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Abstract

The arrangement of a �nite collection of geometric objects is the decomposition of

the space into connected cells induced by them. We survey combinatorial and algo-

rithmic properties of arrangements of arcs in the plane and of surface patches in higher

dimensions. We present many applications of arrangements to problems in motion plan-

ning, visualization, range searching, molecular modeling, and geometric optimization.

Some results involving planar arrangements of arcs have been presented in a companion

chapter in this book, and are extended in this chapter to higher dimensions.
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Introduction 1

1 Introduction

The arrangement of a �nite collection � of geometric objects in R

d

, denoted as A(�), is

the decomposition of the space into relatively open connected cells of dimensions 0; : : : ; d

induced by �, where each cell is a maximal connected set of points lying in the intersection

of a �xed subset of �. Besides being interesting in their own right, because of the rich

geometric, combinatorial, algebraic, and topological structures that arrangements possess,

they also lie at the heart of several geometric problems arising in a wide range of applications

including robotics, computer graphics, molecular modeling, and computer vision. Before

proceeding further, we present a few such examples.

(a) Assume that we have a robot system B with d degrees of freedom, i.e., we can represent

each placement of B as a point in R

d

, and we call the space of all placements the con�guration

space of B. Suppose the three-dimensional workspace of B is cluttered with polyhedral

obstacles whose shapes and locations are known. B is allowed to move freely in a motion

that traces a continuous path in the con�guration space, but B has to avoid collision

with the obstacles. For each combination of a geometric feature (vertex, edge, face) of

an obstacle and a similar feature (face, edge, vertex) of B, de�ne their contact surface

as the set of all points in R

d

that represent placements of B at which contact is made

between these speci�c features. Let � be the set of all contact surfaces. Let Z be a point

corresponding to a given initial free placement of B, i.e., a placement at which it does

not intersect any obstacle. Then the set of all free placements of B that can be reached

from Z via a collision-free continuous motion corresponds to the cell containing Z in the

arrangement of the contact surfaces. Thus, the problem of determining whether there exists

a collision-free path from an initial con�guration I to a �nal con�guration F is equivalent to

determining whether I and F lie in the same cell of A(�). This close relationship between

arrangements and motion planning has led to considerable work on arrangements; see, for

example, [22, 52, 203, 213, 231, 232, 239, 243, 317]. If we want to compute the set of all

placements reachable from the initial placement I, the combinatorial complexity of the cell

in A(�) containing I, i.e., the total number of lower-dimensional faces appearing on its

boundary, serves as a trivial lower bound for the running time. It turns out that in many

instances one can design motion-planning algorithms whose performance almost matches

this bound.

(b) A molecule can be modeled as an arrangement of spheres, where the radius of each sphere

depends on the atom that it models and the position of each sphere depends on the molecular

structure. In the Van der Waals model, a molecule is a family of possibly overlapping

spheres, where the radius of each sphere is determined by the van der Waals radius of the

corresponding atom in the molecule. Lee and Richards [240] proposed another model, called

solvent accessible model, which is used to study the interaction between the protein and

solvent molecules. Also in this model, a molecule is modeled as a sphere, but the balls

representing the solvent molecules are shrunk to points and the balls representing atoms in

the protein are in
ated by the same amount [300]. Even though these models ignore various
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Introduction 2

properties of molecules, they have been useful in a variety of applications. Many problems

in molecular modeling can be formulated as problems related to arrangements of spheres.

For example, computing the \outer surface" of the molecule corresponds to computing the

unbounded cell of the corresponding arrangement of spheres. See [140, 141, 208, 214, 266]

for more details on applications of arrangements in molecular biology.

(c) Arrangements are also attractive because of their relationship with several other struc-

tures. For example, using the duality transform, a point p = (p

1

; : : : ; p

d

) in R

d

can be

mapped to the hyperplane

P

d

i=1

x

i

p

i

= 1, and vice versa. This facilitates the formulation

of several problems related to point con�gurations in terms of arrangements of hyperplanes.

See [107, 137] for a small sample of such problems. The Grassmann-Pl�ucker relation trans-

forms k-
ats in R

d

to hyperplanes or points in R

u

, for u =

�

d+1

k+1

�

� 1 [72, 217]; e.g., lines

in R

3

can be mapped to hyperplanes or points in R

5

. Therefore many problems involving

lines in R

3

have been solved using hyperplane arrangements in R

5

[104, 134, 290, 320].

The well-known combinatorial structure oriented matroids of rank k+1 are closely related

to arrangements of pseudo-hyperplanes in R

k

[72, 301], and zonotopes in R

d

correspond

to hyperplane arrangements in R

d�1

[137, 346]. Several applications of arrangements in

singularity theory, algebraic group theory, and other �elds of mathematics can be found

in [277, 279, 280].

Study of arrangements of lines and hyperplanes has a long, rich history. The �rst

paper on this topic is perhaps by J. Steiner in 1826 [322], in which he obtained bounds

on the number of cells in arrangements of lines and circles in the plane and of planes and

spheres in R

3

. His results have since been extended in several ways [31, 32, 33, 85, 302,

340, 344, 345]. A summary of early work on arrangements of hyperplanes can be found

in the monograph and the survey paper by Gr�unbaum [190, 191]. Most of the work on

hyperplane arrangements until the 1980s dealt with the combinatorial structure of the entire

arrangement or of a single cell in the arrangement (i.e., a convex polyhedron), and with

the algebraic and topological properties of the arrangement [171, 278, 279, 280]. Various

substructures and algorithmic issues of hyperplane arrangements, motivated by problems

in computational and combinatorial geometry, have received attention mostly during the

last �fteen years.

Although hyperplane arrangements possess a rich structure, many applications (e.g., the

motion-planning problem and the molecular models described above) call for a systematic

study of higher-dimensional arrangements of patches of algebraic surfaces. For more than a

century, researchers in algebraic geometry have studied arrangements of algebraic surfaces,

but their focus has largely been on algebraic and combinatorial issues rather than on al-

gorithmic ones. Considerable progress has been made on all fronts during the last �fteen

years.

It is beyond the scope of a survey paper, or even of a book, to cover all aspects of

arrangements. In this chapter we will survey combinatorial and algorithmic problems on

arrangements of (hyper)surfaces (or of surface patches) in real a�ne space R

d

. (Hyperplane
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Preliminaries 3

arrangements in complex space have also been studied; see, e.g., [73, 280].) We will assume

that d is a small constant, that the surfaces are algebraic and their degree is bounded by a

constant, and that any surface patch is a semialgebraic set de�ned by a Boolean combination

of a constant number of polynomials of constant maximum degree. There has also been some

recent work on combinatorial and algorithmic issues involving arrangements of more general

surfaces, known as semi-pfa�an sets, which include graphs of trigonometric, exponential, or

logarithmic functions on bounded domains [181, 234]. We also note that a study of algebraic

and topological problems on arrangements of algebraic surfaces can be found in [74]. In this

survey we will mostly review the known results on the combinatorial complexity of various

substructures of arrangements, the known algorithms for computing these substructures,

and the geometric applications that bene�t from these results. Many other combinatorial

problems related to arrangements are discussed in [72, 172, 184, 282, 283, 319, 346]. An

excellent source on combinatorial and algorithmic results on arrangements of hyperplanes

is the book by Edelsbrunner [137]. The book by the authors [317] covers some of the topics

discussed here in more detail. Other survey papers on arrangements include [197, 205, 212,

314].

This survey is organized as follows. In Section 2 we de�ne arrangements formally,

state the assumptions we will be making in this survey, and discuss the known bounds on

the complexity of entire arrangements. Sections 3{10 discuss combinatorial complexities of

various substructures of arrangements. Section 11 discusses several methods for representing

arrangements. Section 12 describes algorithms for computing the entire arrangement, and

Section 13 reviews algorithms for computing various substructures of arrangements. We

discuss a few applications of arrangements in Section 14.

2 Preliminaries

Let � = f


1

; : : : ; 


n

g be a collection of n (hyper)surfaces or surface patches in R

d

. The set

� induces a decomposition of R

d

into connected cells (or faces), called the arrangement of

� and denoted A(�), so that each cell is a maximal connected subset of the intersection of a

�xed (possibly empty) subset of surface patches that avoids all other surface patches. Thus

a d-dimensional cell is a maximal connected region that does not meet any surface patch

of �. The combinatorial complexity of A(�) is the total number of cells, of all dimensions,

in A(�). The combinatorial complexity of a k-dimensional cell C in A(�) is the number of

cells of A(�) of dimension less than k that are contained in the boundary of C.

We assume that � satis�es the following assumptions.

(A1) Each 


i

2 � is a semialgebraic set of constant description complexity. The local

dimension of every point in 


i

is d� 1.

1

1

A subset of R

d

is called a real semialgebraic set if it is obtained as a �nite Boolean combination of sets

of the form ff = 0g or ff > 0g for d-variate polynomials f . A semialgebraic set has constant description
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Preliminaries 4

Figure 1: An arrangement of lines.

(A2) Each 


i

2 � is of the form (Q

i

= 0) ^ F

i

(P

i

1

�

i

1

0; P

i

2

�

i

2

0; : : : ; P

i

u

�

i

u

0). Here u is a

constant; �

i

j

2 f�;�g; F

i

is a Boolean formula; Q

i

; P

i

1

; : : : ; P

i

u

2 R[x

1

; : : : ; x

d

]; and

the degrees of Q

i

; P

i

j

are at most b, for some constant b. Let Q = fQ

1

; : : : ; Q

n

g.

Note that (A2) implies (A1), but we will mention both assumption for the sake of clarity.

We will refer to a semialgebraic set satisfying (A1) and (A2) a (hyper)surface patch in R

d

(of constant description complexity). If 


i

is simply the zero set of Q

i

, we will call 


i

a

(hyper)surface. Using a strati�cation algorithm [74, 219], we can decompose each 


i

into a

constant number connected surface patches so that the interior of each patch is smooth and

each of them satis�es (A1) and (A2) with a di�erent, possibly larger, value of b. We can

also assume that each resulting patch is monotone in x

1

; : : : ; x

d�1

(i.e., any line parallel to

the x

d

-axis intersects it in at most one point). In some cases, the resulting collection may

also include vertical surface patches, namely, patches whose projection on the hyperplane

x

d

= 0 has dimension � d � 2. However, in most of the presentation we will assume that

no vertical patches exist.

An arrangement of hyperplanes is called simple if any d of the hyperplanes intersect

in exactly one point, and no d + 1 of them have a nonempty intersection. In a simple

arrangement, a k-dimensional cell is contained in exactly d � k hyperplanes. We will also

need a similar concept for arrangements of surface patches. An arrangement A(�) satis-

fying assumptions (A1) and (A2) is said to be in general position if the coe�cients of the

polynomials de�ning the surface patches in � and their boundaries are algebraically inde-

pendent

2

over the rationals; otherwise, A(�) is called degenerate. This condition ensures

that no degeneracy occurs among the surface patches, such as too many surface patches

with a common point, tangencies or overlaps between di�erent intersections of subsets of

the surface patches, etc. We note that this de�nition of general position is quite strong

(e.g., surfaces de�ned by polynomials with integer coe�cients are not in general position

in this strong sense). In all the applications much weaker versions of general position are

complexity if it can be described in terms of a constant number of polynomials, with a constant bound on

the degrees of the corresponding polynomials.

2

A set fx

1

; : : : ; x

k

g of real numbers is algebraically independent (over the rationals) if no k-variate

polynomial with integer coe�cients vanishes at (x

1

; x

2

; : : : ; x

k

).
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Preliminaries 5

required, which rule out a speci�c list of forbidden degenerate situations. If A(�) is in

general position, then any d surface patches of � intersect in at most s points for some

constant s depending on d and b. By Bezout's theorem [217], s � b

d

.

If A(�) is degenerate, we can perturb the coe�cients of the polynomials in Q by various

in�nitesimals so that the coe�cients of the perturbed polynomials are in extension �elds of

the reals that are �elds of Puiseux Series in these in�nitesimals, and so that the resulting

surface patches are in general position. Moreover, it can be shown that, as far as worst-case

bounds are concerned, the perturbation may reduce the combinatorial complexity of any

cell of the arrangement by at most a constant factor [294, 315, 317]. Actually, in many

cases the size of a substructure of � has maximum complexity when A(�) is in general

position. This observation allows us to restrict our attention to arrangements in general

position while investigating the combinatorial complexity of substructures of arrangements.

However, in order to achieve the general position de�ned above, the perturbation scheme

has to introduce a di�erent in�nitesimal for each coe�cient, which makes any algorithm

based on this perturbation scheme impractical. Fortunately, most of the algorithms in-

volving arrangements either work for any degenerate arrangement or require a considerably

weaker de�nition of general position, e.g., the intersection of any k surface patches is ei-

ther empty or a (d � k)-dimensional set, all surface patches intersect \properly," etc. The

perturbation scheme required by an algorithm depends on the degenerate situations that it

wants to rule out. Several constructive perturbation schemes have been proposed that use

only a few in�nitesimals [67, 151, 164, 165, 173]. Although these schemes cannot handle all

the cases, they work for a wide range of applications. The paper by Seidel [312] contains

a detailed discussion on \linear" perturbation and its applications in geometric algorithms.

A few algorithms have also been proposed to handle degeneracies directly without resorting

to perturbations; see e.g. [59, 86]. We will, nevertheless, use the strong de�nition of general

position, de�ned above, in order to simplify the exposition, and refer the reader to original

papers for speci�c general-position assumptions required by di�erent algorithms.

In the light of the preceding discussion, and since we are mainly interested in asymptotic

bounds, we will make the following additional assumptions on the surface patches in �,

without any real loss of generality, whenever required.

(A3) Each surface patch in � is connected and monotone in x

1

; : : : ; x

d�1

, and its relative

interior is smooth.

(A4) The surface patches in � are in general position.

(A5) Any d surface patches in � intersect in at most s points, for some constant s. (This is

a consequence of the preceding assumptions, but is stated to introduce s explicitly.)

Generally, we will be stating assumptions (A1) and (A2), but most of the proofs and

algorithms sketched in the survey will also make assumptions (A3){(A5).
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Preliminaries 6

Assumptions (A1){(A3) imply that we can regard each surface patch 
 as the graph

of a partially de�ned (d� 1)-variate function x

d

= 
(x

1

; : : : ; x

d�1

) of constant description

complexity. We will refer to the projection of 
 onto the hyperplane x

d

= 0 as the domain,

denoted 


�

, of 
 (over which the function 
 is de�ned). The boundary of 


�

, called the

domain boundary, is a collection of O(1) (d� 2)-dimensional surface patches in R

d�1

satis-

fying assumptions corresponding to (A1){(A2). Abusing the notation slightly, we will not

distinguish between the surface patch 
 and the underlying function 
(x

1

; : : : ; x

d�1

).

The most fundamental question in the combinatorial study of an arrangement A(�) of

surfaces is to prove a bound on the combinatorial complexity, f(�), of A(�).

In 1826, Steiner [322] studied the complexity of arrangements of lines and circles in R

2

and of planes and spheres in R

3

. His results on arrangements of planes can be summarized

as follows. Let � be a set of n planes in R

3

so that � can be decomposed into k parallel

families, containing n

1

; : : : ; n

k

planes in each respective family, and the parallel families are

in general position. Steiner proved the following bounds on the number of vertices, edges,

two-dimensional faces, and three-dimensional cells of A(�):

�

3

vertices,

�

2

+ 3�

3

edges,

��

2

+ 3�

3

bounded edges,

�

1

+ 2�

2

+ 3�

3

2-faces,

�

1

� 2�

2

+ 3�

3

bounded 2-faces,

1 + �

1

+ �

2

+ �

3

3-cells,

�1 + �

1

� �

2

+ �

3

bounded 3-cells.

Here �

1

=

P

k

i=1

n

i

= n, �

2

=

P

i<j

n

i

n

j

, and �

3

=

P

i<j<k

n

i

n

j

n

k

. In particular, if n

i

= 1

for 1 � i � k, i.e., � is a set of n = k planes in general position, then A(�) has

�

n

3

�

vertices,

�

n

2

�

+3

�

n

3

�

edges, n

2

+3

�

n

3

�

2-faces, and 1+n+

�

n

2

�

+

�

n

3

�

3-cells. Later Roberts [302] extended

Steiner's formula to count the number faces in arbitrary arrangements of planes (allowing

all kinds of degeneracies) in R

3

, using the inclusion-exclusion principle. Brousseau [84]

used a plane-sweep argument to count the number of faces in arrangements of planes in

R

3

. (A similar argument was used by Hadwiger [201] to derive Euler's formula for convex

polytopes.) His method was later extended by Alexanderson and Wetzel [33].

Buck [85] was the �rst to bound the combinatorial complexity of hyperplane arrange-

ments in higher dimensions. In more recent work, Zaslavsky [344, 345] studied hyperplane

arrangements; he used the M�obius inversion formula and lattice theory to count the number

of cells of all dimensions in (possibly degenerate) hyperplane arrangements. Let � be a set

of n hyperplanes in R

d

. Let '

k

(�) denote the number of k-cells in A(�). Zaslavsky [344] and

Las Vergnas [238] proved that for nonsimple arrangements, '

k

(�) depends on the underlying

matroid structure. There are several results on bounding '

k

(�) in nonsimple hyperplane

arrangements. For example, Fukuda et al. [179] proved that the mean number of (k � 1)-

cells bounding a k-cell in an arrangement of n hyperplanes is less than 2k, which implies
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Preliminaries 7

that '

k

(�) �

�

d

k

�

'

d

(�). See [179, 263, 303] for some other results of this type.

In summary, the following theorem gives a bound on the combinatorial complexity of

hyperplane arrangements.

Theorem 2.1 (Buck [85]) Let � be a set of n hyperplanes in R

d

. For any 0 � k � d,

'

k

(�) �

�

n

d� k

�

k

X

i=0

�

n� d+ k

i

�

:

The equality holds when A(�) is simple.

Proof: We will prove the theorem for simple arrangements. Let '

k

(n; d) denote the number

of k-cells in a simple d-dimensional arrangement of n hyperplanes. Let A(�) be a simple

arrangement of a set � of n hyperplanes in R

d

. Fix a subset R � � of d � k hyperplanes,

and let � =

T

h2R

h; � is a k-
at. Set �j

�

= fh \ � j h 2 H n Rg. The k-cells of A(�j

�

)

are the same as the k-cells of A(�) that lie in �. Since A(�j

�

) is a simple k-dimensional

arrangement and there are

�

n

d�k

�

subsets of � of size d� k, we obtain

'

k

(�) =

�

n

d� k

�

'

k

(n� d+ k; k):

By Euler's relation for cell complexes in a�ne space (see e.g., [137]),

d

X

k=0

(�1)

k

'

k

(�) = (�1)

d

;

therefore

d

X

k=0

(�1)

k

�

n

d� k

�

'

k

(n� d+ k; k) = (�1)

d

:

The above equality can be rewritten as

d

X

k=0

(�1)

k

�

n

k

�

'

d�k

(n� k; d� k) = 1: (2.1)

We claim that

'

d

(n; d) =

d

X

i=0

�

n

i

�

; (2.2)

which will complete the proof of the theorem.
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Since (2.1) is a recurrence with '

0

(n; 0) = 1, there is a unique solution to the recurrence.

By induction on d and substituting (2.2) in (2.1), we obtain

d

X

k=0

(�1)

k

�

n

k

�

"

d�k

X

i=0

�

n� k

i

�

#

=

d

X

k=0

d�k

X

i=0

(�1)

k

�

n

k + i

��

k + i

k

�

=

d

X

i=0

i

X

k=0

(�1)

k

�

n

i

��

i

k

�

= 1 +

d

X

i=1

�

n

i

�

i

X

k=0

(�1)

k

�

i

k

�

= 1:

This completes the proof of the theorem. 2

For arrangements A(�) of a set � of surfaces satisfying assumptions (A1) and (A2),

obtaining a sharp bound on f(�), the combinatorial complexity of A(�), is not easy. If

the surface patches are in general position, in the sense de�ned above, it is obvious that

f(�) = O(n

d

). However, it is not easy to argue that the arrangements have maximum

complexity when the surface patches are in general position (this is due to the complicated

algebraic structures that can arise in degenerate settings). Heintz et al. [220] proved that

f(�) = (nb)

O(d)

. A lower bound of 
((nb=d)

d

) is not di�cult to prove. Warren [337] had

proved that the number of d-dimensional cells in an arrangement of n hypersurfaces, each

of degree � b, in R

d

is O((nb=d)

d

). This bound also follows from the results by Milnor [271],

Petrovski�� and Ole��nik [292], and Thom [330]. Using a perturbation argument, Pollack and

Roy [294] generalized Warren's result and proved that the number of cells of all dimensions

in an arrangement of n hypersurfaces is (O(nb)=d)

d

. An easy consequence of their result is

the following theorem.

Theorem 2.2 Let � be a set of n surface patches in R

d

satisfying assumptions (A1)

and (A2). Then

f(�) =

�

O(nb)

d

�

d

:

A recent result by Basu et al. [66] can be used to extend the above theorem as follows.

Let � be a k-dimensional algebraic varierty of degree at most b in R

d

. Then the number of

cells in the subdivision of � induced by � is at most O((n=k)

k

b

d

).

Improved bounds on the complexity of the arrangement can be proved in some special

cases. For example, if � is a set of n (d� 1)-simplices in R

d

that form the boundaries of k

convex polytopes, then f(�) = O(n

bd=2c

k

dd=2e

) [44]. See [126] for improved bounds in a few

other cases. A concept closely related to the combinatorial complexity of arrangements is

the number of realizable sign sequences of a family of polynomials. Let Q = fQ

1

; : : : ; Q

n

g
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be a set of d-variate polynomials as de�ned above, and let � be the family of the zero-sets

of the polynomials in Q. We can de�ne �

i

(x), for a point x 2 R

d

, as follows.

�

i

(x) =

8

<

:

�1 Q

i

(x) < 0;

0 Q

i

(x) = 0;

+1 Q

i

(x) > 0:

Since �

i

(x) remains the same for all points x in a single cell of A(�), we can de�ne the

sign sequence for each cell �(C) = h�

1

(x); �

2

(x); : : : ; �

n

(x)i for any point x 2 C. A sign

sequence � is realized by A(�) if there is a cell C 2 A(�) with � = �(C). A well-studied

question in algebraic geometry is to bound the number of sign sequences that can be realized

by a set of polynomials [34]. Obviously, f(�) is an upper bound on this quantity.

3 Lower Envelopes

De�nitions and preliminary results. In Chapter 1 we reviewed lower envelopes of arcs

in the plane and showed the relationship between such envelopes and Davenport{Schinzel

sequences, which eventually led to the derivation of tight or almost tight bounds on the

complexity of these structures. In this section we study lower envelopes of surface patches

in higher dimensions. Let � = f


1

; : : : ; 


n

g be a collection of surface patches in R

d

satisfying

assumptions (A1){(A3). If we regard each surface patch as the graph of a partially de�ned

function, the lower envelope of �, denoted L(�) (or L for brevity), is de�ned as the graph

of the partially de�ned function

L

�

(x) = min

1�i�n




i

(x) ; x 2 R

d�1

;




i

(x) is set to +1 if x 62 


�

i

. The upper envelope U(�) of � is de�ned as the graph of the

partially de�ned function

U

�

(x) = max

1�i�n




i

(x) ; x 2 R

d�1

;




i

(x) is set to �1 if x 62 


�

i

. We can extend the de�nitions of lower and upper envelopes even

if � satis�es only (A1) and (A2). We can decompose each 


i

into O(1) connected patches,

each of which is monotone in x

1

; : : : ; x

d�1

directions and satis�es (A1) and (A2). Let �

0

denote the resulting set of surface patches. We de�ne L(�) = L(�

0

) and U(�) = U(�

0

).

L(�) induces a partition of R

d�1

into maximal connected ((d� 1)-dimensional) regions

so that L(�) is attained by a �xed (possibly empty) subset of � over the interior of each

such region. The boundary of such a region consists of points at which L(�) is attained

by at least two of the surface patches or by the relative boundary of at least one surface.

Let M(�) denote this subdivision of R

d�1

, which we call the minimization diagram for the

collection �. A face of M(�) is a maximal connected region over which L(�) is attained

by the same set of functions and/or relative boundaries of function graphs in �. Note
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Figure 2: Lower envelope of triangles in R

3

, as viewed from below.

that if a face f 2 M(�) lies on the boundary of the domain of a surface in �, then f

may not correspond to any face of L(�). However, if f lies in the relative interior of the

domains of all the relevant surface patches, f is the projection of a face

^

f of L(�). The

combinatorial complexity of L(�), denoted �(�), is the number of faces of all dimensions in

M(�). For an in�nite family G of surface patches satisfying assumptions (A1){(A2), we

de�ne �(n; d;G) = max �(�), where the maximum is taken over all subsets � of G of size n.

IfG is the set of all surface patches satisfying (A1){(A2) or ifG is obvious from the context,

we will simply write �(n; d). The maximization diagram is de�ned as the subdivision of

R

d�1

induced, in the same manner, by the upper envelope U(�) of �.

As discussed in Chapter 1, the complexity of the lower envelope of n arcs in the plane,

each pair of which intersects in at most s points, is at most �

s+2

(n), the maximum length of

an (n; s)-Davenport{Schinzel sequence (see also [317]). Extending to higher dimensions, it

was conjectured that the complexity of the lower envelopes of a family of n surface patches

satisfying (A1){(A2) is O(n

d�2

�

q

(n)) for a constant q � 0. If � is a set of n hyperplanes in

R

d

, then the Upper Bound Theorem implies that the complexity of L(�) is �(n

bd=2c

) [346].

Let � be the set of all (d� 1)-simplices in R

d

. Extending the lower-bound construction by

Wiernik and Sharir [341] to higher dimensions, one can prove that �(n; d;�) = 
(n

d�1

�(n)).

This suggests we cannot hope to aim for an o(n

d�1

) bound on �(n; d) for general surface

patches. At the end of this section we will discuss some cases in which better bounds on

�(n; d) can be proved.

Using a divide-and-conquer approach, Pach and Sharir [284] proved that, for a set �

of n simplices in R

d

, the number of (d � 1)-dimensional faces in M(�) is O(n

d�1

�(n)).

Roughly speaking, they divide � into subsets �

1

;�

2

, each of size at most dn=2e, and bound

the number of (d � 1)-dimensional faces of M(�

1

);M(�

2

) recursively. They prove that

the number of (d � 1)-dimensional faces in M(�) is jM(�

1

)j + jM(�

2

)j + O(n

d�1

�(n)),

thereby obtaining the claimed bound. Edelsbrunner [138] extended their result to give the

same asymptotic bound for the number of faces of all dimensions. Simpler proofs for this

bound were proposed by Sharir and Agarwal [317] and Tagansky [327]. Roughly speaking,

both proofs proceed by induction on d, and they bound the change in the complexity of the

minimization diagram as a simplex is inserted into �.
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The main complexity bound. All the aforementioned proofs rely crucially on the fact

that if � is a set of surface patches in general position, then any triple of surface patches

intersect in at most one point. These proofs do not extend to the case when a tripe intersects

in two or more points. Halperin and Sharir [210] proved a near-quadratic bound on �(n; 3)

for the case when s � 2. Sharir [315] extended their approach to higher values of s and d.

Their results are stated in the following theorem.

Theorem 3.1 (Halperin and Sharir [210]; Sharir [315]) Let � be a set of n surface patches

in R

d

satisfying assumptions (A1){(A2). Then �(n; d) = O(n

d�1+"

), for any " > 0. The

constant of proportionality depends on "; d; b (and s).

Proof: We will sketch the proof for a set of bivariate surface patches in R

3

satisfying

assumptions (A1){(A5) with s = 2, i.e., a triple of surface patches intersect in at most two

points. For a pair of surface patches 


i

; 


j

2 �, let �

ij

denote the intersection arc 


i

\ 


j

. If

�

ij

is not x

1

-monotone, we decompose it at its x

1

-extremal points; each intersection arc is

thereby decomposed into O(1) pieces. If any of these points appears on the lower envelope,

we regard it as a vertex on the envelope and its projection as a vertex on the minimization

diagram.

Since � is in general position, it su�ces to bound the number of vertices in M(�).

Indeed, a higher-dimensional face f of M(�) must be incident to a vertex v of M(�), and

we can charge f to v. By the general-position assumption, each vertex is charged only a

constant number of times. For a subset R � �, let �

�

(R) denote the number of vertices in

M(R); set �

�

(r) = max�

�

(R), where the maximum is taken over all subsets of � of size r.

C

e

e

Figure 3: Vertical cylinder C

e

and the vertical cross-section �

e

of �.

We call a vertex ofM(�) a boundary vertex if it lies on the boundary @


�

i

of the domain

of a surface 


i

; otherwise, we call it an inner vertex. The number of boundary vertices is

O(n�

q

(n)), where q is a constant depending on b, the maximum degree of surface patches

and their boundaries. Indeed, let C

e

be the vertical cylinder erected on an edge e of the
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boundary @


�

i

, i.e., C

e

= e � R. De�ne �

e

= f
 \ C

e

j 
 2 � n f


i

gg, which is a collection

of O(n) arcs; see Figure 3. Each arc in �

e

satis�es assumptions (A1){(A3) (with d = 2,

and with larger, but still constant, parameters b and s). It is easily seen that a boundary

vertex of M(�) appearing on e is a vertex of M(�

e

). If the arcs in �

e

intersect in at most

q � 2 points, O(�

q

(n)) boundary vertices lie on e. Summing over all O(n) edges of domain

boundaries of �, we obtain the desired bound on the number of boundary vertices.

We call an inner vertex regular if it is not an x

1

-extremal vertex of any of the three

intersection curves. The number of irregular vertices is obviously O(n

2

). For a subset

R � �, let �(R) denote the number of regular (inner) vertices in M(R), and let �(r) =

max

jRj=r

�(R). The above discussion implies that

�

�

(�) � �(�) +O(n�

q

(n)):

Next, we derive a recurrence for �(�), which will solve to O(n

2+"

). Fix a regular vertex

v of M(�). Let v̂ be the corresponding vertex of L(�) (since v is an inner vertex, v̂ is

well de�ned). Suppose v̂ is one of the two intersection points of three surface patches,

say, 


1

; 


2

; 


3

. Assume, without loss of generality, that if j


1

\ 


2

\ 


3

j = 2, then the x

1

-

coordinate of the other intersection point of 


1

; 


2

, and 


3

is larger than that of v̂. Since

v̂ is a regular vertex, one of the three pairwise-intersection curves �

ij

, say �

12

, lies above

L(�) in the halfspace x

1

< x

1

(v) in a su�ciently small neighborhood of v̂. We mark on �

12

the intersection points of �

12

with other surface patches of � and the points that lie above

the boundaries of other surface patches in �.

We �x a parameter t = t(") and follow �

12

in the (�x

1

)-direction, starting from v̂, until

one of the following three events occurs:

3

(C1) we reach the left endpoint of �

12

;

(C2) �

12

appears on L(�); or

(C3) we crossed t marked points on �

12

.

We call v a vertex of type (Ci), for i = 1; 2; 3, if we �rst reach an event of type (Ci).

If (C1) occurs, we charge v to the left endpoint of �

12

. Since each endpoint is charged at

most twice, the total number of regular vertices of type (C1) is O(n

2

). If (C2) occurs, then

we must have passed above the boundary of 


3

while following �

12

because �

12

lies strictly

above 


3

in the halfspace x

1

< x

1

(v). Let w be the marked point on �

12

lying above @


�

3

that we have visited. We charge v to w. Suppose w lies above an edge e of @


�

3

. We can

de�ne C

e

and �

e

as above; then w is a vertex of A(�

e

). Since (C2) occurred before (C3),

at most t marked points lie on �

12

between v and w, which implies that less than t arcs of

�

e

lie below w. As shown in [313], the number of vertices of A(�

e

) that lie above at most

3

If the x

1

-coordinate of the other intersection point of 


1

; 


2

, and 


3

were smaller than that of v̂, we

would have traced �

12

in the (+x

1

)-direction.
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t arcs is O(t�

q

(n)). Summing over all edges of domain boundaries, the number of marked

points on intersection arcs to which a vertex of type (C2) is charged is O(nt�

q

(n)). Since

each marked point is charged O(1) times, the number of type (C2) vertices is O(nt�

q

(n)).

Finally, if (C3) occurs, then we charge 1=t to each marked point on �

12

that we visited.

Each marked point will be charged only O(1=t) units, and each such marked point lies above

at most t surface patches of �. Theorem 6.1 in Section 6 implies that the number of such

marked points, summed over all intersection curves, is O(t

3

�

�

(n=t)). The total number of

vertices of type (C3) is thus

O(1=t) �O(t

3

�

�

(n=t)) = O(t

2

�(n=t) + n�

q

(n)):

Hence, we obtain the following recurrence for �(n):

�(n) � At

2

�

�

n

t

�

+Btn�

q

(n);

where A and B are constants (depending on b). The solution of the above recurrence is

�(n) = O(tn

1+log

t

A

�

q

(n)):

If t = t(") is chosen su�ciently large, then �(n) = O(n

2+"

). This proves the theorem for

d = 3; s = 2.

For s > 2, Sharir [313] introduces the notion of index of a regular vertex. The index of

a vertex v 2

T

3

i=1




i

is the number of points of

T

3

i=1




i

whose x

1

coordinates are less than

that of v. For 0 � j < s, let �

(j)

(�) be the number of regular vertices in L(�) of index j.

Then �(�) =

P

s�1

j=0

�

(j)

(�).

Modifying the above argument slightly, Sharir derived a system of recurrences for the

quantities �

(j)

(�), for j < s. There are three main di�erences. First, the tracing of �

12

is always done in the decreasing x

1

-direction. Second, the value of the parameter t now

depends on j and is denoted by t

j

, Third, there is one more stopping criterion:

(C4) �

12

intersects 


3

; let z be the (�rst) intersection point.

Using the fact that the index of z is � j � 1 and that at most t

j

surface patches lie below

z, Sharir derives the following recurrence for �

(j)

(n) = max

j�j=n

�

(j)

(�).

�

(j)

(n) � A

j

t

2

j

�

�

�

n

t

j

�

+B

j

�

t

3

j

�

(j�1)

�

n

t

j

�

+ nt

j

�

q

(n)

�

:

By expanding this system of recurrences and by choosing the values of t

j

carefully, Sharir

proved that the solution of this system satis�es

�

�

(n) = O(n

2+"

):

The theorem is proved in higher dimensions by induction on d, using a similar charging

scheme. See the original paper by Sharir for details. 2
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Open Problem 1 Let � be a set of n surface patches in R

d

satisfying assumptions (A1)

and (A2). Is �(n; d) = O(n

d�2

�

q

(n)), where q is a constant depending on d and b?

Bounds in special cases. As noted above, sharper bounds are known on the complexity

of lower envelopes in some special cases; see [306, 317]. For example, if � is a set of pseudo-

planes in R

3

, i.e., each triple of surfaces intersects in at most one point and the intersection

of a pair of surfaces in � is a single (closed or unbounded) Jordan curve, then �(�) = O(n).

On the other hand, if � is a set of pseudo-spheres, i.e., each triple intersects in at most two

points and the intersection curve of any pair is a single Jordan curve, then �(�) = O(n

2

).

If � is a family of hypersurfaces in R

d

, a sharper bound on �(�) can be proved using the

so-called linearization technique. Here is a sketch of this technique.

Let � = f


1

; : : : ; 


n

g be a collection of hypersurfaces of degree at most b, i.e., each 


i

is the zero set of a d-variate polynomial Q

i

of degree at most b. Let Q = fQ

1

; : : : ; Q

n

g.

We say that � admits a linearization of dimension k if, for some p > 0, there exists a

(d+ p)-variate polynomial

g(x;a) =  

0

(a) +  

1

(a)'

1

(x) +  

2

(a)'

2

(x) + � � �+  

k�1

(a)'

k�1

(x) + '

k

(x);

for x 2 R

d

, a 2 R

p

, so that, for each 1 � i � n, we have Q

i

(x) = g(x;a

i

) for some a

i

2 R

p

.

Here each  

j

(a), for 0 � j � k, is a p-variate polynomial, and each '

j

(x), for 1 � j � k+1, is

a d-variate polynomial. It is easily seen that such a polynomial representation always exists

for p � d

b+1

|let the ''s be the monomials that appear in at least one of the polynomials of

Q, and let  

j

(a) = a

j

(where we think of a as the vector of coe�cients of the monomials).

We de�ne a transform ' : R

d

�! R

k

that maps each point in R

d

to the point

'(x) = ('

1

(x); '

2

(x); : : : ; '

k

(x));

the image '(R

d

) is a d-dimensional algebraic surface � in R

k

. For each function Q

i

(x) =

g(x;a

i

), we de�ne a k-variate linear function

h

i

(y) =  

0

(a

i

) +  

1

(a

i

)y

1

+ � � � 

k�1

(a

i

)y

k�1

+ y

k

:

Let H = fh

i

= 0 j 1 � i � ng be a set of n hyperplanes in R

k

. Let � be a vertex of L(�). If �

is incident to 


1

; : : : ; 


d

, then Q

1

(�) = � � � = Q

d

(�) = 0 and Q

d+1

(�)�

d+1

0; : : : ; Q

n

(�)�

n

0,

where �

i

2 f>;<g. By construction, Q

i

(�) = h

i

('(�)). Let Q 2 R[x

1

; : : : ; x

d

] be a d-

variate polynomial. If we regard Q as a univariate polynomial in x

d

and the coe�cient of

the leading term in Q is a positive constant, then we call Q a positive polynomial. If all Q

i

's

are positive, then, by the de�nition of lower envelopes, Q

i

(�) < 0 for every i > d. Hence,

h

1

('(�)) = � � � h

d

('(�)) = 0 and h

d+1

('(�)) < 0; : : : ; h

n

('(�)) < 0. That is, '(�) is a vertex

of L(H) \ �. Since each h

i

is a hyperplane in R

k

and the degree of � depends only on d

and b, the Upper Bound Theorem for convex polyhedra (see McMullen and Shephard [262]

and Ziegler [346]) implies that the number of vertices in � \ L(H) is O(n

bk=2c

). Hence, we

can conclude the following.
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Theorem 3.2 Let � be a collection of n hypersurfaces in R

d

, of constant maximum degree

b. If � admits a linearization of dimension k and each surface � is the zero set of a positive

polynomial, then �(�) = O(n

bk=2c

), where the constant of proportionality depends on k; d,

and b.

We illustrate the linearization technique by giving an example. A sphere in R

d

with

center (a

1

; : : : ; a

d

) and radius a

d+1

can be regarded as the zero set of the polynomial

g(x;a), where

g(x; a

1

; : : : ; a

d+1

) = [a

2

1

+ � � �+ a

2

d

� a

2

d+1

]� [2a

1

� x

1

]� [2a

2

� x

2

]� � � � �

[2a

d

� x

d

] + [x

2

1

+ � � � x

2

d

]

Thus, setting

 

0

(a) =

d

X

i=1

a

2

i

� a

2

d+1

;  

1

(a) = �2a

1

; � � �  

d

(a) = �2a

d

;  

d+1

(a) = 1;

'

1

(x) = x

1

; � � � '

d

(x) = x

d

; '

d+1

(x) =

d

X

i=1

x

2

i

;

we obtain a linearization of dimension d+ 1. We can therefore conclude the following.

Corollary 3.3 Let � be a set of n spheres in R

d

. Then �(�) = O(n

dd=2e

).

The overlay of minimization diagrams. Motivated by several applications, researchers

have studied the complexity of the overlay of two minimization diagrams. That is, let � and

�

0

be two families of surface patches satisfying assumptions (A1){(A2); set n = j�j + j�

0

j.

The overlay of M(�) and M(�

0

) is the decomposition of R

d�1

into maximal connected

regions so that each region lies within a �xed pair of faces of M(�) and M(�

0

). It is

conjectured that the complexity of the overlay of the two diagrams is also close to O(n

d�1

).

Although this conjecture is obviously true for the minimization diagrams of arcs in the

plane, it is not intuitive even in R

3

because the overlay of two planar maps with m edges

each may have 
(m

2

) vertices. Edelsbrunner et al. [146] proved an O(n

d�1

�(n)) upper

bound if � and �

0

are sets of a total of n simplices in R

d

.

Agarwal et al. [21] proved that the overlay of two minimization diagrams, de�ned for a

total of n surface patches, in R

3

has O(n

2+"

) complexity, for any " > 0. Note that in R

3

,

each vertex of the overlay is a vertex of M(�), a vertex of M(�

0

), or an intersection point

of an edge of M(�) with an edge of M(�

0

). The proof in [21] establishes an upper bound

on the number of intersection points by generalizing the proof technique of Theorem 3.1.

Open Problem 2 What is the complexity of the overlay of two minimization diagrams

in R

4

?
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The following problem is closely related to the overlay of minimization diagrams. Let

�;�

0

be two sets of surface patches in R

d

satisfying (A1){(A2). Regarding each surface as

the graph of a partially de�ned function, de�ne

S(�;�

0

) =

n

x

�

�

�

L

�

(x

1

; : : : ; x

d�1

) � x

d

� U

�

0

(x

1

; : : : ; x

d�1

)

o

;

i.e., S(�;�

0

) is the set of points lying above all surface patches of �

0

and below all surface

Figure 4: S(�;�

0

); solid arcs are in �, and dashed arcs are in �

0

.

patches of �; see Figure 4. It can be shown that the combinatorial complexity of S(�;�

0

)

is proportional to the complexity of the overlay of the minimization diagram of � and the

maximization diagram of �

0

. The result of Agarwal et al. [21] implies that S(�;�

0

) =

O(n

2+"

) in 3-space. In general, the complexity of the overlay of the minimization diagram

of � and the maximization diagram of �

0

may be larger than that of S(�;�

0

). As an

application, which also illustrates this discrepancy, consider the following example. Let

S = fS

1

; : : : ; S

n

g be a set of n spheres in R

3

. A line in R

3

can be parameterized by four

real parameters. We can therefore de�ne the set of lines tangent to a sphere S

i

and lying

above (resp. below) S

i

as a surface patch 


i

(resp. 


0

i

) in R

4

. De�ne � = f


i

j 1 � i � ng and

�

0

= f


0

i

j 1 � i � ng. If the lines are parameterized carefully, Agarwal et al. [10] showed

that S(�;�

0

) is the set of lines intersecting all the spheres of S and that the combinatorial

complexity of S(�;�

0

) is O(n

3+"

), for any " > 0. However, a construction of Pellegrini [289]

implies that the combinatorial complexity of the overlay of the two diagrams can be 
(n

4

).

4 Single Cells

Lower envelopes are closely related to other substructures in arrangements, notably cells

and zones. The lower envelope is a portion of the boundary of the bottommost cell of

the arrangement, though the worst-case complexity of L(�) can be larger than that of the

bottommost cell of A(�). In two dimensions, it was shown in [198] that the complexity of a

single face in an arrangement of n arcs, each pair of which intersect in at most s points, is

O(�

s+2

(n)), and so has the same asymptotic bound as the complexity of the lower envelope

of such a collection of arcs. The prevailing conjecture is that the complexity of a single cell

in an arrangement of n surface patches in R

d

satisfying the assumptions (A1) and (A2) is
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close to O(n

d�1

). The Upper Bound Theorem implies that the complexity of a single cell

in arrangement of hyperplanes in R

d

is O(n

bd=2c

), and the linearization technique described

in Section 3 implies that the complexity of a single cell in an arrangement of n spheres

is O(n

dd=2e

). However, the lower-bound construction for lower envelopes implies a lower

bound of 
(n

d�1

�(n)) for the complexity of a single cell for arrangements of simplices.

Figure 5: A single cell in an arrangement of segments.

Pach and Sharir [284] were the �rst to prove a subcubic upper bound on the complexity

of a single cell in arrangements of triangles in R

3

. This bound was improved by Aronov and

Sharir [50] to O(n

7=3

), and subsequently to O(n

2

logn) [52]. The latter approach extends

to higher dimensions; that is, the complexity of a single cell in an arrangement of n (d� 1)-

simplices in R

d

is O(n

d�1

log n). A simpler proof was given by Tagansky [327]. These

approaches, however, do not extend to nonlinear surfaces even in R

3

.

Halperin [203, 204] proved near-quadratic bounds on the complexity of a single cell in

arrangement of certain classes of n bivariate surface patches, which arise in motion-planning

applications. Halperin and Sharir [213] proved a near-quadratic bound on the complexity

of a single cell in an arrangement of the contact surfaces that arise in a rigid motion of a

simple polygon amid polygonal obstacles in the plane, i.e., the surfaces that represent the

placements of the polygon at which it touches one of the obstacles. The proof borrows ideas

from the proof of Theorem 3.1.

A near-optimal bound on the complexity of a single cell in the arrangement of an arbi-

trary collection of surface patches in R

3

satisfying assumptions (A1) and (A2) was �nally

proved by Halperin and Sharir [211]:

Theorem 4.1 (Halperin and Sharir [211]) Let � be a set of surface patches in R

3

satisfying

assumptions (A1) and (A2). For any " > 0, the complexity of a single cell in A(�) is

O(n

2+"

), for any " > 0, where the constant of proportionality depends on " and on the

maximum degree of the surface patches and of their boundaries.

The proof proceeds along the same lines as the proof of Theorem 3.1. However, they

establish the following two additional results to \bootstrap" the recurrences that the proof

derives. Let C be the cell of A(�) whose complexity we want to bound.
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(a) There are only O(n

2

) vertices v of the cell C that are locally x-extreme (that is, there

is a neighborhood N of v and a connected component C

0

of the intersection of N with

the interior of C, such that v lies to the left (in the x-direction) of all points of C

0

, or

v lies to the right of all these points).

(b) There are only O(n

2+"

) vertices on popular faces of C, that is, 2-faces f for which C

lies locally near f on both sides of f .

Property (a) is proved by an appropriate decomposition of C into O(n

2

) subcells, in the

style of a Morse decomposition of C (see [270]), so that each subcell has at most two points

that are locally x-extreme in C. Property (b) is proved by applying the machinery of the

proof of Theorem 3.1, where the quantity to be analyzed is the number of vertices of popular

faces of C, rather than all inner vertices. Once these two results are available, the proof of

Theorem 3.1 can be carried through, with appropriate modi�cations, to yield a recurrence

for the number of vertices of C, whose solution is O(n

2+"

). We refer the reader to the

original paper for more details.

It looks plausible that this proof can be extended to higher dimensions, to yield a

bound of O(n

d�1+"

) on the complexity of a single cell in an arrangement of n surface

patches in R

d

satisfying assumptions (A1) and (A2). For this, appropriate extensions of

both properties (a) and (b) have to be established. The extension of (a) appears to require

topological considerations related to Morse theory, and the extension of (b) requires an

inductive argument, in which bounds on the number of vertices of popular faces of all

dimensions need to be derived, using induction on the dimension of the faces. Recently,

Basu [65] showed that the topological complexity , i.e., the sum of the Betti numbers, of

a single cell in an arrangement of n surface patches satisfying assumptions (A1){(A2) is

O(n

d�1

). He also showed that under certain geometric assumptions on surface patches the

combinatorial complexity of a single cell is also O(n

d�1

). It is however not clear how to

extend his argument to an arbitrary collection of surface patches satisfying assumptions

(A1){(A2).

The linearization technique in the previous section can be extended to bound the com-

plexity of a cell as well, namely, one can prove the following.

Theorem 4.2 Let � be a collection of n hypersurfaces in R

d

, of constant maximum degree

b. If � admits a linearization of dimension k, then the combinatorial complexity of a cell of

A(�) is O(n

bk=2c

), where the constant of proportionality depends on k; d, and b.

5 Zones

Let � be a set of n surfaces in R

d

. The zone of a variety � (not belonging to �), denoted

as zone(�; �), is de�ned to be the set of d-dimensional cells in A(�) that intersect �. The
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complexity of zone(�; �) is de�ned to be the sum of complexities of the cells of A(�) that

belong to zone(�; �), where the complexity of a cell in A(�) is the number of faces of all

dimensions that are contained in the closure of the cell.

The complexity of a zone was �rst studied by Edelsbrunner et al. [152]; see also [107].

The \classical" zone theorem [137, 154] asserts that the maximum complexity of the zone

of a hyperplane in an arrangement of n hyperplanes in R

d

is �(n

d�1

), where the constant

of proportionality depends on d. The original proof given by Edelsbrunner et al. [152]

had some technical problems. A correct, and simpler, proof was given by Edelsbrunner et

al. [154]. Their technique is actually quite general and can also be applied to obtain several

other interesting combinatorial bounds involving arrangements. For example, the proof by

Aronov and Sharir for the complexity of a single cell in arrangements of simplices [52] used

a similar approach. Other results based on this technique can be found in [4, 48, 49]. We

therefore describe the technique, as applied in the proof of the zone theorem:

Theorem 5.1 (Edelsbrunner, Seidel, and Sharir [154]) The maximum complexity of the zone

of a hyperplane in an arrangement of n hyperplanes in R

d

is �(n

d�1

).

This result is easy to prove for d = 2; see Chapter 1. For a set � of n hyperplanes in

R

d

and another hyperplane b, let �

k

(b; �) denote the total number of k-faces contained on

the boundary of cells in zone(b; �); each such k-face is counted once for each cell that it

bounds. Let

�

k

(n; d) = max �

k

(b; �) ;

where the maximum is taken over all hyperplanes b and all sets � of n hyperplanes in R

d

.

The maximum complexity of zone(b; �) is at most

P

d

k=0

�

k

(n; d). Thus the following lemma

immediately implies the upper bound in Theorem 5.1.

Lemma 5.2 For each d and 0 � k � d,

�

k

(n; d) = O(n

d�1

) ;

where the constants of proportionality depend on d and k.

Proof: We use induction on d. As just noted, the claim holds for d = 2. Assume that the

claim holds for all d

0

< d, let � be a set of n hyperplanes in R

d

, and let b be some other

hyperplane. Without loss of generality, we can assume that the hyperplanes in � [ fbg are

in general position. We de�ne a k-border to be a pair (f;C), where f is a k-face incident

to a d-dimensional cell C of A(�). Thus �

k

(b; �) is the total number of k-borders (f;C) for

which C 2 zone(b; �).

We pick a hyperplane 
 2 � and count the number of all k-borders (f;C) in zone(b; �)

such that f is not contained in 
. If we remove 
 from �, then any such k-border is contained

in a k-border (f

0

; C

0

) of zone(b; � n f
g) (i.e., f � f

0

and C � C

0

). Our strategy is thus to
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consider the collection of k-borders in zone(b; � n f
g) and to estimate the increase in the

number of k-borders as we add 
 back to �. Observe that we do not count k-borders that

lie in 
.

Let �j




= f


0

\ 
 j 


0

2 � n f
gg; the set �j




forms a (d � 1)-dimensional arrangement

of n � 1 hyperplanes within 
. Let (f;C) be a k-border of zone(b; � n f
g), and consider

what happens to it when we reinsert 
. The following cases may occur:


 \ C = ;: In this case the k-border (f;C) gives rise to exactly one k-border in zone(b; �),

namely itself.


 \ C 6= ;, 
 \ f = ;: Let 


+

be the open halfspace bounded by 
 that contains f , and let

C

+

= C \ 


+

. If C

+

intersects b, then (f;C) gives rise to one k-border in zone(b; �),

namely (f;C

+

) (this is the case for the edge f = e in Figure 6); otherwise it gives rise

to no k-border in zone(b; �).


 \ f 6= ;: Let 


+

and 


�

be the two open halfspaces bounded by 
 and let C

+

= C \ 


+

and C

�

= C \


�

. If the closure of only one of C

+

and C

�

intersects b, say, C

+

, then

(f;C) gives rise to only one k-border in zone(b; �), namely (f \ 


+

; C

+

) (this is the

case for the edge f = e

0

in Figure 6). If both C

+

and C

�

intersect b, then (f;C) gives

rise to two k-borders in zone(b; �), namely (f \ 


+

; C

+

) and (f \ 


�

; C

�

) (this is the

case for the edge f = e

00

in Figure 6). In this case, however, we can charge uniquely

this increase in the number of k-borders to (f \ 
;C \ 
), which, as easily seen, is a

(k � 1)-border in zone(b \ 
; �j




).

e’

e’’

e

a

γ

b

Figure 6: Inserting 
 into zone(b; � n f
g).

If we repeat this process over all k-borders of zone(b; � n f
g), we obtain that the total

number of k-borders (f;C) in zone(b; �), for f not contained in 
, is at most

�

k

(b; � n f
g) + �

k�1

(b \ 
; �j




) � �

k

(n� 1; d) + �

k�1

(n� 1; d� 1)

= �

k

(n� 1; d) +O(n

d�2

) ;

where the last inequality follows from the induction hypothesis. Repeating this analysis for

all hyperplanes 
 2 �, summing up the resulting bounds, and observing that each k-border

Arrangements May 26, 1998



Zones 21

of zone(b; �) is counted exactly n� d+ k times, we obtain

�

k

(n; d) �

n

n� d+ k

�

�

k

(n� 1; d) +O(n

d�2

)

�

:

Edelsbrunner et al. [154] showed that this recurrence solves to O(n

d�1

) for k � 2. Using

Euler's formula for cell complexes, one can show that �

k

(n; d) = O(n

d�1

) for k = 0; 1 as

well. This completes the proof of the theorem. For the lower bound, it is easily checked that

the complexity of the zone of a hyperplane b in an arrangement of n hyperplanes in R

d

in

general position is 
(n

d�1

). In fact, the complexity of the cross-section of the arrangement

within b is already 
(n

d�1

). 2

The above technique can be extended to bound the quantity

P

C2A(�)

jCj

2

, where �

is a set of hyperplanes, C ranges over all d-dimensional cells of the arrangement, and jCj

denotes the number of lower-dimensional faces incident to C. For d � 3, an easy application

of the zone theorem (see Edelsbrunner [137]) implies that

P

C

jCj

2

= O(n

d

); this bound

is obviously tight if the lines or planes of � are in general position. For d > 3, the same

application of the zone theorem yields only

P

C

jCjf

C

= O(n

d

), where f

C

is the number of

hyperplanes of � meeting the boundary of C. Using the same induction scheme as in the

proof of Theorem 5.1, Aronov et al. [48] showed that

X

C2A(�)

jCj

2

= O(n

d

log

b

d

2

c�1

n):

It is believed that the right bound is O(n

d

). Note that such a result does not hold for

arrangements of simplices or of surfaces because the complexity of single cell can be 
(n

d�1

).

The zone theorem for hyperplane arrangements can be extended as follows.

Theorem 5.3 (Aronov, Pellegrini, and Sharir [49]) Let � be a set of n hyperplanes in R

d

.

Let � be a p-dimensional algebraic variety of some �xed degree, or the relative boundary of

any convex set with a�ne dimension p+1, for 0 � p � d. The complexity of the zone(�; �)

is O(n

b(d+p)=2c

log

�

n), where � = d + p(mod 2), and the bound is almost tight (up to the

logarithmic factor) in the worst case.

In particular, for p = d� 1, the complexity of the zone is O(n

d�1

logn), which is almost

the same as the complexity of the zone of a hyperplane in such an arrangement.

The proof proceeds along the same lines of the inductive proof of Theorem 5.1. However,

the removal and re-insertion of a hyperplane 
 2 � splits a face f of zone(�; �nf
g) into two

subfaces, both lying in zone(�; �), the charging scheme used in the proof of Theorem 5.1

becomes inadequate, because f \ 
 need not belong to the zone of � \ 
 in the (d � 1)-

dimensional cross-section of A(�) along 
. What is true, however, is that f \ 
 is a face

incident to a popular facet of zone(�; �) along 
, that is, a facet g � 
 whose two incident
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cells belong to the zone. Thus the induction proceeds not by decreasing the dimension of

the arrangement (as was done in the proof of Theorem 5.1), but by reapplying the same

machinery to bound the number of vertices of popular facets of the original zone(�; �). This

in turn requires similar bounds on the number of vertices of lower-dimensional popular faces.

We refer the reader to Aronov et al. [49] for more details.

In general, the zone of a surface in an arrangement of n surfaces in R

d

can be transformed

to a single cell in another arrangement of O(n) surface patches in R

d

. For example, Let

� be a set of n (d � 1)-simplices in R

d

, and let � be a hyperplane. We split each 
 2 �

into two polyhedra at the intersection of � and � (if the intersection is nonempty), push

these two polyhedra slightly away from each other, and, if necessary, retriangulate each

polyhedron into a constant number of simplices. In this manner, we obtain a collection

�

0

of O(n) simplices, and all cells of the zone of � in A(�) now fuse into a single cell of

A(�

0

). Moreover, by the general position assumption, the complexity of the zone of � in �

is easily seen to be dominated by the complexity of the new single cell of A(�

0

). (The same

technique has been used earlier in [145], to obtain a near-linear bound on the complexity of

the zone of an arc in a two-dimensional arrangement of arcs.) Hence, the following theorem

is an easy consequence of the result by Aronov and Sharir [52].

Theorem 5.4 The complexity of the zone of a hyperplane in an arrangement of n (d� 1)-

simplices in R

d

is O(n

d�1

log n).

Using a similar argument one can prove the following.

Theorem 5.5 (Halperin and Sharir [211]) Let � be a collection of n surface patches in R

3

,

satisfying assumptions (A1) and (A2). The combinatorial complexity of the zone in A(�)

of an algebraic surface � of some �xed degree is O(n

2+"

), for any " > 0, where the constant

of proportionality depends on ", on the maximum degree of the given surfaces and their

boundaries, and on the degree of �.

Once the bound on the complexity of a single cell in an arrangement of general algebraic

surfaces is extended to higher dimensions, it should immediately yield, using the same

machinery, to a similar bound for the zone of a surface in such an arrangement.

6 Levels

The level of a point p 2 R

d

in an arrangement A(�) of a set � of surface patches satisfying

(A1){(A3) is the number of surfaces of � lying vertically below p. For 0 � k < n, we de�ne

k-level (resp. �k-level), denoted by A

k

(�) (resp. A

�k

(�)), to be the closure of all points

on the surfaces of � whose level is k (resp. at most k). A face of A

k

(�) or A

�k

(�) is a

maximal connected portion of a face of A(�) consisting of points having a �xed subset of
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surfaces lying below them. For totally de�ned functions, any such face coincides with a face

of A(�). Note that A

0

(�) is the same as L(�). If the surfaces in � are graphs of totally

de�ned functions, then the level of all points on a face of A(�) is the same and A

k

(�) is

a connected monotone surface; otherwise A

k

(�) may have discontinuities. See Figure 7 for

an example of levels in arrangements of lines and segments.

(i) (ii)

Figure 7: The 2-level in (i) an arrangement of lines, and (ii) in an arrangement of segments.

Levels in hyperplane arrangements in R

d

are closely related to k-sets of point sets in

R

d

. Let S be a set of n points in R

d

, and let S

�

be the set of hyperplanes dual to S. A

subset A � S is called a k-set (resp. �k-set) if jAj = k (resp. jAj � k) and A can be strictly

separated from S n A by a hyperplane h. The level of point h

�

, dual to h, in A(S

�

) is k

or n � k. The k-set problem is to bound the maximum number of k-sets of S (in terms

of k and n). It is easy to see that the maximum number of k-sets in a set of n points in

R

d

is bounded by the maximum number of facets in the k-level and the (n� k)-level in an

arrangement of n hyperplanes in R

d

.

Let  

k

(�) (resp.  

�k

(�)) be the total number of faces in A

k

(�) (resp. A

�k

(�)). Let

G be a (possibly in�nite) family of surfaces in R

d

satisfying assumptions (A1){(A3). We

de�ne  

k

(n; d;G) = max 

k

(�) and  

�k

(n; d;G) = max 

�k

(�), where the maximum in

both cases is taken over all subsets � � G of size n. If G is not important or follows from

the context, we will omit the argument G.

The following theorem follows from a result by Clarkson and Shor [116].

Theorem 6.1 (Clarkson and Shor [116]) Let G be an in�nite family of surfaces satisfying

assumptions (A1){(A3). Then for any 0 � k < n� d,

 

�k

(n; d;G) = O

�

(k + 1)

d

�

�

n

k + 1

; d;G

��

;

where �(n; d;G) is the maximum complexity of the lower envelope of n surfaces in G.

Proof: Let � � G be a set of n surface patches satisfying assumptions (A1){(A5). For a

subset X � � and an integer 0 � k � jXj�d, let V

k

(X) denote the set of vertices at level k

in A(�). As is easily seen,  

�k

(�) is proportional to

P

k

j=0

jV

j

(�)j, which we thus proceed
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to bound. We bound below only the number of vertices in the �rst k levels that lie in the

interior of d surface patches; the other types of vertices are easier to analyze, and the same

bound applies to them as well. We choose a random subset R � � of size r = bn=(k + 1)c

and bound the expected number of vertices in V

0

(R). A vertex v 2 V

j

(�) is in V

0

(R) if and

only if the d surfaces de�ning v are in R and none of the j surfaces of � lying below v are

chosen in R, so the probability that v 2 V

0

(R) is

�

n�j�d

r�d

�

=

�

n

r

�

. Hence, easy manipulation of

binomial coe�cients implies that

E

�

jV

0

(R)j] =

n�d

X

j=0

jV

j

(�)j

�

n�j�d

r�d

�

�

n

r

�

�

k

X

j=0

jV

j

(�)j

�

n�j�d

r�d

�

�

n

r

�

= 


�

1

(k + 1)

d

�

k

X

j=0

jV

j

(�)j:

Thus

k

X

j=0

jV

j

(�)j � c(k + 1)

d

E

�

jV

0

(R)j

�

; (6.1)

for some constant c. Since every vertex in V

0

(R) lies on the lower envelope of R, the

assertion now follows from the de�nition of �. 2

Corollary 6.2 (i)  

�k

(n; d) = O((k + 1)

1�"

n

d�1+"

).

(ii) Let H be the set of all hyperplanes in R

d

. Then  

�k

(n; d;H) = �(n

bd=2c

(k + 1)

dd=2e

).

Proof: Part (i) follows from Theorems 3.1 and 6.1. Part (ii) follows from the fact that

�(n; d;H) = �(n

bd=2c

). 2

There is even a tighter upper bound of kn+ 1 on the number of �k-sets of n points in

the plane, k � n=2 [36, 288]; see also [182].

In contrast to these bounds on the complexity of �k-levels, which are tight or almost

tight in the worst case, much less is known about the complexity of a single k-level, even

for the simplest case of arrangements of lines in the plane. For example, Corollary 6.2(ii),

for d = 2, implies that the complexity of an average level in an arrangement of lines in

the plane is linear, but no upper bound that is even close is known. For a set � of n lines

in the plane, Lov�asz [247] proved that  

bn=2c

(�) = O(n

3=2

).

4

Erd}os et al. [168] extended

4

According to L. Lov�asz [247], the (n=2)-set problem was originally posed by A. Simmons, and E. Strauss

had constructed a set of points in the plane in which the number of (n=2)-sets was 
(n log n).
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his argument to prove that  

k

(�) = O(n

p

k + 1). Since the original proof many di�erent

proofs have been proposed for obtaining the same bound on  

k

(�) [8, 200]. Goodman

and Pollack [183] proved a similar bound on the maximum complexity of the k-level in an

arrangement of pseudo-lines. Erd}os et al.'s bound was slightly improved by Pach et al. [287]

to o(n

p

k + 1), using a rather complicated argument. Erd}os et al. [168] constructed, for any

n and 0 � k < n, a set � of n lines so that  

k

(�) = 
(n log(k + 1)); see Edelsbrunner and

Welzl for another construction that gives the same lower bound [158]. Klawe et al. [236]

constructed a set � of n pseudo-lines so that  

n=2

(�) has n2


(

p

logn)

vertices.

A major breakthrough in this direction was recently made by Dey, who obtained the

following improvement.

Theorem 6.3 (Dey [129]) Let � be a set of n lines in the plane. Then for any 0 � k < n,

 

k

(�) = O(n(k + 1)

1=3

).

Dey's proof is quite simple and elegant. It uses the following result on geometric graphs,

which was independently proved by Ajtai et al. [30] and by Leighton [241].

5

Lemma 6.4 Let G be a geometric graph with n vertices and m � 4n edges. Then there are


(m

3

=n

2

) pairs of edges in G whose relative interiors cross.

Proof of Theorem 6.3: For simplicity we assume that n is even and prove the bound for

k = n=2. We argue in the dual plane, where we have a set S of n points in general position

and we wish to establish the asserted bound for the number of halving segments of S, where

a halving segment is a straight segment connecting a pair of points u; v 2 S so that the line

passing through u and v has exactly (n=2) � 1 points of S below it. Let H denote the set

of halving segments.

Figure 8: A set of 14 points with 14 halving segments, split into 7 convex x-monotone

chains.

5

A geometric graph G = (V;E) is a graph drawn in the plane so that its vertices are points and its edges

are straight segments connecting pairs of these points. A geometric graph need not be planar.
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The segments in H are decomposed into n=2 convex x-monotone chains as follows. Let

uv be an edge of H, with u lying to the right of v. We rotate the line that passes through u

and v clockwise about v and stop as soon as the line overlaps another halving segment vw

incident to v. It is easy to check that w lies to the right of v and that uvw is a right turn. We

now rotate about w, and continue in this manner until our line becomes vertical. We apply

the same procedure \backwards" by turning the line uv counterclockwise around u and keep

iterating until the line becomes vertical. The halving segments that we have encountered

during the whole process constitute one convex polygonal chain. By applying this procedure

repeatedly, we obtain the desired decomposition of the entire H into convex x-monotone

polygonal chains. Using the properties of halving segments proved by Lov�asz [247], we can

conclude that the segments are partitioned into n=2 convex chains. (These convex chains

are in a certain sense dual to the concave chains in the dual line arrangement that were

de�ned by Agarwal et al. [8]; see also [200].)

The number of crossing points between two convex chains is bounded by the number

of upper common tangents between the same two chains. Any line passing through two

points of S is an upper common tangent of at most one pair of chains. Thus there are

O(n

2

) crossings between the segments in H. By Lemma 6.4, any graph with n vertices

and crossing number O(n

2

) has at most O(n

4=3

) edges, so S has at most O(n

4=3

) halving

segments. A similar, slightly more detailed, argument proves the bound for arbitrary values

of k. 2

Tamaki and Tokuyama generalized Dey's proof to prove a similar bound on the com-

plexity of the k-level in arrangements of pseudo-lines [328]. Combining the ideas from an old

result of Welzl [339] with Dey's proof technique, one can obtain the following generalization.

See also [41] for some other generalizations of Dey's result.

Corollary 6.5 Let � be a set of n lines in the plane. Then for any 0 � k < n, 0 < j < n�k,

we have

k+j

X

t=k

 

t

(�) = O(n(k + 1)

1=3

j

2=3

):

B�ar�any and Steiger proved a linear upper bound on the expected number of k-sets in

a random planar point set [63]; the points are chosen uniformly from a convex region.

Edelsbrunner et al. [157] proved that if S is a set of points in the plane so that the ratio of

the maximum and the minimum distance in S is at most c

p

n (a so-called dense set), then

the number of k-sets in S is O(c

p

n 

k

(c

p

n)). Applying Dey's result, the number of k-sets

in a dense point set is O(n

7=6

). Recently Alt et al. [37] have proved that if the points in S

lie on a constant number of pairwise disjoint convex curves, then the number of k-sets in S

is O(n).

The following question is related to the complexity of levels in arrangements of lines: Let

� be a set of n lines in the plane. Let � be an x-monotone polygonal path whose vertices

(the points at which � bends) are a subset of the vertices of A(�) and whose edges are
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contained in the lines of �. What is the maximum number of vertices in �? Matou�sek [250]

proved that there exists a set � of n lines in the plane that contains an x-monotone path

with 
(n

5=3

) vertices. No subquadratic upper bound is known for this problem.

Agarwal et al. [8] proved a nontrivial upper bound on the complexity of the k-level

in an arrangement of segments. Combining their argument with that of Dey's, one can

prove that the maximum complexity of the k-level in a planar arrangement of n segments

is O(n(k + 1)

1=3

�(n=(k + 1))). Very little is known on the complexity of a single level in

an arrangement of n arcs in the plane. Recently, Tamaki and Tokuyama [329] proved that

the complexity of any level in an arrangement of parabolas, each with a vertical axis, is

O(n

23=12

). (Their bound actually applies to pseudo-parabolas, i.e., graphs of continuous,

totally de�ned, univariate functions, each pair of which intersect at most twice.)

Open Problem 3 (i) What is the maximum complexity of a level in an arrangement of n

lines in the plane?

(i) What is the maximum complexity of a level in an arrangement of n x-monotone

Jordan arcs, each pair of which intersect in at most s points, for some constant s > 1?

B�ar�any et al. [62] proved an O(n

3�


) bound on the complexity of the k-level in arrange-

ments of n planes in R

3

, for any k, for some absolute constant 
 > 0. The bound was

improved by Aronov et al. [45] and Eppstein [166] to O(n

8=3

polylogn), and then by Dey

and Edelsbrunner [130] to O(n

8=3

). The best bound known, due to Agarwal et al. [8], is

O(n(k+1)

5=3

). They also proved a bound on the complexity of the k-level for arrangements

of triangles in R

3

. A nontrivial bound on the complexity of the k-level in an arrangement

of n hyperplanes in d > 3 dimensions, of the form O(n

d�"

d

), for some constant "

d

that de-

creases exponentially with d, was obtained in [35, 336]. This has later been slightly improved

to O(n

bd=2c

k

dd=2e�"

d

) in [8]. Table 1 summarizes the known upper bounds on k-levels.

Objects Bound Source

Lines in R

2

O(n(k + 1)

1=3

) [129]

Segments in R

2

O(n(k + 1)

1=3

�(n=(k + 1))) [8, 129]

Planes in R

3

O(n(k + 1)

5=3

) [8]

Triangles in R

3

O(n

2

(k + 1)

5=6

�(n=(k + 1))) [8]

Hyperplanes in R

d

O(n

bd=2c

k

dd=2e�"

d

) [336]

Parabolas in R

2

O(n

23=12

) [329]

(Vertical axis)

Table 1: Upper bounds on k-levels.
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7 Many Cells and Incidences

In the previous two sections we bounded the complexity of families of d-dimensional cells in

A(�) that satis�ed certain conditions (e.g., cells intersected by a surface, the cells of level

at most k). We can ask a more general question: What is the complexity of any m distinct

cells in A(�)? A single cell in an arrangement of lines in the plane can have n edges, but

can the total complexity of m cells in an arrangement of lines be 
(mn)? This is certainly

false for m = 
(n

2

).

We can also formulate the above problem as follows: Let P be a set of m points and �

a set of n surfaces in R

d

satisfying assumptions (A1) and (A2). De�ne C(P;�) to be the set

of cells in A(�) that contain at least one point of P . De�ne �(P;�) =

P

C2C(P;�)

jCj and

�(m;n;G) = max�(P;�), where the maximum is taken over all sets P of m points and

over all sets � of n surfaces in a given class G.

Let L be the set of all lines in the plane. Canham [87] proved that �(m;n;L) =

O(m

2

+ n), from which it easily follows that �(m;n;L) = O(m

p

n + n). Although this

bound is optimal for m �

p

n, it is weak for larger values of m. Clarkson et al. [113] proved

that �(m;n;L) = �(m

2=3

n

2=3

+n). Their technique, based on random sampling, is general

and constructive. It has led to several important combinatorial and algorithmic results

on arrangements [113, 196, 197]. For example, following a similar, but considerably more

involved, approach, Aronov et al. [46] proved that �(m;n;E) = O(m

2=3

n

2=3

+ m logn +

n�(n)), where E is the set of all line segments in the plane. An improved bound can be

attained if the jumber of vertices in the arrangement of segments is small. Hershberger and

Snoeyink [223] proved an O(m

2=3

n

2=3

+ n) upper bound on the complexity of m distinct

cells in the arrangements of n segments in the plane where the segments satisfy certain

additional conditions.

Although Clarkson et al. [113] proved nontrivial bounds on the complexity of m distinct

cells in arrangements of circles (see Table 2 below), no tight bound is known.

Open Problem 4 What is the maximum complexity of m distinct cells in an arrangement

of n circles in the plane?

Complexity of many cells in hyperplane arrangements in higher dimensions was �rst

studied by Edelsbrunner and Haussler [150]. Let H be the set of all hyperplanes in R

d

.

They proved that the maximum number of (d � 1)-dimensional faces in m distinct cells in

an arrangement of n hyperplanes in R

d

is O(m

1=2

n

d=2

+ n

d�1

). Re�ning an argument by

Edelsbrunner et al. [148], Agarwal and Aronov [7] improved this bound to O(m

2=3

n

d=3

+

n

d�1

). By a result of Edelsbrunner and Haussler [150], this bound is tight in the worst case.

Aronov et al. [48] proved that �(m;n;H) = O(m

1=2

n

d=2

log

�

n), where � = (bd=2c � 1)=2.

They also proved several lower bounds on �(m;n;H): For odd values of d and m � n,

�(m;n;H) = �(mn

bd=2c

); for m of the form �(n

d�2k

) where 0 � k � bd=2c is an integer,

�(m;n;H) = 
(m

1=2

n

bd=2c

); and for arbitrary values of m, �(m;n;H) = 
(m

1=2

n

d=2�1=4

).
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Objects Complexity Source

Lines in R

2

�(m

2=3

n

2=3

+ n) [113]

Segments in R

2

O(m

2=3

n

2=3

+ n�(n) + n logm) [46]

Unit circles in R

2

O(m

2=3

n

2=3

�

1=3

(n) + n) [113]

Circles in R

2

O(m

3=5

n

4=5

4

�(n)=5

+ n) [113]

Arcs in R

2

O(

p

m�

q

(n)) [145]

Planes in R

3

�(m

2=3

n+ n

2

) [7]

Hyperplanes in R

d

, d � 4 O(m

1=2

n

d=2

log

�

n) [48]

� = (bd=2c � 1)=2

Table 2: Complexity of many cells.

Agarwal [4], Guibas et al. [193], and Halperin and Sharir [209] obtained bounds on \special"

subsets of cells in hyperplane arrangements.

A problem closely related to, but somewhat simpler than, the many-cells problem is the

incidence problem. Here is a simple instance of this problem: Let � be a set of n lines and

P a set of m points in the plane. De�ne I(P;�) =

P

`2�

jP \ `j; set I(m;n) = max I(P;�),

where the maximum is taken over all sets P of m distinct points and over all sets � of n

distinct lines in the plane. Of course, this problem is interesting only when the lines in

� are in highly degenerate position. If n = m

2

+m + 1, then a �nite projective plane of

order m has n points and n lines and each line contains m + 1 = 
(n

1=2

) points, so the

number of incidences between n points and n lines is 
(n

3=2

). Szemer�edi and Trotter [324]

proved that such a construction is infeasible in R

2

. In a subsequent paper, Szemer�edi and

Trotter [325] proved that I(m;n) = O(m

2=3

n

2=3

+m + n). Their proof is, however, quite

intricate, and an astronomic constant is hidden in the big-O notation. Their bound is

asymptotically tight in the worst case, as shown in [160]. A considerably simpler proof,

with a small constant of proportionality in the bound, was given by Clarkson et al. [113],

based on the random-sampling technique. In fact, the bound on many cells in arrangements

of lines immediately yields a similar bound on I(m;n) [113], but the proof can be somewhat

simpli�ed for the incidence problem. Here we present an even more elegant and simpler

proof, due to Sz�ekely [323], for the bound on I(m;n) using Lemma 6.4:

Theorem 7.1 (Szemer�edi and Trotter [325]) Let � be a set of n lines and P a set of m

points in the plane. Then

I(P;�) = O(m

2=3

n

2=3

+m+ n):

Proof: We construct a geometric graph G = (V;E) whose vertices are the points of P . We

connect two vertices p; q by an edge if the points p and q are consecutive along a line in �.

Each edge of G is a portion of a line of �, and no two edges overlap. Therefore at most

�

n

2

�

pairs of edges cross each other. Note that I(P;�) � jEj+ n.
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If jEj � 4m, there is nothing to prove. Otherwise, by Lemma 6.4,

�

n

2

�

�

jEj

3

cjV j

2

�

1

cm

2

(I(P;�)� n)

3

;

which implies that I(P;�) = O(m

2=3

n

2=3

+ n). 2

Valtr [332] has studied the incidence problem and its generalization for dense point sets,

where the ratio of the maximum and the minimum distances in P is at most O(

p

n).

The incidence problem has been studied for other curves as well. Of particular interest

is the number of incidences between points and unit circles in the plane [113, 321] because

of its close relationship with the following major open problem in combinatorial geometry,

which was originally introduced by Erd}os in 1946 [167]: Let S be a set of n points in the

plane. How many pairs of points in S are at distance 1? Spencer et al. [321] had proved, by

modifying the proof of Szemer�edi and Trotter [325], that the number of incidences between

m points and n unit circles is O(m

2=3

n

2=3

+m + n). The proofs by Clarkson et al. [113]

and by Sz�ekely [323] have been extended to this case. The incidence bound implies that the

number of unit distances between the points of S is O(n

4=3

). However, the best known lower

bound on the number of unit distances is only n

1+
((log log n)= log n)

[167] (see also [283]).

Open Problem 5 How many pairs of points in a given planar set of points are at distance

1?

F�uredi [180] showed that if points in S are in convex position, then the number of pairs

at distance 1 is O(n logn); the best known lower bound is 7n � 12 by Edelsbrunner and

Hajnal [149]. The best known upper bound on the unit distances in R

3

is O(n

3=2

) [113].

Let S be a set of n points in R

3

so that no four points of P lie on a circle, then the number

of pairs of points in S at unit distance is O(n

10=7

) [196].

We can state the incidence problem in higher dimensions. If we do not make any

additional assumptions on points and surfaces, the maximum number of incidences between

m points and n planes is obviously mn: Take a set of n planes passing through a common

line and place m points on this line. Agarwal and Aronov [7] proved that if � is a set of

n planes and P is a set of m points in R

3

so that no three points in P are collinear, then

I(P;�) = O(m

3=5

n

4=5

+m+ n). Edelsbrunner and Sharir [155] showed that if � is a set of

n unit spheres in R

3

and P is a set of m points so that none of the points in P lies in the

interior of any sphere, then I(P;�) = O(m

2=3

n

2=3

+m+n). See [196, 286] for other results

on incidences in higher dimensions.

8 Generalized Voronoi Diagrams
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An interesting application of the new bounds on the complexity of lower envelopes is to

generalized Voronoi diagrams in higher dimensions. Let S be a set of n pairwise-disjoint

convex objects in R

d

, each of constant description complexity, and let � be some metric.

For a point x 2 R

d

, let �(x) denote the set of objects nearest to x, i.e.,

�(x) = fs 2 S j �(x; s) � �(x; s

0

) 8s

0

2 Sg:

The Voronoi diagram Vor

�

(S) of S under the metric � (sometimes also simply denoted as

Vor(S)) is a partition of R

d

into maximal connected regions C of various dimensions, so that

the set �(x) is the same for all x 2 C. Let 


i

be the graph of the function x

d+1

= �(x; s

i

).

Set � = f


i

j 1 � i � ng. Edelsbrunner and Seidel [153] observed that Vor

�

(S) is the

minimization diagram of �.

In the classical case, in which � is the Euclidean metric and the objects in S are sin-

gletons (points), the graphs of these distance functions can be replaced by a collection of n

hyperplanes in R

d+1

, using the linearization technique, without a�ecting the minimization

diagram. Hence the maximum possible complexity of Vor(S) is O(n

dd=2e

), which actually

can be achieved (see, e.g., [237, 309]). In more general settings, though, this reduction is

not possible. Nevertheless, the bounds on the complexity of lower envelopes imply that,

under reasonable assumption on � and on the objects in S, the complexity of the diagram

is O(n

d+"

), for any " > 0. While this bound is nontrivial, it is conjectured to be too

weak. For example, this bound is near-quadratic for planar Voronoi diagrams, but the

complexity of almost every planar Voronoi diagram is only O(n), although there are certain

distance functions for which the corresponding planar Voronoi diagram can have quadratic

complexity [57].

In three dimensions, the above-mentioned bound for point sites and Euclidean metric is

�(n

2

). It has been a long-standing open problem to determine whether a similar quadratic

or near-quadratic bound holds in R

3

for more general objects and metrics (here the new

results on lower envelopes only give an upper bound of O(n

3+"

)). The problem stated above

calls for improving this bound by roughly another factor of n. Since we are aiming for a

bound that is two orders of magnitude better than the complexity of A(�), it appears to

be a considerably more di�cult problem than that of lower envelopes. The only hope of

making progress here is to exploit the special structure of the distance functions �(x; s).

Fortunately, some progress on this problem was made recently. It was shown by Chew et

al. [112] that the complexity of the Voronoi diagram is O(n

2

�(n) log n) for the case where

the objects of S are lines in R

3

and the metric � is a convex distance function induced by

a convex polytope with a constant number of facets (see [112] for more details). Note that

such a distance function is not necessarily a metric, because it will fail to be symmetric if the

de�ning polytope is not centrally symmetric. The L

1

and L

1

metrics are special cases of

such distance functions. The best known lower bound for the complexity of the diagram in

this special case is 
(n

2

�(n)). Dwyer [135] has shown that the expected complexity of the

Voronoi diagram of a set of n random lines in R

3

is O(n

3=2

). In another recent paper [78], it

is shown that the maximum complexity of the L

1

-Voronoi diagram of a set of n points in R

3
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is �(n

2

). Finally, it is shown in [326] that the complexity of the three-dimensional Voronoi

diagram of point sites under a general polyhedral convex distance function (induced by a

polytope with O(1) facets) is O(n

2

log n).

Open Problem 6 (i) Is the complexity of the Voronoi diagram of a set S of n lines under

the Euclidean metric in R

3

close to n

2

?

(ii) Is the complexity of the Voronoi diagram of a set S of pairwise disjoint convex

polyhedra in R

3

, with a total of n vertices, close to n

2

under the polyhedral convex distance

functions?

An interesting special case of these problems involves dynamic Voronoi diagrams for

moving points in the plane. Let S be a set of n points in the plane, each moving along some

line at some �xed velocity. The goal is to bound the number of combinatorial changes of

the Euclidean Vor(S) over time. This dynamic Voronoi diagram can easily be transformed

into a three-dimensional Voronoi diagram, by adding the time t as a third coordinate. The

points become lines in R

3

, and the metric is a distance function induced by a horizontal disk

(that is, the distance from a point p(x

0

; y

0

; t

0

) to a line ` is the Euclidean distance from p to

the point of intersection of ` with the horizontal plane t = t

0

). Here too the open problem

is to derive a near-quadratic bound on the complexity of the diagram. Cubic or near-cubic

bounds are known for this problem, even under more general settings [176, 195, 315], but

subcubic bounds are known only in some very special cases [111].

Next, consider the problem of bounding the complexity of generalized Voronoi diagrams

in higher dimensions. As mentioned above, when the objects in S are n points in R

d

and

the metric is Euclidean, the complexity of Vor(S) is O(n

dd=2e

). As d increases, this be-

comes signi�cantly smaller than the naive O(n

d+1

) bound or the improved bound, O(n

d+"

),

obtained by viewing the Voronoi diagram as a lower envelope in R

d+1

. The same bound

of O(n

dd=2e

) has recently been obtained in [78] for the complexity of the L

1

-diagram of

n points in R

d

(it was also shown that this bound is tight in the worst case). It is thus

tempting to conjecture that the maximum complexity of generalized Voronoi diagrams in

higher dimensions is close to this bound. Unfortunately, this was recently shown by Aronov

to be false [43], by presenting a lower bound of 
(n

d�1

). The sites used in this construction

are convex polytopes, and the distance is either Euclidean or a polyhedral convex distance

function. For d = 3, this lower bound does not contradict the conjecture made above, that

the complexity of generalized Voronoi diagrams should be at most near-quadratic in this

case. Also, in higher dimensions, the conjecture mentioned above is still not refuted when

the sites are singleton points. Finally, for the general case, the construction by Aronov still

leaves a gap of roughly a factor of n between the known upper and lower bounds.
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9 Union of Geometric Objects

Let K = fK

1

; : : : ;K

n

g be a set of n connected d-dimensional sets in R

d

. In this section, we

want to study the complexity of K =

S

n

i=1

K

i

. Most of the work to date on this problem

has been in two or three dimensions.

Union of planar objects. Let us assume that each K

i

is a Jordan region, bounded

by a closed Jordan curve 


i

. Kedem et al. [230] have proved that if any two boundaries




i

intersect in at most two points, then @K contains at most 6n � 12 intersection points

(provided n � 3), and that this bound is tight in the worst case. An immediate corollary

of their result is that the number of intersection points on the boundary of the union of a

collection of homothets of some �xed convex set is linear, because the boundaries of any two

such homothetic copies in general position can intersect in at most two points. The bound

also holds when the homothets are not in general position. On the other hand, if pairs of

boundaries may intersect in four or more points, then @K may contain 
(n

2

) intersection

points in the worst case; see Figure 9.

Figure 9: Union of Jordan regions.

This raises the question of what happens if any two boundaries intersect in at most three

points. Notice that in general this question is meaningless, since any two closed curves must

intersect in an even number of points (assuming nondegenerate con�gurations). To make

the problem interesting, let � be a collection of n Jordan arcs, such that both endpoints of

each arc 


i

2 � lie on the x-axis, and such that K

i

is the region between 


i

and the x-axis.

Edelsbrunner et al. [144] have shown that the maximum combinatorial complexity of the

union K is �(n�(n)). The upper bound requires a rather sophisticated analysis of the

topological structure of K, and the lower bound follows from the construction by Wiernik

and Sharir for lower envelopes of segments [341].

Next, consider the case when each K

i

is a triangle in the plane. If the triangles are

arbitrary, then a simple modi�cation of the con�guration shown in Figure 9 shows that K

may have quadratic complexity in the worst case. But in this example the triangles have
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to be \thin," that is, some of their angles are very small. Matou�sek et al. [259] have shown

that if the given triangles are all fat, meaning that each of their angles is at least some

�xed constant �

0

, then their union K has only a linear number of holes (i.e., connected

components of R

2

nK), and that the combinatorial complexity of K is O(n log log n); the

constants of proportionality in these bounds depend on �

0

. Alt et al. [38] proved that the

complexity of the union of n fat wedges is O(n). See [38, 161, 333] for other results on the

union of fat objects. M. Bern asked the following related question.

Open Problem 7 Let � = f�

1

; : : : ;�

n

g be a set of n triangles in the plane. Let a

i

be

the aspect ratio of the smallest rectangle enclosing �

i

. Suppose

P

n

i=1

a

i

= O(n). What is

the complexity of

S

n

i=1

�

i

?

Recently, Efrat and Sharir [163] considered the case in which K is a collection of n

fat convex regions in the plane, each pair of whose boundaries intersect in at most some

constant number s of points. Here fatness means that there exists a constant � such that

for each object of S the ratio between the radii of its smallest enclosing disk and its largest

inscribed disk is at most �. They showed that the complexity of the union K is O(n

1+"

),

for any " > 0, where the constant of proportionality depends on ", s, and �. Their proof

requires as an initial but important substep an analysis of the number of regular vertices of

the union: these are vertices of the union that are incident to two boundaries that intersect

exactly twice. In fact, the analysis by Efrat and Sharir can only handle directly the irregular

vertices of the union. Nevertheless, motivated by this problem, Pach and Sharir [285] have

shown that, for an arbitrary collection of n convex regions, each pair of whose boundaries

cross in a constant number of points, one has R � 2I + 6n � 12, where R (resp. I) is

the number of regular (resp. irregular) vertices on the boundary of the union. This result

has been used in [163] to obtain their near-linear bound. Nevertheless, regular vertices are

interesting in their own right, and some additional results concerning them have recently

been obtained by Aronov et al. [47]. First, if there are only regular vertices (i.e., every pair

of boundaries intersect at most twice), then the inequality obtained by [285] implies that

the complexity of the union in this case is at most 6n�12, so the result by Pach and Sharir

extends the older results of Kedem et al. [230]. In general, though, I can be quadratic, so

the above inequality only yields a quadratic upper bound on the number of regular vertices

of the union. However, it was shown in [47] that in many cases R is subquadratic. This

is the case when the given regions are such that every pair of boundaries cross at most a

constant number of times. If in addition all the regions are convex, the upper bound is close

to O(n

3=2

).

Aronov and Sharir [53] proved that the complexity of the union of n convex polygons

in R

2

with a total of s vertices is O(n

2

+ s�(n)).

Union in three and higher dimensions. Little is known about the complexity of the

union in higher dimensions. It was recently shown in [78] that the maximum complexity of
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the union of n axis-parallel hypercubes in R

d

is �(n

dd=2e

), and this improves to �(n

bd=2c

)

if all the hypercubes have the same size. However, the following problem remains open.

Open Problem 8 What is the complexity of the union of n congruent cubes in R

3

?

Aronov and Sharir [51] proved that the complexity of the union of n convex polyhedra

in R

3

with a total of s faces is O(n

3

+ sn log

2

n). The bound was improved by Aronov et

al. [55] to O(n

3

+ sn log s).

Unions of objects also arise as subproblems in the study of generalized Voronoi diagrams,

as follows. Let S and � be as in the previous section (say, for the 3-dimensional case).

Let K denote the region consisting of all points x 2 R

3

whose smallest distance from a

site in S is at most r, for some �xed parameter r > 0. Then K =

S

s2S

B(s; r), where

B(s; r) = fx 2 R

3

j �(x; s) � rg. We thus face the problem of bounding the combinatorial

complexity of the union of n objects in R

3

(of some special type). For example, if S is a set of

lines and � is the Euclidean distance, the objects are n congruent in�nite cylinders in R

3

. In

general, if the metric � is a distance function induced by some convex body P , the resulting

objects are theMinkowski sums s�(�rP ), for s 2 S, where A�B = fx+y j x 2 A; y 2 Bg.

Of course, this problem can also be stated in any higher dimension.

Since it has been conjectured that the complexity of the whole Voronoi diagram in R

3

should be near-quadratic, the same conjecture should apply to the (simpler) structure K

(whose boundary can be regarded as a level curve of the diagram at height r; it does indeed

correspond to the cross-section at height r of the lower envelope in R

4

that represents the

diagram). Recently, this conjecture was con�rmed by Aronov and Sharir in [54], in the

special case where both P and the objects of S are convex polyhedra. They specialized

their analysis of the union of convex polytopes to obtain an improved bound in the special

case in which the polyhedra in question are Minkowski sums of the form R

i

� P , where

the R

i

's are n pairwise-disjoint convex polyhedra, P is a convex polyhedron, and the total

number of faces of these Minkowski sums is s. The improved bounds are O(ns logn) and


(ns�(n)). If P is a cube, then the complexity of the Minkowski sum is O(n

2

�(n)) [215].

Recently, Agarwal and Sharir [26] showed that if S is a set of n lines and P is a sphere

in R

3

, i.e., K is a set of n congruent cylinders, then the complexity of K is O(n

8=3+"

), for

any " > 0. Their proof works even if S is a set of segments in R

3

.

Open Problem 9 Let � be a set of pairwise disjoint triangles in R

3

and let B be a unit-

radius ball. What is the complexity of the Minkowski sum of � and B?

10 Decomposition of Arrangements

Many applications call for decomposing each cell of the arrangement into constant size cells;

see Sections 12 and 13 for a sample of such applications. In this section we describe a few
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general schemes that have been proposed for decomposition of arrangements.

10.1 Triangulating hyperplane arrangements

Each k-dimensional cell in an arrangement of hyperplanes is a convex polyhedron, so we

can triangulate it into k-simplices. If the cell is unbounded, some of the simplices in the

triangulation will be unbounded. A commonly used scheme to triangulate a convex polytope

P is the so-called bottom-vertex triangulation, denoted P

r

. It recursively triangulates every

face of P as follows. An edge is a one-dimensional simplex, so there is nothing to do.

Suppose we have triangulated all j-dimensional cells of P for j < k. We now triangulate a

k-dimensional cell C as follows. Let v be the vertex of C with the minimum x

d

-coordinate.

For each (k � 1)-dimensional simplex � lying on the boundary of C but not containing

v (� was constructed while triangulating a (k � 1)-dimensional cell incident to C), we

extend � to a k-dimensional simplex by taking the convex hull of � and v; see Figure 10(i).

(Unbounded cells require some care in this de�nition; see [115]). The number of simplices

in P

r

is proportional to the number of vertices in P.

If we want to triangulate the entire arrangement or more than one of its cells, we

compute the bottom-vertex triangulation f

r

for each face f in the increasing order of their

dimension. Let A

r

(�) denote the bottom-vertex triangulation of A(�). A useful property

of A

r

(�) is that each simplex � 2 A

r

(�) is de�ned by a set D(�) of at most d(d + 3)=2

hyperplanes of �, in the sense that � 2 A

r

(D(�)). Moreover, if K(�) � � is the subset of

hyperplanes intersecting �, then � 2 A

r

(R), for a subset R � �, if and only if D(�) � R

and K(�)\R = ;. A disadvantage of bottom-vertex triangulation is that some vertices may

have large degree. Methods for obtaining low-degree triangulations have been proposed in

two and three dimensions [132].

Figure 10: (i) Bottom vertex triangulation of a convex polygon; (ii) vertical decomposition

of a cell in an arrangement of segments.
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10.2 Vertical decomposition

Unfortunately, the bottom-vertex triangulation scheme does not work for arrangements of

surfaces. Collins [119] described a general decomposition scheme, called cylindrical alge-

braic decomposition, that decomposes A(�) into (bn)

2

O(d)

cells, each semialgebraic of con-

stant description complexity (however, the maximum algebraic degree involved in de�ning

a cell grows exponentially with d) and homeomorphic to a ball of the appropriate dimen-

sion. Moreover, his algorithm produces a cell complex, i.e., closures of any two cells are

either disjoint or their intersection is the closure of another lower-dimensional cell of the

decomposition. This bound is quite far from the known trivial lower bound of 
(n

d

), which

is a lower bound on the size of the arrangement. A signi�cantly better scheme for decom-

posing arrangements of general surfaces is their vertical decomposition. Although vertical

decompositions of polygons in the plane have been in use for a long time, it was extended

to higher dimensions only in the late 1980s. We describe this method brie
y.

Let C be a d-dimensional cell in A(�). The vertical decomposition, C

jj

, is computed

as follows. We erect a vertical \wall" up and down (in the x

d

-direction) within C from

each (d� 2)-dimensional face of C and from points of vertical tangencies (i.e., the points at

which the tangent planes are parallel to the x

d

-direction), and extend these walls until they

hit another surface (or, failing this, all the way to �1). This results in a decomposition

of C into subcells so that each subcell has a unique top facet and a unique bottom facet,

and every vertical line cuts the subcell in a connected (possibly empty) interval. We next

project each resulting subcell � on the hyperplane x

d

= 0. Let C

�

be the projected cell.

We apply recursively the same technique to C

�

and compute its vertical decomposition C

jj

�

.

(We continue the recursion in this manner until we reach d = 1.) We then \lift" C

jj

�

back

into R

d

, by extending each subcell c 2 C

jj

�

into the vertical cylinder c� R, and by clipping

the cylinder within � . Using a standard argument, it can be shown that each cell of C

jj

is

semialgebraic set of constant description complexity. In fact, they have the same structure

as the Collins cells, but the number of subcells in C

jj

is much smaller than that in the

Collins decomposition of C. Applying the above step to each cell of A(�), we obtain the

vertical decomposition A

jj

(�) of A(�). Note that A

jj

(�) is not a cell complex.

It is easily seen that the complexity of the vertical decomposition of a cell in the plane

is proportional to the number of edges in the cell. However, this is no longer the case

in higher dimensions: Already for the case of a convex polytope with n facets in R

3

, the

vertical decomposition may have complexity 
(n

2

).

Theorem 10.1 (Chazelle et al. [100, 101]) The number of cells in the vertical decomposi-

tion A

jj

(�) of the arrangement A(�), for a set � of n surface patches in R

d

satisfying

(A1){(A2), is O(n

2d�4

�

q

(n)), where q is a constant depending on d and b.

The only known lower bound on the size of A

jj

(�) is the trivial 
(n

d

), so there is a

considerable gap here, for d > 3; for d = 3 the two bounds nearly coincide. Improving the
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upper bound appears to be very challenging. This problem has been open since 1989; it

seems di�cult enough to preempt, at the present state of knowledge, any speci�c conjecture

on the true maximum complexity of the vertical decomposition of arrangements in d > 3

dimensions.

Open Problem 10 What is the complexity of the vertical decomposition of the arrange-

ment of n surfaces in R

4

satisfying assumptions (A1){(A2)?

The bound stated above applies to the vertical decomposition of an entire arrangement

of surfaces. In many applications, however, one is interested in the vertical decomposition

of only a portion of the arrangement, e.g., a single cell, the lower envelope, the zone of

some surface, a speci�c collection of cells of the arrangement, etc. Since, in general, the

complexity of such a portion is known (or conjectured) to be smaller than the complexity

of the entire arrangement, one would like to conjecture that a similar phenomenon applies

to vertical decompositions. Recently, it was shown by Schwarzkopf and Sharir [307] that

the complexity of the vertical decomposition of a single cell in an arrangement of n surface

patches in R

3

, as above, is O(n

2+"

), for any " > 0. A similar near-quadratic bound has been

obtained by Agarwal et al. [9] for the vertical decomposition of the region enclosed between

the envelope and the upper envelope of two sets of bivariate surface patches. Another recent

result by Agarwal et al. [14] gives a bound on the complexity of the vertical decomposition

of A

�k

(�) for a set � of surfaces in R

3

, which is only slightly larger that the worst-case

complexity of A

�k

(�).

Open Problem 11 What is the complexity of the vertical decomposition of the minimiza-

tion diagram of n surfaces in R

4

satisfying assumptions (A1){(A2)?

Agarwal and Sharir [25] proved a near-cubic upper bound on the complexity of the verti-

cal decomposition in the special case when the surfaces are graphs of trivariate polynomials

and the intersection surface of any pair of surfaces is xy-monotone. In fact, their bound

holds for a more general setting; see the original paper for details.

An interesting special case of vertical decomposition is that of hyperplanes. For such

arrangements, the vertical decomposition is a too cumbersome construct, because, as de-

scribed above, one can use the bottom-vertex triangulation (or any other triangulation)

to decompose the arrangement into �(n

d

) simplices. Still, it is probably a useful exer-

cise to understand the complexity of the vertical decomposition of an arrangement of n

hyperplanes in R

d

. A recent result by Guibas et al. [194] gives an almost tight bound of

O(n

4

log n) for this quantity in R

4

, but nothing signi�cantly better than the general bound

is known for d > 4. Another interesting special case is that of triangles in 3-space. This

has been studied by [125, 327], where almost tight bounds were obtained for the case of a

single cell (O(n

2

log

2

n)), and for the entire arrangement (O(n

2

�(n) log n + K), where K

is the complexity of the undecomposed arrangement). The �rst bound is slightly better
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than the general bound of [307] mentioned above. Tagansky [327] also derives sharp com-

plexity bounds for the vertical decomposition of many cells in an arrangement of simplices,

including the case of all nonconvex cells.

Objects Bound Source

Surfaces in R

d

, d � 3 O(n

2d�4

�

q

(n)) [100, 317]

Triangles in R

3

O(n

2

�(n) log n+K) [125, 327]

Surfaces in R

3

, single cell O(n

2+"

) [307]

Triangles in R

3

, zone w.r.t. �(n

2

log

2

n) [327]

an algebraic surface

Surfaces in R

3

, (� k)-level O(n

2+"

k) [14]

Hyperplanes in R

4

O(n

4

logn) [194]

Table 3: Combinatorial bounds on the maximum complexity of the vertical decomposition

of n surfaces. In the second row, K is the combinatorial complexity of the arrangement.

10.3 Other decomposition schemes

Linearization, de�ned in Section 3, can be used to decompose the cells of the arrangement

A(�) into cells of constant description complexity as follows. Suppose � admits a lineariza-

tion of dimension k, i.e., there is a transformation ' : R

d

�! R

k

that maps each point

x 2 R

d

to a point '(x) 2 R

k

, each surface 


i

2 � to a hyperplane h

i

� R

k

, and R

d

to a

d-dimensional surface � � R

k

. Let H = fh

i

j 1 � i � ng. We compute the bottom-vertex

triangulation A

r

(H) of A(H). For each simplex � 2 A

r

(H), let � = � \ �, and let

�

�

= '

�1

(�) be the back projection of � onto R

d

; �

�

is a semialgebraic cell of constant

description complexity. Set � = f�

�

j � 2 A

r

(H)g. � is a decomposition of A(�) into cells

of constant description complexity. If a simplex � 2 A

r

(H) intersects �, then � lies in the

triangulation of a cell in zone(�;H). Therefore, by Theorem 5.3, j�j = O(n

b(d+k)=2c

log




n),

where 
 = (d+ k)(mod 2). Hence, we can conclude the following.

Theorem 10.2 Let � be a set of hypersurfaces in R

d

of degree at most b. If � admits a

linearization of dimension k, then A(�) can be decomposed into O(n

b(d+k)=2c

log




n) cells of

constant description complexity, where 
 = d+ k (mod 2).

As shown in Section 3, spheres in R

d

admit a linearization of dimension d + 1; therefore,

the arrangement of n spheres in R

d

can be decomposed into O(n

d

logn) cells of constant

description complexity.

Aronov and Sharir [50] proposed another scheme for decomposing arrangements of tri-

angles in R

3

by combining vertical decomposition and triangulation. They �rst decompose

each three-dimensional cell of the arrangement into convex polyhedron, using an incremen-
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tal procedure, and then they compute a bottom-vertex triangulation of each polyhedron.

Other specialized decomposition schemes in R

3

have been proposed in [213, 260].

10.4 Cuttings

All the decomposition schemes described in this section decompose R

d

into cells of constant

description complexity, so that each cell lies entirely in a single face of A(�). In many ap-

plications, however, it su�ces to decompose R

d

into cells of constant description complexity

so that each cell intersects only a few surfaces of �. Such a decomposition lies at the heart

of divide-and-conquer algorithms for numerous geometric problems.

Let � be a set of n surfaces in R

d

satisfying assumptions (A1){(A2). For a parameter

r � n, a family � = f�

1

; : : : ;�

s

g of cells of constant description complexity with pairwise

disjoint interiors is called a (1=r)-cutting of A(�) if the interior of each cell in � is crossed

by at most n=r surfaces of � and � covers R

d

. If � is a set of hyperplanes, then � is typically

a set of simplices. Cuttings have led to e�cient algorithms for a wide range of geometric

problems and to improved bounds for several combinatorial problems. For example, the

proof by Clarkson et al. [113] on the complexity of m distinct cells in arrangements of lines

uses cuttings; see the survey papers [3, 254] for a sample of applications of cuttings.

Clarkson [114] proved that a (1=r)-cutting of size O(r

d

log

d

r) exists for a set of hy-

perplanes in R

d

. The bound was improved by Chazelle and Friedman [105] to O(r

d

); see

also [1, 248, 252]. An easy counting argument shows that this bound is optimal for any

nondegenerate arrangement. There has been considerable work on computing optimal (1=r)-

cuttings e�ciently [1, 97, 216, 248, 252]. Chazelle [97] showed that a (1=r)-cutting for a set

of n hyperplanes in R

d

can be computed in time O(nr

d�1

).

Using Haussler and Welzl's result on "-nets [218], one can show that if, for any subset

R � �, there exists a canonical decomposition of A(R) into at most g(jRj) cells of constant

description complexity, then there exists a (1=r)-cutting of A(�) of size O(g(r log r)). By

the result of Chazelle et al. [100] on the vertical decomposition of A(�), there exists a (1=r)-

cutting of size O((r log r)

2d�3+"

) of A(�). On the other hand, if � admits a linearization of

dimension k, then there exists a (1=r)-cutting of size O((r log r)

b(d+k)=2c

log r).

11 Representation of Arrangements

Before we begin to present algorithms for computing arrangements and their substructures,

we need to describe how we represent arrangements and their substructures. Planar ar-

rangements of lines can be represented using any standard data structure for representing

planar graphs such as quad-edge, winged-edge, and half-edge data structures [199, 233, 338].

However, representation of arrangements in higher dimensions is challenging because the

topology of cells may be rather complex. Exactly how an arrangement is represented largely
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depends on the speci�c application for which we need to compute it. For example, repre-

sentations may range from simply computing a representative point within each cell, or the

vertices of the arrangement, to storing various spatial relationships between cells. We �rst

review representations of hyperplane arrangements and then discuss surface arrangements.

Hyperplane arrangements. A simple way to represent a hyperplane arrangement A(�)

is by storing its 1-skeleton [136]. That is, we construct a graph (V;E) whose nodes are the

vertices of the arrangement. There is an edge between two nodes v

i

; v

j

if they are endpoints

of an edge of the arrangement. Using the 1-skeleton of A(�), we can traverse the entire

arrangement in a systematic way. The incidence relationship of various cells in A(�) can be

represented using a data structure called incidence graph. A k-dimensional cell C is called

a subcell of a (k + 1)-dimensional cell C

0

if C lies on the boundary of C

0

; C

0

is called the

supercell of C. We assume that the empty set is a (�1)-dimensional cell of A(�), which is

a subcell of all vertices of A(�); and R

d

is a (d+1)-dimensional cell, which is the supercell

of all d-dimensional cells of A(�). The incidence graph of A(�) has a node for each cell of

A(�), including the (�1)-dimensional and (d + 1)-dimensional cells. There is a (directed)

arc from a node C to another node C

0

if C is a subcell of C

0

; see Figure 11. Note that the

incidence graph forms a lattice. Many algorithms for computing the arrangement construct

the incidence graph of the arrangement.

A disadvantage of 1-skeletons and incidence graphs is that they do not encode ordering

information of cells. For examples, in planar arrangements of lines or segments, there is a

natural ordering of edges incident to a vertex or of the edges incident to a two-dimensional

face. The quad-edge data structure encodes this information for planar arrangements.

Dobkin and Laszlo [133] extended the quad-edge data structure to R

3

, which was later

extended to higher dimensions [81, 244, 245]. Dobkin et al. [131] described an algorithm for

representing a simple polygon as a short Boolean formula, which can be used to store faces

of segment arrangements to answer various queries e�ciently.

Surface arrangements. Representing arrangements of surface patches is considerably

more challenging than representing hyperplane arrangements because of the complex topol-

ogy that cells in such an arrangement can have. A very simple representation of A(�) is to

store a representative point from each cell of A(�) or to store the vertices of A(�). An even

coarser representation of arrangements of graphs of polynomials is to store all realizable

sign sequences. It turns out that this simple representation is su�cient for some appli-

cations [34, 75]. The notion of 1-skeleton can be generalized to arrangements of surfaces.

However, all the connectivity information cannot be encoded by simply storing vertices and

edges of the arrangement. Instead we need a �ner one-dimensional structure, known as the

roadmap. Roadmaps were originally introduced by Canny [88, 90] to determine whether two

points lie in the same connected component of a semialgebraic set; see also [187, 189, 221].

They were subsequently used for computing a semialgebraic description of connected com-

ponents of a semialgebraic set [69, 92, 222]. We can extend the notion of roadmaps to
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entire arrangements. Roughly speaking, a roadmap R(�) of A(�) is a one-dimensional

semialgebraic set that satis�es the following two conditions.

(R1) For every cell C in A(�), C \R(�) is nonempty and connected.

(R2) Let C

w

be the cross-section of a cell C 2 A(�) at the hyperplane x

1

= w. For any

w 2 R and for cell C 2 A(�), C

w

6= ; implies that every connected component of C

w

intersects R(�).

We can also de�ne the roadmap of various substructures of arrangements. See [67, 88] for

details on roadmaps.

A roadmap does not represent \ordering" of cells in the arrangement or adjacency rela-

tionship among various cells. If we want to encode the adjacency relationship among higher

dimensional cells of A(�), we can compute the vertical decomposition or the cylindrical

algebraic decomposition of A(�) and compute the adjacency relationship of cells in the

decomposition [42, 304]. Brisson [81] describes the cell-tuple data structure that encodes

topological structures, ordering among cells, the boundaries of cells, and other information

for cells of surface arrangements.

Many query-type applications (e.g., point location, ray shooting) call for preprocessing

A(�) into a data structure so that various queries can be answered e�ciently. In these

cases, instead of storing various cells of an arrangement explicitly, we can store the arrange-

ment implicitly, e.g., using cuttings. Chazelle et al. [101] have described how to preprocess

arrangements of surfaces for point-location queries; Agarwal et al. [9] have described data

structures for storing lower envelopes in R

4

for point-location queries.

12 Computing Arrangements

We now review algorithms to compute the arrangement A(�) of a set � of n surface patches

satisfying assumptions (A1){(A2). As in Chapter 1, we need to assume here an appropriate

model of computation in which various primitive operations on a constant number of surfaces

can be performed in constant time. We will assume an in�nite-precision real arithmetic

model in which the roots of any polynomial of constant degree can be computed exactly in

constant time.

Constructing arrangements of hyperplanes and simplices. Edelsbrunner et al. [152]

describe an incremental algorithm that computes in time O(n

d

) the incidence graph of A(�),

for a set � of n hyperplanes in R

d

. Roughly speaking, their algorithm adds the hyperplanes

of � one by one and maintains the incidence graph of the arrangement of the hyperplanes

added so far. Let �

i

be the set of hyperplanes added in the �rst i stages, and let 


i+1

be

the next hyperplane to be added. In the (i+ 1)st stage, the algorithm traces 


i+1

through
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A(�

i

). If a k-face f of A(�

i

) does not intersect 


i

, then f remains a face of A(�

i+1

). If

f intersects 


i+1

, then f 2 zone(


i+1

; �

i

) and f is split into two k-faces f

+

; f

�

, lying in

the two open halfspaces bounded by 


i+1

, and a (k � 1)-face f

0

= f \ 


i+1

. The algorithm

therefore checks the faces of zone(


i+1

; �

i

) whether they intersect 


i+1

. For each such in-

tersecting face, it adds corresponding nodes in the incidence graph and updates the edges

of the incidence graph. The (i + 1)st stage can be completed in time proportional to the

complexity of zone(


i+1

; �

i

), which is O(i

d�1

); see [137, 152]. Hence, the overall running

time of the algorithm is O(n

d

).
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Figure 11: (i) Incidence graph of the arrangement of 2 lines. (ii) Adding a new line;

incremental changes in the incidence graph as the vertex v, the edge 5, and the face A

0

are

added.

A drawback of the algorithm just described is that it requires O(n

d

) \working" storage

because it has to maintain the entire arrangement constructed so far in order to determine

which of the cells intersect the new hyperplane. An interesting question is whether A(�) can

be computed using only O(n) working storage. Edelsbrunner and Guibas [143] proposed

the topological sweep algorithm that can construct the arrangement of n lines in O(n

2

) time

using O(n) working storage. Their algorithm, which is a generalization of the sweep-line

algorithm of Bentley and Ottmann [70], sweeps the plane by a pseudo-line. The algorithm

by Edelsbrunner and Guibas can be extended to enumerate all vertices in an arrangement of

n hyperplanes in R

d

in O(n

d

) time using O(n) space. See [40, 56, 156] for other topological-

sweep algorithms. Avis and Fukuda [59] developed an algorithm that can enumerate in

O(n

2

k) time, using O(n) space, all k vertices of the arrangement of a set � of n hyperplanes

in R

d

in which every vertex is incident to d hyperplanes. Their algorithm is useful when

there are many parallel hyperplanes in �. See also [60, 178] for some related results.
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Using the random-sampling technique, Clarkson and Shor [116] developed an O(n log n+

k) expected time algorithm for constructing the arrangement of a set � of n line segments

in the plane; here k is the number of vertices in A(�); see also [273, 274]. Chazelle and

Edelsbrunner [99] developed a deterministic algorithm that can construct A(�) in time

O(n log n + k), using O(n + k) storage. The space complexity was improved to O(n),

without a�ecting the asymptotic running time, by Balaban [61]. If � is a set of n triangles

in R

3

, A

jj

(�) can be constructed in O(n

2

logn + k) expected time using a randomized

incremental algorithm [103, 317]. De Berg et al. [125] proposed a deterministic algorithm

with O(n

2

�(n) log n+ k logn) running time for computing A

jj

(�).

Chazelle and Friedman [106] described an algorithm that can preprocess a set � of n

hyperplanes into a data structure of size O(n

d

= log

d

n) so that a point-location query can

be answered in O(log n) time. Their algorithm was later simpli�ed by Matou�sek [256]

and Chazelle [97]. Mulmuley and Sen [276] developed a randomized dynamic data struc-

ture of size O(n

d

) for point location in arrangements of hyperplanes that can answer a

point-location query in O(log n) expected time and can insert or delete a hyperplane in

O(n

d�1

logn) expected time. Hagerup et al. [202] described a randomized parallel algo-

rithm for constructing the arrangement of hyperplanes under the CRCW model. Their

algorithm runs in O(log n) time using O(n

d

= log n) expected number of processors. A de-

terministic algorithm under the CREW model with the same worst-case performance was

proposed by Goodrich [185].

There has been some work on constructing arrangements of lines and segments using


oating-point (�nite precision) arithmetic. Milenkovic [268] developed a general technique

called double-precision geometry that can be applied to compute arrangements of lines and

segments in the plane. For example, if the coe�cients of each line in a set � of n lines

are represented using at most b bits, then his technique can compute A(�) in O(n

3

logn)

time using at most b + 20 bits of precision. A careful implementation of the algorithm by

Edelsbrunner et al. [152] requires 3b bits of precision. Because of �nite-precision arithmetic,

Milenkovic's technique computes the coordinates of vertices approximately, and therefore

produces a planar geometric graph, which is an arrangement of pseudo-lines. If the ap-

proximate arithmetic used by his algorithm makes relative error ", then the maximum error

in the coordinates of vertices of A(�) computed by his algorithm is O(

p

"). Fortune and

Milenkovic [174] showed that the sweep-line and incremental algorithms can be implemented

so that the maximum error in the coordinates of vertices is at most O(n"). For all practical

purposes this approach is better than the one described in [268]. See [188, 192, 267, 269]

for a few additional results on constructing arrangements using 
oating-point arithmetic.

Constructing arrangements of surfaces. The algorithm by Edelsbrunner et al. [152]

for computing hyperplane arrangements can be extended to computing the vertical decom-

position A

jj

(�) for a set � of n arcs in the plane. In the (i+1)st step, the algorithm traces




i+1

through zone(


i+1

; �

i

) and updates the trapezoids of A

jj

(�

i

) that intersect 


i+1

. The

running time of the (i+1)st stage is O(�

s+2

(i)), where s is the maximum number of inter-
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section points between a pair of arcs in �. Hence, the overall running time of the algorithm

is O(n�

s+2

(n)) [145]. Suppose � is a set of arcs in the plane in general position. If the arcs

in � are added in a random order and a \history dag," as described in Chapter 1, is used

to e�ciently �nd the trapezoids of A

jj

(�

i

) that intersect 


i+1

, the expected running time

of the algorithm can be improved to O(n logn + k), where k is the number of vertices in

A(�) [103, 317].

Very little is known about computing the arrangement of a set � of surfaces in higher

dimensions. Chazelle et al. [100] have shown that A

jj

(�) can be computed in randomized

expected time O(n

2d�3+"

), using the random-sampling technique. Their algorithm can be

made deterministic without increasing its asymptotic running time, but the deterministic

algorithm is considerably more complex.

There has been some work for computing arrangements under the more realistic model

of precise rational arithmetic model used in computational real algebraic geometry [74].

Canny [91] had described an (nb)

O(d)

-time algorithm for computing a sample point from

each cell of the arrangement of a set of n hypersurfaces in R

d

, each of degree at most b.

The running time was improved by Basu et al. [68] to n

d+1

b

O(d)

. Basu et al. [67] described

an n

d+1

b

O(d

2

)

-time algorithm for computing the roadmap of a semialgebraic set de�ned by

n polynomials, each of degree at most b. Although their goal is to develop the roadmap of

a semialgebraic set, their algorithm �rst constructs the road map of the entire arrangement

of the surfaces de�ning the semialgebraic set and then outputs the appropriate portion of

the map.

13 Computing Substructures in Arrangements

13.1 Lower envelopes

Let � be a set of surface patches satisfying assumptions (A1){(A2). We want to compute

the minimization diagramM(�) of �. We described in Chapter 1 algorithms for computing

the minimization diagram of a set of arcs in the plane. In this chapter we will focus on

minimization diagrams of sets of surface patches in higher dimensions. There are again

several choices, depending on the application, as to what exactly we want to compute. The

simplest choice is to compute the vertices or the 1-skeleton ofM(�). A more di�cult task is

to compute all the faces ofM(�) and represent them using any of the mechanisms described

in the previous section. Another challenging task, which is required in many applications,

is to store � into a data structure so that L

�

(x), for any point x 2 R

d�1

, can be computed

e�ciently.

For collections � of surface patches in R

3

, the minimization diagram M(�) is a planar

subdivision. In this case, the latter two tasks are not signi�cantly harder than the �rst one,

because we can preprocess M(�) using any optimal planar point-location algorithm [127].

Several algorithms have been developed for computing the minimization diagram of bi-
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variate (partial) surface patches [21, 76, 77, 123, 315, 317]. Some of these techniques use

randomized algorithms, and their expected running time is O(n

2+"

), which is comparable

with the maximum complexity of the minimization diagram of bivariate surface patches.

The simplest algorithm is probably the deterministic divide-and-conquer algorithm pre-

sented by Agarwal et al. [21]. It partitions � into two subsets �

1

;�

2

of roughly equal size,

and computes recursively the minimization diagramsM

1

,M

2

of �

1

and �

2

, respectively. It

then computes the overlay M

�

of M

1

and M

2

. Over each face f of M

�

there are only (at

most) two surface patches that can attain the �nal envelope (the one attaining L(�

1

) over

f and the one attaining L(�

2

) over f), so we compute the minimization diagram of these

two surface patches over f , replace f by this re�ned diagram, and repeat this step for all

faces ofM

�

. We �nally merge any two adjacent faces f; f

0

of the resulting subdivision if the

same surface patches attain L(�) over both f and f

0

. The cost of this step is proportional

to the number of faces of M

�

. By the result of Agarwal et al. [21], M

�

has O(n

2+"

) faces.

This implies that the complexity of the above divide-and-conquer algorithm is O(n

2+"

). If

� is a set of triangles in R

3

, the running time of the algorithm is O(n

2

�(n)) [146]. This

divide-and-conquer algorithm can also be used to compute S(�;�

0

), the region lying above

all surface patches of one collection �

0

and below all surface patches of another collection

�, in time O(n

2+"

), where n = j�j+ j�

0

j [21].

A more di�cult problem is to devise output-sensitive algorithms for computing M(�),

whose complexity depends on the actual combinatorial complexity of the envelope. A

rather complex algorithm is presented by De Berg [122] for the case of triangles in R

3

,

whose running time is O(n

4=3+"

+ n

4=5+"

k

4=5

), where k is the number of vertices in M(�).

If the triangles in � are pairwise disjoint, the running time can be improved to O(n

1+"

+

n

2=3+"

k

2=3

) [17, 122].

The algorithm by Edelsbrunner et al. [146] can be extended to compute in O(n

d�1

�(n))

time all faces of the minimization diagram of (d � 1)-simplices in R

d

for d � 4. However,

little is known about computing the minimization diagram of more general surface patches in

d � 4 dimensions. Let � be a set of surface patches in R

d

satisfying assumptions (A1){(A2).

Agarwal et al. [9] showed that all vertices, edges, and 2-faces of M(�) can be computed in

randomized expected time O(n

d�1+"

). We sketch their algorithm below.

Assume that � satis�es assumptions (A1){(A5). Fix a (d� 2)-tuple of surface patches,

say 


1

; : : : ; 


d�2

, and decompose their common intersection

T

d�2

i=1




i

into smooth, x

1

x

2

-

monotone, connected patches, using a strati�cation algorithm. Let � be one such piece.

Each surface 


i

, for i � d�1, intersects � at a curve �

i

, which partitions � into two regions.

If we regard each 


i

as the graph of a partially de�ned (d�1)-variate function, then we can

de�ne K

i

� � to be the region whose projection on the hyperplane H : x

d

= 0 consists of

points x at which 


i

(x) � 


1

(x) = � � � = 


d�2

(x). The intersection Q =

T

i�d�1

K

i

is equal

to the portion of � that appears along the lower envelope L(�). We repeat this procedure

for all patches of the intersection

T

d�2

i=1




i

and for all (d� 2)-tuples of surface patches. This

will give all the vertices, edges and 2-faces of L(�).

Since � is x

1

x

2

-monotone 2-manifold, computing Q is essentially the same as computing
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the intersection of n� d+ 2 planar regions. Q can thus be computed using an appropriate

variant of the randomized incremental approach [103, 123]. It adds �

i

= 


i

\ � one by

one in a random order (� may consist of O(1) arcs), and maintains the intersection of the

regions K

i

for the arcs added so far. Let Q

r

denote this intersection after r arcs have been

added. We maintain the \vertical decomposition" of Q

r

(within �), and represent Q

r

as a

collection of pseudo-trapezoids. We maintain additional data structures, including a history

dag and a union-�nd structure, and proceed exactly as in [103, 123] (See Chapter 1). We

omit here the details.

We de�ne the weight of a pseudo-trapezoid � to be the number of surface patches 


i

,

for i � d � 1, whose graphs either cross � or hide � completely from the lower envelope

(excluding the up to four function graphs whose intersections with � de�ne �). The cost of

the above procedure, summed over all (d� 2)-tuples of �, is proportional to the number of

pseudo-trapezoids that are created during the execution of the algorithm, plus the sum of

their weights, plus an overhead term of O(n

d�1

) needed to prepare the collections of arcs

�

i

over all two-dimensional patches �. Modifying the analysis in the papers cited above,

Agarwal et al. prove the following.

Theorem 13.1 (Agarwal, Aronov, Sharir [9]) Let � be a set of n surface patches in R

d

sat-

isfying assumptions (A1){(A2). The vertices, edges, and 2-faces of M(�) can be computed

in randomized expected time O(n

d�1+"

), for any " > 0.

For d = 4, the above algorithm can be extended to compute the incidence graph (or

cell-tuple structure) of M(�). Their approach, however, falls short of computing such

representations for d > 4. Agarwal et al. also show that the three-dimensional point-

location algorithm by Preparata and Tamassia [295] can be extended to preprocess a set

of trivariate surface patches in time O(n

3+"

) into a data structure of size O(n

3+"

) so that

L

�

(x), for any point x 2 R

3

, can be computed in O(log

2

n) time.

Open Problem 12 Let � be a set of n surface patches in R

d

, for d > 4, satisfying as-

sumptions (A1){(A3). How fast can � be preprocessed, so that L

�

(x), for a query point

x 2 R

d�1

, can be computed e�ciently?

13.2 Single cells

Computing a single cell in an arrangement of n hyperplanes in R

d

is equivalent, by duality,

to computing the convex hull of a set of n points in R

d

and is a widely studied problem;

see, e.g., [137, 311] for a summary of known results. For d � 4, an O(n

bd=2c

) expected-time

algorithm for this problem was proposed by Clarkson and Shor [116] (see also [310]), which

is optimal in the worst case. By derandomizing this algorithm, Chazelle [98] developed

an O(n

bd=2c

)-time deterministic algorithm. A somewhat simpler algorithm with the same
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running time was later proposed by Br�onnimann et al. [83]. These results imply that the

Euclidean Voronoi diagram of a set of n points in R

d

can be computed in time O(n

dd=2e

).

Since the complexity of a cell may vary between O(1) and O(n

bd=2c

), output-sensitive al-

gorithms have been developed for computing a single cell in hyperplane arrangements [108,

235, 308]. For d � 3, Clarkson and Shor [116] gave randomized algorithms with ex-

pected time O(n log h), where h is the complexity of the cell, provided that the planes

are in general position. Simple deterministic algorithms with the same worst-case bound

were developed by Chan [93]. Seidel [308] proposed an algorithm whose running time

is O(n

2

+ h log n); the �rst term can be improved to O(n

2�2=(bd=2c+1)

log

c

n) [255] or to

O((nh)

1�1=(bd=2c+1)

log

c

n) [94]. Chan et al. [96] described another output-sensitive algo-

rithm whose running time is O((n + (nf)

1�1=dd=2e

+ fn

1�2=dd=2e

) log

c

n). Avis et al. [58]

described an algorithm that can compute in O(nf) time, using O(n) space, all f vertices

of a cell in an arrangement of n hyperplanes in R

d

; see also [80, 177]. All these output-

sensitive bounds hold only for simple arrangements. Although many of these algorithms

can be extended to nonsimple arrangements, the running time increases.

As mentioned in Chapter 1, Guibas et al. [198] developed an O(�

s+2

(n) log

2

n)-time al-

gorithm for computing a single face in an arrangement of n arcs, each pair of which intersect

in at most s points. Later a randomized algorithm with expected time O(�

s+2

(n) log n) was

developed by Chazelle et al. [103]. Since the complexity of the vertical decomposition of

a single cell in an arrangement of n surface patches in R

3

is O(n

2+"

) [307], an application

of the random-sampling technique yields an algorithm for computing a single cell in time

O(n

2+"

) in an arrangement of n surface patches in R

3

[307]. If � is a set of triangles, the

running time can be improved to O(n

2

log

3

n) [123]. Halperin [203, 204] developed faster al-

gorithms for computing a single cell in arrangements of \special" classes of bivariate surfaces

that arise in motion-planning applications.

13.3 Levels

Constructing the �k-level. Let � be a set of n arcs in the plane, each pair of which

intersect in at most s points. A

�k

(�) can be computed by a simple divide-and-conquer

algorithm as follows [313]. Partition � into two subsets �

1

;�

2

, each of size at most dn=2e,

compute recursively A

�k

(�

1

);A

�k

(�

2

), and then use a sweep-line algorithm to compute

A

�k

(�) from A

�k

(�

1

) and A

�k

(�

2

). The time spent in the merge step is proportional to

the number of vertices in A

�k

(�

1

);A

�k

(�

2

) and the number of intersections points between

the edges of two subdivisions, each of which is a vertex of A(�) whose level is at most 2k.

Using Theorem 6.1, the total time spent in the merge step is O(�

s+2

(n)k log n). Hence,

the overall running time of the algorithm is O(�

s+2

(n)k log

2

n). If we use a randomized

incremental algorithm that adds arcs one by one in a random order and maintains A

�k

(�

i

),

where �

i

is the set of arcs added so far, the expected running time of the algorithm is

O(�

s+2

(n)k log(n=k)); see, e.g., [275]. Everett et al. [170] showed that if � is a set of n lines,

the expected running time can be improved to O(n logn+nk). Recently Agarwal et al. [13]
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gave another randomized incremental algorithm that can compute A

�k

(�) in expected time

O(�

s+2

(n)(k + log n)).

In higher dimensions, little is known about computing A

�k

(�), for collections � of

surface patches. For d = 3, Mulmuley [275] gave a randomized incremental algorithm for

computing the �k-level in an arrangement of n planes whose expected running time is

O(nk

2

log(n=k)). The expected running time can be improved to O(n log

3

n + nk

2

) using

the algorithm by Agarwal et al. [13]. There are, however, several technical di�culties in

extending this approach to computing levels in arrangements of surface patches. Using

the random-sampling technique, Agarwal et al. [14] developed an O(n

2+"

k) expected-time

algorithm for computing A

�k

(�), for a collection � of n surface patches in R

3

. Their

algorithm can be derandomized without a�ecting the asymptotic running time. For d �

4, Agarwal et al.'s and Mulmuley's algorithm can compute the �k-level in arrangements

of n hyperplanes in expected time O(n

bd=2c

k

dd=2e

). These algorithms do not extend to

computing the �k-level in surface arrangements because no nontrivial bound is known for

the complexity of a triangulation of A

�k

(�) in four and higher dimensions.

Constructing a single level. Edelsbrunner and Welzl [159] gave an O(n log n+b log

2

n)-

time algorithm to construct the k-level in an arrangement of n lines in the plane, where

b is the number of vertices of the k-level. This bound was slightly improved by Cole et

al. [118] to O(n logn+ b log

2

k). However, these algorithms do not extend to computing the

k-level in arrangements of curves. The approach by Agarwal et al. [13] can compute the

k-level in an arrangement of lines in randomized expected time O(n log

2

n+nk

1=3

log

2=3

n),

and it extends to arrangements of curves and to arrangements of hyperplanes. Agarwal

and Matou�sek [19] describe an output-sensitive algorithm for computing the k-level in an

arrangement of planes. The running time of their algorithm, after a slight improvement

by Chan [94], is O(n log b + b

1+"

), where b is the number of vertices of the k-level. Their

algorithm can compute the k-level in an arrangement of hyperplanes in R

d

in timeO(n log b+

(nb)

1�1=(bd=2c+1)+"

+bn

1�2=(bd=2c+1)+"

). As in the case of single cells, all the output-sensitive

algorithms assume that the hyperplanes are in general position.

13.4 Marked cells

Let � be a set of n lines in the plane and S a set of m points in the plane. Edelsbrunner et

al. [147] presented a randomized algorithm, based on the random-sampling technique, for

computing C(S;�), the set of cells in A(�) that contain at least one point of S, whose

expected running time is O(m

2=3�"

n

2=3+2"

+ m logn + n log n logm), for any " > 0. A

deterministic algorithm with running time O(m

2=3

n

2=3

log

c

n+ n log

3

n+m logn) was de-

veloped by Agarwal [2]. However, both algorithms are rather complicated. A simple ran-

domized divide-and-conquer algorithm, with O((m

p

n + n) logn) expected running time,

was recently proposed by Agarwal et al. [20]. Using random sampling, they improved the

expected running time to O(m

2=3

n

2=3

log

2=3

(n=

p

m) + (m + n) log n). If we are interested
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in computing the incidences between � and S, the best known algorithm is by Matou�sek

whose expected running time is O(m

2=3

n

2=3

2

O(log

�

(m+n))

+ (m + n) log(m + n)) [257]. An


(m

2=3

n

2=3

+(m+n) log(m+n)) lower bound for this problem is proved by Erickson [169]

under a restricted model of computation. Matou�sek's algorithm can be extended to higher

dimensions to count the number of incidences between m points and n hyperplanes in R

d

in time O((mn)

1�1=(d+1)

2

O(log

�

(m+n))

+ (m+ n) log(m+ n)) [257].

The above algorithms can be modi�ed to compute marked cells in arrangements of

segments in the plane. The best known randomized algorithm is by Agarwal et al. [20]

whose running time isO(m

2=3

n

2=3

log

2

(n=

p

m)+(m+n logm+n�(n)) logn). Little is known

about computing marked cells in arrangements of arcs in the plane. Using a randomized

incremental algorithm, C(S;�) can be computed in expected time O(�

s+2

(n)

p

m log n),

where s is the maximum number of intersection points between a pair of arcs in � [317].

If � is a set of n unit-radius circles and S is a set of m points in the plane, the incidences

between � and S can be computed using Matou�sek's algorithm [257].

Randomized incremental algorithms can be used to construct marked cells in arrange-

ments of hyperplanes in higher dimensions in time close to their worst-case complexity.

For example, if � is a set of n planes in R

3

and S is a set of m points in R

3

, then the

incidence graph of cells in C(S;�) can be computed in expected time O(nm

2=3

log n) [123].

For d � 4, the expected running time is O(m

1=2

n

d=2

log




n), where 
 = (bd=2c � 1)=2. De

Berg et al. [128] describe an e�cient point-location algorithm in the zone of a k-
at in an

arrangement of hyperplanes in R

d

. Their algorithm can answer a query in O(logn) time

using O(n

b(d+k)=2c

log




n) space, where 
 = d+ k (mod 2).

13.5 Union of objects

Let � be a set of n semialgebraic simply connected regions in the plane, each of constant

description complexity. The union of � can be computed in O(f(n) log

2

n) time by a divide-

and-conquer technique, similar to that described in Section 13.3 for computing A

�k

(�).

Here f(m) is the maximum complexity of the union of a subset of � of sizem. Alternatively,

S

� can be computed in O(f(n) log n) expected time using the lazy randomized incremental

algorithm by De Berg et al. [123]. As a consequence, the union of n convex fat objects,

each of constant description complexity, can be computed in O(n

1+"

) time, for any " > 0;

see Section 9.

Aronov et al. [55] modi�ed the approach by Agarwal et al. [9] so that the union of

n convex polytopes in R

3

with a total of s vertices can be computed in expected time

O(sn logn log s+n

3

). The same approach can be used to compute the union of n congruent

cylinders in time O(n

8=3+"

). (Again, consult Section 9 for the corresponding bounds on the

complexity of the union.)

Many applications call for computing the volume or surface area of

S

� instead of its

combinatorial structure. Overmars and Yap [281] showed that the volume of the union of
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n axis-parallel boxes in R

d

can be computed in O(n

d=2

logn) time. Edelsbrunner [139] gave

an elegant formula for the volume and the surface area of the union of n balls in R

d

, which

can be used to compute the volume e�ciently.

14 Applications

In this section we present a sample of applications of arrangements. We discuss a few

speci�c problems that can be reduced to bounding the complexity of various substructures

of arrangements of surfaces or to computing these substructures. We also mention a few

general areas that have motivated several problems involving arrangements and in which

arrangements have played an important role.

14.1 Range searching

A typical range-searching problem is de�ned as follows: Preprocess a set S of n points in

R

d

, so that all points of S lying in a query region can be reported (or counted) quickly. A

special case of range searching is halfspace range searching, in which the query region is a

halfspace. Because of numerous applications, range searching has received much attention

during the last twenty years. See [16, 258] for recent surveys on range searching and its

applications.

If we de�ne the dual of a point p = (a

1

; : : : ; a

d

) to be the hyperplane p

�

: x

d

= �a

1

x

1

�

� � � � a

d�1

x

d�1

+ a

d

, and the dual of a hyperplane h : x

d

= b

1

x

1

+ � � � + b

d�1

x

d�1

+ b

d

to be the point h

�

= (b

1

; : : : b

d

), then p lies above (resp. below, on) h if and only if the

hyperplane p

�

lies above (resp. below, on) the point h

�

. Hence, halfspace range searching

has the following equivalent \dual" formulation: Preprocess a set � of n hyperplanes in

R

d

so that the hyperplanes of H lying below a query point can be reported quickly, or the

level of a query point can be computed quickly. Using the point-location data structure

for hyperplane arrangements given in [97], the level of a query point can be computed in

O(log n) time using O(n

d

= log

d

n) space. This data structure can be modi�ed to report

all t hyperplanes lying below a query point in time O(log n + t). Chazelle et al. [107]

showed, using results on arrangements, that a two-dimensional halfspace range-reporting

query can be answered in O(log n + t) time using O(n) space. In higher dimensions, by

constructing (1=r)-cuttings for A

�k

(�), Matou�sek [253] developed a data structure that

can answer a halfspace range-reporting query in time O(logn + t) using O(n

bd=2c

log

c

n)

space, for some constant c. He also developed a data structure that can answer a query

in time O(n

1�1=bd=2c

log

c

n + t) using O(n log log n) space [253]. See also [6, 109]. Using

linearization, a semialgebraic range-searching query, where one wants to report all points

of S lying inside a semialgebraic set of constant description complexity, can be answered

e�ciently using some of the halfspace range-searching data structures [18, 343].

Point location in hyperplane arrangements can be used for simplex range searching [110],
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ray shooting [17, 18, 260], and several other geometric searching problems [28].

14.2 Terrain visualization

Let � be a polyhedral terrain in R

3

with n edges; that is, � is the graph of a continuous

piecewise-linear bivariate function, so it intersects each vertical line in exactly one point.

The orthographic view of � in direction b 2 S

2

is the decomposition of �, a plane normal

to the direction b and placed at in�nity, into maximal regions so that the rays emerging in

direction b from all points in such a region hit the same face of �, or none of them hit �. The

perspective view of � from a point a 2 R

3

is the decomposition of S

2

into maximal connected

regions so that, for each region R � S

2

and for all points b 2 R, either the �rst intersection

point of � and the ray r emanating from a in direction b lie in the same face of � (which

depends on R), or none of these rays meet �. The orthographic (resp. perspective) aspect

graph of � represents all topologically di�erent orthographic (resp. perspective) views of �.

For background and a survey of recent research on aspect graphs, see [79]. Here we will

show how the complexity bounds for lower envelopes can be used to derive near-optimal

bounds on the aspect graphs of polyhedral terrains.

A pair of parallel rays (�

1

; �

2

) is called critical if for each i = 1; 2, the source point of �

i

lies on an edge a

i

of �, �

i

passes through three edges of � (including a

i

), and �

i

does not

intersect the (open) region lying below �. It can be shown that the number of topologically

di�erent orthographic views of � is O(n

5

) plus the number of critical pairs of parallel rays.

Fix a pair a

1

; a

2

of edges of �. Agarwal and Sharir [23] de�ne, for each pair (a

1

; a

2

) of edges

of �, a collection F

a

1

;a

2

of n trivariate functions, so that every pair (�

1

; �

2

) of critical rays,

where �

i

emanates from a point on a

i

(for i = 1; 2), corresponds to a vertex of M(F

a

1

;a

2

).

They also show that the graphs of the functions in F

a

1

;a

2

satisfy assumptions (A1){(A2).

Using Theorem 3.1 and summing over all pairs of edges of �, we can conclude that the

number of critical pairs of rays, and thus the number of topologically di�erent orthographic

views of �, is O(n

5+"

). Using a more careful analysis, Halperin and Sharir [210] proved

that the number of di�erent orthographic views is n

5

2

O(

p

logn)

. De Berg et al. [126] have

constructed a terrain for which there are 
(n

5

�(n)) topologically di�erent orthographic

views. If � is an arbitrary polyhedral set with n edges, the maximum possible number of

topologically di�erent orthographic views of � is �(n

6

) [293]. De Berg et al. [126] showed

that if � is a set of k pairwise-disjoint convex polytopes with a total of n vertices, then the

number of orthographic views is O(n

4

k

2

); the best known lower bound is 
(n

2

k

4

).

Agarwal and Sharir extended their approach to bound the number of perspective views

of a terrain. They argue that the number of perspective views of � is proportional to the

number of triples of rays emanating from a common point, each of which passes through

three edges of � before intersecting the open region lying below �. Following a similar

approach to the one sketched above, they reduce the problem to the analysis of lower

envelopes of O(n

3

) families of 5-variate functions, each family consisting of O(n) functions

that satisfy assumptions (A1){(A2). This leads to an overall bound of O(n

8+"

) for the
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number of topologically di�erent perspective views of �. This bound is also known to be

almost tight in the worst case, as follows from another lower-bound construction given by

De Berg et al. [126]. Again, in contrast, If � is an arbitrary polyhedral set with n edges, the

maximum possible number of topologically di�erent perspective views of � is �(n

9

) [293].

14.3 Transversals

Let S be a set of n compact convex sets in R

d

. A hyperplane h is called a transversal of S

if h intersects every member of S. Let T (S) denote the space of all hyperplane transversals

of S. We wish to study the structure of T (S). To facilitate this study, we apply the dual

transform described in Section 14.1. Let h : x

d

= a

1

x

1

+ � � �+a

d�1

x

d�1

+a

d

be a hyperplane

that intersects a set s 2 S. Translate h up and down until it becomes tangent to s. Denote

the resulting upper and lower tangent hyperplanes by

x

d

= a

1

x

1

+ � � �+ a

d�1

x

d�1

+ U

s

(a

1

; : : : ; a

d�1

)

and

x

d

= a

1

x

1

+ � � �+ a

d�1

x

d�1

+ L

s

(a

1

; : : : ; a

d�1

);

respectively. Then we have

L

s

(a

1

; : : : ; a

d�1

) � a

d

� U

s

(a

1

; : : : ; a

d�1

):

Now if h is a transversal of S, we must have

max

s2S

L

s

(a

1

; : : : ; a

d�1

) � a

d

� min

s2S

U

s

(a

1

; : : : ; a

d�1

):

In other words, if we de�ne � = fU

s

j s 2 Sg and �

0

= fL

s

j s 2 Sg, then T (S) is

S(�;�

0

), the region lying below the lower envelope of � and above the upper envelope of

�

0

. The results of Agarwal et al. [21] imply that if each set in S has constant description

complexity, then the complexity of T (S) is O(n

2+"

), for any " > 0 in R

3

. The results in [21]

concerning the complexity of the vertical decomposition of S(�;�

0

) imply that T (S) can be

constructed in O(n

2+"

) time. No sharp bounds are known on T (S) in higher dimensions.

However, in four dimensions, using the algorithm by Agarwal et al. [9] for point location in

the minimization diagram of trivariate functions, we can preprocess S into a data structure

of size O(n

3+"

) so that we can determine in O(log n) time whether a hyperplane h is a

transversal of S.

The problem can be generalized by considering lower-dimensional transversals. For

example, in R

3

we can also consider the space of all line transversals of S (lines that meet

every member of S). By mapping lines in R

3

into points in R

4

, and by using an appropriate

parametrization of the lines, the space of all line transversals of S can be represented as the

region in R

4

enclosed between the upper envelope and the lower envelope of two respective

collections of surfaces. Pellegrini and Shor [291] showed that if S is a set of triangles in
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R

3

, then the space of line transversals of S has n

3

2

O(

p

log n)

complexity. The bound was

slightly improved by Agarwal [4] to O(n

3

logn). He reduced the problem to bounding the

complexity of a family of cells in an arrangement of O(n) hyperplanes in R

5

. Agarwal et

al. [10] proved that the complexity of the space of line transversals for a set of n balls in

R

3

is O(n

3+"

). Their argument works even if S is a set of homothets of a convex region of

constant description complexity in R

3

.

14.4 Geometric optimization

In the past few years, many problems in geometric optimization have been attacked by

techniques that reduce the problem to constructing and searching in various substructures

of surface arrangements. Hence, the area of geometric optimization is a natural extension,

and a good application area, of the study of arrangements. See [24] for a recent survey on

geometric optimization.

One of the basic techniques for geometric optimization is the parametric searching tech-

nique, originally proposed by Megiddo [264]. This technique reduces the optimization prob-

lem to a decision problem, where one needs to compare the optimal value to a given param-

eter. In most cases, the decision problem is easier to solve than the optimization problem.

The parametric searching technique proceeds by a parallel simulation of a generic version

of the decision procedure with the (unknown) optimum value as an input parameter. In

most applications, careful implementation of this technique leads to a solution of the opti-

mization problem whose running time is larger than that of the decision algorithm only by

a polylogarithmic factor. See [24] for a more detailed survey of parametric searching and

its applications.

Several alternatives to parametric searching have been developed during the past decade.

They use randomization [25, 95, 251], expander graphs [227], and searching in monotone

matrices [175]. Like parametric searching, all these techniques are based on the availability

of an e�cient procedure for the decision problem. When applicable, they lead to algorithms

with running times that are similar to, and sometimes slightly better than, those yielded

by parametric searching.

These methods have been used to solve a wide range of geometric optimization problems,

many of which involve arrangements. We mention a sample of such results.

Slope selection. Given a set S of n points in R

2

and an integer k, �nd the line with

the kth smallest slope among the lines passing through pairs of points of S. If we dualize

the points in S to a set � of lines in R

2

, the problem becomes that of computing the kth

leftmost vertex of A(�). Cole et al. [117] developed a rather sophisticated O(n log n)-time

algorithm for this problem, which is based on parametric searching. (Here the decision

problem is to determine whether at most k vertices of A(�) lie to the left of a given vertical

line.) A considerably simpler algorithm, based on (1=r)-cuttings, was later proposed by
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Br�onnimann and Chazelle [82]. See also [226, 251].

Distance selection. Given a set S of n points in R

2

and a parameter k �

�

n

2

�

, �nd the

k-th largest distance among the points of S [12, 227]. The corresponding decision problem

reduces to point location in a set of congruent disks in R

2

. Speci�cally, given a set � of

m congruent disks in the plane, we wish to count e�ciently the number of containments

between disks of � and points of S. This problem can be solved using parametric search-

ing [12], expander graphs [227], or randomization [251]. The best known deterministic

algorithm, given by Katz and Sharir [227], runs in O(n

4=3

log

3+"

n) time.

Segment center. Given a set S of n points in R

2

and a line segment e, �nd a placement

of e that minimizes the largest distance from the points of S to e [15, 162]. The decision

problem reduces to determining whether given two families � and �

0

of bivariate surfaces,

S(�;�

0

), the region lying between L

�

and U

�

0

, is empty. Exploiting the special properties

of � and �

0

, Efrat and Sharir [162] show that the complexity of S(�;�

0

) is O(n logn). They

describe an O(n

1+"

)-time algorithm to determine whether S(�;�

0

) is empty, which leads to

an O(n

1+"

)-time algorithm for the segment-center problem.

Extremal polygon placement. Given a convex m-gon P and a closed polygonal en-

vironment Q with n vertices, �nd the largest similar copy of P that is fully contained

in Q [318]. Here the decision problem is to determine whether P , with a �xed scaling

factor, can be placed inside Q; this is a variant of the corresponding motion-planning prob-

lem for P inside Q, and is solved by constructing an appropriate representation of the 3-

dimensional free con�guration space, as a collection of cells in a corresponding 3-dimensional

arrangement of surfaces. The running time of the whole algorithm is only slightly larger

than the time needed to solve the �xed-size placement problem. The best running time is

O(mn�

6

(mn) log

3

mn log

2

n) [11]; see also [232, 318]. If Q is a convex n-gon, the largest

similar copy of P that can be placed inside Q can be computed in O(mn

2

log n) time [5].

Diameter in 3D. Given a set S of n points in R

3

, determine the maximum distance

between a pair of points in S. The problem is reduced to determining whether S lies in the

intersection of a given set � of n congruent balls. A randomized algorithm with O(n logn)

expected time was proposed by Clarkson and Shor [116]. A series of papers [102, 261,

297, 296] describe near-linear-time deterministic algorithms. The best known deterministic

algorithm runs in O(n log

2

n) time [71, 296].

Width in 3D. Given a set S of n points in R

3

, determine the smallest distance between

two parallel planes enclosing S between them. This problem has been studied in a series of

papers [9, 25, 102], and the currently best known randomized algorithms computes the width

in O(n

3=2+"

) expected time [25]. The technique used in attacking the decision problems for
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this and the two following problems reduce them to point location in the region above the

lower envelope of a collection of trivariate functions in R

4

.

Biggest stick in a simple polygon. Compute the longest line segment that can �t

inside a given simple polygon with n edges. The current best solution is O(n

3=2+"

) [25] (see

also [9, 27]).

Minimum-width annulus. Compute the annulus of smallest width that encloses a given

set of n points in the plane. This problem arises in �tting a circle through a set of points

in the plane. Again, the current best solution is O(n

3=2+"

) [25] (see also [9, 27]).

Geometric matching. Consider the problem where we are given two sets S

1

, S

2

of n

points in the plane, and we wish to compute a minimum-weight matching in the complete

bipartite graph S

1

�S

2

, where the weight of an edge (p; q) is the Euclidean distance between

p and q. One can also consider the analogous nonbipartite version of the problem, which

involves just one set S of 2n points, and the complete graph on S. The goal is to explore

the underlying geometric structure of these graphs, to obtain faster algorithms than those

available for general abstract graphs. Vaidya [331] had shown that both the bipartite

and the nonbipartite versions of the problem can be solved in time close to O(n

5=2

). A

fairly sophisticated application of vertical decomposition in three-dimensional arrangements,

given in [14], has improved the running time for the bipartite case to O(n

2+"

). Recently,

Varadarajan [334] proposed an O(n

3=2

log

c

n)-time algorithm for the nonbipartite case.

Center point. A center point of a set S of n points in the plane is a point � 2 R

2

so

that each line ` passing through � has the property that at least bn=3c points lie in each

halfplane bounded by `. It is well known that such a center point always exists [137]. If we

dualize S to a set � of n lines in the plane, then �

�

, the line dual to �, lies between A

bn=3c

(�)

and A

d2n=3e

(�). Cole et al. [118] described an O(n log

3

n)-time algorithm for computing a

center point of S, using parametric searching. The problem of computing the set of all

center points reduces to computing the convex hull of A

k

(�) for a given k. Matou�sek [249]

described an O(n log

2

n)-time algorithm for computing the convex hull of A

k

(�) for any

k � n; recall, in contrast, that the best known upper bound for A

k

(�) is O(n(k + 1)

1=3

).

Ham sandwich cuts. Let S

1

; S

2

; : : : ; S

d

be d sets of points in R

d

, each containing n

points. Suppose n is even. A ham sandwich cut is a hyperplane h so that each open

halfspace bounded by h contains at most n=2 points of S

i

, for i = 1; : : : ; d. It is known

[137, 342] that such a cut always exists. Let �

i

be the set of hyperplanes dual to S

i

. Then

the problem reduces to computing a vertex of the intersection of A

n=2

(�

1

) and A

n=2

(�

2

).

Megiddo [265] developed a linear-time algorithm for computing a ham sandwich cut in the
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plane if S

1

and S

2

can be separated by a line. For arbitrary point sets in the plane, a linear-

time algorithms was later developed by Lo et al. [246]. Lo et al. also described an algorithm

for computing a ham sandwich cut in R

3

whose running time is O( 

n=2

(n) log

2

n), where

 

k

(n) is the maximum complexity of the k-level in an arrangement of n lines in the plane.

By Dey's result on k-levels [129], the running time of their algorithm is O(n

4=3

log

2

n).

14.5 Robotics

As mentioned in the introduction, motion planning for a robot system has been a major

motivation for the study of arrangements. Let B be a robot system with d degrees of free-

dom, which is allowed to move freely within a given two- or three-dimensional environment

cluttered with obstacles. Given two placements I and F of B, determining whether there

exists a collision-free path between these placements reduces to determining whether I and

F lie in the same cell of the arrangement of the family � of \contact surfaces" in R

d

, re-

garded as the con�guration space of B (see the introduction for more details). If I and F lie

in the same cell, then a path between I and F in R

d

that does not intersect any surface of �

corresponds to a collision-free path of B in the physical environment from I to F . Schwartz

and Sharir [304] developed an n

2

O(d)

-time algorithm for this problem. If d is a part of the

input, the problem was later proved to be PSPACE-complete [89, 299]. Canny [88, 90] gave

an n

O(d)

-time algorithm to compute the roadmap of a single cell in an arrangement A(�)

of a set � of n surfaces in R

d

provided that the cells in A(�) form a Whitney regular strat-

i�cation of R

d

(see [186] for the de�nition of Whitney strati�cation). Using a perturbation

argument, he showed that his approach can be extended to obtain a Monte Carlo algorithm

to determine whether two points lie in the same cell of A(�). The algorithms was subse-

quently extended and improved by many researchers see [67, 187, 221]. The best known

algorithm, due to Basu et al. [67], can compute the roadmap in time n

d+1

b

O(d

2

)

. Much work

has been done on developing e�cient algorithms for robots with a small number of degrees

of freedom, say, two or three [203, 213, 231]. The result by Schwarzkopf and Sharir [307]

gives an e�cient algorithm for computing a collision-free path between two given place-

ments for fairly general robot systems with three degrees of freedom. See [206, 305, 316]

for surveys on motion-planning algorithms.

It is impractical to compute the roadmap, or any other explicit representation, of a single

cell in A(�) if d is large. A general Monte Carlo algorithm for computing a probabilistic

roadmap of a cell in A(�) is described by Kavraki et al. [229]. This approach avoids

computing the cell explicitly. Instead, it samples a large number of random points in the

con�guration space and only those con�gurations that lie in the free con�guration space

(FP ) are retained (they are called milestones); we also add I and F as milestones. The

algorithm then builds a \connectivity graph" whose nodes are these milestones, and whose

edges connect pairs of milestones if the line segment joining them in con�guration space lies

in FP (or if they satisfy some other \local reachability" rule). Various strategies have been

proposed for choosing random con�gurations [39, 64, 225, 228]. The algorithm returns a
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path from I to F if they lie in the same connected component of the resulting network. Note

that this algorithm may fail to return a collision-free path from I to F even if there exists

one. This technique nevertheless has been successful in several real-world applications.

Assembly planning is another area in which the theory of arrangements has led to e�-

cient algorithms. An assembly is a collection of objects (called parts) placed rigidly in some

speci�ed relative positions so that no two objects overlap. A subassembly of an assembly

A is a subset of objects in A in their relative placements in A. An assembly operation

is a motion that merges some subassemblies of A into a new and larger subassembly. An

assembly sequence for A is a sequence of assembly operations that starts with the individ-

ual parts separated from each other and ends up with the full assembly A. The goal of

assembly planning is to compute an assembly sequence for a given assembly. A classical

approach to assembly sequencing is disassembly sequencing, which separates an assembly

into its individual parts [224]. The reverse order of a sequence of disassemblying operations

yields an assembly sequence. Several kinds of motion have been considered in separating

parts of an assembly, including translating a subassembly along a straight line, arbitrary

translational motion, rigid motion, etc. A common approach to generate a disassembly

sequence is the so-called nondirectional blocking graph approach. It partitions the space of

all allowable motions of separation into a �nite number of cells so that within each cell the

set of \blocking relations" between all pairs of parts remains �xed. The problem is then

reduced to computing representative points in cells of the arrangement of a family of sur-

faces. This approach has been successful in many instances, including polyhedral assembly

with in�nitesimal rigid motion [193]; see also [206, 207].

Other problems in robotics that have exploited arrangements include �xturing [298],

MEMS (micro electronic mechanical systems) [75], path planning with uncertainty [124],

and manufacturing [29].

14.6 Molecular modeling

In the introduction, we described the Van der Waals model, in which a molecule M is

represented as a collection � of spheres in R

3

. (See [120, 140, 266] for other geometric models

of molecules.) Let � = @(

S

�). � is called the \surface" ofM . Many problems in molecular

biology, especially those that study the interaction of a protein with another molecule,

involve computing the molecular surface, a portion of the surface (e.g., the so-called active

site of a protein), or various features of the molecular surface [142, 208, 242, 335]. We

brie
y describe two problems in molecular modeling that can be formulated in terms of

arrangements.

The chemical behavior of solute molecules in a solution is strongly dependent on the

interactions between the solute and solvent molecules. These interactions are critically de-

pendent on those molecular fragments that are accessible to the solvent molecules. Suppose

we use the Van der Waals model for the solute molecule and model the solvent by a sphere

S. By rolling S on the molecular surface �, we obtain a new surface �

0

, traced by the center
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of the rolling sphere. If we enlarge each sphere of � by the radius of S, �

0

is the boundary

of the union of the enlarged spheres.

As mentioned above, several methods have been proposed to model the surface of a

molecule. The best choice of the model depends on the chemical problem the molecular

surface is supposed to represent. For example, the Van der Waals model represents the

space requirement of molecular conformations, while isodensity contours and molecular

electrostatic potential contour surfaces [266] are useful in studying molecular interactions.

An important problem in molecular modeling is to study the interrelations among various

molecular surfaces of the same molecule. For example, let � = f�

1

; : : : ;�

m

g be a family of

molecular surfaces of the same molecule. We may want to compute the arrangement A(�),

or we may want to compute the subdivision of �

i

induced by f�

j

\�

i

j 1 � j 6= i � mg.

Researchers have also been interested in computing \connectivity" of a molecule, e.g.,

computing voids, tunnels, and pockets of �. A void of � is a bounded component of

R

3

n (

S

�); a tunnel is a hole through

S

� that is accessible from the outside, i.e., an

\inner" part of a non-contractible loop in R

3

n

S

�; and a pocket is a depression or cavity on

�. Pockets are not holes in the topological sense and are not well de�ned; see [121, 142] for

some of the de�nitions proposed so far. Pockets and tunnels are interesting because they

are good candidates to be binding sites for other molecules.

E�cient algorithms have been developed for computing �, connectivity of �, and the

arrangement A(�) [140, 208, 335]. Halperin and Shelton [214] describe an e�cient per-

turbation scheme to handle degeneracies while constructing A(�) or �. Some applications

require computing the measure of di�erent substructures of A(�), including the volume of

�, the surface area of �, or the volume of a void of �. Edelsbrunner et al. [141] describe

an e�cient algorithm for computing these measures; see also [139, 140].

15 Conclusions

In this survey we reviewed a wide range of topics on arrangements of surfaces. We mentioned

a few old results, but the emphasis of the survey was on the tremendous progress made in

this area during the last �fteen years. We discussed combinatorial complexity of arrange-

ments and their substructures, representation of arrangements, algorithms for computing

arrangements and their substructures, and several geometric problems in which arrange-

ments play pivotal roles. Although the survey covered a broad spectrum of results, many

topics on arrangements were either not included or very brie
y touched upon. For example,

we did not discuss arrangements of pseudo-lines and oriented matroids, we discussed alge-

braic and topological issues very brie
y, and we mentioned a rather short list of applications

that have exploited arrangements. There are numerous other sources where more details

on arrangements and their applications can be found; see e.g. the books [72, 283, 317] and

the survey papers [184, 205, 272, 282].
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