2010/2

Efficiency of coordinate descent methods on huge-scale optimization problems

Yu. Nesterov

CORE

DISCUSSION PAPER

Center for Operations Research and Econometrics

Voie du Roman Pays, 34
B-1348 Louvain-la-Neuve Belgium
http://www.uclouvain.be/core

CORE DISCUSSION PAPER 2010/2

Efficiency of coordinate descent methods on huge-scale optimization problems

Yu. NESTEROV ${ }^{1}$

January 2010

Abstract

In this paper we propose new methods for solving huge-scale optimization problems. For problems of this size, even the simplest full-dimensional vector operations are very expensive. Hence, we propose to apply an optimization technique based on random partial update of decision variables. For these methods, we prove the global estimates for the rate of convergence. Surprisingly enough, for certain classes of objective functions, our results are better than the standard worst-case bounds for deterministic algorithms. We present constrained and unconstrained versions of the method, and its accelerated variant. Our numerical test confirms a high efficiency of this technique on problems of very big size.

Keywords: Convex optimization, coordinate relaxation, worst-case efficiency estimates, fast gradient schemes, Google problem.

[^0]
1 Introduction

Motivation. Coordinate descent methods were among the first optimization schemes suggested for solving smooth unconstrained minimization problems (see $[1,2]$ and references therein). The main advantage of these methods is the simplicity of each iteration, both in generating the search direction and in performing the update of variables. However, very soon it became clear that the coordinate descent methods can be criticized in several aspects.

1. Theoretical justification. The simplest variant of the coordinate descent method is based on a cyclic coordinate search. However, for this strategy it is difficult to prove convergence, and almost impossible to estimate the rate of convergence ${ }^{1)}$. Another possibility is to move along the direction corresponding to the component of gradient with maximal absolute value. For this strategy, justification of the convergence rate is trivial. For the future references, let us present this result right now. Consider the unconstrained minimization problem

$$
\begin{equation*}
\min _{x \in R^{n}} f(x), \tag{1.1}
\end{equation*}
$$

where the convex objective function f has component-wise Lipschitz continuous gradient:

$$
\begin{equation*}
\left|\nabla_{i} f\left(x+h e_{i}\right)-\nabla_{i} f(x)\right| \leq M|h|, \quad x \in R^{n}, h \in R, i=1, \ldots, n, \tag{1.2}
\end{equation*}
$$

where e_{i} is the i th coordinate vector in R^{n}. Consider the following method:

Choose $x_{0} \in R^{n}$. For $k \geq 0$ iterate

1. Choose $i_{k}=\arg \max _{1 \leq i \leq n}\left|\nabla_{i} f\left(x_{k}\right)\right|$.
2. Update $x_{k+1}=x_{k}-\frac{1}{M} \nabla_{i_{k}} f\left(x_{k}\right) e_{i_{k}}$.

Then

$$
\begin{aligned}
f\left(x_{k}\right)-f\left(x_{k+1}\right) & \stackrel{(1.2)}{\geq} \frac{1}{2 M}\left|\nabla_{i_{k}} f\left(x_{k}\right)\right|^{2} \geq \frac{1}{2 n M}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \\
& \geq \frac{1}{2 n M R^{2}}\left(f\left(x_{k}\right)-f^{*}\right)^{2},
\end{aligned}
$$

where $R \geq\left\|x_{0}-x^{*}\right\|$, the norm is Euclidean, and f^{*} is the optimal value of problem (1.1). Hence,

$$
\begin{equation*}
f\left(x_{k}\right)-f^{*} \leq \frac{2 n M R^{2}}{k+4}, \quad k \geq 0 \tag{1.4}
\end{equation*}
$$

Note that at each test point, method (1.3) requires computation of the whole gradient vector. However, if this vector is available, it seems better to apply the usual full-gradient methods. It is also important that for convex functions with Lipschitz-continuous gradient:

$$
\begin{equation*}
\|\nabla f(x)-\nabla f(y)\| \leq L(f)\|x-y\|, \quad x, y \in R^{n} \tag{1.5}
\end{equation*}
$$

[^1]it can happen that $M \geq O(L(f))$. Hence, in general, the rate (1.4) is worse than the rate of convergence of the simple Gradient Method (e.g. Section 2.1 in [6]).
2. Computational complexity. From the theory of fast differentiation it is known that for all functions defined by an explicit sequence of standard operations, the complexity of computing the whole gradient is proportional to the computational complexity of the value of corresponding function. Moreover, the coefficient in this proportion is a small absolute constant. This observation suggests that for coordinate descent methods the line-search strategies based on the function values are too expensive. Provided that the general directional derivative of the function has the same complexity as the function value, it seems that no room is left for supporting the coordinate descent idea. The versions of this method still appear in the literature. However, they are justified only by local convergence analysis for rather particular problems (e.g. [3, 8]).

At the same time, in the last years we can observe an increasing interest to optimization problems of a very big size (Internet applications, telecommunications). In such problems, even computation of a function value can require substantial computational efforts. Moreover, some parts of the problem's data can be distributed in space and in time. The problem's data may be only partially available at the moment of evaluating the current test point. For problems of this type, we adopt the term huge-scale problems.

These applications strongly push us backward to the framework of coordinate minimization. Therefore, let us look again at the above criticism. It appears, that there is a small chance for these methods to survive.

1. We can also think about the random coordinate search with pre-specified probabilities for each coordinate move. As we will see later, the complexity analysis of corresponding methods is quite straightforward. On the other hand, from technological point of view, this strategy fits very well the problems with distributed or unstable data.
2. It appears, that the computation of a coordinate directional derivative can be much simpler than computation of either a function value, or a directional derivative along arbitrary direction.
In order to support this claim, let us look at the following optimization problem:

$$
\begin{equation*}
\min _{x \in R^{n}}\left\{f(x) \stackrel{\text { def }}{=} \sum_{i=1}^{n} f_{i}\left(x^{(i)}\right)+\frac{1}{2}\|A x-b\|^{2}\right\}, \tag{1.6}
\end{equation*}
$$

where f_{i} are convex differentiable univariate functions, $A=\left(a_{1}, \ldots, a_{n}\right) \in R^{p \times n}$ is an $p \times n$-matrix, and $\|\cdot\|$ is the standard Euclidean norm in R^{p}. Then

$$
\begin{aligned}
\nabla_{i} f(x) & =f_{i}^{\prime}\left(x^{(i)}\right)+\left\langle a_{i}, g(x)\right\rangle, \quad i=1, \ldots, n, \\
g(x) & =A x-b .
\end{aligned}
$$

If the residual vector $g(x)$ is already computed, then the computation of i th directional derivative requires $O\left(p_{i}\right)$ operations, where p_{i} is the number of nonzero elements in vector a_{i}. On the other hand, the coordinate move $x_{+}=x+\alpha e_{i}$ results in the following change in the residual:

$$
g\left(x_{+}\right)=g(x)+\alpha a_{i} .
$$

Therefore, the i th coordinate step for problem (1.6) needs $O\left(p_{i}\right)$ operations. Note that computation of either the function value, or the whole gradient, or an arbitrary directional derivative requires $O\left(\sum_{i=1}^{n} p_{i}\right)$ operations. The reader can easily find many other examples of optimization problems with cheap coordinate directional derivatives.

The goal of this paper is to provide the random coordinate descent methods with the worst-case efficiency estimates. We show that for functions with cheap coordinate derivatives the new methods are always faster than the corresponding full-gradient schemes. A surprising result is that even for functions with expensive coordinate derivatives the new methods can be also faster since their rate of convergence depends on an upper estimate for the average diagonal element of the Hessian of the objective function. This value can be much smaller than the maximal eigenvalue of the Hessian, entering the worst-case complexity estimates of the black-box gradient schemes.

Contents. The paper is organized as follows. In Section 2 we analyze the expected rate of convergence of the simplest Random Coordinate Descent Method. It is shown that it is reasonable to define probabilities for particular coordinate directions using the estimates of Lipschitz constants for partial derivatives. In Section 3 we show that for the class of strongly convex functions RCDM converges with a linear rate. By applying a regularization technique, this allows to solve the unconstrained minimization problems with arbitrary high confidence level. In Section 4 we analyze a modified version of RCDM as applied to constrained optimization problem. In Section 5 we show that unconstrained version of RCDM can be accelerated up to the rate of convergence $O\left(\frac{1}{k^{2}}\right)$, where k is the iteration counter. Finally, in Section 6 we discuss the implementation issues. In Section 6.1 we show that the good estimates for coordinate Lipshitz constants can be efficiently computed. In Section 6.2 we present an efficient strategy for generating random coordinate directions. And in Section 6.3 we present preliminary computational results.
Notation. In this paper we work with real coordinate spaces R^{n} composed by column vectors. For $x, y \in R^{n}$ denote

$$
\langle x, y\rangle=\sum_{i=1}^{n} x^{(i)} y^{(i)} .
$$

We use the same notation $\langle\cdot, \cdot\rangle$ for spaces of different dimension. Thus, its actual sense is defined by the space containing the arguments. If we fix a norm $\|\cdot\|$ in R^{n}, then the dual norm is defined in the standard way:

$$
\begin{equation*}
\|s\|^{*}=\max _{\|h\|=1}\langle s, x\rangle . \tag{1.7}
\end{equation*}
$$

We denote by $s^{\#}$ an arbitrary vector from the set

$$
\begin{equation*}
\operatorname{Arg} \max _{x}\left[\langle s, x\rangle-\frac{1}{2}\|x\|^{2}\right] . \tag{1.8}
\end{equation*}
$$

Clearly, $\left\|s^{\#}\right\|=\|s\|^{*}$.
For function $f(x), x \in R^{n}$, we denote by $\nabla f(x)$ its gradient, which is a vector from R^{n} composed by partial derivatives. By $\nabla^{2} f(x)$ we denote the Hessian of f at x. In the sequel we will use the following simple result.

Lemma 1 Let us fix a decomposition of R^{n} on k subspaces. For positive semidefinite symmetric matrix $A \in R^{n \times n}$, denote by $A_{i, i}$ the corresponding diagonal blocks. If

$$
A_{i, i} \preceq L_{i} B_{i}, \quad i=1, \ldots, k
$$

where all $B_{i} \succeq 0$, then

$$
A \preceq\left(\sum_{i=1}^{k} L_{i}\right) \cdot \operatorname{diag}\left\{B_{i}\right\}_{i=1}^{k},
$$

where diag $\left\{B_{i}\right\}_{i=1}^{k}$ is a block-diagonal $(n \times N)$-matrix with diagonal blocks B_{i}. In particular,

$$
A \preceq n \cdot \operatorname{diag}\left\{A_{i, i}\right\}_{i=1}^{n} .
$$

Proof:

Denote by $x^{(i)}$ the part of vector $x \in R^{n}$, belonging to i th subspace. Since A is positive semidefinite, we have

$$
\begin{aligned}
\langle A x, x\rangle & =\sum_{i=1}^{k} \sum_{j=1}^{k}\left\langle A_{i, j} x^{(i)}, x^{(j)}\right\rangle \leq\left(\sum_{i=1}^{k}\left\langle A_{i, i} x^{(i)}, x^{(i)}\right\rangle^{1 / 2}\right)^{2} \\
& \leq\left(\sum_{i=1}^{k} L_{i}^{1 / 2}\left\langle B_{i, i} x^{(i)}, x^{(i)}\right\rangle^{1 / 2}\right)^{2} \leq \sum_{i=1}^{k} L_{i} \cdot \sum_{i=1}^{k}\left\langle B_{i} x^{(i)}, x^{(i)}\right\rangle .
\end{aligned}
$$

2 Coordinate relaxation for unconstrained minimization

Consider the following unconstrained minimization problem

$$
\begin{equation*}
\min _{x \in R^{N}} f(x), \tag{2.1}
\end{equation*}
$$

where the objective function f is convex and differentiable on R^{N}. We assume that the optimal set X^{*} of this problem is nonempty and bounded.

Let us fix a decomposition of R^{N} on n subspaces:

$$
R^{N}=\bigotimes_{i=1}^{n} R^{n_{i}}, \quad N=\sum_{i=1}^{n} n_{i} .
$$

Then we can define the corresponding partition of the unit matrix

$$
I_{N}=\left(U_{1}, \ldots, U_{n}\right) \in R^{N \times N}, \quad U_{i} \in R^{N \times n_{i}}, i=1, \ldots, n .
$$

Thus, any $x=\left(x^{(1)}, \ldots, x^{(n)}\right)^{T} \in R^{N}$ can be represented as

$$
x=\sum_{i=1}^{n} U_{i} x^{(i)}, \quad x^{(i)} \in R^{n_{i}}, i=1, \ldots, n .
$$

Then the partial gradient of $f(x)$ in $x^{(i)}$ is defined as

$$
f_{i}^{\prime}(x)=U_{i}^{T} \nabla f(x) \in R^{n_{i}}, \quad x \in R^{N}
$$

For spaces $R^{n_{i}}$, let us fix some norms $\|\cdot\|_{(i)}, i=1, \ldots, n$. We assume that the gradient of function f is coordinate-wise Lipschitz continuous with constants $L_{i}=L_{i}(f)$:

$$
\begin{equation*}
\left\|f_{i}^{\prime}\left(x+U_{i} h_{i}\right)-f_{i}^{\prime}(x)\right\|_{(i)}^{*} \leq L_{i}\left\|h_{i}\right\|_{(i)}, \quad h_{i} \in R^{n_{i}}, i=1, \ldots, n, x \in R^{N} . \tag{2.2}
\end{equation*}
$$

For the sake of simplicity, let us assume that these constants are known.
By the standard reasoning (e.g. Section 2.1 in [6]), we can prove that

$$
\begin{equation*}
f\left(x+U_{i} h_{i}\right) \leq f(x)+\left\langle f_{i}^{\prime}(x), h_{i}\right\rangle+\frac{L_{i}}{2}\left\|h_{i}\right\|_{(i)}^{2}, \quad x \in R^{N}, h_{i} \in R^{n_{i}}, i=1, \ldots, n \tag{2.3}
\end{equation*}
$$

Let us define the optimal coordinate steps:

$$
T_{i}(x) \stackrel{\text { def }}{=} x-\frac{1}{L_{i}} U_{i} f_{i}^{\prime}(x)^{\#}, \quad i=1, \ldots, n,
$$

Then, in view of the bound (2.3), we get

$$
\begin{equation*}
f(x)-f\left(T_{i}(x)\right) \geq \frac{1}{2 L_{i}}\left(\left\|f_{i}^{\prime}(x)\right\|_{(i)}^{*}\right)^{2}, \quad i=1, \ldots, n \tag{2.4}
\end{equation*}
$$

In our random algorithm, we need a special random counter $\mathcal{R}_{\alpha}, \alpha \in R$, which generates an integer number $i \in\{1, \ldots, n\}$ with probability

$$
\begin{equation*}
p_{\alpha}^{(i)}=L_{i}^{\alpha} \cdot\left[\sum_{j=1}^{n} L_{j}^{\alpha}\right]^{-1}, \quad i=1, \ldots, n \tag{2.5}
\end{equation*}
$$

Thus, the operation $i=\mathcal{R}_{\alpha}$ means that an integer random value, chosen from the set $\{1, \ldots, n\}$ in accordance to probabilities (2.5), is assigned to variable i. Note that \mathcal{R}_{0} generates a uniform distribution.

Now we can present the scheme of Random Coordinate Descent Method. It needs a starting point $x_{0} \in R^{N}$ and value $\alpha \in R$ as input parameters.

Method $\operatorname{RCDM}\left(\alpha, x_{0}\right)$
For $k \geq 0$ iterate:

1) Choose $i_{k}=\mathcal{R}_{\alpha}$.
2) Update $x_{k+1}=T_{i_{k}}\left(x_{k}\right)$.

For estimating the rate of convergence of $R C D M$, we introduce the following norms:

$$
\begin{align*}
\|x\|_{\alpha} & =\left[\sum_{i=1}^{n} L_{i}^{\alpha}\left\|x^{(i)}\right\|_{(i)}^{2}\right]^{1 / 2}, x \in R^{N}, \\
\|g\|_{\alpha}^{*} & =\left[\sum_{i=1}^{n} L_{i}^{-\alpha}\left(\left\|g^{(i)}\right\|_{(i)}^{*}\right)^{2}\right]^{1 / 2}, g \in R^{N} . \tag{2.7}
\end{align*}
$$

Clearly, these norms satisfy Cauchy-Schwartz inequality:

$$
\begin{equation*}
\|g\|_{\alpha}^{*} \cdot\|x\|_{\alpha} \geq\langle g, x\rangle, \quad x, g \in R^{N} . \tag{2.8}
\end{equation*}
$$

In the sequel, we use notation $S_{\alpha}=S_{\alpha}(f)=\sum_{i=1}^{n} L_{i}^{\alpha}(f)$ with $\alpha \geq 0$. Note that

$$
S_{0}(f) \equiv n
$$

Let us link our main assumption (2.2) with a full-dimensional Lipschitz condition for the gradient of the objective function.

Lemma 2 Let f satisfy condition (2.2). Then for any $\alpha \in R$ we have

$$
\begin{equation*}
\|\nabla f(x)-\nabla f(y)\|_{1-\alpha}^{*} \leq S_{\alpha}\|x-y\|_{1-\alpha}, \quad x, y \in R^{N} \tag{2.9}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
f(x) \leq f(y)+\langle\nabla f(y), x-y\rangle+\frac{1}{2} S_{\alpha}\|x-y\|_{1-\alpha}^{2}, \quad x, y \in R^{N} . \tag{2.10}
\end{equation*}
$$

Proof:

Indeed,

$$
\begin{aligned}
f(x)-f^{*} & \stackrel{(2.4)}{\geq} \max _{1 \leq i \leq n} \frac{1}{2 L_{i}}\left(\left\|f_{i}^{\prime}(x)\right\|_{(i)}^{*}\right)^{2} \\
& \geq \frac{1}{2 S_{\alpha}} \sum_{i=1}^{n} \frac{L_{i}^{\alpha}}{L_{i}}\left(\left\|f_{i}^{\prime}(x)\right\|_{(i)}^{*}\right)^{2}=\frac{1}{2 S_{\alpha}}\left(\|\nabla f(x)\|_{1-\alpha}^{*}\right)^{2} .
\end{aligned}
$$

Applying this inequality to function $\phi(x)=f(x)-f(y)-\langle\nabla f(y), x-y\rangle$, we obtain

$$
\begin{equation*}
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle+\frac{1}{2 S_{\alpha}}\left(\|\nabla f(x)-\nabla f(y)\|_{1-\alpha}^{*}\right)^{2}, \quad x, y \in R^{N} . \tag{2.11}
\end{equation*}
$$

Adding two variants of (2.11) with x an y interchanged, we get

$$
\begin{aligned}
\frac{1}{S_{\alpha}}\left(\|\nabla f(x)-\nabla f(y)\|_{1-\alpha}^{*}\right)^{2} & \leq\langle\nabla f(x)-\nabla f(y), x-y\rangle \\
& \stackrel{(2.8)}{\leq}\|\nabla f(x)-\nabla f(y)\|_{1-\alpha}^{*} \cdot\|x-y\|_{1-\alpha} .
\end{aligned}
$$

Inequality (2.10) can be derived from (2.9) by simple integration.
After k iterations, $R C D M\left(\alpha, x_{0}\right)$ generates a random output $\left(x_{k}, f\left(x_{k}\right)\right)$, which depends on the observed implementation of random variable

$$
\xi_{k}=\left\{i_{0}, \ldots, i_{k}\right\} .
$$

Let us show that the expected value

$$
\phi_{k} \stackrel{\text { def }}{=} E_{\xi_{k-1}} f\left(x_{k}\right)
$$

converges to the optimal value f^{*} of problem (2.1).

Theorem 1 For any $k \geq 0$ we have

$$
\begin{equation*}
\phi_{k}-f^{*} \leq \frac{2}{k+4} \cdot\left[\sum_{j=1}^{n} L_{j}^{\alpha}\right] \cdot R_{1-\alpha}^{2}\left(x_{0}\right) \tag{2.12}
\end{equation*}
$$

where $R_{\beta}\left(x_{0}\right)=\max _{x}\left\{\max _{x_{*} \in X^{*}}\left\|x-x_{*}\right\|_{\beta}: f(x) \leq f\left(x_{0}\right)\right\}$.

Proof:

Let $R C D M$ generate implementation x_{k} of corresponding random variable. Then

$$
\begin{align*}
f\left(x_{k}\right)-E_{i_{k}}\left(f\left(x_{k+1}\right)\right) & =\sum_{i=1}^{n} p_{\alpha}^{(i)} \cdot\left[f\left(x_{k}\right)-f\left(T_{i}\left(x_{k}\right)\right)\right] \\
& \stackrel{(2.4)}{\geq} \sum_{i=1}^{n} \frac{p_{\alpha}^{(i)}}{2 L_{i}}\left(\left\|f_{i}^{\prime}\left(x_{k}\right)\right\|_{(i)}^{*}\right)^{2} \stackrel{(2.5)}{=} \frac{1}{2 S_{\alpha}}\left(\left\|\nabla f\left(x_{k}\right)\right\|_{1-\alpha}^{*}\right)^{2} . \tag{2.13}
\end{align*}
$$

Note that $f\left(x_{k}\right) \leq f\left(x_{0}\right)$. Therefore,

$$
f\left(x_{k}\right)-f^{*} \leq \min _{x_{*} \in X^{*}}\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{*}\right\rangle \stackrel{(2.8)}{\leq}\left\|\nabla f\left(x_{k}\right)\right\|_{1-\alpha}^{*} R_{1-\alpha}\left(x_{0}\right) .
$$

Hence,

$$
f\left(x_{k}\right)-E_{i_{k}}\left(f\left(x_{k+1}\right)\right) \geq \frac{1}{C}\left(f\left(x_{k}\right)-f^{*}\right)^{2},
$$

where $C \stackrel{\text { def }}{=} 2 S_{\alpha} R_{1-\alpha}^{2}\left(x_{0}\right)$. Taking the expectation of both sides of this inequality in ξ_{k-1}, we obtain

$$
\phi_{k}-\phi_{k+1} \geq \frac{1}{C} E_{\xi_{k-1}}\left[\left(f\left(x_{k}\right)-f^{*}\right)^{2}\right] \geq \frac{1}{C}\left(\phi_{k}-f^{*}\right)^{2} .
$$

Thus,

$$
\frac{1}{\phi_{k+1}-f^{*}}-\frac{1}{\phi_{k}-f^{*}}=\frac{\phi_{k}-\phi_{k+1}}{\left(\phi_{k+1}-f^{*}\right)\left(\phi_{k}-f^{*}\right)} \geq \frac{\phi_{k}-\phi_{k+1}}{\left(\phi_{k}-f^{*}\right)^{2}} \geq \frac{1}{C}
$$

and we conclude that $\frac{1}{\phi_{k}-f^{*}} \geq \frac{1}{\phi_{0}-f^{*}}+\frac{k}{C} \stackrel{(2.10)}{\geq} \frac{k+4}{C}$ for any $k \geq 0$.

Let us look at the most important variants of the estimate (2.12).

- $\alpha=0$. Then $S_{0}=n$, and we get

$$
\begin{equation*}
\phi_{k}-f^{*} \leq \frac{2 n}{k+4} \cdot R_{1}^{2}\left(x_{0}\right) . \tag{2.14}
\end{equation*}
$$

Note that problem (2.1) can be solved by the standard full-gradient method endowed with the metric $\|\cdot\|_{1}$. Then its rate of convergence can be estimated as

$$
f\left(x_{k}\right)-f^{*} \leq \frac{\gamma}{k} R_{1}^{2}\left(x_{0}\right),
$$

where the constant γ is big enough to ensure

$$
f^{\prime \prime}(x) \preceq \gamma \cdot \operatorname{diag}\left\{L_{i} \cdot I_{n_{i}}\right\}_{i=1}^{n}, \quad x \in E,
$$

and I_{k} is a unit matrix in R^{k}. (Assume for a moment that f is twice differentiable.) However, since the constants L_{i} are the upper bounds for the block-diagonal elements of the Hessian, in the worst case we have $\gamma=n$. Hence, the worst-case rate of convergence of this variant of the gradient method is proportional to that one of $R C D M$. However, the iteration of the latter method is usually much cheaper.

- $\alpha=\frac{1}{2}$. Consider the case $n_{i}=1, i=1, \ldots, n$. Denote by $D_{\infty}\left(x_{0}\right)$ the size of the initial level set measured in the infinity-norm:

$$
D_{\infty}\left(x_{0}\right)=\max _{x}\left\{\max _{y \in X^{*}} \max _{1 \leq i \leq n}\left|x^{(i)}-y^{(i)}\right|: f(x) \leq f\left(x_{0}\right)\right\} .
$$

Then, $R_{1 / 2}^{2}\left(x_{0}\right) \leq S_{1 / 2} D_{\infty}^{2}\left(x_{0}\right)$, and we obtain

$$
\begin{equation*}
\phi_{k}-f^{*} \leq \frac{2}{k+4} \cdot\left[\sum_{i=1}^{n} L_{i}^{1 / 2}\right]^{2} \cdot D_{\infty}^{2}\left(x_{0}\right) . \tag{2.15}
\end{equation*}
$$

Note that for the first order methods, the worst-case dimension-independent complexity of minimizing the convex functions over an n-dimensional box is infinite [4]. Since for some problems the value $S_{1 / 2}$ can be bounded even for very big (or even infinite) dimension, the estimate (2.15) shows that RCDM can work in situations where the usual gradient methods have no theoretical justification.

- $\alpha=1$. Consider the case when all norms $\|\cdot\|_{(i)}$ are the standard Euclidean norms of $R^{n_{i}}, i=1, \ldots, n$. Then $R_{0}\left(x_{0}\right)$ is the size of the initial level set in the standard Euclidean norm of R^{N}, and the rate of convergence of $\operatorname{RCDM}\left(1, x_{0}\right)$ is as follows:

$$
\begin{equation*}
\phi_{k}-f^{*} \leq \frac{2}{k+4} \cdot\left[\sum_{i=1}^{n} L_{i}\right] \cdot R_{0}^{2}\left(x_{0}\right) \equiv \frac{2 n}{k+4} \cdot\left[\frac{1}{n} \sum_{i=1}^{n} L_{i}\right] \cdot R_{0}^{2}\left(x_{0}\right) . \tag{2.16}
\end{equation*}
$$

At the same time, the rate of convergence of the standard gradient method can be estimated as

$$
f\left(x_{k}\right)-f^{*} \leq \frac{\gamma}{k} R_{0}^{2}\left(x_{0}\right),
$$

where γ satisfies condition

$$
f^{\prime \prime}(x) \preceq \gamma \cdot I_{N}, \quad x \in R^{N} .
$$

Note that the maximal eigenvalue of symmetric matrix can reach its trace. Hence, in the worst case, the rate of convergence of the gradient method is the same as the rate of $R C D M$. However, the latter method has much more chances to accelerate.

3 Minimizing strongly convex functions

Let us estimate now the performance of $R C D M$ on strongly convex functions. Recall that f is called strongly convex on R^{N} with convexity parameter $\sigma=\sigma(f)>0$ if for any x and y from R^{N} we have

$$
\begin{equation*}
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2} \sigma(f)\|y-x\|^{2} . \tag{3.1}
\end{equation*}
$$

Minimizing both sides of this inequality in y, we obtain a useful bound

$$
\begin{equation*}
f(x)-f^{*} \leq \frac{1}{2 \sigma(f)}\left(\|\nabla f(x)\|^{*}\right)^{2} . \tag{3.2}
\end{equation*}
$$

Theorem 2 Let function $f(x)$ be strongly convex with respect to the norm $\|\cdot\|_{1-\alpha}$ with convexity parameter $\sigma_{1-\alpha}=\sigma_{1-\alpha}(f)>0$. Then, for the sequence $\left\{x_{k}\right\}$ generated by $R C D M\left(\alpha, x_{0}\right)$ we have

$$
\begin{equation*}
\phi_{k}-\phi^{*} \leq\left(1-\frac{\sigma_{1-\alpha}(f)}{S_{\alpha}(f)}\right)^{k}\left(f\left(x_{0}\right)-f^{*}\right) \tag{3.3}
\end{equation*}
$$

Proof:

In view of inequality (2.13), we have

$$
f\left(x_{k}\right)-E_{i_{k}}\left(f\left(x_{k+1}\right)\right) \geq \frac{1}{2 S_{\alpha}}\left(\left\|\nabla f\left(x_{k}\right)\right\|_{1-\alpha}^{*}\right)^{2} \stackrel{(3.2)}{\geq} \frac{\sigma_{1-\alpha}}{S_{\alpha}}\left(f\left(x_{k}\right)-f^{*}\right) .
$$

It remains to compute the expectation in ξ_{k-1}.
At this moment, we are able to prove only that the expected quality of the output of RCDM is good. However, in practice we are not going to run this method many times on the same problem. What is the probability that our single run can give us also a good result? In order to answer this question, we need to apply RCDM to a regularized objective of the initial problem. For the sake of simplicity, let us endow the spaces $R^{n_{i}}$ with some Euclidean norms:

$$
\begin{equation*}
\left\|h^{(i)}\right\|_{(i)}^{2}=\left\langle B_{i} h^{(i)}, h^{(i)}\right\rangle, \quad h^{(i)} \in R^{n_{i}}, \tag{3.4}
\end{equation*}
$$

where $B_{i} \succ 0, i=1, \ldots, n$. We present the complexity results for two ways of measuring distances in R^{N}.

1. Let us use the norm $\|\cdot\|_{1}$:

$$
\begin{equation*}
\|h\|_{1}^{2}=\sum_{i=1}^{n} L_{i}\left\langle B_{i} h^{(i)}, h^{(i)}\right\rangle \stackrel{\text { def }}{=}\left\langle B_{L} h, h\right\rangle, \quad h \in R^{N} . \tag{3.5}
\end{equation*}
$$

Since this norm is Euclidean, the regularized objective function

$$
f_{\mu}(x)=f(x)+\frac{\mu}{2}\left\|x-x_{0}\right\|_{1}^{2}
$$

is strongly convex with respect to $\|\cdot\|_{1}$ with convexity parameter μ. Moreover,

$$
S_{0}\left(f_{\mu}\right)=n
$$

for any value of $\mu>0$. Hence, by Theorem 2 , method $R C D M\left(0, x_{0}\right)$ can quickly approach the value $f_{\mu}^{*}=\min _{x \in R^{N}} f_{\mu}(x)$. The following result will be useful.
Lemma 3 Let random point x_{k} be generated by $\operatorname{RCDM}\left(0, x_{0}\right)$ as applied to function f_{μ}. Then

$$
\begin{equation*}
E_{\xi_{k}}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{1}^{*}\right) \leq\left[2(n+\mu) \cdot\left(f\left(x_{0}\right)-f^{*}\right) \cdot\left(1-\frac{\mu}{n}\right)^{k}\right]^{1 / 2} \tag{3.6}
\end{equation*}
$$

Proof:

In view of Lemma 2, for any $h=\left(h^{(1)}, \ldots, h^{(n)}\right) \in R^{N}$ we have

$$
\begin{aligned}
f_{\mu}(x+h) & \leq f(x)+\langle\nabla f(x), h\rangle+\frac{n}{2}\|h\|_{1}^{2}+\frac{\mu}{2}\left\|x+h-x_{0}\right\|_{1}^{2} \\
& \stackrel{(3.5)}{=} f_{\mu}(x)+\left\langle\nabla f_{\mu}(x), h\right\rangle+\frac{n+\mu}{2}\|h\|_{1}^{2} .
\end{aligned}
$$

Thus, function f_{μ} has Lipschits-continuous gradient (e.g. (2.1.6) in Theorem 2.1.5, [6]) with constant $L\left(f_{\mu}\right) \stackrel{\text { def }}{=} n+\mu$. Therefore, (see, for example, (2.1.7) in Theorem 2.1.5, [6]),

$$
\frac{1}{2 L\left(f_{\mu}\right)}\left(\left\|\nabla f_{\mu}(x)\right\|_{1}^{*}\right)^{2} \leq f_{\mu}(x)-f_{\mu}^{*}, \quad x \in R^{N} .
$$

Hence,

$$
\begin{aligned}
E_{\xi_{k}}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{1}^{*}\right) & \leq E_{\xi_{k}}\left(\left[2(n+\mu) \cdot\left(f_{\mu}\left(x_{k}\right)-f_{\mu}^{*}\right)\right]^{1 / 2}\right) \\
& \leq\left[2(n+\mu) \cdot\left(E_{\xi_{k}}\left(f_{\mu}\left(x_{k}\right)\right)-f_{\mu}^{*}\right)\right]^{1 / 2} \\
& \stackrel{(3.3)}{\leq}\left[2(n+\mu) \cdot\left(1-\frac{\mu}{n}\right)^{k}\left(f\left(x_{0}\right)-f_{\mu}^{*}\right)\right]^{1 / 2} .
\end{aligned}
$$

It remains to note that $f_{\mu}^{*} \geq f^{*}$.
Now we can estimate the quality of the random point x_{k} generated by $\operatorname{RCDM}\left(0, x_{0}\right)$, taken as an approximate solution to problem (2.1). Let us fix the desired accuracy of the solution $\epsilon>0$ and the confidence level $\beta \in(0,1)$.

Theorem 3 Let us define $\mu=\frac{\epsilon}{4 R_{1}^{2}\left(x_{0}\right)}$, and choose

$$
\begin{equation*}
k \geq 1+\frac{8 n R_{1}^{2}\left(x_{0}\right)}{\epsilon} \ln \frac{2 n R_{1}^{2}\left(x_{0}\right)}{\epsilon(1-\beta)} . \tag{3.7}
\end{equation*}
$$

If the random point x_{k} is generated by $R C D M\left(0, x_{0}\right)$ as applied to function f_{μ}, then

$$
\operatorname{Prob}\left(f\left(x_{k}\right)-f^{*} \leq \epsilon\right) \geq \beta
$$

Proof:

Note that $f\left(x_{k}\right) \leq f_{\mu}\left(x_{k}\right) \leq f_{\mu}\left(x_{0}\right)=f\left(x_{0}\right)$. Therefore, there exists $x_{*} \in X^{*}$ such that $\left\|x_{k}-x_{*}\right\|_{1} \leq R_{1}\left(x_{0}\right) \xlongequal{\text { def }} R$. Hence, $\left\|x_{k}-x_{0}\right\|_{1} \leq\left\|x_{k}-x_{*}\right\|_{1}+\left\|x_{*}-x_{0}\right\|_{1} \leq 2 R$. Since

$$
\begin{equation*}
\nabla f_{\mu}(x)=\nabla f(x)+\mu \cdot B_{L}\left(x-x_{0}\right) \tag{3.8}
\end{equation*}
$$

we conclude that

$$
\begin{aligned}
\operatorname{Prob}\left(f\left(x_{k}\right)-f^{*} \geq \epsilon\right) & \leq \operatorname{Prob}\left(\left\|\nabla f\left(x_{k}\right)\right\|_{1}^{*} \cdot R \geq \epsilon\right) \\
& \stackrel{(3.8)}{\leq} \operatorname{Prob}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{1}^{*} \cdot R+2 \mu R^{2} \geq \epsilon\right) \\
& =\operatorname{Prob}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{1}^{*} \geq \frac{\epsilon}{2 R}\right) .
\end{aligned}
$$

Now, using Chebyshev inequality, we obtain
$\operatorname{Prob}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{1}^{*} \geq \frac{\epsilon}{2 R}\right) \quad \leq \quad \frac{2 R}{\epsilon} \cdot E_{\xi_{k}}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{1}^{*}\right)$

$$
\stackrel{(3.6)}{\leq} \quad \frac{2 R}{\epsilon} \cdot\left[2(n+\mu) \cdot\left(f\left(x_{0}\right)-f^{*}\right) \cdot\left(1-\frac{\mu}{n}\right)^{k}\right]^{1 / 2}
$$

Since the gradient of function f is Lipschitz continuous with constant n, we get

$$
f\left(x_{0}\right)-f^{*} \leq \frac{n}{2} R^{2}
$$

Taking into account that $(n+\mu)\left(1-\frac{\mu}{n}\right)^{k} \leq n\left(1-\frac{\mu}{n}\right)^{k-1}$, we obtain the following bound:

$$
\operatorname{Prob}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{1}^{*} \geq \frac{\epsilon}{2 R}\right) \leq \frac{2 n R^{2}}{\epsilon} \cdot\left(1-\frac{\mu}{n}\right)^{\frac{k-1}{2}} \leq \frac{2 n R^{2}}{\epsilon} \cdot e^{-\frac{\mu(k-1)}{2 n}} \leq 1-\beta .
$$

This proves the statement of the theorem.

For the current choice of norm (3.5), we can guarantee only $L(f) \leq n$. Therefore, the standard gradient method as applied to the problem (2.1) has the worst-case complexity bound of

$$
O\left(\frac{n R_{1}^{2}\left(x_{0}\right)}{\epsilon}\right)
$$

full-dimensional gradient iterations. Up to a logarithmic factor, this bound coincides with (3.7).
2. Consider now the following norm:

$$
\begin{equation*}
\|h\|_{0}^{2}=\sum_{i=1}^{n}\left\langle B_{i} h^{(i)}, h^{(i)}\right\rangle \stackrel{\text { def }}{=}\langle B h, h\rangle, \quad h \in R^{N}, \tag{3.9}
\end{equation*}
$$

Again, the regularized objective function

$$
f_{\mu}(x)=f(x)+\frac{\mu}{2}\left\|x-x_{0}\right\|_{0}^{2}
$$

is strongly convex with respect to $\|\cdot\|_{0}$ with convexity parameter μ. However, now

$$
S_{1}\left(f_{\mu}\right)=\sum_{i=1}^{n}\left[L_{i}(f)+\mu\right]=S_{1}(f)+n \mu
$$

Since $L\left(f_{\mu}\right)=S_{1}(f)+\mu$, using the same arguments as in the proof of Lemma 3, we get the following bound.

Lemma 4 Let random point x_{k} be generated by $R C D M\left(1, x_{0}\right)$ as applied to function f_{μ}. Then

$$
\begin{equation*}
E_{\zeta_{k}}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{0}^{*}\right) \leq\left[2\left(S_{1}(f)+\mu\right) \cdot\left(f\left(x_{0}\right)-f^{*}\right) \cdot\left(1-\frac{\mu}{S_{1}(f)+n \mu}\right)^{k}\right]^{1 / 2} . \tag{3.10}
\end{equation*}
$$

Using this lemma, we can prove the following theorem.
Theorem 4 Let us define $\mu=\frac{\epsilon}{4 R_{0}^{2}\left(x_{0}\right)}$, and choose

$$
\begin{equation*}
k \geq 2\left[n+\frac{4 S_{1}(f) R_{0}^{2}\left(x_{0}\right)}{\epsilon}\right] \cdot\left(\ln \frac{1}{1-\beta}+\ln \left(\frac{1}{2}+\frac{2 S_{1}(f) R_{0}^{2}\left(x_{0}\right)}{\epsilon}\right)\right) \tag{3.11}
\end{equation*}
$$

If the random point x_{k} is generated by $\operatorname{RCDM}\left(1, x_{0}\right)$ as applied to function f_{μ}, then

$$
\operatorname{Prob}\left(f\left(x_{k}\right)-f^{*} \leq \epsilon\right) \geq \beta
$$

Proof:

As in the proof of Theorem 3, we can prove that $\left\|x_{k}-x_{0}\right\|_{0} \leq 2 R \equiv 2 R_{0}\left(x_{0}\right)$. Since

$$
\begin{equation*}
\nabla f_{\mu}(x)=\nabla f(x)+\mu \cdot B\left(x-x_{0}\right) \tag{3.12}
\end{equation*}
$$

we conclude that

$$
\begin{aligned}
\operatorname{Prob}\left(f\left(x_{k}\right)-f^{*} \geq \epsilon\right) & \leq \operatorname{Prob}\left(\left\|\nabla f\left(x_{k}\right)\right\|_{0}^{*} \cdot R \geq \epsilon\right) \\
& \stackrel{(3.12)}{\leq} \operatorname{Prob}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{0}^{*} \cdot R+2 \mu R^{2} \geq \epsilon\right) \\
& =\operatorname{Prob}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{0}^{*} \geq \frac{\epsilon}{2 R}\right) .
\end{aligned}
$$

Now, using Chebyshev inequality, we obtain

$$
\begin{aligned}
& \operatorname{Prob}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{0}^{*} \geq \frac{\epsilon}{2 R}\right) \leq \frac{2 R}{\epsilon} \cdot E_{\xi_{k}}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{0}^{*}\right) \\
& \stackrel{(3.10)}{\leq} \frac{2 R}{\epsilon} \cdot\left[2\left(S_{1}(f)+\mu\right) \cdot\left(f\left(x_{0}\right)-f^{*}\right) \cdot\left(1-\frac{\mu}{S_{1}(f)+n \mu}\right)^{k}\right]^{1 / 2}
\end{aligned}
$$

Since the gradient of function f is Lipschitz continuous with constant $S_{1}(f)$, we get

$$
f\left(x_{0}\right)-f^{*} \leq \frac{1}{2} S_{1}(f) R^{2}
$$

Thus, we obtain the following bound:

$$
\begin{aligned}
\operatorname{Prob}\left(\left\|\nabla f_{\mu}\left(x_{k}\right)\right\|_{1}^{*} \geq \frac{\epsilon}{2 R}\right) & \leq \frac{2 R^{2}}{\epsilon} \cdot\left(S_{1}(f)+\mu\right) \cdot\left(1-\frac{\mu}{S_{1}(f)+n \mu}\right)^{\frac{\varepsilon}{2}} \\
& \leq \frac{2 R^{2}}{\epsilon} \cdot\left(S_{1}(f)+\mu\right) \cdot e^{-\frac{\mu k}{2\left(S_{1}(f)+n \mu\right)}} \leq 1-\beta .
\end{aligned}
$$

This proves the statement of the theorem.

We conclude the section with some remarks.

- The dependence of complexity bounds (3.7), (3.11) in the confidence level β is very moderate. Hence, even very high confidence level is easily achievable.
- The standard gradient method (GM) has the complexity bound of $O\left(\frac{L(f) R_{0}^{2}\left(x_{0}\right)}{\epsilon}\right)$ full-dimensional gradient iterations. Note that in the worst case $L(f)$ can reach $S_{1}(f)$. Hence, for the class of objective functions treated in Theorem 4, the worstcase complexity bounds of $\operatorname{RCDM}\left(1, x_{0}\right)$ and GM are essentially the same. Note that RCDM needs a certain number of full cycles. But this number grows proportionally to the logarithms of accuracy and of the confidence level. Note that the computational cost of a single iteration of RCDM is very often much smaller than that of GM.
- Consider very sparse problems with the cost of n coordinate iterations being proportional to a single full-dimensional gradient iterations. Then the complexity bound of $\operatorname{RCDM}\left(1, x_{0}\right)$ in terms of the groups of iterations of size n becomes $O^{*}\left(1+\frac{S_{1}}{n} \cdot \frac{R_{0}^{2}\left(x_{0}\right)}{\epsilon}\right)$. As compared with the gradient method, in this complexity bound the largest eigenvalue of the Hessian is replaced by an estimate for its average eigenvalue.

4 Constrained minimization

Consider now the constrained minimization problem

$$
\begin{equation*}
\min _{x \in Q} f(x), \tag{4.1}
\end{equation*}
$$

where $Q=\bigotimes_{i=1}^{n} Q_{i}$, and the sets $Q_{i} \subseteq R^{n_{i}}, i=1, \ldots, n$, are closed and convex. Let us endow the spaces $R^{n_{i}}$ with some Euclidean norms (3.4), and assume that the objective function f of problem (4.1) is convex and satisfies our main smoothness assumption (2.2).

We can define now the constrained coordinate update as follows:

$$
\begin{align*}
u^{(i)}(x) & =\arg \min _{u^{(i)} \in Q_{i}}\left[\left\langle f_{i}^{\prime}(x), u^{(i)}-x^{(i)}\right\rangle+\frac{L_{i}}{2}\left\|u^{(i)}-x^{(i)}\right\|_{(i)}^{2}\right] \tag{4.2}\\
V_{i}(x) & =x+U_{i}^{T}\left(u^{(i)}(x)-x^{(i)}\right), \quad i=1, \ldots, n .
\end{align*}
$$

The optimality conditions for these optimization problems can be written in the following form:

$$
\begin{equation*}
\left\langle f_{i}^{\prime}(x)+L_{i} B_{i}\left(u^{(i)}(x)-x^{(i)}\right), u^{i}-u^{(i)}(x)\right\rangle \geq 0 \quad \forall u^{(i)} \in Q_{i}, i=1, \ldots, n . \tag{4.3}
\end{equation*}
$$

Using this inequality for $u^{(i)}=x^{(i)}$, we obtain

$$
\begin{aligned}
f\left(V_{i}(x)\right) & \stackrel{(2.3)}{\leq} f(x)+\left\langle f_{i}^{\prime}(x), u^{(i)}(x)-x^{(i)}\right\rangle+\frac{L_{i}}{2}\left\|u^{(i)}(x)-x^{(i)}\right\|_{(i)}^{2} \\
& \stackrel{(4.3)}{\leq} f(x)+\left\langle L_{i} B_{i}\left(u^{(i)}(x)-x^{(i)}\right), x^{i}-u^{(i)}(x)\right\rangle+\frac{L_{i}}{2}\left\|u^{(i)}(x)-x^{(i)}\right\|_{(i)}^{2} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
f(x)-f\left(V_{i}(x)\right) \geq \frac{L_{i}}{2}\left\|u^{(i)}(x)-x^{(i)}\right\|_{(i)}^{2}, \quad i=1, \ldots, n . \tag{4.4}
\end{equation*}
$$

Let us apply to problem (4.1) the uniform coordinate decent method (UCDM).

Method $U C D M\left(x_{0}\right)$

For $k \geq 0$ iterate:

1) Choose randomly i_{k} by uniform distribution on $\{1 \ldots n\}$.
2) Update $x_{k+1}=V_{i_{k}}\left(x_{k}\right)$.

Theorem 5 For any $k \geq 0$ we have

$$
\phi_{k}-f^{*} \leq \frac{n}{n+k} \cdot\left[\frac{1}{2} R_{1}^{2}\left(x_{0}\right)+f\left(x_{0}\right)-f^{*}\right] .
$$

If f is strongly convex in $\|\cdot\|_{1}$ with constant σ, then

$$
\begin{equation*}
\phi_{k}-f^{*} \leq\left(1-\frac{2 \sigma}{n(1+\sigma)}\right)^{k} \cdot\left(\frac{1}{2} R_{1}^{2}\left(x_{0}\right)+f\left(x_{0}\right)-f^{*}\right) . \tag{4.6}
\end{equation*}
$$

Proof:

We will use notation of Theorem 1. Let UCDM generate an implementation x_{k} of corresponding random variable. Denote

$$
r_{k}^{2}=\left\|x_{k}-x_{*}\right\|_{1}^{2}=\sum_{i=1}^{n} L_{i}\left\langle B_{i}\left(x_{k}^{(i)}-x_{*}^{(i)}\right), x_{k}^{(i)}-x_{*}^{(i)}\right\rangle
$$

Then

$$
\begin{aligned}
& r_{k+1}^{2}=r_{k}^{2}+2 L_{i_{k}}\left\langle B_{i_{k}}\left(u^{\left(i_{k}\right)}\left(x_{k}\right)-x_{k}^{\left(i_{k}\right)}\right), x_{k}^{\left(i_{k}\right)}-x_{*}^{\left(i_{k}\right)}\right\rangle+L_{i_{k}}\left\|u^{\left(i_{k}\right)}\left(x_{k}\right)-x_{k}^{\left(i_{k}\right)}\right\|_{\left(i_{k}\right)}^{2} \\
& =r_{k}^{2}+2 L_{i_{k}}\left\langle B_{i_{k}}\left(u^{\left(i_{k}\right)}\left(x_{k}\right)-x_{k}^{\left(i_{k}\right)}\right), u^{\left(i_{k}\right)}\left(x_{k}\right)-x_{*}^{\left(i_{k}\right)}\right\rangle-L_{i_{k}}\left\|u^{\left(i_{k}\right)}\left(x_{k}\right)-x_{k}^{\left(i_{k}\right)}\right\|_{\left(i_{k}\right)}^{2} \\
& \stackrel{(4.3)}{\leq} r_{k}^{2}+2\left\langle f_{i_{k}}^{\prime}\left(x_{k}\right), x_{*}^{\left(i_{k}\right)}-u^{\left(i_{k}\right)}\left(x_{k}\right)\right\rangle-L_{i_{k}}\left\|u^{\left(i_{k}\right)}\left(x_{k}\right)-x_{k}^{\left(i_{k}\right)}\right\|_{\left(i_{k}\right)}^{2} \\
& =r_{k}^{2}+2\left\langle f_{i_{k}}^{\prime}\left(x_{k}\right), x_{*}^{\left(i_{k}\right)}-x_{k}^{\left(i_{k}\right)}\right\rangle \\
& -2\left[\left\langle f_{i_{k}}^{\prime}\left(x_{k}\right), u^{\left(i_{k}\right)}\left(x_{k}\right)-x_{k}^{\left(i_{k}\right)}\right\rangle+\frac{1}{2} L_{i_{k}}\left\|u^{\left(i_{k}\right)}\left(x_{k}\right)-x_{k}^{\left(i_{k}\right)}\right\|_{\left(i_{k}\right)}^{2}\right] \\
& \stackrel{(2.3)}{\leq} r_{k}^{2}+2\left\langle f_{i_{k}}^{\prime}\left(x_{k}\right), x_{*}^{\left(i_{k}\right)}-x_{k}^{\left(i_{k}\right)}\right\rangle+2\left[f\left(x_{k}\right)-f\left(V_{i_{k}}\left(x_{k}\right)\right)\right] .
\end{aligned}
$$

Taking the expectation in i_{k}, we obtain

$$
\begin{equation*}
E_{i_{k}}\left(\frac{1}{2} r_{k+1}^{2}+f\left(x_{k+1}\right)-f^{*}\right) \leq \frac{1}{2} r_{k}^{2}+f\left(x_{k}\right)-f^{*}+\frac{1}{n}\left\langle\nabla f\left(x_{k}\right), x_{*}-x_{k}\right\rangle \tag{4.7}
\end{equation*}
$$

Thus, for any $k \geq 0$ we have

$$
\begin{aligned}
\frac{1}{2} r_{0}^{2}+f\left(x_{0}\right)-f^{*} & \geq \phi_{k+1}-f^{*}+\frac{1}{n}\left[\left\langle\nabla f\left(x_{0}\right), x_{0}-x_{*}\right\rangle+\sum_{i=1}^{k} E_{\xi_{i-1}}\left(\left\langle\nabla f\left(x_{i}\right), x_{i}-x_{*}\right\rangle\right)\right] \\
& \geq \phi_{k+1}-f^{*}+\frac{1}{n} \sum_{i=0}^{k}\left(\phi_{i}-f^{*}\right) \stackrel{(4.4)}{\geq}\left(1+\frac{k+1}{n}\right)\left(\phi_{k+1}-f^{*}\right) .
\end{aligned}
$$

Finally, let f be strongly convex in $\|\cdot\|_{1}$ with convexity parameter $\sigma .{ }^{2}$) Then, (e.g. Section 2.1 in [6]),

$$
\left\langle\nabla f(x), x-x_{*}\right\rangle \geq f(x)-f^{*}+\frac{\sigma}{2}\left\|x-x_{*}\right\|_{1}^{2} \geq \sigma\left\|x-x_{*}\right\|_{1}^{2} .
$$

Define $\beta=\frac{2 \sigma}{1+\sigma} \in[0,1]$. Then, in view of inequality (4.7), we have

$$
\begin{aligned}
E_{i_{k}}\left(\frac{1}{2} r_{k+1}^{2}+f\left(x_{k+1}\right)-f^{*}\right) \leq & \frac{1}{2} r_{k}^{2}+f\left(x_{k}\right)-f^{*} \\
& -\frac{1}{n}\left[\beta\left(f\left(x_{k}\right)-f^{*}+\frac{\sigma}{2} r_{k}^{2}\right)+(1-\beta) \sigma r_{k}^{2}\right] \\
= & \left(1-\frac{2 \sigma}{n(1+\sigma)}\right) \cdot\left(\frac{1}{2} r_{k}^{2}+f\left(x_{k}\right)-f^{*}\right) .
\end{aligned}
$$

It remains to take expectation in ξ_{k-1}.

[^2]
5 Accelerated coordinate descent

It is well known that the usual gradient method can be transformed in a faster scheme by applying an appropriate multistep strategy [5]. Let us show that this can be done also for random coordinate descent methods. Consider the following accelerated scheme as applied to the unconstrained minimization problem (2.1) with strongly convex objective function. We assume that the convexity parameter $\sigma=\sigma_{1}(f) \geq 0$ is known.

$$
\text { Method } A C D M\left(x_{0}\right)
$$

1. Define $v_{0}=x_{0}, a_{0}=\frac{1}{n}, b_{0}=2$.
2. For $k \geq 0$ iterate:
1) Compute $\gamma_{k} \geq \frac{1}{n}$ from equation $\gamma_{k}^{2}-\frac{\gamma_{k}}{n}=\left(1-\frac{\gamma_{k} \sigma}{n}\right) \frac{a_{k}^{2}}{b_{k}^{2}}$.

Set $\alpha_{k}=\frac{n-\gamma_{k} \sigma}{\gamma_{k}\left(n^{2}-\sigma\right)}$, and $\beta_{k}=1-\frac{1}{n} \gamma_{k} \sigma$.
2) Select $y_{k}=\alpha_{k} v_{k}+\left(1-\alpha_{k}\right) x_{k}$.
3) Choose $i_{k}=\mathcal{R}_{0}$ and update

$$
x_{k+1}=T_{i_{k}}\left(y_{k}\right), \quad v_{k+1}=\beta_{k} v_{k}+\left(1-\beta_{k}\right) y_{k}-\frac{\gamma_{k}}{L_{i_{k}}} U_{i_{k}} f_{i}^{\prime}\left(y_{k}\right)^{\#} .
$$

4) Set $b_{k+1}=\frac{b_{k}}{\sqrt{\beta_{k}}}$, and $a_{k+1}=\gamma_{k} b_{k+1}$.

For $n=1$ and $\sigma=0$ this method coincides with method [5]. Its parameters satisfy the following identity:

$$
\begin{equation*}
\gamma_{k}^{2}-\frac{\gamma_{k}}{n}=\beta_{k} \frac{a_{k}^{2}}{b_{k}^{2}}=\frac{\beta_{k} \gamma_{k}}{n} \cdot \frac{1-\alpha_{k}}{\alpha_{k}} . \tag{5.2}
\end{equation*}
$$

Theorem 6 For any $k \geq 0$ we have

$$
\begin{align*}
\phi_{k}-f^{*} & \leq \sigma\left[2\left\|x_{0}-x^{*}\right\|_{1}^{2}+\frac{1}{n^{2}}\left(f\left(x_{0}\right)-f^{*}\right)\right] \cdot\left[\left(1+\frac{\sqrt{\sigma}}{2 n}\right)^{k+1}-\left(1-\frac{\sqrt{\sigma}}{2 n}\right)^{k+1}\right]^{-2} \\
& \leq\left(\frac{n}{k+1}\right)^{2} \cdot\left[2\left\|x_{0}-x^{*}\right\|_{1}^{2}+\frac{1}{n^{2}}\left(f\left(x_{0}\right)-f^{*}\right)\right] . \tag{5.3}
\end{align*}
$$

Proof:

Let x_{k} and v_{k} be the implementations of corresponding random variables generated by $A C D M\left(x_{0}\right)$ after k iterations. Denote $r_{k}^{2}=\left\|v_{k}-x_{*}\right\|_{1}^{2}$. Then using representation

$$
v_{k}=y_{k}+\frac{1-\alpha_{k}}{\alpha_{k}}\left(y_{k}-x_{k}\right),
$$

we obtain

$$
\begin{aligned}
r_{k+1}^{2}= & \left\|\beta_{k} v_{k}+\left(1-\beta_{k}\right) y_{k}-x^{*}\right\|_{1}^{2}+\frac{\gamma_{k}^{2}}{L_{i_{k}}}\left(\left\|f_{i_{k}}^{\prime}\left(y_{k}\right)\right\|_{\left(i_{k}\right)}^{*}\right)^{2} \\
& +2 \gamma_{k}\left\langle f_{i_{k}}^{\prime}\left(y_{k}\right),\left(x^{*}-\beta_{k} v_{k}-\left(1-\beta_{k}\right) y_{k}\right)^{\left(i_{k}\right)}\right\rangle \\
\leq & \left\|\beta_{k} v_{k}+\left(1-\beta_{k}\right) y_{k}-x^{*}\right\|_{1}^{2}+2 \gamma_{k}^{2}\left(f\left(y_{k}\right)-f\left(T_{i_{k}}\left(y_{k}\right)\right)\right) \\
& +2 \gamma_{k}\left\langle f_{i_{k}}^{\prime}\left(y_{k}\right),\left(x^{*}-y_{k}+\frac{\beta_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}}\left(x_{k}-y_{k}\right)^{\left(i_{k}\right)}\right\rangle .\right.
\end{aligned}
$$

Taking the expectation of both sides in i_{k}, and we obtain:

$$
\begin{aligned}
& E_{i_{k}}\left(r_{k+1}^{2}\right) \leq \beta_{k} r_{k}^{2}+\left(1-\beta_{k}\right)\left\|y_{k}-x^{*}\right\|_{1}^{2}+2 \gamma_{k}^{2}\left[f\left(y_{k}\right)-E_{i_{k}}\left(f\left(x_{k+1}\right)\right)\right] \\
&+2 \frac{\gamma_{k}}{n}\left\langle\nabla f\left(y_{k}\right), x^{*}-y_{k}+\frac{\beta_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}}\left(x_{k}-y_{k}\right)\right\rangle \\
& \leq \beta_{k} r_{k}^{2}+\left(1-\beta_{k}\right)\left\|y_{k}-x^{*}\right\|_{1}^{2}+2 \gamma_{k}^{2}\left[f\left(y_{k}\right)-E_{i_{k}}\left(f\left(x_{k+1}\right)\right)\right] \\
&+2 \frac{\gamma_{k}}{n}\left[f^{*}-f\left(y_{k}\right)-\frac{1}{2} \sigma\left\|y_{k}-x^{*}\right\|_{1}^{2}+\frac{\beta_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}}\left(f\left(x_{k}\right)-f\left(y_{k}\right)\right)\right] \\
& \stackrel{(5.2)}{=} \beta_{k} r_{k}^{2}-2 \gamma_{k}^{2} E_{i_{k}}\left(f\left(x_{k+1}\right)\right)+2 \frac{\gamma_{k}}{n}\left[f^{*}+\frac{\beta_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}} f\left(x_{k}\right)\right] .
\end{aligned}
$$

Note that

$$
b_{k+1}^{2}=\frac{1}{\beta_{k}} b_{k}^{2}, \quad a_{k+1}^{2}=\gamma_{k}^{2} b_{k+1}^{2}, \quad \gamma_{k} \frac{\beta_{k}\left(1-\alpha_{k}\right)}{n \alpha_{k}}=\frac{a_{k}^{2}}{b_{k+1}^{2}} .
$$

Therefore, multiplying the last inequality by b_{k+1}^{2}, we obtain

$$
b_{k+1}^{2} E_{i_{k}}\left(r_{k+1}^{2}\right) \leq b_{k}^{2} r_{k}^{2}-2 a_{k+1}^{2}\left(E_{i_{k}}\left(f\left(x_{k+1}\right)\right)-f^{*}\right)+2 a_{k}^{2}\left(f\left(x_{k}\right)-f^{*}\right)
$$

Taking now the expectation of both sides of this inequality in ξ_{k-1}, we get

$$
\begin{aligned}
2 a_{k+1}^{2}\left(\phi_{k+1}-f^{*}\right)+b_{k+1}^{2} E_{\xi_{k}}\left(r_{k+1}^{2}\right) & \leq 2 a_{k}^{2}\left(\phi_{k}-f^{*}\right)+b_{k}^{2} r_{k}^{2} \\
& \leq 2 a_{0}^{2}\left(f\left(x_{0}\right)-f^{*}\right)+b_{0}^{2}\left\|x_{0}-x^{*}\right\|_{1}^{2}
\end{aligned}
$$

It remains to estimate the growth of coefficients a_{k} and b_{k}. We have:

$$
b_{k}^{2}=\beta_{k} b_{k+1}^{2}=\left(1-\frac{\sigma}{n} \gamma_{k}\right) b_{k+1}^{2}=\left(1-\frac{\sigma}{n} \frac{a_{k+1}}{b_{k+1}}\right) b_{k+1}^{2}
$$

Thus, $\frac{\sigma}{n} a_{k+1} b_{k+1} \leq b_{k+1}^{2}-b_{k}^{2} \leq 2 b_{k+1}\left(b_{k+1}-b_{k}\right)$, and we conclude that

$$
\begin{equation*}
b_{k+1} \geq b_{k}+\frac{\sigma}{2 n} a_{k} . \tag{5.4}
\end{equation*}
$$

On the other hand, $\frac{a_{k+1}^{2}}{b_{k+1}^{2}}-\frac{a_{k+1}}{n b_{k+1}} \stackrel{(5.2)}{=} \frac{\beta_{k} a_{k}^{2}}{b_{k}^{2}}=\frac{a_{k}^{2}}{b_{k+1}^{2}}$. Therefore,

$$
\frac{1}{n} a_{k+1} b_{k+1} \leq a_{k+1}^{2}-a_{k}^{2} \leq 2 a_{k+1}\left(a_{k+1}-a_{k}\right),
$$

and we obtain

$$
\begin{equation*}
a_{k+1} \geq a_{k}+\frac{1}{2 n} b_{k} . \tag{5.5}
\end{equation*}
$$

Further, denoting $Q_{1}=1+\frac{\sqrt{\sigma}}{2 n}$ and $Q_{2}=1-\frac{\sqrt{\sigma}}{2 n}$ and using inequalities (5.4) and (5.5), it is easy to prove by induction that

$$
a_{k} \geq \frac{1}{\sqrt{\sigma}}\left[Q_{1}^{k+1}-Q_{2}^{k+1}\right], \quad b_{k} \geq Q_{1}^{k+1}+Q_{2}^{k+1} .
$$

Finally, using trivial inequality $(1+t)^{k}-(1-t)^{k} \geq 2 k t, t \geq 0$, we obtain

$$
Q_{1}^{k+1}-Q_{2}^{k+1} \geq \frac{k+1}{n} \sqrt{\sigma} .
$$

The rate of convergence (5.3) of ACDM is much better than the rate (2.14). However, for some applications (e.g. Section 6.3), the complexity of one iteration of the accelerated scheme is rather high since for computing y_{k} it needs to operate with full-dimensional vectors.

6 Implementation details and numerical test

6.1 Dynamic adjustment of Lipschitz constants

In RCDM (2.6) we use the valid upper bounds for Lipschitz constants $\left\{L_{i}\right\}_{i=1}^{n}$ of the directional derivatives. For some applications (e.g. Section 6.3) this information is easily available. However, for more complicated functions we need to apply a dynamic adjustment procedure for finding appropriate bounds. Let us estimate the efficiency of a simple backtracking strategy with restore (e.g. [7]) inserted in $\operatorname{RCDM}\left(0, x_{0}\right)$. As we have already discussed, such a strategy should not be based on computation of the function values.

Consider the Random Adaptive Coordinate Decent Method. For the sake of notation,
we assume that $N=n$.

Method $\operatorname{RACDM}\left(x_{0}\right)$
Setup: lower bounds $\hat{L}_{i}:=L_{i}^{0} \in\left(0, L_{i}\right], i=1, \ldots, n$.
For $k \geq 0$ iterate:
1) \quad Choose $i_{k}=\mathcal{R}_{0}$.
2) \quad Set $x_{k+1}:=x_{k}-\hat{L}_{i_{k}}^{-1} \cdot \nabla_{i_{k}} f\left(x_{k}\right) \cdot e_{i_{k}}$.
\quad while $\nabla_{i_{k}} f\left(x_{k}\right) \cdot \nabla_{i_{k}} f\left(x_{k+1}\right)<0$ do
$\quad\left\{\hat{L}_{i_{k}}:=2 \hat{L}_{i_{k}}, \quad x_{k+1}:=x_{k}-\hat{L}_{i_{k}}^{-1} \cdot \nabla_{i_{k}} f\left(x_{k}\right) \cdot e_{i_{k}}\right\}$
3) Set $L_{i_{k}}:=\frac{1}{2} L_{i_{k}}$.

Theorem 7 1. At the beginning of each iteration, we have

$$
\hat{L}_{i} \leq L_{i}, \quad i=1, \ldots, n
$$

2. RACDM has the following rate of convergence:

$$
\begin{equation*}
\phi_{k}-f^{*} \leq \frac{8 n R_{1}^{2}\left(x_{0}\right)}{16+3 k}, \quad k \geq 0 . \tag{6.2}
\end{equation*}
$$

3. After iteration k, the total number N_{k} of computations of directional derivatives in method (6.1) satisfies inequality

$$
\begin{equation*}
N_{k} \leq 2(k+1)+\sum_{i=1}^{n} \log _{2} \frac{L_{i}}{L_{i}^{0}} . \tag{6.3}
\end{equation*}
$$

Proof:

For proving the first statement, we assume that at the entrance to the internal cycle in method (6.1), we have $\hat{L}_{i_{k}} \leq L_{i_{k}}$. If during this cycle we get $\hat{L}_{i_{k}}>L_{i_{k}}$ then immediately

$$
\left|\nabla_{i_{k}} f\left(x_{k+1}\right)-\nabla_{i_{k}} f\left(x_{k}\right)\right| \stackrel{(2.2)}{\leq} \hat{L}_{i_{k}}^{-1} L_{i_{k}}\left|\nabla_{i_{k}} f\left(x_{k}\right)\right|<\left|\nabla_{i_{k}} f\left(x_{k}\right)\right| .
$$

In this case, the termination criterion is satisfied. Thus, during the internal cycle

$$
\begin{equation*}
\hat{L}_{i_{k}} \leq 2 L_{i_{k}} . \tag{6.4}
\end{equation*}
$$

Therefore, after execution of Step 3, we have again $\hat{L}_{i_{k}} \leq L_{i_{k}}$.

Further, the internal cycle is terminated with $\hat{L}_{i_{k}}$ satisfying inequality (6.4). Therefore, using inequality (2.1.17) in [6], we have:

$$
\begin{aligned}
f\left(x_{k}\right)-f\left(x_{k+1}\right) & \geq \nabla_{i_{k}} f\left(x_{k+1}\right) \cdot\left(x_{k}^{\left(i_{k}\right)}-x_{k+1}^{\left(i_{k}\right)}\right)+\frac{1}{2 L_{i_{k}}}\left(\nabla_{i_{k}} f\left(x_{k+1}\right)-\nabla_{i_{k}} f\left(x_{k}\right)\right)^{2} \\
& =\hat{L}_{i_{k}}^{-1} \cdot \nabla_{i_{k}} f\left(x_{k+1}\right) \cdot \nabla_{i_{k}} f\left(x_{k}\right)+\frac{1}{2 L_{i_{k}}}\left(\nabla_{i_{k}} f\left(x_{k+1}\right)-\nabla_{i_{k}} f\left(x_{k}\right)\right)^{2} \\
& \stackrel{(6.4)}{\geq} \frac{1}{2 L_{i_{k}}}\left[\left(\nabla_{i_{k}} f\left(x_{k+1}\right)\right)^{2}+\left(\nabla_{i_{k}} f\left(x_{k}\right)\right)^{2}-\nabla_{i_{k}} f\left(x_{k+1}\right) \cdot \nabla_{i_{k}} f\left(x_{k}\right)\right] \\
& \geq \frac{3}{8 L_{i_{k}}}\left(\nabla_{i_{k}} f\left(x_{k}\right)\right)^{2} .
\end{aligned}
$$

Thus, we obtain the following bound:

$$
f\left(x_{k}\right)-E_{i_{k}}\left(f\left(x_{k+1}\right)\right) \geq \frac{3}{8 n}\left(\left\|\nabla f\left(x_{k}\right)\right\|_{1}^{*}\right)^{2},
$$

(compare with (2.13)). Now, using the same arguments as in the proof of Theorem 1, we can prove that

$$
\phi_{k}-\phi_{k+1} \geq \frac{1}{C}\left(\phi_{k}-f^{*}\right)^{2}
$$

with $C=\frac{8 n}{3} R_{1}^{2}\left(x_{0}\right)$. And we conclude that

$$
\frac{1}{\phi_{k}-f^{*}} \geq \frac{1}{f\left(x_{0}\right)-f^{*}}+\frac{k}{C} \geq \frac{2}{n R_{1}^{2}\left(x_{0}\right)}+\frac{3 k}{8 n R_{1}^{2}\left(x_{0}\right)} .
$$

Finally, let us find an upper estimate for N_{k}. Denote by K_{i} a subset of iteration numbers $\{0, \ldots, k\}$, at which the index i was active. Denote by $p_{i}(j)$ the number of computations of i th partial derivative at iteration $j \in K_{i}$. If \hat{L}_{i} is the current estimate of the Lipschitz constant L_{i} in the beginning of iteration j, and \hat{L}_{i}^{\prime} is the value of this estimate in the end of this iteration, then these values are related as follows:

$$
\hat{L}_{i}^{\prime}=\frac{1}{2} \cdot 2^{p_{i}(j)-1} \cdot \hat{L}_{i} .
$$

In other words, $p_{i}(j)=2+\log _{2}\left[\hat{L}_{i}^{\prime} / \hat{L}_{i}\right]$. Taking into account the statement of Item 1, we obtain the following estimate for M_{i}, the total number of computations of i th partial in the first k iterations:

$$
M_{i} \leq 2 \cdot\left|K_{i}\right|+\log _{2} \frac{L_{i}}{L_{i}^{D}} .
$$

It remains to note that $\sum_{i=1}^{n}\left|K_{i}\right|=k+1$.
Note that the similar technique can be used also in the accelerated version (6.1). For that, we need to choose its parameters from the equations

$$
\begin{align*}
\frac{4}{3} \gamma_{k}^{2}-\frac{\gamma_{k}}{n} & =\left(1-\frac{\gamma_{k} \sigma}{n}\right) \frac{a_{k}^{2}}{b_{k}^{2}}, \\
\beta_{k} & =1-\frac{\gamma_{k} \sigma}{n}, \tag{6.5}\\
\frac{1-\alpha_{k}}{\alpha_{k}} & =\frac{n}{\beta_{k}} \cdot\left(\frac{4}{3} \gamma_{k}-\frac{1}{n}\right) .
\end{align*}
$$

This results in a minor change in the rate of convergence (5.3).

6.2 Random counters

For problems of very big size, we should treat carefully any operation with multidimensional vectors. In RCD-methods, there is such an operation, which must be fulfilled at each step of the algorithms. This is the random generation of active coordinates. In a straightforward way, this operation can be implemented in $O(n)$ operations. However, for huge-scale problems this complexity can be prohibitive. Therefore, before presenting our computational results, we describe a strategy for generating random coordinates with complexity $O(\ln n)$ operations.

Given the values $L_{i}^{\alpha}, i=1, \ldots, n$, we need to generate efficiently random integer numbers $i \in\{1, \ldots, n\}$ with probabilities

$$
\operatorname{Prob}[i=k]=L_{k}^{\alpha} /\left[\sum_{j=1}^{n} L_{j}^{\alpha}\right], \quad k=1, \ldots, n .
$$

Without loss of generality, we assume that $n=2^{m}$. Define $m+1$ vectors $P_{k} \in R^{2^{m-k}}$, $k=0, \ldots, m$, as follows:

$$
\begin{align*}
& P_{0}^{(i)}=L_{i}^{\alpha}, i=1, \ldots, n \\
& P_{k}^{(i)}=P_{k-1}^{(2 i)}+P_{k-1}^{(2 i-1)}, i=1, \ldots, 2^{m-k}, \quad k=1, \ldots, m . \tag{6.6}
\end{align*}
$$

Clearly, $P_{m}^{(1)}=S_{\alpha}$. Note that the preliminary computations (6.6) need $\frac{n}{2}$ additions.
Let us describe now our random generator.

1. Choose $i=1$ in P_{m}.
2. For $k=m$ down to 1 do:

Let the element i of P_{k} be chosen. Choose in P_{k-1}
either $2 i$ or $2 i-1$ with probabilities $\frac{P_{k-1}^{(2 i)}}{P_{k}^{(i)}}$ or $\frac{P_{k-1}^{(2 i-1)}}{P_{k}^{(i)}}$.
Clearly, this procedure implements correctly the random counter \mathcal{R}_{α}. Note that its complexity is $O(\ln n)$ operations. In the above form, its execution requires generating m random numbers. However, a simple modification can reduce this amount up to one. Note also, that corrections of vectors $P_{k}, k=0, \ldots, m$ due to the change of a single entry in the initial data needs $O(\ln n)$ operations.

6.3 Numerical test

Let us describe now our test problem (sometimes it is called the Google problem). Let $E \in R^{n \times n}$ be an incidence matrix of a graph. Denote $e=(1, \ldots, 1)^{T}$ and

$$
\bar{E}=E \cdot \operatorname{diag}\left(E^{T} e\right)^{-1}
$$

Since, $\bar{E}^{T} e=e$, it is a stochastic matrix. Our problem consists in finding a right maximal eigenvector of the matrix \bar{E} :

$$
\text { Find } x^{*} \geq 0: \quad \bar{E} x^{*}=x^{*},\langle e, x\rangle=1
$$

Clearly, this problem can be rewritten in an optimization form:

$$
\begin{equation*}
f(x) \stackrel{\text { def }}{=} \frac{1}{2}\|\bar{E} x-x\|^{2}+\frac{\gamma}{2}[\langle e, x\rangle-1]^{2} \rightarrow \min _{x \in R^{n}} \tag{6.8}
\end{equation*}
$$

where $\gamma>0$ is a penalty parameter for the equality constraint, and the norm $\|\cdot\|$ is Euclidean. If the degree of each node in the graph is small, then the computation of partial derivatives of function f is cheap. Hence, we can apply to (6.8) RCDM even if the size of the matrix \bar{E} is very big.

In our numerical experiments we applied $R C D M(1,0)$ to a randomly generated graph with average node degree p. The termination criterion was

$$
\|\bar{E} x-x\| \leq \epsilon \cdot\|x\|
$$

with $\epsilon=0.01$. In the table below, k denotes the total number of groups by n coordinate iterations. The computations were performed on a standard Pentium- 4 computer with frequency 1.6 GHz .

n	p	γ	k	Time(s)
65536	10	$\frac{1}{n}$	47	7.41
	20		30	5.97
	10	$\frac{1}{\sqrt{n}}$	65	10.5
	20		39	7.84
262144	10	$\frac{1}{n}$	47	42.7
	20		32	39.1
	10	$\frac{1}{\sqrt{n}}$	72	76.5
	20		45	62.0
1048576	10	$\frac{1}{n}$	49	247
	20		31	240
	10	$\frac{1}{\sqrt{n}}$	82	486
	20		64	493

We can see that the number of n-iteration groups grows very moderately with the dimension of the problem. The increase of factor γ also does not create for RCDM significant difficulties. Note that in the standard Euclidean norm we have $L(f) \approx \gamma n$. Thus, for the black-box gradient methods the problems with $\gamma=\frac{1}{\sqrt{n}}$ are very difficult. Note also that the accelerated scheme (6.1) is not efficient on problems of this size. Indeed, each coordinate iteration of this method needs an update of n-dimensional vector. Therefore, one group of n iterations takes at least $n^{2} \approx 10^{12}$ operations (this is for the maximal dimension in the above table). For our computer, this amount of computations takes at least 20 minutes.

Note that the dominance of RCDM on sparse problems can be supported by comparison of the efficiency estimates. Let us put in one table the complexity results related to RCDM (2.6), accelerated scheme ACDM (5.1), and the fast gradient method (FGM)
working with the full gradient (e.g. Section 2.2 in [6]). Denote by T the complexity of computation of single directional derivative, and by F complexity of computation of the function value. We assume that $F=n T$. Note that this can be true even for dense problems (e.g. quadratic functions). We will measure distances in $\|\cdot\|_{1}$. For this metric, denote by γ the Lipschitz constant for the gradient of the objective function. Note that

$$
1 \leq \gamma \leq n
$$

In the table below, we compare the cost of iteration, cost of the oracle and the iteration complexity for these three methods.

	$R C D M$	$A C D M$	$F G M$
Iteration	1	n	n
Oracle	T	T	F
Complexity	$n \frac{R^{2}}{\epsilon}$	$n \frac{R}{\sqrt{\epsilon}}$	$\frac{\sqrt{\gamma} R}{\sqrt{\epsilon}}$
Total	$(F+n) \frac{R^{2}}{\epsilon}$	$\left(F+n^{2}\right) \frac{R}{\sqrt{\epsilon}}$	$(F+n) \frac{\sqrt{\gamma} R}{\sqrt{\epsilon}}$

We can see that RCDM is better than FGM if $\frac{R}{\sqrt{\epsilon}}<\sqrt{\gamma}$. On the other hand, FGM is better than ACDM if $F<\frac{n^{2}}{\sqrt{\gamma}}$. For our test problem, both conditions are satisfied.

References

[1] A. Auslender. Optimisation Méthodes Numériques. Masson, Paris (1976).
[2] D. Bertsekas. Nonlinear Programming. 2nd edition, Athena Scientific, Belmont (1999).
[3] Z.Q. Luo, P. Tseng. On the convergence rate of dual ascent methods for linearly constrained convex minimization. Mathematics of Operations Research, 18(2), 846867 (1993).
[4] A. Nemirovsky, D. Yudin. Problem complexity and method efficiency in optimization. John Willey \& Sons, Somerset, NJ (1983).
[5] Yu. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence $O\left(\frac{1}{k^{2}}\right)$. Doklady AN SSSR (translated as Soviet Math. Docl.), 269(3), 543-547 (1983).
[6] Yu. Nesterov. Introductory Lectures on Convex Optimization. Kluwer, Boston, 2004.
[7] Yu. Nesterov. Gradient methods for minimizing composite objective function. CORE Discussion Paper 2007/76, (2007).
[8] P. Tseng. Convergence of a block coordinate descent methods for nondifferentiable minimization. JOTA, 109(3), 475-494 (2001).

Recent titles

CORE Discussion Papers

2009/50. Nicolas BOCCARD and Xavier WAUTHY. Entry accommodation under multiple commitment strategies: judo economics revisited.
2009/51. Joachim GAHUNGU and Yves SMEERS. Multi-assets real options.
2009/52. Nicolas BOCCARD and Xavier WAUTHY. Regulating quality by regulating quantity: a case against minimum quality standards.
2009/53. David DE LA CROIX and Frédéric DOCQUIER. An incentive mechanism to break the lowskill immigration deadlock.
2009/54. Henry TULKENS and Vincent VAN STEENBERGHE. "Mitigation, adaptation, suffering": In search of the right mix in the face of climate change.
2009/55. Santanu S. DEY and Quentin LOUVEAUX. Split rank of triangle and quadrilateral inequalities.
2009/56. Claire DUJARDIN, Dominique PEETERS and Isabelle THOMAS. Neighbourhood effects and endogeneity issues.
2009/57. Marie-Louise LEROUX, Pierre PESTIEAU and Maria RACIONERO. Voting on pensions: sex and marriage.
2009/58. Jean J. GABSZEWICZ. A note on price competition in product differentiation models.
2009/59. Olivier BOS and Martin RANGER. All-pay auctions with endogenous rewards.
2009/60. Julio DAVILA and Marie-Louise LEROUX. On the fiscal treatment of life expectancy related choices.
2009/61. Luc BAUWENS and Jeroen V.K. ROMBOUTS. On marginal likelihood computation in change-point models.
2009/62. Jorge ALCALDE-UNZU and Elena MOLIS. Exchange of indivisible goods and indifferences: the Top Trading Absorbing Sets mechanisms.
2009/63. Pascal MOSSAY and Pierre M. PICARD. On spatial equilibria in a social interaction model.
2009/64. Laurence JACQUET and Dirk VAN DE GAER. A comparison of optimal tax policies when compensation or responsibility matter.
2009/65. David DE LA CROIX and Clara DELAVALLADE. Why corrupt governments may receive more foreign aid.
2009/66. Gilles GRANDJEAN, Ana MAULEON and Vincent VANNETELBOSCH. Strongly rational sets for normal-form games.
2009/67. Kristian BEHRENS, Susana PERALTA and Pierre M. PICARD. Transfer pricing rules, OECD guidelines, and market distortions.
2009/68. Marco MARINUCCI and Wouter VERGOTE. Endogenous network formation in patent contests and its role as a barrier to entry.
2009/69. Andréas HEINEN and Alfonso VALDESOGO. Asymmetric CAPM dependence for large dimensions: the Canonical Vine Autoregressive Model.
2009/70. Skerdilajda ZANAJ. Product differentiation and vertical integration in presence of double marginalization.
2009/71. Marie-Louise LEROUX and Grégory PONTHIERE. Wives, husbands and wheelchairs: Optimal tax policy under gender-specific health.
2009/72. Yu. NESTEROV and Levent TUNCEL. Local quadratic convergence of polynomial-time interior-point methods for conic optimization problems.
2009/73. Grégory VANDENBULCKE, Claire DUJARDIN, Isabelle THOMAS, Bas DE GEUS, Bart DEGRAEUWE, Romain MEEUSEN and Luc INT PANIS. Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies.
2009/74. Noël BONNEUIL and Raouf BOUCEKKINE. Sustainability, optimality, and viability in the Ramsey model.
2009/75. Eric TOULEMONDE. The principle of mutual recognition - A source of divergence?
2009/76. David DE LA CROIX, Pierre PESTIEAU and Grégory PONTHIĖE. How powerful is demography? The Serendipity Theorem revisited.
2009/77. Nicola ACOCELLA, Giovanni DI BARTOLOMEO, Andrew HUGUES HALLETT and Paolo G. PIACQUADIO. Announcement wars as an equilibrium selection device.

Recent titles

CORE Discussion Papers - continued

2009/78. Julio DÁVILA. The taxation of savings in overlapping generations economies with unbacked risky assets.
2009/79. Elena DEL REY and Miguel Angel LOPEZ-GARCIA. Optimal education and pensions in an endogenous growth model.
2009/80. Hiroshi UNO. Strategic complementarities and nested potential games.
2009/81. Xavier WAUTHY. Market coverage and the nature of product differentiation: a note.
2009/82. Filippo L. CALCIANO. Nash equilibria of games with increasing best replies.
2009/83. Jacques H. DRÈZE, Oussama LACHIRI and Enrico MINELLI. Stock prices, anticipations and investment in general equilibrium.
2009/84. Claire DUJARDIN and Florence GOFFETTE-NAGOT. Neighborhood effect on unemployment? A test \grave{a} la Altonji.
2009/85. Erwin OOGHE and Erik SCHOKKAERT. School accountability: (how) can we reward schools and avoid cream-skimming.
2009/86. Ilke VAN BEVEREN and Hylke VANDENBUSSCHE. Product and process innovation and the decision to export: firm-level evidence for Belgium.
2010/1. Giorgia OGGIONI and Yves SMEERS. Degree of coordination in market-coupling and counter-trading.
2010/2. Yu. NESTEROV. Efficiency of coordinate descent methods on huge-scale optimization problems.

Books

Public goods, environmental externalities and fiscal competition: 22 selected papers in public economics by Henry Tulkens, edited and introduced by Parkash Chander, Jacques Drèze, C. Knox Lovell and Jack Mintz, Springer, Boston 2006 (588 pp.).
V. GINSBURGH and D. THROSBY (eds.) (2006), Handbook of the economics of art and culture. Amsterdam, Elsevier.
J. GABSZEWICZ (ed.) (2006), La différenciation des produits. Paris, La découverte.
L. BAUWENS, W. POHLMEIER and D. VEREDAS (eds.) (2008), High frequency financial econometrics: recent developments. Heidelberg, Physica-Verlag.
P. VAN HENTENRYCKE and L. WOLSEY (eds.) (2007), Integration of AI and OR techniques in constraint programming for combinatorial optimization problems. Berlin, Springer.
P-P. COMBES, Th. MAYER and J-F. THISSE (eds.) (2008), Economic geography: the integration of regions and nations. Princeton, Princeton University Press.
J. HINDRIKS (ed.) (2008), Au-delà de Copernic: de la confusion au consensus? Brussels, Academic and Scientific Publishers.
J-M. HURIOT and J-F. THISSE (eds) (2009), Economics of cities. Cambridge, Cambridge University Press.

CORE Lecture Series

C. GOURIÉROUX and A. MONFORT (1995), Simulation Based Econometric Methods.
A. RUBINSTEIN (1996), Lectures on Modeling Bounded Rationality.
J. RENEGAR (1999), A Mathematical View of Interior-Point Methods in Convex Optimization.
B.D. BERNHEIM and M.D. WHINSTON (1999), Anticompetitive Exclusion and Foreclosure Through Vertical Agreements.
D. BIENSTOCK (2001), Potential function methods for approximately solving linear programming problems: theory and practice.
R. AMIR (2002), Supermodularity and complementarity in economics.
R. WEISMANTEL (2006), Lectures on mixed nonlinear programming.

[^0]: ${ }^{1}$ Université catholique de Louvain, CORE and INMA, B-1348 Louvain-la-Neuve, Belgium.
 E-mail: yurii.nesterov@uclouvain.be. This author is also member of ECORE, the association between CORE and ECARES

 The research results presented in this paper have been supported by a grant "Action de recherche concertées ARC 04/09-315" from the 'Direction de la recherche scientifique - Communauté française de Belgique".

 This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the author.

[^1]: ${ }^{1)}$ To the best of our knowledge, in general case this is not done up to now.

[^2]: ${ }^{2)}$ In view of assumption (2.2), we always have $\sigma \leq 1$.

