j )p · ∏
1≤i< j≤n

(βi ,β j )p · ∏
1≤i≤m
1≤ j≤n

(αi ,β j )p = c( f ) · c(g ) · (δ( f ),δ(g ))p .

■
Now we go back to theorem 11.2. We assume that p is a finite prime.

1. Let φ be a binary regular quadratic form. φ is isotropic iff δ(φ) =−1 inQ×
p /(Q×

p )2.

We have seen this in lemma 11.3.

2. Let φ be a ternary regular quadratic form. φ is isotropic iff c(φ) = (−1,−δ(φ))p .

We may assume that φ=α1 X 2
1 +α2 X 2

2 +α3 X 3. Now it is isotropic iff α1
−α3

X 2
1 + α2

−α3
X 2

2 − X 2
3 is isotropic. The

corresponding Hilbert symbol is
(
α1
−α3

, α2
−α3

)
p

, and the Hasse invariant is

c(φ) =
(
α1

−α3
,
α2

−α3

)
p
·
(
α1

−α3
,−1

)
p
·
(
α2

−α3
,−1

)
p︸                            ︷︷                            ︸=

(
α1

−α3
,
α2

−α3

)
p
· (−δ(φ),−1)p .

3. Let φ be a quaternary regular form. φ is anisotropic iff c(φ) =−(−1,−1)p and δ(φ) ∈ (Q×
p )2.

We use the following nice trick: writeφ= f (X1, X2)−g (Y1,Y2) for two binary forms f (X1, X2) :=α1 X 2
1 +α2 X 2

2
and g (Y1,Y2) :=β1 Y 2

1 +β2 Y 2
2 .

We want φ to be anisotropic, so this amounts to asking that f and g are both anisotropic, and they do not
represent simultaneously some γ ∈Q×

p . By the previous points, this amounts to requiring that

• −α1α2 ∉ (Q×
p )2 and −β1β2 ∉ (Q×

p )2 (lemma 11.3).

• There is no γ ∈Q×
p such that both

c( f ) = (α1,α2)p = (γ,−α1α2)p , (*)

c(g ) = (β1,β2)p = (γ,−β1β2)p . (**)

are satisfied (lemma 11.4).

Since −α1α2 and −β1β2 are nonsquares, the symbols (γ,−α1α2)p and (γ,−β1β2)p are not identically 1 as
functions of γ. Precisely, for half of the classes of γ ∈Q×

p /(Q×
p )2 each symbol gives +1, and for the other half it

gives −1. Thus these halves must be disjoint for (*) and (**). This is equivalent to

α1α2 =β1β2 (mod (Q×
p )2),

(α1,α2)p =−(β1,β2)p .

These two conditions can be written as

δ(φ) =α1α2β1β2 ∈ (Q×
p )2,

c(φ) =−(−1,−1)p .
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The second identity is derived from multiplicativity of the Hilbert symbol:

c(φ) = (α1,α2)p · (−β1,−β2)p · (α1α2,β1β2)p︸              ︷︷              ︸
=(β1β2,β1β2)p

= (α1,α2)p · (β1,β2)p︸                    ︷︷                    ︸
−1

·(β1,−1)p · (−1,−β2)p · (β1β2,β1β2)p

=−(−1,−β1β2)p · (β1β2,β1β2)p

=−(−1,β1β2)p · (−1,−1)p · (β1β2,β1β2)p

=−(−β1β2,β1β2)p · (−1,−1)p =−(−1,−1)p .

Corollary 11.6. A regular ternary form represents all classes inQ×
p /(Q×

p )2, except for perhaps one.

Proof. Let φ(X1, X2, X3) be a ternary form. It does not represent some α ∈ Q×
p iff φ(X1, X2, X3) −αY 2 is

anisotropic. The latter requires that δ(φ−αY 2) = −αδ(φ) is a square. So the only class in Q×
p /(Q×

p )2 that
is probably not represented is the inverse of −δ(φ). ■

4. If n ≥ 5, then a regular quadratic form φ(X1, . . . , Xn) is always isotropic.

It is enough to consider the case n = 5. Write φ = f (X1, X2, X3)− g (Y1,Y2) where f (X1, X2, X3) is a ternary
form and g (Y1,Y2) is a binary form. We know from the last corollary that f represents all classes modulo
squares, except for perhaps one. g = γ (Y 2

1 −αY 2
2 ) represents at least half of the classes. If p <∞, then there

are at most four classes inQ×
p /(Q×

p )2, so there must be some β which is represented by both f and g .

12 Geometry of numbers

Proposition 12.1 (Blichfeld’s lemma). Let S ⊂Rn be a set of Lebesgue measure µ(S) > 1. Then there exist two distinct
points x, y ∈ S such that x ≡ y (mod Zn).

Proof. Consider the “reduction modulo Zn”. Namely, for each point x ∈ Rn denote by bxc ∈ Zn its integral part
(bx1c,bx2c, . . . ,bxnc). Then define a reduction map by

f : S → [0,1)n ,

x 7→ x −bxc.

Since µ(S) > 1 and µ([0,1)n) = 1, there exist two points x, y ∈ S such that f (x) = f (y). ■

Definition 12.2. A subset S ⊆Rn is called convex if for each two points x, y ∈ S the interval between x and y lies in
S, that is

(1− t ) x + t y ∈ S for all t ∈ [0,1].

S is symmetric if for each point x ∈ S also −x ∈ S.
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Theorem 12.3 (Minkowski). Let S ⊆ Rn be a convex symmetric set of Lebesgue measure µ(S) > 2n . Then there exists
a nonzero integral point x ∈ S ∩Zn .

Proof. Consider the set 1
2 S. We have

µ(T ) = 1

2n µ(S) > 1.

By Blichfeld’s lemma, there exist two distinct points y , z ∈ T such that y ≡ z (mod Zn). So y − z = x for some
x ∈Zn \ {0}. We claim that x ∈ S.

Since y ∈ 1
2 S, there exists y ′ ∈ S such that y = 1

2 y ′. Similarly, also taking into account that S is symmetric,

−z = 1
2 z ′ for some z ′ ∈ S. By convexity

x = 1

2
y ′+ 1

2
z ′ ∈ S.

■
In the theorem above 2n cannot be improved. To see this one can just take S = (−1,1)n , which has 0 as the only

integral point and µ(S) = 2n .
If S is assumed to be closed, then a nonstrict inequality ≥ 2n is sufficient. For this consider the sets Sε := (1−ε)S.

We have µ(Sε) = (1+ε)n µ(S) > 2n . Now for each ε> 0 there exists xε , 0 such that xε ∈ Sε∩Zn . Among such xε there
is x , 0 that belongs to all Sε, and so x ∈⋂

ε>0 Sε, and the latter intersection is S, by assumed compactness.

Now we will derive some corollaries from the Minkowski theorem.

Corollary 12.4. Let L1, . . . ,Ln be a system of linear forms on Rn . Let c1, . . . ,cn ∈ R>0. Assume that |det(L1, . . . ,Ln)| <
c1 · · ·cn . Then there exists a nonzero integral point x ∈Zn \ {0} such that |Li (x)| < ci for i = 1, . . . ,n.

Proof. We apply the Minkowski theorem to a convex set

S := {x ∈Rn | |Li (x)| < ci , 1 ≤ i ≤ n}.

The result is immediate after we compute the volume:

µ(S) = 2n c1 · · ·cn

|det(L1, . . . ,Ln)| .

■
If in the statement above we replace |Li (x)| < ci with |Li (x)| ≤ ci , then |det(L1, . . . ,Ln)| < c1 · · ·cn can be also

replaced with |det(L1, . . . ,Ln)| ≤ c1 · · ·cn . In fact, it is sufficient to have only |L1(x)| ≤ c1 and |Li (x)| < ci for i =
2, . . . ,n.

Corollary 12.5 (Dirichlet approximation theorem). Let α ∈ R and let Q > 0. Then there exist x, y ∈Z, (x, y) , (0,0),
such that |xα− y | <Q−1 and |x| ≤Q.

Sometimes this statement is written in form∣∣∣α− y

x

∣∣∣< 1

Qx
≤ 1

x2 .

This means that one can approximate a real number with a rational fraction y
x with precision 1

x2 .

Proof of the corollary. Consider linear forms L1(x, y) = αx − y and L2(x, y) = x. Apply the previous corollary for
c1 =Q−1 and c2 =Q. ■
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One can show that there exist infinitely many rational numbers y
x ∈Q such that∣∣∣α− y

x

∣∣∣< 1

x2 .

(Such approximations come from continuous fraction expansions.)

Proposition 12.6. Let L1, . . . ,Ls be linear forms on Zn with coefficients in Z. Let m1, . . . ,ms ∈ Z>0. Let S be a sym-
metric convex set in Rn . Assume µ(S) > 2n m1 · · ·ms . Then there exists x ∈Zn ∩S, x , 0, such that

Li (x) ≡ 0 (mod mi ) i = 1, . . . , s. (*)

Proof. Consider

Λ := {x ∈Zn | x satisfies (*)}.

It is a subgroup of Zn of index m.
We want to apply a generalized Blichfeld’s theorem (the proof goes the same way, so we omit it).

Claim. Let S ⊆Rn be a symmetric convex set. Let m ∈Z>0. If µ(S) > m, then there exist m+1 pairwise distinct points
y

0
, . . . , y

m
∈ S such that y

i
− y

j
∈Zn .

We have µ( 1
2 S) > m for m := m1 · · ·ms , so in our case there are pairwise distinct points y

0
, . . . , y

m
∈ 1

2 S such that

y
i
− y

j
∈Zn . Among them there must be a pair y

i
, y

j
such that y

i
≡ y

j
(mod Λ), i.e. y

i
− y

j
∈Λ. ■

In the proof above Λ is a lattice, that is a discrete subgroup of rank n in Rn . A lattice has form

Λ= {x1ω1 +·· ·+xnωn | xi ∈Z},

where ω1, . . . ,ωn ∈Zn are linearly independent over R.
The determinant of Λ is the volume of its fundamental parallelepiped. It coincides with the subgroup index

[Zn :Λ].

x1

x2

ω1

ω2

One can formulate the Minkowski theorem for arbitrary lattices.

Proposition 12.7 (Minkowski revised). Let S be a symmetric convex set in Rn and let Λ ⊂ Rn be a lattice. If µ(S) >
2n detΛ, then S ∩Λ has a nonzero point.

(This easily reduces to the usual case Λ=Zn by a variable change.)
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13 Proof of the Hasse–Minkowski theorem

With the developed tools we can finally prove the Hasse–Minkowski theorem. It can be reformulated as follows in
our new language. Let φ(X ) be a quadratic form overQ. Then

φ is isotropic overQ ⇐⇒ φ is isotropic overQp for 2 ≤ p ≤∞.

Let n denote the dimension (the number of variables X1, . . . , Xn).

For n = 1 there is nothing to prove—the form is not isotropic. ■

For n = 2, replacing φwith αφ for someα ∈Q×, we may assume φ(X ,Y ) = X 2−αY 2. Now X 2−αY 2 is isotropic
over K iff α is a square in K . So we have to show

α ∈ (Q×)2 ⇐⇒ α ∈ (Q×
p )2 for 2 ≤ p ≤∞.

In one direction this is obvious. In the other direction, supposeα ∈ (Q×
p )2 for every prime p. Writeα= ε∏pνp (α)

for ε=±1. Sinceα ∈ (R×)2, we have ε=+1. Now sinceα ∈ (Q×
p )2 for finite p, each νp (α) is even. Thusα ∈ (Q×)2. ■

Ternary forms case

Things become really interesting starting from n = 3. The study of this particular case (but of course not our proof
with quadratic forms and geometry of numbers) can be attributed to Legendre.

We may assume that the quadratic form is regular and has form

φ(X1, X2, X3) = a1X 2
1 +a2X 2

2 +a3X 2
3

with ai ∈Z, ai , 0, and a1 a2 a3 square-free (if p2 | ai for some prime p, this can be ruled out by a variable change
X ′

i := p Xi ). We claim one can even assume that a1, a2, a3 ∈Zwith a1, a2, a3 being pairwise coprime.
Assume p divides both a1 and a2. Consider a quadratic form

pφ∼ a1

p
X 2

1 + a2

p
X 2

2 +p a3 X 2
3 .

Now the coefficients are a′
1 = a1/p, a′

2 = a2/p, a′
3 = p a3. We have |a′

1 a′
2 a′

3| = |a1 a2 a3|
p , so after finitely many

steps like that we obtain (ai , a j ) = 1 for i , j .

It is clear that if φ is isotropic over Q, then it is isotropic over Qp . We want to show the opposite implication.
Assume φ is isotropic overQp for all p.

We look what does it mean thatφ is isotropic overQp with p <∞? If p , 2 and all ai are units, that is p - a1 a2 a3,
then φ is automatically isotropic overQp (proposition 9.1). We look at what happens when p | a1 a2 a3 or p = 2.

Suppose p > 2 and p | a1 a2 a3. We may assume that p | a3. The form φ is isotropic if there exist x1, x2, x3 ∈Qp ,
(x1, x2, x3) , (0,0,0), such that a1 x2

1 + a2 x2
2 + a3 x2

3 = 0. We can clearly assume that one of xi ’s is a unit. Actually,
it must be the case that at least two xi ’s are units, so that at least one of νp (x1) and νp (x2) is zero. If not, then
νp (x1) ≥ 1, νp (x2) ≥ 1, νp (x3) = 0, and

νp (a1 x2
1 +a2 x2

2) ≥ 2, νp (a3 x2
3) = 1,

contradicting νp (a1 x2
1 +a2 x2

2) = νp (a3 x2
3).

Now reducing modulo p, we get from our assumptions that a1X 2
1 + a2X 2

2 is isotropic over Fp , and so a1(X 2
1 −

b X 2
2 ) is isotropic for b := a2 a−1

1 , meaning that b = c2 is a square. So we get

φ≡ a1 (X 2
1 −b X 2

2 ) = L1(X1, X2) ·L2(X1, X2) (mod p), L1 := a1(X1 − c X2), L2 := X1 + c X2.
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Thus far we have deduced the following: if φ is isotropic over Qp for p | a1 a2 a3, p > 2, then there exist linear

forms L(p)
1 ,L(p)

2 ∈Z[X ] such that φ≡ L(p)
1 ·L(p)

2 (mod p). (These forms depend on p, as we have seen above.)

Next we analyze the case p = 2 (see p. 28). If 2 - a1 a2 a3, then

φ is isotropic overQ2 ⇐⇒ ai +a j ≡ 0 (mod 4) for some i , j .

If 2 | a1 a2 a3, e.g. 2 | a3, then

φ is isotropic overQ2 ⇐⇒


a1 +a2 ≡ 0 (mod 8)
or

a1 +a2 +a3 ≡ 0 (mod 8)


• For every odd prime p | a1 a2 a3 we consider congruences

L(p)
1 (X ) ≡ 0 (mod p) or L(p)

2 (X ) ≡ 0 (mod p).

• If 2 - a1 a2 a3 and, say, a1 +a2 ≡ 0 (mod 4), consider congruences

X1 ≡ X2 (mod 2), X3 ≡ 0 (mod 2).

• If 2 | a1 a2 a3, e.g. 2 | a3, consider congruences

X1 ≡ X2 (mod 4),

X3 ≡
{

0 (mod 2), if a1 +a2 ≡ 0 (mod 8),
X2 (mod 2), if a1 +a2 +a3 ≡ 0 (mod 8).

Totally we have a linear congruence modulo p for each odd p | a1 a2 a3. For p = 2 and 2 - a1 a2 a3 we have two
congruences modulo 2; for p = 2 and 2 | a1 a2 a3 we have one congruence modulo 4 and two congruences modulo
2. In any case, the product of moduli is

(
∏
p>2

p|a1 a2 a3

p) ·
{

2 ·2, if 2 - a1 a2 a3,
2 ·4, if 2 | a1 a2 a3.

}
= 4 · |a1 a2 a3|.

If p is odd, then the congruence L(p)
i (X ) ≡ 0 (mod p) implies φ(X ) ≡ 0 (mod p).

If a1 +a2 ≡ 0 (mod 4) and X1 ≡ X2 (mod 2), X3 ≡ 0 (mod 2), then

φ(X ) ≡ a1X 2
1 +a2X 2

2 ≡ 0 (mod 4)

Similarly, if 2 | a1 a2 a3, then the congruences give φ(X ) = 0 (mod 8).
So our congruences mean that

φ(X ) ≡ 0 (mod p) for p > 2, p | a1 a2 a3,

φ(X ) ≡ 0 (mod 4) for 2 - a1 a2 a3,

φ(X ) ≡ 0 (mod 8) for 2 | a1 a2 a3,

which implies φ(X ) ≡ 0 (mod 4 · |a1 a2 a3|). However, we gave this condition by linear congruences, and not
quadratic. This means that we can apply corollary 12.4.

Consider a convex set
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S := {x ∈R | |a1| · x2
1 +|a2| · x2

2 +|a3| · x2
3 < 4 · |a1 a2 a3|}.

It is an ellipsoid, having volume

µ(S) =
3
4π(

p
4 · |a1 a2 a3|)3

p|a1|
p|a2|

p|a3|
= 8 · 4

3
π · |a1 a2 a3| > 23 · 4 · |a1 a2 a3|︸          ︷︷          ︸

m in corollary 12.4

.

So S should have an integral point satisfying all the congruences. There is x such that φ(x) ≡ 0 (mod 4 ·
|a1 a2 a3|). But since x ∈ S, that implies φ(x) = 0, and φ is isotropic overQ. ■

Observe that in our argument we actually did not use the condition that φ is isotropic overQ∞ =R. There is no
contradiction because, as we saw in corollary 10.6, there is always an even number of p’s such that a given ternary
quadratic form is anisotropic overQp . So disregarding one prime (in our proof p =∞) does not affect the result.

Corollary 13.1. Let f be a regular binary form. Let a ∈Q×. Then f represents a over Q iff f represents a over Qp for
all primes 2 ≤ p ≤∞.

Proof. Consider a ternary form f (X ,Y )−a Z 2. It is isotropic iff f represents a. ■

Quaternary forms case

We will need the following famous result about primes in arithmetic progressions:

Theorem 13.2 (Dirichlet). Let m ∈ Z be a nonzero integer and let a ∈ Z be such that (m, a) = 1. Then there are
infinitely many primes q such that q ≡ a (mod m)

For a proof see any textbook in analytic number theory.

Example 13.3. There are infinitely many primes q such that q ≡ 1 (mod 3), or q ≡ 3 (mod 4), etc. N

We proceed with the Hasse–Minkowski theorem for quaternary quadratic forms. Consider a quadratic form
f = a1 X 2

1 +a2 X 2
2 +a3 X 2

3 +a4 X 2
4 with ai ∈Q×. We want to show that if f is isotropic overQp for all 2 ≤ p ≤∞, then

f is isotropic overQ.
We may assume that ai ∈ Z are squarefree integers. Since f is isotropic over R, the coefficients are not of

the same sign. We may assume a1 > 0 and a4 < 0. Write the quadratic form as f = g (X1, X2)−h(X3, X4), where
g := a1 X 2

1 +a2 X 2
2 and h :=−a3 X 2

3 −a4 X 2
4 . Consider the set of prime divisors of ai , together with 2 (which is always

a “bad prime” to be treated separately):

S := {p | p | a1 a2 a3 a4}∪ {2}.

Now if for p ∈ S the form f is isotropic over Qp , then there exists some bp ∈ Q×
p represented by both g and h

(proposition 8.21). We may assume νp (bp ) = 0 or 1.
Now there exists b ∈Z such that

b ≡ bp (mod p2) for p ∈ S, p , 2,

b ≡ b2 (mod 16).

So b b−1
p ≡ 1 (mod p) for p ∈ S, p , 2 and b b2 ≡ 1 (mod 8). Now b bp ∈ (Q×

p )2, so b itself is represented by g and
h overQp , p ∈ S.

We may assume b > 0. Then b is represented by g and h over R (because a1 > 0, −a4 > 0).
Assume q is an odd prime such that q ∉ S, q - b. Then b is represented by g and by h over Qq , because the

coefficients of g (X1, X2)−b Y 2, h(X3, X4)−b Y 2 are q-adic units.
What if q ∉ S and q | b? We claim that there is at most one such prime.
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Claim. b satisfying the congruences b ≡ bp (mod p2) and b ≡ b2 (mod 16) above can be chosen to have at most one
prime divisor q ∉ S.

Assuming this claim, we have that b is represented overQp for all primes 2 ≤ p ≤∞ by both g and h, except for
perhaps one prime. This means that b is represented overQ, and so f = g −h is isotropic overQ.

It remains to show the claim above.

Proof. Consider the set

S′ := {p ∈ S | p | bp }.

Then we have

b =
( ∏

p∈S′
p

)
·b′, (b′, p) = 1 for all p ∈ S.

Consider an integer

m := 16 ·∏p∈S p2∏
p∈S′ p

.

Now the congruences above are equivalent to b′ ≡ c (mod m) for some c ∈ Z, where (c,m) = 1. By Dirichlet’s
theorem, we can take a prime b′ = q . ■

Forms of dimension ≥ 5

Consider a quadratic form in five variables f = a1 X 2
1 +·· ·+a5 X 2

5 with ai ∈ Z, which is isotropic over Qp for all p.
We can assume that ai are square-free, and, say, a1 > 0 and a5 < 0 (since the form is isotropic over R).

We have f = g (X1, X2)−h(X3, X4, X5) for g := a1 X 2
1 +a2 X 2

2 and h :=−a3 X 2
3 −a4 X 2

4 −a5 X 2
5 . Consider the set

S := {p | p | a1 a2 a3 a4 a5}∪ {2}.

There exists b ∈Z, b , 0, represented by both g and h over Qp for all p ∈ S, p - b and also for p =∞. Again, by
Dirichlet’s theorem, we may assume that b has at most one prime divisor q ∉ S.

Since q - a3 a4 a5, we have that h is isotropic overQq , and g represents b overQq .
Now b is represented over Qp by both g and h for all primes 2 ≤ p ≤∞, so b is represented over Q by both g

and h, meaning that f = g −h is isotropic overQ. ■

For n > 5 one proceeds by induction. Consider a form f = a1 X 2
1 + ·· · + an X 2

n . Assume it is isotropic over
Qp for all 2 ≤ p ≤ ∞. In particular, it is isotropic over R, hence we can consider f = g +h, where g is a form
in 5 variables isotropic over R (we choose g such that not all its coefficients have the same sign). By the Hasse–
Minkowski principle for n = 5 we have that g is isotropic overQ, and we are done by induction. ■
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Part II

Intermezzo: more on absolute values

14 Extensions of complete fields

Let K be a field complete with respect to an absolute value | · |. Let L be a finite extension of K . Then

• it is possible to extend | · | to L,

• such extension is unique,

• L will be also complete with respect to the extended absolute value.

The extension of an absolute value | · | to L is given by

L →R≥0,

α 7→ |NL/K (α)|1/n .

Here NL/K is the norm map of the extension L/K and n = [L : K ] is the extension degree.
As a corollary, an absolute value extends uniquely to the algebraic closure K , but one should be careful because

it is not complete anymore. One can take completion of K , and it will be an algebraically closed field.

Theorem 14.1. Completion of an algebraically closed field is algebraically closed.

For archimedian fields the situation is simple, because of the following result, named after Israel Gelfand and
Stanisław Mazur.

Theorem 14.2 (Gelfand–Mazur). The only archimedian complete fields are R and C.

So we will focus on the nonarchimedian complete fields.

Example 14.3. There are two principally different situations.
The “equal characteristic case” means that FK and K have the same characteristic. The basic example is K =

F ((T )), OK = F [[T ]], FK = F .
The “distinct characteristic case” means that FK has characteristic > 0 and K has characteristic 0. The basic

example of this is K =Qp , OK =Zp , FK = Fp . N

We fix the following notation:

• K is a nonarchimedian complete field with respect to an absolute value | · |.
• OK := {α ∈ K | |α| ≤ 1} is the local ring of K .

• IK := {α ∈ K | |α| < 1} is the maximal ideal in OK .

• FK :=OK /IK is the residue field of K .

• ΓK := {|α| | α ∈ K ×} is a multiplicative subgroup of R>0.

An important case is that of discrete absolute values, when ΓK is a discrete subgroup, as it happens forQp and
F ((T )). In this case it is convenient to consider not the absolute value | · |v but the corresponding discrete valuation
v(·). In such situation we pass from a multiplicative group to an additive group that normalizes to be Z.

Let K be a complete field and let L/K be a finite extension. We have
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IL
� � // OL

// // FL

IK
� � //?�

OO

OK
// //?�

OO

FK
?�

OO

IK =OK ∩ IL .

The image of OK under the quotient map OL → FL is the residue field FK .

Proposition 14.4. FL/FK is a finite field extension and [FL : FK ] ≤ [L : K ].

Proof. Let α1, . . . ,αn ∈ FL be linearly independent over FK . We claim that the lifts α1, . . . ,αn ∈ OL are linearly inde-
pendent over K .

Assume λ1α1 +·· ·+λnαn = 0 for some λ1, . . . ,λn ∈ K and (λ1, . . . ,λn) , (0, . . . ,0). We may assume (multiplying
the identity by some number) that |λi | ≤ 1 and for some i we have |λi | = 1. Then λi ∈ OL and in FK holds λ1α1 +
·· ·+λnαn = 0 for (λ1, . . . ,λn), (0, . . . ,0). Contradiction. ■

For an extension L/K the group ΓK is a subgroup of ΓL .

Proposition 14.5. [ΓL : ΓK ] ≤ [L : K ].

Proof. Consider α1, . . . ,αn ∈ L× such that |α1|, . . . , |αn | represent pairwise distinct cosets of ΓL/ΓK . We claim that
α1, . . . ,αn are linearly independent over K .

Assume for the sake of contradiction that λ1α1+·· ·+λnαn = 0 for some (λ1, . . . ,λn), (0, . . . ,0). We may assume
that λ1, . . . ,λn , 0 (by throwing away zero terms). Now each |λi αi | belongs to the same coset in ΓL/ΓK as |αi |, so
all |λi αi | represent pairwise distinct cosets. Hence λ1α1 + ·· · +λnαn , 0, since in the nonarchimedian setting
a1 +·· ·+an = 0 implies |ai | = |a j | for some i , j . Contradiction. ■
Definition 14.6. Let L/K be a finite extension of complete local fields.

The number fL/K := [FL : FK ] is called the residue field degree of the extension.
The number eL/K := [ΓL : ΓK ] is called the ramification index.

In case of discrete absolute values the group ΓK is discrete. We have ΓK = 〈|πK |〉 where πK is the primitive
element generating the maximal ideal IK ⊂OK .

Example 14.7. ForQp we have π= p. For F ((T )) we have π= T . N

Every α ∈ K can be uniquely written as πmη for some unit η ∈ O×
K . Then we can define a valuation νπ(α) := m

and the corresponding absolute value |α| := |π|−νπ(α). This is essentially what we did in § 1 for p-adic integers; the
same works for an arbitrary discrete valuation ring.

The ramification index is eL/K = [|πL |Z : |πK |Z]. We have |πL |` = |πK | and πK =π`Lη for η ∈O×
L .

We have seen that eL/K ≤ [L : K ] and fL/K ≤ [L : K ]. In fact, a stronger fact holds

Proposition 14.8. eL/K · fL/K ≤ [L : K ].

In the most interesting cases eL/K · fL/K = [L : K ], e.g. in the case when FL/FK is a separable extension (for
instance, when FK is a perfect field).

Proof. Let α1, . . . ,αe be such that |α1|, . . . , |αe | represent all residue classes of ΓL/ΓK . Let β1, . . . ,β f ∈ OL/IL be a
basis of FL/FK and β1, . . . ,β f are some lifts to OL .

We have e f elements αiβ j and we claim they are linearly independent over K . Assume it is not the case and∑
1≤i≤e
1≤ j≤ f

λi j αi β j = 0
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for some λi j , not all equal to 0.
Consider the absolute values |λi j αi β j |. Let (i1, j1) be the index such that δ := |λi1, j1 αi1 β j1 | is maximal among

all. Consider all other indices giving the same value:

S := {(i , j ) | |λi j αi β j | = δ}.

Now since β j ∈O×
L , we have |β j | = 1, and for all (i , j ) ∈ S the values |λi j αi | are equal. In particular, they belong

to the same class ΓL/ΓK , meaning that all i ’s are the same.
We may assume that |λi1, j | ≤ 1 for all j and |λi1, j | = 1 for some j .
We have |λi1, j αi1 β j | = |λi1, j | · |αi1 |. ∣∣∣∣∣ ∑

(i1, j )∈S
λi1, j β j

∣∣∣∣∣< 1.

So reducing
∑

(i1, j )∈S λi1, j β j modulo IK , we get∑
(i1, j )∈S

λi1, j β j = 0,

where not all λi1, j are 0. Contradiction. ■

15 Discrete absolute values case

Let K be complete with respect to a discrete absolute value | · |. We claim that in this case eL/K · fL/K = [L : K ].

Lemma 15.1. Let R be a principal ideal domain. Let M be a free R-module. Then every R-submodule of M is also
free.

(If M is finitely generated, this follows from the structure of finitely generated modules over a PID. For the infinite
version see Lang, Algebra, Appendix 2, §2, p. 880.)

Lemma 15.2. Let L/K be an extension of discrete complete local fields. Then OL is a free OK -module of rank [L : K ].

Proof. Since | · | is discrete, every ideal of OK is generated by πm
K for m = 0,1,2, . . . In particular, OK is a principal

ideal domain, and we are going to use this fact.
Let α1, . . . ,αn be a K -basis of L. We may assume that these elements lie in OL . Consider the OK -module

M :=OKα1 ⊕·· ·⊕OKαn .

It is an OK -submodule of OL .
For an element α=λ1α1 +·· ·+λnαn ∈OL the coefficients λi ∈ K are given by the linear system of equations

trL/K (αi α) =∑
j

trL/K (αi α j )λ j .

Now trL/K (αi α) ∈ OL ∩K = OK , so d λ j ∈ OK , where d = det[trL/K (αi α j )] ∈ OK is the determinant of the linear
system.

We have d OL ⊆ M . Now M is a free OK -module, and so d OL (since OK is a principal ideal domain!) and OL . We
must conclude that OL = M is a free OK -module of rank n = [L : K ]. ■
Remark 15.3. Observe that we used above just that OK is a principal ideal domain. If K and L are number fields,
then OL is also a free OK -module of rank [L : K ], but OK may not be a PID.

Lemma 15.4. OL/πK OL is a [L : K ]-dimensional vector space over FK .

Proof. We have an isomorphism of OK -modules OL �On
K , hence OL/πK OL � (OK /πK OK )n � F n

K . ■
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FL :=OL/IL is an fL/K -dimensional FK -vector space by the definition of the residue field degree fL/K . Moreover,
the following is true:

Lemma 15.5. For each m the quotient I m
L /I m+1

L = πm
L OL/πm+1

L OL is an fL/K -dimensional FK -vector space isomor-
phic to FL .

Proof. Consider a homomorphism of OK -modules

OL → πm
L OL

πm+1
L OL

,

x 7→πm
L · x.

This is a surjection and the kernel is πLOL , hence the isomorphism

FL := OL

πLOL
�

πm
L OL

πm+1
L OL

.

■
Example 15.6. For p-adic integers we have an isomorphism of Fp -vector spaces

pmZp

pm+1Zp
�

Zp

pZp
.

N

Theorem 15.7. Let L/K be an extension of discrete complete local fields. Then eL/K · fL/K = [L : K ].

Proof. OL/πK OL � F n
K where n := [L : K ], as an FK -vector space.

We have πe
L ≡πK by definition of e = eL/K . Consider a filtration

πK OL =πe
LOL ⊆πe−1

L OL ⊆ ·· · ⊆πLOL ⊆OL .

Each quotient πm
L OL/πm+1

L OL is an f -dimensional FK -vector space, so we have a tower of such vector spaces

OL/πK OL ≥OL/πe−1
L OL ≥ ·· · ≥OL/πLOL ≥ {0}.

There are e vector spaces in this tower, and on each step the dimension increases by f , so

dimFK OL/πK OL = e f .

■
Moreover, from the proof we see that if θ1, . . . ,θ f is a basis of FL/FK , then for some lifts θ1, . . . ,θ f to OL , a basis

of OL as an OK -module is

θi π
j
L , 1 ≤ i ≤ fL/K , 0 ≤ j ≤ eL/K −1.

Remark 15.8. For local fields there is only one prime πK ∈OK and one prime πL ∈OL , so that the factorization into
prime ideals in OL comes down to

πK OL = 〈πe
L〉 .

But for example, if L and K are number fields, then there are many prime ideals p ⊂ OK , and for each one we
can consider the unique factorization

pOL =Pe1
1 · · ·Pes

s (*)
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into prime idealsPi ⊂OL . We define for eachPi the residue field degree to be fi := [OL/Pi : OK /p].
Recall that the norm N (a) of an ideal a ⊆ OL is defined to be the ideal N (a) ⊆ OK generated by NK /L(x) for all

x ∈ a.

• For a prime idealPi ⊂OL one has N (Pi ) = p fi , where p=OK ∩Pi and fi := [OL/Pi : OK /p] as above.

• The norm is multiplicative: N (AB) = N (A) ·N (B).

From this we see that taking norms in (*) leads to

p
[L:K ] = pe1 f1 · · ·pes fs .

Hence the identity similar to the one from theorem 15.7 has form∑
i

ei fi = [L : K ].

Essentially the same formula will appear below in theorem 17.3.

16 Unramified and totally ramified extensions

In this section to simplify things we assume that the fields are complete with respect to a discrete valuation. In this
case [L : K ] = eL/K · fL/K .

Definition 16.1. Let L/K be a finite extension of complete fields.

• L/K is unramified if eL/K = 1, and so [L : K ] = fL/K .

• L/K is totally ramified if fL/K = 1, and so [L : K ] = eL/K .

• L/K is tamely ramified if charFK does not divide eL/K . Otherwise we say that L/K is wild.

Proposition 16.2. Assume FL/FK is a separable extension. Given L/K as above, there exists an intermediate field
K ⊂ L0 ⊂ L such that L0/K is unramified and L/L0 is totally ramified. (This L0 is actually unique.)

Proof. Since FL/FK is separable, we have FL = FK (θ) for some θ ∈ FL . Let p(T ) ∈ FK [T ] be the minimal (monic)
polynomial of θ over FK . Let p(T ) ∈OK [T ] be a monic lifting of p. The degree of p is fL/K , and it is irreducible over
K .

Let θ0 ∈ OL be a lifting of θ ∈ FL . We have p(θ0) ≡ 0 (mod IL) and p ′(θ0) . 0 (mod IL) (because p is separable,
p ′(θ), 0). Now apply the Hensel’s lemma that says that there exists θ ∈OL such that p(θ) = 0 and θ ≡ θ (mod IL).

Take L0 := K (θ). We have FL0 = FL and so fL0/K = fL/K . As for the ramification index, [L0 : K ] = deg p = fL/K , so
eL0/K = 1.

fL/L0 = 1, so L/L0 is totally ramified. ■
Using the Hensel’s lemma in the same way as above, we get the following characterization of unramified exten-

sions, assuming FK is a perfect field.

Theorem 16.3. Let K be a complete local field. Assume its residue field FK is perfect. There is 1-1 correspondence
between finite extensions FL/FK and finite unramified extensions L/K .

OK
� � //

��

OL

��
FK
� � // FL
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Proof. Assume we have an unramified extension L/K . Then we have FL := OL/(πK ) and FK := OK /(πK ) and an
extension FL/FK .

In the other direction, assume we have an extension FL/FK . Since FK is perfect by the assumption, FL = FK (θ)
for some θ ∈ FL . Let p(X ) ∈ FK [X ] be the minimal polynomial of θ. Consider a lift p(X ) ∈ OK [X ]. It must be
irreducible since p is irreducible. By Hensel’s lemma, there exist a unique θ ∈ OL such that p(θ) = 0 and θ ≡ θ

(mod πK ). Now take L := K (θ). We have [L : K ] = deg p = deg p = [FL : FK ], so L/K is unramified. ■
Example 16.4. The field of p-adic numbers Qp has Fp as its residue field. By the theorem above, unramified
extensions of Qp correspond to finite extensions of Fp . But the latter field has exactly one extension Fpn /Fp for
each degree n, thus there is a unique unramified extension Ln/Qp of any given degree n.

It is Ln =Qp (ζpn−1), obtained by adjoining (pn −1)-roots of unity. It is a cyclic Galois extension and its Galois
group Gal(Ln/Qp ) is generated by the Frobenius automorphism φn which induces the usual Frobenius on Fpn /Fp :

φn(x) ≡ xpn
(mod p) for all x ∈OLn .

N

Example 16.5. Let F be a perfect field. Unramified extensions of F ((T )) are isomorphic to F̃ ((T )) where F̃ is an
extension of F . N

Theorem 16.6. Let L/K be a totally ramified extension of a discrete complete local field. Then e = eL/K = [L : K ], and
there exists an Eisenstein polynomial

p(T ) = T e +ae−1T e−1 +·· ·+a1T +a0, where νπK (a0) = 1, νπK (ai ) ≥ 1 for i = 1, . . . ,e −1,

such that L is generated by a root of p(T ).

Proof. We have L = K (πL). Let L̃ be a finite Galois extension of K containing L. Letπ(1)
L , . . . ,π(e)

L ∈ L̃ be the conjugates
of πL over K .

Claim. If α,β ∈ K are conjugate over K , then |α| = |β|.
Indeed, let L̃ be a finite Galois extension of K containing α and β. Then there exists an automorphism

σ : L̃ → L̃,

α 7→β,

fixing K (that is, σ|K = i d). Since | · | extends uniquely to L̃, this σ must preserve the absolute value.

So |π(i )
L | = |πL |. Take p(T ) to be the minimal monic polynomial of πL/K . We have a0 = ±π(1)

L · · ·π(e)
L , so |a0| =

|πL |e = |πK |. Similarly the other ai ’s are symmetric functions of π(1)
L , . . . ,π(e)

L :

a0 = (−1)e π(1)
L π(2)

L · · ·π(e)
L ,

a1 = (−1)e−1 (π(1)
L π(2)

L · · ·π(e−1)
L +π(1)

L π(2)
L · · ·π(e−2)

L π(e)
L + . . .+π(2)

L π(3)
L · · ·π(e)

L ),

...

ae−3 =−(π(1)
L π(2)

L π(3)
L +π(1)

L π(2)
L π(4)

L +·· ·+π(e−2)
L π(e−1)

L π(e)
L ),

ae−2 =π(1)
L π(2)

L +π(1)
L π(3)

L +·· ·+π(1)
L π(e)

L +π(2)
L π(3)

L +·· ·+αe−1αe ,

ae−1 =−(π(1)
L +π(2)

L +·· ·+π(e)
L ).

We have indeed νπK (a0) = 1 and νπK (ai ) ≥ 1 for i = 1, . . . ,e −1. ■
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Remark 16.7. Actually, an extension L/K of discrete complete local fields is totally ramified if and only if L = K (θ)
with θ being a root of an Eisenstein polynomial.

Proposition 16.8. Let L/K be a totally ramified tame extension of a discrete complete local field. Then there exists a
primitive element πK of K such that πe

L = πK where e = eL/K = [L : K ]. (That is, πe
L = πK for these elements, not only

(πL)e = (πK ) for the ideals.)

Proof. For πK and πL we have πe
L =πK η for some η ∈O×

L . Since the extension is totally ramified, FL = FK . So there
exists θ ∈O×

K such that η≡ θ (mod πL). Replacing πK with πK θ and η with ηθ−1, we may assume η≡ 1 (mod πL).

Claim. If charFL -m, then every α ∈OL satisfying α≡ 1 (mod IL) is an m-th power.

(Indeed, we can apply Hensel to the polynomial f (X ) = X m −α and α0 = 1; by the assumption f ′(α0) = m . 0
(mod Im).)

The claim can be applied since L/K is tame. So η is an e-th root, η = εe for some ε ∈ O×
L . Replacing πL with

πL ε
−1, we obtain πe

L =πK . ■
Lemma 16.9. Assume we have finite extensions of complete local fields K ⊂ L ⊂ M.

M

eM/L , fM/L

eM/K , fM/KL

eL/K , fL/K

K

Then

fM/K = fL/K · fM/L ,

eM/K = eL/K ·eM/L .

In particular, M/K is unramified (totally ramified) iff both M/L and L/K are unramified (totally ramified).

Proof. By definition eL/K := [ΓL : ΓK ]. We have a chain of subgroups ΓK ≤ ΓL ≤ ΓM , and

[ΓM : ΓK ] = [ΓM : ΓL] · [ΓL : ΓK ].

Now fL/K := [FL : FK ]. We have field extensions FK ⊂ FL ⊂ FM , and

[FM : FK ] = [FM : FL] · [FL : FK ].

■
Lemma 16.10. Let L/K be an unramified extension and let K1/K be a finite extension. Assume FL/FK is separable.
Then the compositum LK1/K1 is unramified.

L K1

unram.
L

unram.K1

K
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Proof. Since FL/FK is a finite separable extension, we have FL = FK (θ) for some θ ∈ FL . Consider its lifting θ ∈ OL

and its minimal polynomial p(X ) ∈ OK [X ]. Reduce this polynomial modulo πK : consider p(X ) := p(X ) mod πK ∈
FK [X ]. Now we have, under our assumption that [L : K ] = [FL : FK ],

[FL : FK ] ≤ deg p = deg p = [K (θ) : K ] ≤ [L : K ] = [FL : FK ].

Hence L = K (θ) and p(X ) is the minimal polynomial of θ over FK . Thus LK1 = K1(θ).
Let q(x) ∈ OK1 [X ] be the minimal polynomial of θ over K1 and let q(X ) := q(X ) (mod π)K ∈ FK1 [X ]. This re-

duced modulo πK polynomial q(X ) is separable as a factor of p(X ), and so it is irreducible over FK1 , because
otherwise q(X ) would be reducible by Hensel’s lemma. Now

[FLK1 : FK1 ] ≤ [LK1 : K1] = deg q = deg q = [FK1 (θ) : K1] = [FLK1 : FK1 ].

So [LK1 : K1] = [FLK1 : FK1 ]. ■

From these lemmas we have the following:

Proposition 16.11. Let L1/K and L2/K be two unramified extensions. Then their compositum L1 L2 is unramified
as well.

L1 L2

L2

unram.L1

unram.

K

Proof. Indeed, the extension L1 L2/L1 is unramified as well by lemma 16.10, and so L1 L2/K is unramified by
lemma 16.9. ■

So there exists a unique maximal unramified extension K unr of a field, given by the compositum of all finite
unramified subextensions of K alg/K .

Similarly, if L/K is a finite extension, then, taking the compositum of all its unramified subextensions, we obtain
the maximal unramified subextension L0/K .

Example 16.12. Let K = F ((T )) where F is a perfect field. Then the maximal unramified extension K unr is smaller
than F alg((T )): it is given by series whose coefficients lie in a finite extension of F :

K unr = {x(T ) = ∑
n≥0

an T n ∈ F alg((T )) | [F (a0, a1, . . .) : F ] <∞}.

This is not a complete field: it is easy to give a Cauchy sequence (xn(T )) not converging to an element of K unr;
e.g. one can take

xn(T ) := ∑
0≤k≤n

p
k T k .

If we consider the completion of K unr, then we obtain F alg((T )). N

Example 16.13. The maximal unramified extension of Qp is obtained by adjoining all roots of unity ζn of order n
prime to p (see example 16.4 above; note that (p,n) = 1 implies pφ(n) −1 ≡ 0 (mod n)). N
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17 Absolute values on incomplete fields

We have mentioned before (p. 40) that for an extension of complete fields L/K an absolute value on K uniquely
extends to L. Now we drop the assumption that K is complete. Suppose it is a field with an absolute value | · |v and
L/K is a finite extension. How | · |v extends to L?

For an absolute value |·|v let Kv be the completion of K with respect to |·|v and let Kv be an algebraic closure of
this completion. Now | · |v extends uniquely on Kv , and then on Kv . Denote | · |v the corresponding absolute value
on Kv (but be careful: Kv is not complete with respect to | · |v ).

Now for a finite extension L/K we can choose an embeddingσ : L → Kv and using this define an absolute value
on L:

|x|w := |σ(x)|v .

One can consider the completion Lw of L with respect to w . There is a (continuous) embedding σ : Lw → Kv

induced by σ:

Lw ,→ Kv ,

lim←−−xn w.r.t. | · |w 7→ lim←−−σ(xn) w.r.t. | · |v .

Extending an absolute value | · |v to L corresponds to choosing an embedding L ,→ Kv because of the following
commutative diagram:

L �
� // Lw

� � σ // Kv

K �
� //?�

OO

Kv
?�

OO

�.

>>

For x ∈ Lw one must have |x|w = |σ(x)|v .

Example 17.1. The main example is given by the absolute values on number fields.
Let K = Q and let L = Q(α) where α is a root of polynomial T 2 −2. Consider the usual archimedian absolute

value | · |∞ onQ. It extends uniquely to C. There are two embeddings of L in C, given by two roots of T 2 −2:

σ1,2 : L →C,

σ1 : α 7→ +p
2,

σ2 : α 7→ −p
2.

And this gives rise to two distinct absolute values

|x|w1 := |σ1(x)|∞, |x|w2 := |σ2(x)|∞.

They indeed differ: for the element x = 1+α one has |x|w1 = 1+ p
2 and |x|w2 =

p
2−1.

Now let α be a root of T 2 +1. Then the embeddings are

σ1,2 : α 7→ ±i .

But σ1 and σ2 give rise to the same absolute value, because they are conjugate by the action of Gal(C/R)! N

Now let L/K be a field extension of degree n = [L : K ]. Then there are n distinct embeddings

σi : L ,→ Kv ,
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leaving K fixed.
Each σi gives rise to an extension of | · |v to L, and every extension of an absolute value is obtained this way. So

we see that there are at most n extensions of an absolute value on K . However, the last example shows that distinct
embeddings L ,→ Kv can give rise to the same absolute value.

Theorem 17.2. Let σ1, . . . ,σn be embeddings L ,→ Kv fixing K . Consider the following equivalence relation: σi ∼σ j

if there is τ ∈ Gal(Kv /Kv ) such that σ j = τ◦σi .

L �
� σi //s�

σ j

77Kv
τ // Kv

There is one-to-one correspondence between extensions of |·|v to L and equivalence classes of embeddingsσi : L ,→
Kv .

Proof. It is clear that equivalent embeddings give rise to the same absolute values. Indeed, |σ(x)|v = |τσ(x)|v since
conjugate elements have the same absolute value.

Now consider two embeddings σi ,σ j : L → Kv such that |σi (·)|v = |σ j (·)|v . We want to show that σi and σ j are
conjugate. Consider the isomorphism τ : σi (L) → σ j (L) given by τ := σ j ◦σ−1

i . We extend this to an isomorphism

τ : σi (L) ·Kv →σ j (L) ·Kv , and then to τ : Kv → Kv leaving Kv fixed.

Kv
τ // Kv

σi (L) ·Kv
τ //?�

OO

σ j (L) ·Kv
?�

OO

σi (L)
τ

�
//?�

OO

σ j (L)
?�

OO

L

�

OO

σi

BB

L

�

OO

σ j

\\

σi (L) is dense in σi (L) ·Kv , so every element x ∈σi (L) ·Kv can be written as a limit

x = lim←−−
n→∞

σi (xn)

for some sequence (xn) which belongs to a finite subextension of L. Now since |σi (·)|v = |σ j (·)|v , the sequence

lim←−−
n→∞

σ j (xn) = lim←−−
n→∞

τ(σi (xn))

converges to some element τ(x) in σ j (L) ·Kv . This correspondence gives a well-defined isomorphism

τ : σi (L) ·Kv →σ j (L) ·Kv ,

x 7→ τ(x)

(we check that it does not depend on the choice of the sequence (xn)), which leaves Kv fixed. This extends to an
automorphism τ ∈ Gal(Kv /Kv ), and σ j = τ◦σi . ■

Let L/K be a separable extension, so L = K (α). Let f (T ) be the minimal polynomial ofα, having rootsα1, . . . ,αn

in Kv . Then there are n embeddings
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σi : L → Kv ,

α 7→αi .

Now pairwise nonequivalent embeddings correspond to roots αi that are pairwise nonconjugate over Kv . This
means that over Kv the minimal polynomial factors into irreducible polynomials

f (T ) = f1(T ) · · · fs (T ),

where αi is a root of fi . So picking roots of f1(T ), . . . , fs (T ), we obtain different extensions of the absolute value
| · |w1 , . . . , | · |ws . One has deg fi = [Kv (αi ) : Kv ].

Theorem 17.3. Let L/K be a finite separable extension and let | · |v be an absolute value on K . Let | · |w1 , . . . , | · |ws be
extensions of | · |v to L. Then ∑

1≤i≤s
[Kv (αi ) : Kv ] = [L : K ].

Indeed, ∑
1≤i≤s

[Kv (αi ) : Kv ] = ∑
1≤i≤s

deg fi = deg f .

So the sum of local degrees equals the global degree. This is a principle occurring in many areas of mathematics!
See the remark on p. 43 for an example in the number field case.
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Part III

Skolem–Mahler–Lech theorem
In § 19 we are going to see another interesting theorem which is proved using p-adic numbers. We will need to
work with expressions like “λn”, but in the p-adic setting, where both λ and n are p-adic numbers. To make sense
of this, we can introduce exponential and logarithm and put “λn” = exp(n logλ). As usual (for p =∞) these can be
defined using the well-known power series, but we need some work to establish convergency and basic properties.

18 Nonarchimedian logarithm and exponential

Now let K be a complete nonarchimedian local field of characteristic 0 (we will manipulate with power series
having n or n! in denominator, so this restriction is vital). Let FK be its residue field, having characteristic charFK =
p > 0.

We have the minimal subfield Q ⊂ K , and since K is complete with charFK = p, the absolute value on K re-
stricted to Q is p-adic, thus K contains Qp . We normalize the absolute value to coincide with the standard p-adic
absolute value onQp , i.e. |p|v = |p|p = 1

p .
In the subsequent proofs we will need an upper bound on the p-adic valuation νp (n!) of a factorial. First, it is

easy to see that

νp (n!) =
⌊

n

p

⌋
+

⌊
n

p2

⌋
+

⌊
n

p3

⌋
+·· · (*)

This is better to demonstrate by a concrete example. Suppose we want to compute ν2(10!). Then we should
count all even numbers 2,4,6,8,10, two numbers 4,8 divisible by 22, and number 8 divisible by 23, so totally
ν2(10!) = 5+2+1 = 8.

Example 18.1. Let us calculate how many zeros there are at the end of the decimal expansion of 100!, which is a
huge number.

ν5(100!) =
⌊

100

5

⌋
︸    ︷︷    ︸

20

+
⌊

100

52

⌋
︸    ︷︷    ︸

4

= 24.

ν2(100!) =
⌊

100

2

⌋
︸    ︷︷    ︸

50

+
⌊

100

22

⌋
︸    ︷︷    ︸

25

+
⌊

100

23

⌋
︸    ︷︷    ︸

12

+
⌊

100

24

⌋
︸    ︷︷    ︸

6

+
⌊

100

25

⌋
︸    ︷︷    ︸

3

+
⌊

100

26

⌋
︸    ︷︷    ︸

1

= 97.

So we conclude that there are min{ν5(100!),ν2(100!)} = 24 zeros at the end. N

The sum (*) appears to be infinite, but of course it ends with zero terms, since we take b·c. Looking at the
corresponding infinite sum, we obtain a strict upper bound

νp (n!) < n

(
1

p
+ 1

p2 +·· ·
)
= n

p −1
.

The same inequality for absolute values looks like

|n!|p > ρn
p , where ρp = p− 1

p−1 .

We will need a similar bound (with non-strict inequality):

Lemma 18.2.

νp (n!) ≤ n −1

p −1
.

That is, |n!|p ≥ ρn−1
p .

52



Proof. For n = 2 we obviously have ν2(2!) = 1 and νp (2!) = 0 for p > 2, so the lemma holds.
If p - n, then νp (n) = 0 and by induction νp (n!) = νp ((n −1)!) ≤ n−1

p−1 .

If p | n but p2 - n, then νp (n) = 1. Observe that

n! = (n −p)! · (n −p +1) · · · (n −1)︸                     ︷︷                     ︸
not divisible by p

·n,

so we get (using νp ((n −p)!) < n−p
p−1 )

νp (n!) = νp ((n −p)!)+1 ≤ n −p

p −1
+1 = n −1

p −1
.

If νp (n) = 2, then

n! = (n −p2)! · (n −p2 +1) · · · (n −1) ·n︸                          ︷︷                          ︸ .

The multipliers (n −p2 +1), (n −p2 +2), . . ., n −1, n in the “tail” modulo p2 give 1, 2, . . ., p2 −1, 0. One has

νp (n!) = νp ((n −p2)!)+ (p −1)+2 ≤ n −p2

p −1
+p +1 = n −1

p −1
.

. . . . .

Along the same lines, for νp (n) = k one gets

νp (n!) = νp ((n −pk )!)+pk−1 +pk−2 +·· ·+p +1 ≤ n −pk

p −1
+ pk −1

p −1
= n −1

p −1
.

■
Remark 18.3. One can also show the following: if n has p-adic expansion a0 +a1 p +a2 p2 +·· ·+ak pk , then

νp (n!) = n − (a0 +·· ·+ak )

p −1
.

Since among a0, . . . , ak at least one is nonzero, this gives the bound that we just proved.

Definition 18.4. The exponential of z ∈ K is given by the power series

exp(z) := ∑
n≥0

zn

n!
.

For |z|p < ρp this series converges, since in this case∣∣∣∣ zn

n!

∣∣∣∣< ( |z|
ρp

)n
n→∞−−−−→ 0.

So we consider the exponential on the disk D(0,ρp ) centered in 0 having radius ρp . Observe that D(0,ρp ) is a group
under addition, since |z1| < ρp and |z2| < ρp implies |z1 + z2| < ρp .

The usual properties of exponential hold—because they are proved by formal manipulations with power series.
For instance,

exp(z1) ·exp(z2) = exp(z1 + z2) for z1, z2 ∈ D(0,ρp ).

Indeed,
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exp(z1) ·exp(z2) =
(∑

k≥0

zk
1

k !

)
·
(∑
`≥0

z`2
`!

)

= ∑
n≥0

∑
k+`=n

n!

n!

zk
1

k !

z`2
`!

= ∑
n≥0

1

n!

∑
k≥0

(
n

k

)
zk

1 zn−k
2

= ∑
n≥0

(z1 + z2)n

n!
= exp(z1 + z2).

In particular, exp(−z) = exp(z)−1, and we have a group homomorphism

exp: (D(0,ρp ),+) → K ×.

Lemma 18.5. For z ∈ D(0,ρp ) one has |exp(z)−1|p = |z|p .

Proof. Consider

exp(z)−1 = z + ∑
n≥2

zn

n!
. (*)

We claim that each sum term has p-adic absolute value less than |z|p . Indeed,∣∣∣∣ zn

n!

∣∣∣∣
p
= |z|p ·

∣∣∣∣ zn−1

n!

∣∣∣∣
p
≤ |z|p ·

( |z|p
ρp

)n−1

< |z|p

(where we use the bound |n!|p ≥ ρn−1
p proved above). Now taking absolute values of the left hand side and the right

hand side of (*), we are done. ■
From this we see that

exp(z) = 1 ⇐⇒ z = 0 for z ∈ D(0,ρp ),

so the exponential is a monomorphism (D(0,ρp ),+) ,→ K ×. Moreover, the inequality

|exp(z)−1|p = |z|p < ρp

means that the image of exponential is in D(1,ρp ), and the latter is a group under multiplication: if |z1 −1|p < ρp

and |z2 −1|p < ρp , then |z1z2 −1|p < ρp and |z−1
1 −1| < ρp .

So we can look at the exponential as a group homomorphism

exp: (D(0,ρp ),+) → (D(1,ρp ), ·).

Our goal is to show that this is actually an isomorphism, that is, to find the inverse to the exponential. But as
we know, the inverse is the logarithm!

Definition 18.6. For z ∈ K the logarithm is given by the power series

log(z) := ∑
n≥1

(−1)n−1 (z −1)n

n
.

This series converges for |z −1|p < 1. To see this, recall some analysis.
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Proposition 18.7. For a p-adic power series
∑

n≥0αn zn the radius of convergence is given by

r := 1

limsup |αn |1/n
p

.

1. The series converges if |z|p < r .

2. The series diverges if |z|p > r .

3. If the series converges (diverges) for some z0 with |z0|p = r , then it converges (diverges) for all z with |z|p = r .

Proof. This is because one has

|αn zn |p = |αn |p · |z|np ≥
( |z|p

r

)n

.

■
Example 18.8. Let’s compute the radius of convergence for the power series

exp(z) := ∑
n≥0

zn

n!
, log(z +1) := ∑

n≥1
(−1)n−1 zn

n
.

For the exponential we get

limsup

∣∣∣∣ 1

n!

∣∣∣∣1/n

p
= limsup

(
p

n−s(n)
p−1

)1/n
,

where s(n) is the sum of p-adic digits of n (remark 18.3 above), so

limsup

∣∣∣∣ 1

n!

∣∣∣∣1/n

p
= limsup p

1−s(n)/n
p−1 = p

1
p−1 ,

and the radius of convergence for the exponential is p− 1
p−1 =: ρp .

For the logarithm

limsup

∣∣∣∣ 1

n

∣∣∣∣1/n

p
= limsup pνp (n)/n = 1,

so the radius of convergence is 1. N

Our p-adic logarithm has the expected properties, e.g.

log(z1 z2) = log(z1)+ log(z2).

The series converges on D(1,1); however, defined on this domain, the logarithm has a nontrivial kernel.

Example 18.9. Let p = 2. Then −1 ∈ D(1,1) since |−1−1|p = 1
2 . Now

log(−1)+ log(−1) = log((−1) · (−1)) = log1 = 0,

thus log(−1) = 0. Similarly, if ζp ∈Qp is a p-th root of unity, then logζp = 0. N

To fix the issue, we look at the logarithm on the disk D(1,ρp ).

Proposition 18.10. If |z −1|p < ρp , then | log z|p = |z −1|p . In particular, log z = 0 iff z = 1 on D(1,ρp ).

(Actually, |ζp −1|p = ρp , so the proposition cannot be improved.)

Lemma 18.11. If 0 < |z|p < ρp , then
∣∣∣ zn

n

∣∣∣
p
< |z|p for n ≥ 2.
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This lemma implies immediately the proposition, because one can take absolute values of the equation

log z = (z −1)+ ∑
n≥2

(−1)n−1 (z −1)n

n
.

Proof of the lemma. Assume 1 < n < p. Then |n|p = 1 and∣∣∣∣ zn

n

∣∣∣∣
p
= |z|np < |z|p .

Now assume n ≥ p. Then

n
1

n−1 ≤ p
1

p−1 .

Next (using |n|p ≥ n−1)

∣∣∣∣ zn

n

∣∣∣∣
p
= |z|p ·

∣∣∣∣ zn−1

n

∣∣∣∣
p
≤ |z|p ·n · |z|n−1

p < |z|p
(
n

1
n−1 ρp

)n−1 = |z|p
(

n
1

n−1

p
1

p−1

)n−1

≤ |z|p .

■
Further, by manipulations with power series we can check that

logexp z = z, for |z|p < ρp ,

explog z = z, for |z −1|p < ρp .

Thus we finally obtained a group isomorphism

D(0,ρp )
exp // D(1,ρp )
log
oo

If charFK = 0, then one can define exp(z) for |z| < 1 and log(z) for |z −1| < 1, giving an isomorphism D(0,1) �
D(1,1).

19 Skolem–Mahler–Lech theorem

We are going to discuss certain properties of the so-called “linear recurrences”.

Definition 19.1. A sequence of complex numbers (un)n∈Z, un ∈C is called a linear recurrence of order m if there
exist numbers α0, . . . ,αm ∈C, where α0,αm , 0, such that for all n ∈Z

α0 un +α1 un+1 +·· ·+αm un+m = 0.

Example 19.2. Probably the most famous example are the Fibonacci numbers. They are defined by a linear rela-
tion un +un+1 −un+2 = 0 and we set u0 := 0, u1 := 1.

· · · u−5 u−4 u−3 u−2 u−1 u0 u1 u2 u3 u4 u5 · · ·
· · · 5 −3 2 −1 1 0 1 1 2 3 5 · · ·

N

For a linear recurrence (un) we are interested in the set {n ∈Z | un = 0}. We will say that it is the solution of the
equation un = 0 (with respect to n). In the case of Fibonacci numbers, this is just {0}. But of course this can be an
infinite set as well.
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Example 19.3. A linear recurrence given by un+2 −un = 0 and u0 := 0, u1 := 1 is the sequence

un =
{

0, n even,
1, n odd.

In this case the solution is 2Z. Similarly, for any N = 1,2,3, . . . and a ∈Z, the set a +NZ can occur as a solution.
N

If (un) and (vn) are linear recurrences, then (un vn) and (un + vn) are linear recurrences as well. If A is the
solution of (un) and B is the solution of (vn), then A∪B is the solution of (un vn).

Remark 19.4. The following are equivalent:

(1) (un) is a linear recurrence, i.e. it is given by relations α0 un +α1 un+1 +·· ·+αm un+m = 0.

(2) un =∑
1≤i≤s pi (n)λn

i for some numbers λi ∈C and polynomials pi ∈C[X ].

(3) The generating function
∑

n≥0 un X n is rational, i.e. equal to p(X )
q(X ) for some p, q ∈C[X ].

In particular, the implication (1) ⇒ (2) will be seen below. From (2) it is clear why for linear recurrences (un)
and (vn) the product (un vn) is again a linear recurrence. Observe that for (3) this gives an interesting property:
if

∑
n≥0 un X n and

∑
n≥0 vn X n are rational generating functions, then their “Hadamard product”

∑
n≥0 un vn X n is

rational as well.

From the example above we see that a linear recurrence can give a solution which is a finite union of “residue
classes” a+NZ. Also some finite set trivially can be a solution. Is it possible to have something more sophisticated?
For instance, can there be a linear recurrence having as its solution the squares 1,4,9,16,25, . . ., or the primes
2,3,5,7,11, . . .? The answer is no.

Theorem 19.5 (Skolem–Mahler–Lech). Let (un) be a linear recurrence. Then there exists N ∈Z≥1 and S ⊆ {0,1, . . . , N−
1} (possibly S =;) and a finite set T ⊂Z such that

un = 0 ⇐⇒ n ∈ T ∪ (S +NZ).

The theorem is named after a Norwegian mathematician Thoralf Skolem (who gave a proof for linear recur-
rences over Q; 1933), a German mathematician Kurt Mahler (who gave a proof for Q; 1935), and a Swedish math-
ematician Christer Lech (who gave a proof for any field of characteristic 0). For historical matters see Christer
Lech, A note on recurring series, Arkiv för Matematik 2 (1953), issue 5, 417–421, http://dx.doi.org/10.1007/
BF02590997

We are going to see a very interesting proof which uses p-adic analysis. We start with some general facts about
linear recurrences.

Example 19.6. Recall that for the Fibonacci sequence we have the formulas giving the n-th term explicitly:

un = αn −βn

p
5

, α := 1+ p
5

2
, β := 1− p

5

2
.

N

We can write down such a formula for any linear recurrence.

Fix α0, . . . ,αm ∈C and let
U := {(un)n∈Z |α0 un +·· ·+αm un+m = 0}.

This is a C-vector space of dimension m, since each sequence is completely determined by u0, . . . ,um−1. We
are interested in a nice basis for U .

Consider the polynomial χ(T ) =αmT m +·· ·+α1T +α0. If λ is a root of χ(T ), then (λn)n∈Z ∈U , because
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αm λn+m +αm−1λ
n+m−1 +·· ·+α0 =λn χ(λ) = 0.

If χ(T ) has m distinct roots λ1, . . . ,λm , then {(λn
i )}1≤i≤m forms a basis of U . Assume now that λ is a multiple

root of χ(T ), i.e. χ(λ) =χ′(λ) = 0. Then the polynomial T n χ(T ) also has λ as a multiple root, so (T n χ(T ))′T=λ = 0.

αm (n +m)λn+m−1 +αm−1 (n +m −1)λn+m−2 +·· ·+α0 nλn−1 = 0.

So (nλn−1) ∈U , and also (nλn) ∈U . If λ is a root of order ≥ 3, then (n2λn) ∈U , and so on. If λ is a root of order
µ, then (nk λn) ∈U for k = 0,1, . . . ,µ−1. Thus whenχ(T ) has rootsλ1, . . . ,λs of orderµ1, . . . ,µs (withµ1+·· ·+µs = m),
there is a basis of U given by (nk λn

i )1≤i≤s
0≤k≤µi−1.

Theorem 19.7. Let (un) be a linear recurrence of order m. Then there exist numbers λ1, . . . ,λs and polynomials
p1(T ), . . . , ps (T ) with

∑
1≤i≤s (deg pi +1) ≤ m such that

un = p1(n)λn
1 +·· ·+ps (n)λn

s .

From now on we are going to work with recurrences of this form. So the fact that is equivalent to the Skolem–
Mahler–Lech theorem is the following.

Let p1(T ), . . . , ps (T ) ∈C[T ] be some polynomials and let λ1, . . . ,λs ∈C× be pairwise distinct numbers. Then there
exists N ∈Z≥1 and S ⊂ {0,1, . . . , N −1} together with a finite set T ⊂Z such that

p1(n)λn
1 +·· ·+ps (n)λn

s = 0 ⇐⇒ n ∈ T ∪ (S +NZ).

We will prove this under an additional assumption that ps (T ) ∈Q[T ] and λ1, . . . ,λs ∈Q×
. The general case can

be reduced to this, but we are not going to discuss the reduction.

Under our assumption, there is some number field K such that pi (T ) ∈ K [T ] and λi ∈ K ×. The rough idea of
the proof is that one can consider the equation

u(n) := p1(n)λn
1 +·· ·+ps (n)λn

s = 0,

but treating u(n) as an analytic function on Zp , not as a function on Z. For this one should make sense of taking
exponents “λn

i ”. Of course “λn
i = exp(n logλi )”, and we have seen what is the exponential and logarithm in the

nonarchimedian setting. However, log is defined only on the disk D(1,ρp ), and this is a problem one has to fix.

Let us make it precise what an analytic function is.

Definition 19.8. Let K be a complete nonarchimedian field. A function f : D(a,r ) → K on some disk of radius r
with center in a is called analytic if

f (z) = ∑
k≥0

αk (z −a)k ,

where the series converges for all z ∈ D(a,r ).

We need the following property of analytic functions:

Proposition 19.9. Assume that f is not identically zero. Then the set of zeros of f is discrete, in the sense that if
f (z0) = 0, then f (z), 0 in a punctured neighborhood of z0.

Using the compactness of Zp , we obtain from this the following.

Corollary 19.10. Let f be an analytic function on Zp , not identically zero. Then it has at most finitely many zeros.

Now we go back to the Skolem–Mahler–Lech theorem. We have a function u(n) := p1(n)λn
1 +·· ·+ps (n)λn

s with
λ1, . . . ,λs ∈ K × and p1(T ), . . . , ps (T ) ∈ K [T ]. There exists a nonarchimedian absolute value | · |v on K such that

|λ1|v = ·· · = |λs |v = 1.
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This v extends the p-adic absolute value on Q. The completion Kv with respect to | · |v is a finite extension of

Qp . We want logλi to be defined, and for this we need |λi −1|v < ρp = p− 1
p−1 .

Let pv be the prime ideal of OKv . Then |λ−1|v < ρp is equivalent to λ ≡ 1 (mod pm
v ) for some m ∈ Z≥1, i.e. to

the fact that the image of λ in the finite ring OKv /pm
v is 1. Since |λ|v = 1, we have λ ∈ O×

Kv
. By the Fermat’s little

theorem,

λN ≡ 1 (mod pm
v ), where N = #(OKv /pm

v )×.

So λN
1 , . . . ,λN

s lie in the disk D(1,ρp ). For each number r ∈ {0,1, . . . , N −1} we can put

ur (z) := ∑
1≤i≤s

pi (r +N z)λr
i exp(z logλN

i ).

This is well-defined for z ∈Zp . If n ≡ r (mod N ), then n = r +N k such that u(n) = ur (k).

ur (k) = ∑
1≤i≤s

pi (r +N k)λr
i exp(k logλN

i )

= ∑
1≤i≤s

pi (n)λr
i exp(logλN k

i )

= ∑
1≤i≤s

pi (n)λr
i λ

N k
i

= ∑
1≤i≤s

pi (n)λn
i = u(n).

Now fix r . There are two cases.

1. ur (z) is identically 0. Then u(n) = 0 for n ≡ r (mod N ). This corresponds to r ∈ S in the theorem.

2. ur (z) is not identically 0. Then u(n) = 0 for finitely many n ≡ r (mod N ). This corresponds to the finite set
T in the theorem.

So these considerations finish our proof of the Skolem–Mahler–Lech theorem. An interesting feature of it is
that we use properties of analytic nonarchimedian functions to conclude that T is some finite set, but we do not
construct T explicitly. All the proofs known thus far are not effective in this sense, apart from some particular cases.
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Part IV

Sprindžuk’s theorem

20 Statement of Sprindžuk’s theorem

We are going to discuss a theorem of a Belarusian mathematician V. G. Sprindžuk (1936–1987), which is related to
the following classical result.

Theorem 20.1 (Hilbert’s irreducibility theorem). Let F (X ,T ) ∈ Q[X ,T ] be a polynomial irreducible over Q. Then
there exist infinitely many integers τ ∈Z such that F (X ,τ) ∈Q[X ] is irreducible.

Example 20.2. Consider a polynomial F (X ,T ) = X 2 −T . The polynomial F (X ,τ) is irreducible iff τ is not a square.
So the theorem says there are infinitely many nonsquares (which is not surprising). N

But in fact, a stronger result holds. Consider the set

HF := {τ ∈Z | F (X ,τ) is irreducible}.

It is not just infinite, but has density 1. That is,

#(HF ∩ [−x, x])

2 · x
x→∞−−−−→ 1;

for instance, a big random number is almost never a square. It is harder to show but still true is that #(HF ∩[0, x]) =
x +O(x1/2).

Our ultimate goal is to prove the following fact:

Theorem 20.3 (Sprindžuk’s irreducibility theorem). Let F (X ,T ) ∈Q[X ,T ] be a polynomial irreducible over Q. Fur-
ther assume that

1. F (0,0) = 0, so that F has no free term.

2. F ′
X (0,0), 0, so that some term is linear in X .

Then for all but finitely many primes p the polynomial F (X , p) is irreducible overQ.

One can refine the statement above and replace primes p with prime powers pk , so that F (X , pk ) is irreducible
for all but finitely many prime powers pk . Further, one can show that F (X , 1

n ) is irreducible for all but finitely many
n ∈Z. We put this together and restate the theorem.

Theorem 20.4 (Sprindžuk’s irreducibility theorem II). Let F (X ,T ) ∈ Q[X ,T ] be a polynomial irreducible over Q.
Assume F (0,0) = 0 and F ′

X (0,0), 0.
Consider the set

Ω := {pk | p is prime, k = 1,2,3, . . .}∪ {
1

n
| n = 2,3,4, . . .}.

Then F (X ,α) ∈Q[X ] is irreducible overQ for all but finitely many α ∈Ω.

Observe that the elements of Ω satisfy the following property: for α ∈Ω one has |α|v < 1 exactly for one place
v ∈ MQ = {2,3,5, . . . ,∞} (possibly the infinite one). Denote

Sα := {v ∈ MQ | |α|v < 1}.

For α= pk we have Sα = {p}, and for α= 1
n we have Sα = {∞}.
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Example 20.5. Consider α=− 12
5 . Then Sα = {2,3}.

For α=− 5
12 one has Sα = {5,∞}.

For α= 3
2 one has Sα = {3}—in particular, we see that {α | |Sα| = 1})Ω. N

A more general result due to Sprindžuk is the following:

Theorem 20.6 (Sprindžuk’s decomposition theorem). Let F (X ,T ) ∈Q[X ,T ] be a polynomial irreducible overQ. As-
sume F (0,0) = 0 and F ′

X (0,0), 0. Let ε> 0. For α ∈Zwrite down the factorization of F (X ,α) ∈Q[X ] into irreducible
polynomials:

F (X ,α) = f1(X ) · · · fr (X ).

Then for all but finitely many α ∈Z one can write α=α1 · · ·αr with αi pairwise relatively prime such that∣∣∣∣ log |αi |
log |α| −

deg fi

degX F

∣∣∣∣< ε.

In particular, when α = pk is a prime power, this implies the Sprindžuk’s irreducibility theorem. We are going
to discuss only the latter, but the decomposition theorem is proved similarly. Later on we will give a more general
statement of the decomposition theorem where α is a rational number, not an integer (see § 26).

We will use heights, which are a vital tool in Diophantine geometry. Now we make a long detour to define
heights and establish their basic properties.

21 Heights on number fields

Informally, a “height” of an algebraic number is a measure of its complexity. We want it to satisfy the following
properties.

(1) Height H(α) of an algebraic number α ∈Q is a nonnegative real number.

(2) Heights behave well with respect to addition and multiplication. That is, H(α+β) and H(αβ) can be reason-
ably estimated in terms of H(α) and H(β).

(3) The Northcott’s property (discreteness) holds: there are finitely many algebraic numbers of bounded height
and bounded degree.

For α ∈Z taking H(α) := |α|, the usual absolute value, gives such a “height”. However, onQ this does not satisfy
the last property (3). For instance, the number 2014

2013 is “complicated”, but its absolute value is small. This suggests
that on rational numbers a right notion of height is the following.

Definition 21.1. Let α ∈ Q where α = a
b with a,b ∈ Z relatively prime. Then the height of α is given by H(α) :=

max{|α|, |β|}.

In particular, for α ∈Zwe have H(α) = max{|α|,1}.
This behaves well for products and sums, in the sense that there are bounds

H(αβ) ≤ H(α) H(β),

H(α+β) ≤ 2 H(α) H(β).

We want to extend the notion of height to algebraic numbers α ∈ Q. The first idea that comes to mind is that
for α one should consider its primitive minimal polynomial f (X ) ∈Z[X ]:

f (X ) = an X n +an−1X n−1 +·· ·+a1X +a0, where (a0, . . . , an) = 1.
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And one can put
H

(α) := max{|α0|, . . . , |αn |}. It is possible to study this height
H

and show nontrivial results about
it, however it is difficult to estimate

H
(αβ) and

H
(α+β) in terms of

H
(α) and

H
(β). So this idea is wrong (that is

why it is “
H

” and not “H”).

The second idea comes from the following observation: if α ∈Q, then

H(α) = ∏
v∈MQ

max{1, |α|v },

where MQ are the usual absolute values (normalized by |p|p = 1/p).

Example 21.2. For α=− 12
5 the absolute values are

|α|v =



1

4
, v = 2,

1

3
, v = 3,

5, v = 5,

12

5
, v =∞,

1, otherwise.

Now
∏

v∈MQ
max{1, |α|v } = 12, which is the height of α. N

In general, for α= a
b one has ∏

v∈MQ

v,∞

max{1, |α|v } = |b|.

And max{1, |α|∞} = max{1, |a||b| }, so ∏
v∈MQ

max{1, |α|v } = max{|b|, |a|} = H(α).

Now let K be a number field and MK be the set of places on K . We assume that the places are normalized such
that onQ they give the standard p-adic absolute values. Recall that for α ∈Q× one has the product formula∏

v∈MQ

|α|v = 1.

For an arbitrary number field the product formula for α ∈ K × is∏
v∈MK

|α|dv
v = 1, where dv := [Kv :Qv ].

This can be immediately verified forα ∈Q×. In this case for p ∈ MQ one has several places v ∈ MK coming from
p, and ∏

v∈MK
v |p

|α|dp
v = |α|

∑
v |p dv

p = |α|[K :Q]
p .

So finally ∏
v∈MK

|α|dv
v =

( ∏
p∈MQ

|α|p
)[K :Q]

= 1
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by the usual product formula forQ.
In general for α ∈ K we have an embedding K ,→ Kv and the corresponding absolute value is given by

|α|v := |NKv /Qv (α)|1/dv
p .

So |α|dv
v = |NKv /Qv (α)|p . We have ∏

v |p
|α|dv

v = ∏
v |p

|NKv /Qv (α)|p = |NK /Q(α)|p ,

since the product of local norms NKv /Qv gives the global norm NK /Q.
Thus everything reduces to the usual product formula forQ:∏

v∈MK

|α|dv
v = ∏

p∈MQ

|NK /Q(α)|p = 1.

Remark 21.3. Sometimes one normalizes the absolute values by local degrees dv putting ‖x‖v := |x|dv
v , so that the

product formula reads
∏

v∈MK ‖α‖v = 1. We do not use this normalization, so be careful reading other books and
articles.

Now the product formula for number fields suggests the following definition.

Definition 21.4. Let K be a fixed number field. The height of a number α ∈ K is

HK (α) := ∏
v∈MK

max{1, |α|v }dv .

Taking logarithms, we get the logarithmic height

hK (α) := ∑
v∈MK

dv log+ |α|v ,

where log+ x := max{0, log x}. We assume log+ 0 := 0.

The whole point of taking logarithms is just that it is easier to write sums instead of products in various in-
equalities involving heights. In what follows we will mostly use “h” instead of “H”.

The last definition of HK and hK depends on K , so we should correct it to define heights on the wholeQ.

Proposition 21.5. Let L/K be a finite extension andα ∈ K . Then hL(α) = [L : K ]·hK (α), and correspondingly HL(α) =
HK (α)[L:K ].

Proof. Consider a place w ∈ ML coming from v ∈ MK . We have |α|w = |α|v , and

dw = [Lv :Qv ] = [Lw : Kv ] · [Kv :Qv ]︸      ︷︷      ︸
dv

.

Now ∑
w |v

dw log+ |α|w = ∑
w |v

[Lw : Kv ] ·dv log+ |α|v = [L : K ] ·dv log+ |α|v ,

since
∑

w |v [Lw : Kv ] = [L : K ]. And finally,∑
w∈ML

dw log+ |α|w = [L : K ] · ∑
v∈MK

dv log+ |α|v = [L : K ] ·hK (α).

■
So the right definition of height is the following
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Definition 21.6. Let α ∈Q be an algebraic number. Then its height (logarithmic height) is given by

H(α) := HK (α)1/[K :Q],

h(α) := 1

[K :Q]
hK (α),

where K is some number field containing α.

The definition is correct thanks to the last proposition. Indeed, if α ∈ K1 and α ∈ K2, then there is L containing
both K1 and K2 and

hL(α) = [L : K1] ·hK1 (α) = [L : K2] ·hK2 (α).

Q

L

K1 K2

Q(α)

Q

hK1 (α)

[K1 :Q]
= hL(α)

[L :Q]
= hK2 (α)

[K2 :Q]
.

So we finally have a right height function h : Q→R≥0.

22 Projective and affine heights

Let K be a field. We have the affine space An(K ) with coordinates {(α1, . . . ,αn) | αi ∈ K } and the projective space
Pn(K ) with projective coordinates (α0 :α1 : · · · :αn), where

(α0 :α1 : · · · :αn) ∼ (λα0 :λα1 : · · · :λαn) for λ ∈ K ×.

Definition 22.1. The projective height of a point α= (α0 :α1 : · · · :αn) ∈Pn(Q) is given by

hP(α) := 1

[K :Q]

∑
v∈MK

dv log |α|v ,

where |α|v := max{|α0|v , . . . , |αn |v }, and K is some number field containing α1, . . . ,αn .

(We write log instead of log+ since the point “(0 : 0 : · · · : 0)” is not in Pn .)
This does not depend on the field K and it is well-defined on Pn(Q), i.e. hP(α) = hP(λα) for λ ∈Q×

, since

hP(λα) = hP(α)+ 1

[K :Q]

∑
v∈MK

dv log |λ|v︸                ︷︷                ︸
=log

∏ |λ|dv
v =0

.

Definition 22.2. For a point α= (α1, . . . ,αn) ∈An(Q) the affine height hA is given via the embedding

An(Q) ,→Pn(Q),

(α1, . . . ,αn) 7→ (1 :α1 : · · · :αn).
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In other words,

hA(α) = hP(1 :α1 : · · · :αn) = 1

[K :Q]

∑
v∈MK

dv log+ |α|v .

Finally, we will need a notion of projective and affine height for a polynomial with coefficients in a number
field.

Definition 22.3. For a polynomial F (X1, . . . , Xn) =∑
ii ,...,in ai1,...,in X i1

1 · · ·X in
n ∈ K [X1, . . . , Xn] we put

hP(F ) := hP(ai1,...,in )ii ,...,in ,

hA(F ) := hA(ai1,...,in )ii ,...,in .

For λ ∈ K × one has hP(λF ) = hP(F ). There is an inequality hP(F ) ≤ hA(F ), and one has hP(F ) = hA(F ) when
one of the coefficients of F equals 1.

23 Properties of heights

Now we summarize and prove some basic properties of the height of an algebraic number h(α) defined above:

h(α) := 1

[K :Q]
hK (α) = 1

[K :Q]

∑
v∈MK

dv log+ |α|v .

(1) h(α) ≥ 0 for any α ∈Q.

(2) h(α1 · · ·αm) ≤ h(α1)+·· ·+h(αm).

(3) h(α1 +·· ·+αm) ≤ h(α1)+·· ·+h(αm)+ logm.

(4) h(αn) = |n| ·h(α). In particular, h(α−1) = h(α) for α, 0.

(5) If α and β are conjugate overQ, then h(α) = h(β).

(6) The Northcott’s property: for fixed constant C > 0 and fixed degree d = 1,2,3, . . . the set

{α | h(α) <C and [Q(α) :Q] < d}

is finite.

(7) The first Kronecker’s theorem: h(α) = 0 iff α= 0 or α is a root of unity.

We begin with the first, easier properties. The property (1) is obvious.

For the estimate (2), write

|α1 · · ·αm |v = |α1|v · · · |αm |v ≤ max{1, |α1|v } · · ·max{1, |αm |v }.

Taking logarithms, we get
log+ |α1 · · ·αm |v ≤ log+ |α1|v +·· ·+ log+ |αm |v ,

which implies (2). ■

Similarly we show (3), but one should distinguish archimedian and nonarchimedian absolute values:
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|α1 +·· ·+αm |v ≤
{

max{|α1|v , . . . , |αm |v }, v nonarchimedian
m ·max{|α1|v , . . . , |αm |v }, v archimedian

}

≤
{

max{1, |α1|v } · · ·max{1, |αm |v }, v nonarchimedian
m ·max{1, |α1|v } · · ·max{1, |αm |v }, v archimedian

}
Taking logarithms,

log+ |α1 +·· ·+αm | ≤ log+ |α1|+ · · ·+ log+ |αm |+
{

0, v nonarchimedian
logm, v archimedian

}
Thus

h(α1 +·· ·+αm) ≤ h(α1)+·· ·+h(αm)+ 1

[K :Q]

∑
v |∞

dv logm = h(α1)+·· ·+h(αm)+ logm,

since
∑

v |∞ dv = [K :Q]. ■

Now for (4) observe that h(αn) = |n| ·h(α) for n > 0 since max{1, |αn |v } = max{1, |α|v }n .
The key case is (4) for n =−1. We have log+ |α−1|v =− log− |α|v where log− x := min{0, log x}. Now

h(α−1)−h(α) = 1

[K :Q]

( ∑
v∈MK

dv log+ |α|v +
∑

v∈MK

log− |α|v
)
= 1

[K :Q]

∑
v∈MK

dv log |α|v = 0

by the product formula.
If n <−1, then from what we have proved, h(α−n) = h((α−1)n) = |n| ·h(α−1) = |n| ·h(α). ■

Now we show (5). Suppose α and β are conjugate. That is, let K /Q be a Galois extension containing both α and
β and let σ ∈ Gal(K /Q) be such that σ(α) =β.

The Galois group Gal(K /Q) acts on the set of places MK . Each σ ∈ Gal(K /Q) induces a permutation

MK → MK ,

v 7→ vσ,

where we define |x|vσ := |σ(x)|v . On Q the absolute value | · |vσ coincides with | · |v . The inverse map is given by

v 7→ vσ
−1

. We have

h(β) = 1

[K :Q]

∑
v∈MK

dv log+ |β|v = 1

[K :Q]

∑
v∈MK

dv log+ |α|vσ = 1

[K :Q]

∑
v∈MK

dv log+ |α|v = h(α),

using the fact that Gal(K /Q) just permutes the places, and that dv = dvσ . ■

Example 23.1. Consider K =Q(γ) where γ is a root of X 2−2. There are two real embeddings of K , and so there are
two extensions of | · |∞ fromQ to K :

K ,→R,

v+ : γ 7→ +p
2,

v− : γ 7→ −p
2.

Consider two conjugate numbers α= 1+γ and β= 1−γ. One has
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h(α) = 1

2
(log+ |α|v+ + log+ |α|v− ) = 1

2
(log+ |1+ p

2|+ log+ |1− p
2|︸            ︷︷            ︸

=0

) = 1

2
log |1+ p

2|.

h(β) = 1

2
(log+ |β|v+ + log+ |β|v− ) = 1

2
(log+ |1− p

2|︸            ︷︷            ︸
=0

+ log+ |1+ p
2|) = 1

2
log |1+ p

2|.

N

Now we are going to show the Northcott’s property (6). For this it is enough to show that for a fixed C > 0 and a
fixed degree d the set

A := {α ∈Q | h(α) <C , [Q(α) :Q] = d}

is finite. We already know that this is the case when d = 1.
Let α ∈ A. Consider the minimal polynomial f (X ) ∈Q[X ] of α:

f (X ) = X d +ad−1X d−1 +·· ·+a1X +a0.

Let α1 =α, . . . ,αd be the conjugates of α (that is, the roots of f ) and write down the Vieta’s formulas:

a0 = (−1)d α1α2 · · ·αd ,

a1 = (−1)d−1 (α1α2 · · ·αd−1 +α1α2 · · ·αd−2αd + . . .+α2α3 · · ·αd ),

...

ad−3 =−(α1α2α3 +α1α2α4 +·· ·+αd−2αd−1αd ),

ad−2 =α1α2 +α1α3 +·· ·+α1αd +α2α3 +·· ·+αd−1αd ,

ad−1 =−(α1 +α2 +·· ·+αd ).

Since α1, . . . ,αd are conjugate, we have

h(α1) = h(α2) = ·· · = h(αd ) <C ,

and from these identities and the properties (2) and (3)

h(a0) ≤C d ,

h(a1) ≤ d C d−1 + logd ,

...

h(ad−3) ≤
(

d

3

)
C 3 + log

(
d

3

)
,

h(ad−2) ≤
(

d

2

)
C 2 + log

(
d

2

)
,

h(ad−1) ≤ d C + logd .

Thus the heights of the coefficients a0, a1, . . . , ad−1 ∈Q are bounded in terms of C and d , which means there are
finitely many choices for a0, . . . , ad , hence finitely many choices for f (X ) and finitely many choices for α. ■

Finally we show the first Kronecker’s theorem (7). If α= 0, then h(α) = 0. If αn = 1 for some n, then

0 = h(1) = h(αn) = |n| ·h(α).
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In the other direction, assume that h(αn) = 0 for some n. Consider the numbers 1,α,α2,α3, . . . Their degree
[Q(αk ) :Q] is bounded by [Q(α) :Q] = d and their height is bounded since h(αn) = 0. So in this sequence there are
finitely many numbers, and there are some k and ` such that αk = α`, which implies that α = 0 or α is a root of
unity. ■

We are done with proving the properties (1)–(7) and now we discuss some related results. There is also the
second Kronecker’s theorem, related to the first theorem.

Theorem 23.2 (Second Kronecker’s theorem). For each d there exists a constant C (d) > 0, such that for any α ∈Q×

which is not a root of unity, [Q(α) :Q] ≤ d implies h(α) ≥C (d).

Proof. Consider the set

A := {β ∈Q | [Q(β) :Q] ≤ d , h(β) ≤ 1}.

This is a finite set, having Θd := |A| elements. Consider a sequence

1,α,α2, . . . ,αΘd .

These numbers are pairwise distinct, since α , 0 and α is not a root of unity by our assumption. But there are
Θd +1 numbers, so there is some k ≤Θd such thatαk ∉ A, so that h(αk ) > 1 and h(α) > 1

k ≥ 1
Θd

. Now put C (d) := 1
Θd

and we are done. ■
The estimate for C (d) produced in the proof above is very poor. The Lehmer’s conjecture states that C (d) = C

d
where C is some universal constant. The smallest known candidate to be C is the largest real root of a polynomial

X 10 +X 9 −X 7 −X 6 −X 5 −X 4 −X 3 +X +1.

This root is ≈ 1.176280818. . . A special feature of this example is that the minimal polynomial of α, which is
given above, is palindromic. An algebraic number α is called reciprocal if α and α−1 are conjugate over Q (which
means the minimal polynomial of α is palindromic). One result towards the Lehmer’s conjecture is the following:

Theorem 23.3 (Chris Smyth, 1971). Ifα is nonreciprocal and [Q(α) :Q] = d, then h(α) ≥ logθ/d where θ ≈ 1.324717957. . .
is the real root of X 3 −X −1, and it is the best possible estimate (for nonreciprocal numbers).

As for reciprocal numbers, the conjecture still remains open, and the best know result is due to Dobrowolski
(1978):

h(α) ≥ C

d

(
loglogd

logd

)3

.

In some practical applications one can neglect the multiplier
(

loglogd
logd

)3
, although it seems to be difficult to

remove it or at least improve.

Let α ∈ Q× be a rational number α = a
b with (a,b) = 1. Then |α| ≥ 1

b and b ≤ H(α) = eh(α). So we have the
so-called Liouville’s inequality

|α| ≥ e−h(α).

This easy observation generalizes to any number field K and any absolute value | · |v .

Proposition 23.4. Let K be a number field. Let v ∈ MK . Then for α ∈ K one has

|α|dv
v ≥ e−[K :Q]·h(α).

More generally, for a set of places S ⊂ MK one has∏
v∈S

|α|dv
v ≥ e−[K :Q]·h(α).
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Proof. We have the product formula ∏
v∈MK

|α|dv
v = 1.

So if we take a product outside some subset S ⊂ MK , there is an inequality∏
v∈MK \S

|α|dv
v ≤ ∏

v∈MK \S
max{1, |α|v }dv ≤ ∏

v∈MK

max{1, |α|v }dv = HK (α) = e[K :Q]·h(α).

Now ∏
v∈S

|α|dv
v =

( ∏
v∈MK \S

|α|dv
v

)−1

≥ e−[K :Q]·h(α).

■
Finally, we want to show a relationship between the height h(α) of an algebraic number α ∈Q and the height

of a polynomial f ∈Q[X ] having α as its root; and also with the heights of the values of the polynomial.

Lemma 23.5. Let f (X ) = an X n + ·· · + a1X + a0 ∈ K [X ] be a polynomial and | · |v be an absolute value on K . Set
| f |v := max{|a0|v , . . . , |an |v }. Let α be a root of f (X ). Then

|α|v ≤
{ | f |v

|an |v , v nonarchimedian,

2 | f |v
|an |v , v archimedian.

Proof. To simplify the notation, we write just | · | instead of | · |v .

Since | f | is by definition the maximum of |ai |, we have | f |
|an | ≥ 1. If |α| < 1, then

|α| < | f |
|an |

≤ 2
| f |
|an |

,

and we are done.

Now for |α| ≥ 1 we consider the expression

αn =− ∑
0≤i≤n−1

ai

an
αi .

We take the absolute values | · | and estimate the right hand side. In the nonarchimedian case

|α|n =
∣∣∣∣∣ ∑
0≤i≤n−1

ai

an
αi

∣∣∣∣∣≤ | f |
|an |

|α|n−1,

thus |α| ≤ | f |
|an | . (In the bound we indeed used that |α| ≥ 1.)

In the archimedian case we do the same estimates, but we have to use the triangle inequality. Observe that we
can assume |α| > 2, otherwise the claimed inequality is trivially true.

|α|n =
∣∣∣∣∣ ∑
0≤i≤n−1

ai

an
αi

∣∣∣∣∣≤ ∑
0≤i≤n−1

|ai |
|an |

|α|i

= |αn−1| ∑
0≤i≤n−1

|ai |
|an |

|α|i−(n−1)

≤ |αn−1| | f |
|an |

(
1+ 1

|α| +
1

|α|2 +·· ·+ 1

|α|n−1

)
≤ |αn−1| | f |

|an |
(
1+ 1

2
+ 1

4
+ 1

8
+·· ·

)
≤ 2 |αn−1| | f |

|an |
.

69



(Note the interesting trick we used; a simple-minded application of the triangle inequality gives immediately |α| ≤
n | f |

|an | , but we were able to replace “n” with “2”.) ■

Proposition 23.6. Let f (X ) ∈Q[X ] be a nonzero polynomial and α ∈Q be its root. Then h(α) ≤ hP( f )+ log2.

Proof. Let f (X ) = an X n +an−1X n−1 +·· ·+a1X +a0. We have

|α|v ≤
{ | f |v

|an |v , v nonarchimedian,

2 | f |v
|an |v , v archimedian.

Thus

log+ |α|v ≤ log
| f |v
|an |v

+
{

0, v nonarchimedian,
log2, v archimedian.

}
And so

h(α) ≤ hP

(
f

an

)
+ log2 = hP( f )+ log2.

■
Remark 23.7. A stronger estimate can be proven. If α1, . . . ,αn are all roots of f then∣∣∣∣∣hP( f )− ∑

1≤i≤n
h(αi )

∣∣∣∣∣≤ c(n).

For some constant c(n) depending on n.

Proposition 23.8. Let f (X ) ∈Q[X ] be a nonzero polynomial of degree m and let α ∈Q. Then

h( f (α)) ≤ m h(α)+hA( f )+ log(m +1).

Proof. Let f (X ) = am X m +am−1X m−1 +·· ·+a1X +a0. We have

| f (α)|v ≤ max{|a0|v , . . . , |am |v } ·
{

1, v nonarchimedian,
m +1, v archimedian.

}
So

max{1, | f (α)|v } ≤ max{1, |a0|v , . . . , |am |v } ·
{

1, v nonarchimedian,
m +1, v archimedian.

}
h( f (α)) ≤ hA( f )+m h(α)+ log(m +1).

■
Similarly one can show the following:

Proposition 23.9. Let F (X ,T ) ∈Q[X ,T ] be a polynomial of degrees degX F = n, degT F = m. Let α,β ∈Q. Then

h(F (β,α)) ≤ m h(β)+n h(α)+hA(F )+ log((m +1) · (n +1)).

Finally, we show another bound for polynomials in two variables.

Proposition 23.10. Let F (X ,T ) ∈Q[X ,T ] be a polynomial of degrees degT F = m, degX F = n. Let α,β ∈Q be such
that F (β,α) = 0 and F (X ,α) is not identically zero. Then

h(β) ≤ m h(α)+hP(F )+ log2(m +1).
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Proof. Put f (X ) := F (X ,α). It is a polynomial in one variable having β as its root. So h(β) ≤ hP( f )+ log2 by propo-
sition 23.6. It remains to show a bound on hP( f ).

Let F (X ,T ) = gn(T ) X n +·· ·+g1(T ) X +g0(T ) for some g0, . . . , gn ∈Q[T ]. Then f (X ) = gn(α) X n +·· ·+g1(α) X +
g0(α). Let K be a number field containingα and let v ∈ MK be a place on K . Consider gi (T ) = am T m+·· ·+a1 T +a0

one of the polynomials g0, . . . , gn .

|g (α)|v ≤ max{1, |α|v }m · |g |v ·
{

1, v nonarchimedian,
m +1, v archimedian.

}
Since |g |v ≤ |F |v , we get

hP( f ) ≤ 1

[K :Q]

∑
v∈Mk

dv log+ | f |v ≤ m h(α)+hP(F )+ log(m +1).

Now substituting this in the bound h(β) ≤ hP( f )+ log2, we get the desired result. ■
Remark 23.11. The proposition above does not give the optimal bound. One can show that

h(α)

n
≈ h(β)

m
,

where m = degT F , n = degX F , and ≈ is a “quasi-equivalence of heights” (the difference of heights is “small”; we
omit the details).

24 Eisenstein theorem about algebraic power series

Let x(T ) ∈Q[[T ]] be a formal power series

x(T ) = a0 +a1 T +a2 T 2 +·· · , ai ∈Q.

We say that x(T ) is algebraic if it is algebraic overQ(T ); that is, there is some polynomial F (X ,T ) ∈Q[X ,T ] such
that F (x(T ),T ) = 0 in the ringQ[[T ]]:

F (x(T ),T ) = g0(T )+ g1(T ) x(T )+·· ·+ gN−1(T ) xN−1(T )+ gN (T ) xN (T ) = 0, for some gi (T ) ∈Q[T ].

If x(T ) is an algebraic power series, then it lies in a finite extension ofQ((T )), so the residue field ofQ((T )) (x(T ))
is finite overQ. This means that the coefficients ai belong to some number field K .

Example 24.1. x(T ) = 1+ p
2T + p

3T 2+ p
4T 3+·· · is not an algebraic power series, since the coefficients do not

lie in a finite extension ofQ. N

Example 24.2. Consider a power series

x(T ) = 1

2−T
= 1

2
· 1

1−T /2
= 1

2

∑
k≥0

T k

2k
.

This is not just algebraic, but rational. In the denominators we have powers of 2. N

Example 24.3. Now consider a power series

x(T ) = (1+T )1/2 = ∑
k≥0

(
1/2

k

)
T k .

Compute the binomial coefficients
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(
1/2

k

)
:=

1
2 · ( 1

2 −1) · ( 1
2 −2) · · · ( 1

2 −k +1)

k !
.

k : 0 1 2 3 4 5 6 7 8 9 · · ·(1/2
k

)
: 1 + 1

2 − 1
23 + 1

24 − 5
27 + 7

28 − 21
210 + 33

211 − 429
215 + 715

216 · · ·
The key observation one makes from looking at the denominators is that 4k · (1/2

k

)
is always an integer (try to

prove this). This is a general property of algebraic power series. N

Theorem 24.4 (Eisenstein). Let x(T ) = ∑
k≥0 ak T k be an algebraic power series with ai ∈ K . Then there exists an

integer c ∈OK such that ck ak ∈OK .

This means that the denominators in an algebraic power series must have a very special “exponential” form.

Example 24.5. Consider the logarithm power series

log(1+T ) = ∑
k≥1

(−1)k−1 T k

k
.

The denominators are not powers of some integer, so it is not an algebraic power series. Similarly the exponent

exp(T ) = ∑
k≥0

T k

k !

is not an algebraic power series. N

Let us give another statement of theorem 24.4. It says that for any nonarchimedian place v ∈ MK one has
|ak |v ≤ (|c|−1

v )k . So the following holds:

Theorem 24.6 (Esenstein-2). Let x(T ) = ∑
k≥0 ak T k be an algebraic power series with ai ∈ K . Then for any place

v ∈ MK there exists a number Av ∈R, Av ≥ 1, such that |ak |v ≤ Ak
v , and Av = 1 for all but finitely many v.

Remark 24.7. To see why theorem 24.6 is equivalent to theorem 24.4, recall what are the absolute values on a
number field. For every x ∈ K we can look at the fractional ideal factorization

xOK = ∏
p⊂OK

nonzero prime

p
νp(x),

and by definition the number νp(x) ∈Z is the valuation of x at p. It defines in turn an absolute value |x|p := ρνp(x).
Any nonarchimedian absolute value on K is equivalent to some | · |p (and the archimedian absolute values come
from embeddings K ,→C, as we saw in § 17).

Further,

OK ,p = {x ∈ K | |x|p ≤ 1},

OK = ⋂
p⊂OK

nonzero prime

OK ,p = {x ∈ K | |x|p ≤ 1 for all p⊆OK }.

Thus, assuming that |ak |v ≤ 1 for all but finitely many finite places v ∈ MK and |ak |v ≤ Ak
v for finitely many v ,

we can find c ∈OK with small enough absolute values with respect to each of these v (take a product of big powers
of corresponding primes):

|c|v ≤ 1

Av
so that |ck ak |v = |c|kv · |ak |v ≤ 1.
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Note that if the place v ∈ MK is infinite, then we can consider x(T ) as an analytic function. It is regular at 0 (hav-
ing no poles and no ramifications), so it converges in some disk centered at 0. This means that the absolute values
|ak |v grow at most exponentially. So in the statement above by “any place v ∈ MK ” we really mean archimedian
places as well.

Corollary 24.8. For each v the power series x(T ) converges v-adically in some disk, and for all but finitely many v
it converges in the unit disk.

Observe that while the Eisenstein theorem implies this convergence property, there is no implication the other
way round: for instance, the logarithm converges, but it contradicts the Eisenstein theorem.

25 Proof of the Sprindžuk’s theorem

Now we go back to the Sprindžuk’s theorem to prove it. Recall that for α ∈ Q× we defined the set Sα := {v ∈ MQ |
|α|v < 1} and

Ω := {pk | p is prime, k = 1,2,3, . . .}∪ {
1

n
| n ∈Z\ {0}} ⊂ {α ∈Q× | |Sα| = 1}.

Let F (X ,T ) ∈Q[X ,T ] be an irreducible polynomial over Q satisfying F (0,0) = 0 and F ′
X (0,0), 0. Then we want

to conclude that for all but finitely many α ∈Ω the polynomial F (X ,α) ∈Q[X ] is irreducible overQ.

Claim. There exists a unique power series x(T ) ∈Q[[T ]] such that x(0) = 0 (there is no free term) and F (x(T ),T ) = 0.

This actually follows from the Hensel’s lemma. We apply it to a polynomial f (X ) := F (X ,T ) ∈ Q[[T ]][X ] with
coefficients in a complete ring Q[[T ]]. One has f (0) ≡ 0 (mod (T )) since F (0,0) = 0, and f ′(0) . 0 (mod (T )) since
F ′

X (0,0), 0. So the conditions of the Hensel’s lemma are satisfied, and there is unique x(T ) ∈Q[[T ]], as we want.
To this power series x(T ) = a1 T + a2 T 2 + a3 T 3 + ·· · we apply the Eisenstein’s theorem: for any place v ∈ MQ

there exists a number Av ≥ 1 (and Av = 1 for all but finitely many v) such that |ak |v ≤ Ak
v .

Claim. At all but finitely many T =α ∈Ω the series x(T ) absolutely converges v-adically for v ∈ Sα.

Proof. x(α) =∑
k≥0 ak α

k converges whenever |α|v < 1
Av

:

|ak α
k |v = |ak |v · |α|kv ≤ Ak

v · |α|kv < (Av · |α|v )k k→∞−−−−→ 0.

Assume that |α|v ≥ 1
Av

. Then we can bound the height of α by

h(α) = h(α−1) = ∑
v∈MK

log+ |α|−1
v ≤ ∑

v∈MK

log+ Av .

Now for all but finitely many v ∈ MK one has Av = 1, so the sum on the right hand side is finite. Moreover, the
numbers Av depend only on the polynomial F (X ,T ) and not on α, so by the Northcott’s property there are only
finitely many α such that |α|v ≥ Av . ■

Let β denote the v-adic sum of x(T ) at T = α for v ∈ Sα. Since F (x(T ),T ) = 0, we get F (β,α) = 0 (using
the absolute convergence), so β is a root of F (X ,α), and it is actually an algebraic number. We may assume
degX F (X ,α) = degX F = n—this degree goes down when α satisfies some algebraic equations, so it is enough
to disregard finitely many α. Now F (X ,α) is irreducible overQ iff [Q(β) :Q] = n.

So for K :=Q(β) we look at the degree d := [K :Q]. We will show that d = n for all but finitely many α, and it will
establish the Sprindžuk’s theorem.

The idea is to construct an auxiliary polynomial G(X ,T ) ∈ Q[X ,T ] such that γ = G(β,α) is “very small” v-
adically. More precisely, we want the following properties:

• G(X ,T ) is not identically 0.
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• degX G ≤ n −1, where n := degX F .

• degT G ≤ N , where N is some fixed big integer (later on we will set it), much bigger than m and n.

• G(x(T ),T ) has a high order zero at 0.

The coefficients of G(x(T ),T ) are linear combinations of coefficients of G , so vanishing of G(x(T ),T ) at 0 of
order µ is equivalent to µ linear equations imposed on the coefficients of G .

To find G with order of vanishing at least µ, we must have µ< n (N +1), where N is the maximal degree of gi ’s
in

G(X ,T ) = gn−1(T ) X n−1 +·· ·+ g1(T ) X + g0(T ).

So each gi gives N +1 coefficients.
To simplify the formulas, we may take µ= N n. So by “vanishing of high order” we will mean order at least N n:

G(x(T ),T ) = y(T ) = bN n t N n +higher order terms.

Let γ := G(β,α) be the v-adic sum of y(T ) at T = α. For all but finitely many α we have γ , 0. Indeed, if
γ= 0, then F (β,α) = 0 and G(β,α) = 0. But these two polynomials have no common factor in Q[X ,T ], and so they
have only finitely many common roots (F is irreducible by our assumption, and F - G since degX G ≤ n − 1 and
degX F = n).

Proposition 25.1 (Baby algebraic geometry). Let K be a field. Let F (X ,T ),G(X ,T ) ∈ K [X ,T ] be two polynomials.
Assume that F and G have no common factor. Then the system of equations F (x, t ) = G(x, t ) = 0 has only finitely
many solutions in (x, t ) ∈ K 2.

Now by Eisenstein’s theorem, for all v ∈ MQ there exists Bv ≥ 1 (and Bv = 1 for all but finitely many v) such that
|bk |v ≤ B k

v . If v is nonarchimedian and Bv = 1, then |bk |v ≤ 1 and

|y(α)|v ≤ |α|N n
v .

If v is nonarchimedian and Bv > 1, then we may assume |α|v < B−1
v by disposing finitely manyα (by the North-

cott’s property as above). After that one has

|bk α
k |v ≤ (Bv · |α|v )k ≤ (Bv · |α|v )N n ≤C · |α|N n

v ,

where C is some constant depending on F and G , but not on α.
If v is archimedian, then we may assume |α|v < (2Bv )−1.

|bk α
k |v ≤ (Bv · |α|v )k ≤ 1

2
.

|y(α)|v ≤ ∑
k≥nN

(Bv · |α|v )k = (Bv · |α|v )N n 1

1−Bv · |α|v
≤ 2(Bv · |α|v )N n ≤Cv · |α|N n

v .

Here Cv = 1 for all but finitely many v and it is some constant depending on F and G . So we have an upper
bound for γ :=G(β,α) β (proposition 23.9):

|γ|v ≤Cv · |α|N n
v .

We have also a lower bound given by the Liouville’s inequality

|γ|v ≥ e−d h(γ).

We want to get a contradiction from e−d h(γ) ≤ |γ|v ≤Cv · |α|N n
v . For this we write h(γ) in terms of α. We use the

bound
h(γ) ≤ h(α) N +h(β) (n +1)+C ,

74



where C is a constant depending only on G . The upper bound |γ|v ≤Cv · |α|N n
v can be written as |γ|v ≤C e−N n h(α)

where C is a constant depending on F and G . If we forget for a while about the term “h(β) (n +1)” above, then the
bounds indeed give a contradiction if d < n:

e−d N h(α) <C e−n N h(α).

Now we take care of the term “h(β) (n +1)”. Since F (α,β) = 0, we have h(β) ≤ m h(α)+Oβ(1), where Oβ(1) is
something does not depending on β (proposition 23.10). Now

h(γ) ≤ (N +m (n −1))h(α)+C ,

where C is a constant depending only on F and G .
So we get

|γ|v ≥C e−d (N+m n)h(α).

The inequalities become
C1 e−n N h(α) ≥ |γ|v ≥C2 e−d (N+m n)h(α).

To obtain a contradiction for d < n and big enough h(α), we need d (N +m n) < n N . If we take N = m n2, we
are done, in this case (n −1)(N +m n) < n N .

This finishes our proof of the Sprindžuk’s theorem. ■

A typical Diophantine approximation proof splits into the following steps:

(1) Constructing an auxiliary function with high vanishing order at some “anchor points” (in our case it was 0).

(2) An analytic step: evaluating the auxiliary function at a point near one of the anchor points (in our caseαwas
v-adically close to 0) and showing that this value γ is very small.

(3) Showing that the value γ is not zero. Usually it is the hardest part.

(4) Using Liouville-type inequalities to show that γ cannot be too small, contradicting (2).

26 Sprindžuk’s decomposition theorem

Now we go back to theorem 20.6. Recall its statement. Let F (X ,T ) ∈ Q[X ,T ] be a polynomial irreducible over
Q. Assume F (0,0) = 0 and F ′

X (0,0) , 0. Let ε > 0. For α ∈ Q write down the factorization of F (X ,α) ∈ Q[X ] into
irreducible polynomials:

F (X ,α) = f1(X ) · · · fr (X ).

Then for all but finitely many α ∈Z one can write α=α1 · · ·αr with αi pairwise relatively prime such that∣∣∣∣ log |αi |
log |α| −

deg fi

degX F

∣∣∣∣< ε.

We want to generalize it for α ∈Q. Of course log |α| should be replaced with the height

h(α) = h(α−1) = ∑
v∈Sα

log |α−1|v ,

where Sα := {v ∈ MQ | |α|v < 1}. Factorization “α = α1 · · ·αr ” does not make sense anymore if α ∈ Q. The right
generalization is the following:
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Theorem 26.1. Let F (X ,T ) be as above. For all but finitely many α ∈Q there exists a partition (depending on ε)

Sα = T1 ∪·· ·∪Ts , Ti ∩T j =; for i , j and n = d1 +·· ·+ds ,

such that for each i ∣∣∣∣∣
∑

v∈Ti
log |α−1|v

h(α)
− di

n

∣∣∣∣∣< ε.

The proof goes among the same lines. It is sufficient to show that for all but finitely many α there exists a
partition such that ∑

v∈Ti
log |α−1|v

h(α)
≥ di

n
−ε.

Indeed, that is because
∑

1≤i≤s

∑
v∈Ti

log |α−1|v
h(α) = 1 and

∑
1≤i≤s

di
n = 1.

For v ∈ Sα we define v ∈ Ti if the v-adic sum β of x(t ) at t = α is a root of gi . We have [Q(β) : Q] = di . By the
same argument with auxiliary functions, we produce inequalities

e−di (N+C (m,n))h(α) ≤ ∏
v∈Ti

|γ|v ≤ e−N
∑

v∈Ti
log |α−1|v .

For details see Yuri F. Bilu, David Masser, A Quick Proof of Sprindžuk’s Decomposition Theorem, http://dx.
doi.org/10.1007/978-3-540-32439-3_2
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Conclusion

During this course we used p-adic numbers to prove interesting theorems that actually do not mention p-adic
numbers in the original statements: the Hasse–Minkowski theorem, the Skolem–Mahler–Lech theorem, and the
Sprindžuk’s theorem. These three examples are of different kind.

The Hasse–Minkowski theorem is a local–global principle that connects equations over Z with equations over
Zp for all p. We note that it is valid for the case of quadrics, and studying obstructions to the local–global principle
in the other cases is a topic of the ongoing research.

The Skolem–Mahler–Lech theorem was proved locally—that is, by looking at Zp for only one suitable p and
using certain properties from p-adic analysis.

Finally, the Sprindžuk’s theorem was proved using heights. It is another kind of an argument, which is some-
what quantitative: we claim that some statement holds for all but finitely many numbersα, and this actually comes
from some bound on h(α).
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A Proof of the Eisenstein theorem

* This will be probably merged with the main text. *
The source is essentially J. W. S. Cassels, Local Fields (London Mathematical Society Student Texts N. 3, 1986), p.

28–30.

Theorem. Let x(T ) = ∑
n≥0

an T n ∈ K [[T ]] be a formal power series with coefficients in a number field K and suppose

there is a nonzero polynomial F (X ,T ) ∈ K [X ,T ]

F (X ,T ) := g0(T )+ g1(T ) X +·· ·+ gN−1(T ) X N−1 + gN (T ) X N ∈ K [X ,T ], g0(T ), . . . , gN (T ) ∈ K [T ]

such that

F (x(T ),T ) = g0(T )+ g1(T ) x(T )+·· ·+ gN−1(T ) xN−1(T )+ gN (T ) xN (T ) = 0. (1)

Then there are algebraic integers u, v ∈OK , u , 0, v , 0 such that u vn an ∈OK for all n.

Proof. We add another formal variable Y and compute

F (X +Y ,T ) = F (X ,T )+F1(X ,T )Y +·· ·+FN (X ,T )Y N , (2)

where F j (X ,T ) ∈ K [X ,T ] are some polynomials. To simplify the notation we write F j (X ) for F j (X ,T ).
Without loss of generality we may assume that F1(x(T )) , 0, since otherwise we could operate with F1(X ) in-

stead of F (X ).
Consider the power series F1(x(T )) ∈ K [[T ]]. Let m be its valuation:

m := ν(F1(x(T ))) := {n | n-th coefficient of F1(x(T )) is , 0}.

Now we separate x(T ) in two parts: the lower terms u(T ) ∈ K [T ] of degree ≤ m +1 and the “tail” v(T ) ∈ K [[T ]]:

x(T ) = (a0 +·· ·+am T m +am+1 T m+1︸                                   ︷︷                                   ︸
=:u(T )

)+T m+1 (am+2 T +am+3 T 2 +·· ·︸                         ︷︷                         ︸
=:v(T )

) (3)

It is enough to show that the tail v(T ) satisfies the claimed property for coefficients.

By (1), (2), (3) we have

0 = F (x(T )) = F (u(T )+T m+1 v(T )) = F (u(T ))+T m+1 F1(u(T )) · v(T )+ ∑
j≥2

T (m+1) j F j (u(T )) · v(T ) j ,

where F (u(T )),F1(u(T )),F j (u(T )) ∈ K [T ] are certain polynomials. All the summands except for perhaps the first
are divisible by T 2m+1 by our choice of m, and so F (u(T )) should be divisible by T 2m+1 as well (in K [T ]). Dividing
the identity by T 2m+1, we obtain

0 = f (T )+ f1(T ) v(T )+ f2(T ) v(T )2 +·· ·+ fN (T ) v(T )N , (4)

where f (T ), f1(T ), . . . , fN (T ) ∈ K [T ] are some polynomials, and by our choice of m their free terms are

` := f1(0), 0 and f j (0) = 0 for j > 1.

After multiplying (4) by certain algebraic integer, we may assume that f , f1, . . . , fN ∈OK [T ].
Observe that by its construction, in the power series v(T ) = ∑

n≥1
bn T n (where bn = an+m+1) the constant term

is 0. We want to show that `n bn ∈OK .
We look at the coefficients of T n in (4):
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0 = f (T )+ f1(T ) ·
( ∑

n≥1
bn T n

)
+ f2(T ) ·

( ∑
n≥1

( ∑
n1+n2=n

bn1 bn2

)
T n

)
+·· ·+

fN (T ) ·
( ∑

n≥1

( ∑
n1+···+nN=n

bn1 · · ·bnN

)
T n

)
.

Using the fact that the free term of f1(T ) is ` and it is 0 for f2(T ), . . . , fN (T ), we can express `bn as the sum of

terms of the type c
∏

i<n
bki

i , where c ∈OK . Now `n bn ∈OK follows by induction.
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