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In systematics, we usually estimate an-
cestral phenotypes of morphological and
molecular characters measured as categor-
ical or “state” variables. Ancestral estima-
tion has also been important in the stud-
ies of animal behavior, physiology, ecology,
and other areas of biology, where the char-
acters are usually measured as continuous
rather than categorical variables. In the past,
the most common way of estimating the an-
cestral states of continuous characters was
to use a parsimony algorithm (Farris, 1970;
Swofford and Maddison, 1987; Maddison,
1991). Recently, two new methods (Martins
and Hansen, 1997; Schluter et al., 1997) have
been developed for estimating the ancestral
states of continuous characters on a phy-
logeny. For several reasons, the theory un-
derlying these methods provides a major
leap forward from the traditional parsimony
methods. In the current study, I use com-
puter simulation to examine the statistical
properties of these methods and to deter-
mine how much of an improvement these
methods actually provide when applied to
realistic data.

The sum of squared changes parsimony
algorithm (SSP: Huey and Bennett, 1987;
Maddison, 1991; McArdle and Rodrigo,
1994) estimates the phenotype of each ances-
tor as a weighted average of all the pheno-
types measured for extant taxa. The weights
used in calculating averages correspond to
the phylogenetic distance between each ex-
tant taxon and the ancestor being estimated.
Huey and Bennett (1987) applied this ap-
proach, iteratively calculating each ancestral
state as theaverage of its three nearestneigh-
bors until estimates converged on stable so-
lutions. Maddison (1991) provided a recur-
sive equation for getting the estimates and
explored the assumptions of the method.

Speci�cally, he showed that SSP is a statisti-
cally reasonable approach very similar to us-
ing least-squares regression to estimate an-
cestral states. McArdle and Rodrigo (1994)
showed how SSPcould bedescribed as a sys-
tem of linear equations and thus provided a
direct algorithm that can be used to reduce
computational time.

Linear or Wagner parsimony (Farris, 1970;
Swofford and Maddison, 1987) is a simi-
lar method that lacks the above statistical
development and justi�cation. Instead of
minimizing the sum of squared evolution-
ary changes on the phylogeny, it minimizes
the simple sum of changes. In a computer
simulation study, Butler and Losos (1997)
found that the two methods produce rather
different results and that linear parsimony
gave worse estimates under the type of phe-
notypic evolution (Brownian motion) con-
sidered in their simulation procedure. I do
not consider linear parsimony in the current
study.

One weakness of SSP is that it does not in-
clude any measure of estimation accuracy.
For example, the state at the root of a phy-
logeny is known with less accuracy than
a state nearer the tips, simply because the
longer time since the root makes estimation
more dif�cult. With SSP, we have no way
of showing that difference in accuracy. Sim-
ilarly, when we argue that a lot of pheno-
typic change followed a particular specia-
tion event, we have no way of determining
whether that evolutionary change is signi�-
cantly large or whether the difference from
other changes is small enough to be ex-
plained by estimation error. Even when we
argue that one ancestor had a phenotype dif-
ferent from that of its descendants, we have
no way to determine whether the two phe-
notypes are signi�cantly different from each
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other in a statistical sense. The problem ap-
pears in many contexts and when answering
many types of evolutionary questions.

Schluter et al.’s (1997) maximum likeli-
hood technique (ML) begins by yielding the
same estimates of ancestral states as SSP. It
does so, however, by using a rather different
approach: an extension of the evolutionary
model underlying Felsenstein’s (1985) inde-
pendent contrasts technique. The difference
between SSP and ML is similar to the differ-
ence between least-squares and maximum
likelihood regression, with the two provid-
ing identical answers in most situations. In
this case, however, the ML method is a ma-
jor improvement because it also provides es-
timates of the standard errors of those an-
cestral states. These standard errors can be
used to develop hypothesis tests, con�dence
intervals, and other statistical tests. We can
use these standard errors to determine, for
example, whether a particular evolutionary
change is large, whether an ancestor differed
from its descendant, and roughly how much
con�dence we can place in our estimates of
a particular ancestral state. Standard error
estimates, however, are useful only if they
are reasonably accurate, and we do not yet
know whether the results of ML are so.

Both SSP and ML methods suffer from
another potential problem—that of assump-
tions. SSP is really an algorithm, rather than
a statistical model, and it is not immediately
clear what its assumptions are. For example,
SSP probably assumes that the measured
variables are normally distributed—but this
is not yet known. Maddison (1991) showed
how SSP is similar to Felsenstein’s (1985) ap-
proach, which assumes primarily that phe-
notypic evolution occurs as if by Brown-
ian motion. The ML method (which, again,
gives identical ancestralestimates) explicitly
assumes that evolution follows a Brownian
motion process. Thus, if evolution occurs as
if by Brownian motion, both SSP and ML
methods are likely to yield reasonable esti-
mates of evolutionary ancestors. Brownian
motion is a powerful mathematical process
commonly used by population geneticists to
describe characters evolving via random ge-
netic drift or via directional selection when
the direction of selection shifts back and

forth at random. This process is often suf-
�cient to describe many traits undergoing
different types of evolution (Schluter et al.,
1997). Unfortunately, sometimes it may not
be a good model to describe the evolution of
behavior, life-history traits, and many other
characters that are subject to selective con-
straints or that respond rapidly to changes
in the environment (Hansen and Martins,
1996). Whether SSP or Schluter et al.’s (1997)
methods will perform well with these sorts
of characters is not known.

In Martins and Hansen (1997), we devel-
oped a procedure that, like ML, also yields
ancestral estimates with standard errors. We
began by adopting a general linear model
approach, similar to the linear equations
suggested by McArdle and Rodrigo (1994),
and then (among other things) developed
speci�c procedures for estimation of ances-
tral states by using generalized least squares
(GLS). Our GLS method is quite broad and
can be used to estimate a number of things
other than ancestral states. It also allows the
user �exibility in the choice of microevolu-
tionary assumptions. For example, instead
of assuming the standard Brownian motion
model, the GLS method gives the researcher
the �exibility to choose among a family of
possible microevolutionary models, includ-
ing models of stabilizing selection, evolution
in a �uctuating environment, and “burst-
like” change (Hansen and Martins, 1996).
The GLS method also allows for the incor-
poration of within-species variation.

In one simple form (assuming Brown-
ian motion evolution and no within-species
variation), our GLS method will produce an-
cestral state estimates that are identical to
those found by ML and SSP. This method is
termed “GLS-linear,” because it assumes a
linear or clock-like diversi�cation of pheno-
type through time. As illustrated in Martins
and Lamont (1998), however, other forms of
our GLS method can produce very different
results, including ancestral estimates and
standard errors outside the range of the
original data. In this study, we focus on an al-
ternative form of this method, termed “GLS-
exponential,” which is appropriate for use
with traits that are thought to be evolving
under certain constraints such as weak sta-
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bilizing selection (see Martins and Lamont
[1998] for details).

In this study, I use computer simulation to
consider the statistical performance of SSP,
ML, and these two forms of GLS methods
under different microevolutionary scenar-
ios. We know from the theoretical develop-
ment of the methods that, when phenotypic
evolution is well described by the most com-
monly used model of evolutionary change
(Brownian motion), then SSP, ML, and GLS-
linear are expected to give reasonable esti-
mates of the ancestral state at each node of
the phylogeny. We also know that those esti-
mates should be virtually identical. The ML
and GLS-linear methods are also expected
to give reasonable estimates of the standard
errors about ancestral states; again, these
standard errors should be virtually identi-
cal. The main difference between methods
is expected when dealing with characters
resulting from constrained evolution (e.g.,
under an Ornstein–Uhlenbeck [OU] model
of stabilizing selection). In this case, GLS-
exponential is expected to give better es-
timates, if the actual type of evolution is
known, simply because we can match the as-
sumptions of the method with the reality of
the data. We do not know, however, whether
these method differences are large enough
to be meaningful with real data. With com-
puter simulation, we can determine how
well the four methods are likely to perform
on an absolute scale and whether the the-
oretical improvements provided by the ML
and GLS methods are likely to be useful.

METHODS

Ancestral State Estimation

Because SSP and ML always give iden-
tical estimates of ancestral states, I did not
calculate SSP estimates separately. ML and
SSP estimates of ancestral states were ob-
tained by using a slightly modi�ed version
of the ANCML program (Schluter, 1997).
Both methods calculate ancestral state esti-
mates thatminimize the sum of squared evo-
lutionary changes across the phylogeny as a
whole. ML does so by using techniques that
also yield estimates of the standard error for
those states as well as estimates of the b pa-

rameter of its underlying Brownian motion
model.

The GLS method (Martins and Hansen,
1997) uses the model A = WY toestimate an-
cestral states, where Y is a vector of the mea-
sured species data, W is a matrix describing
the phylogeny and chosen model of pheno-
typic evolution, and A is a vector of the re-
sulting ancestral state estimates. Standard
errors for those ancestral states were ob-
tained by using standard generalized least-
squares techniques (see Martins and Lamont
[1998] for a worked example) and a weight-
ing matrix derived (as in W above) from
the phylogeny and model of evolutionary
change. The method was implemented with
the “ancestor” module of COMPARE (Mar-
tins, 1998).

The GLS method was implemented with
both “linear” and “exponential” versions
of the method (Martins and Hansen, 1997).
GLS-linear assumes that the phenotypic
similarity between taxa decreases linearly
with phylogenetic divergence, such as is ob-
served under Brownian motion. Other mi-
croevolutionary models involving random
�uctuations of either phenotype or selec-
tive forces can produce a similar pattern
(Hansen and Martins, 1996). The results of
this linear version of the method are ex-
pected to be quite similar to those obtained
with the ML method. The linear model re-
quires the estimation of only a single pa-
rameter ( s 2), which should be proportional
to the b parameter estimated by the ML
method. GLS-exponential assumes an ex-
ponential decrease of phenotypic similarity
with phylogenetic distance, as is expected
when there is a constraint on evolution (e.g.,
stabilizing selection; Hansen and Martins,
1996). The exponential model requires the
use of a second parameter, a , which de-
scribes the strength of the restraining force.
Rather than estimate this parameter, I ap-
plied a series of possible a values (e.g., as
suggested in Martins and Hansen [1997] and
Martins and Lamont [1998]) to determine
the importance of estimating this parame-
ter accurately. Results are thus presented for
GLS-linear and for several versions of GLS-
exponential, only one of which assumes the
correct value of a . The GLS method also in-
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corporates measures of within-taxon vari-
ability. For the sake of simplicity, within-
taxon variation was assumed to equal zero
in all cases.

Computer Generation of Data

Data were generated by simulating the
evolution of phenotypes along a phylogeny
under a speci�ed model. All data were gen-
erated by using the “simulate” module of
COMPARE (Martins, 1998). I used two pos-
sible phylogenies: (1) a phylogeny of 9 taxa
of Cyclura iguanas (Malone and Davis, un-
publ.; applied by Martins and Lamont, 1998)
to estimate the ancestral states of behavioral
displays, and (2) a phylogeny of 42 species of
Sceloporus lizards (Larsen and Tanner, 1974;
applied in Martins, 1993). I do not make any
claims about the accuracy of these phyloge-
nies to describe the evolutionary history of
lizard taxa. They are simply examples of the
types of phylogeny commonly used in com-
parative analyses. Together these two phy-
logenies provide a total of 49 putative ances-
tors for which states can be estimated.

In all cases, I began at the root of the tree
with an ancestral phenotype of zero. At each
subsequent unit of time, I chose an evolu-
tionary change from a speci�ed distribution
of possible changes and added that value to
the previous value of the ancestral state. This
process was continued along the phylogeny,
leading from root to tips. Whenever a speci-
ation event occurred, the process was split,
with independent changes being chosen for
each of the two daughter branches.

I generated 1,000 data sets on each phy-
logeny under each model of phenotypic
evolution. To begin, I applied the Brown-
ian motion model of phenotypic evolution
that has been used in most previous sim-
ulation studies of phylogenetic compara-
tive methods (e.g., Martins and Garland,
1991) and which is assumed by both ML
and linear-GLS. Under this model, evolu-
tionary changes ( d ) at each unit of time were
chosen from a normal distribution ( d = N,
where N is a random normal deviate with
mean = 0 and variance = s 2). The variance
( s 2) cancels out in calculating relationships
between two correlated characters evolv-
ing together on a phylogeny and has thus

been ignored in previous computer simu-
lation studies of phylogenetic comparative
methods (e.g., Martins and Garland, 1991).
Although it does not cancel out in estima-
tion of ancestral states, some preliminary
runs suggested that it had little if any im-
pact on the overall results. Thus, I gener-
ated data by using an arbitrary value of
s 2 = 1.

In addition, I generated data under an OU
or “rubber band” process. This process has
been used previously to describe the evo-
lution of phenotypes under weak stabiliz-
ing selection with a constant optimum (e.g.,
Felsenstein, 1988; Lande, 1976, 1979; Hansen
and Martins, 1996). It requires the use of the
above s 2 parameter and also a second pa-
rameter, a , which describes the strength of
the restraining force. As above, evolutionary
changes were added to the current state of
the trait at each unit of time. To model OU
evolution, each change ( d ) was expressed as
a random number minus a factor describ-
ing the restraining force ( d = N – a xt where
N is a random normal deviate with mean
= 0 and variance = s 2, and xt is the state of
the character at the preceding unit of time).
To test the effects of varying the strength of
the restraining force, I generated data under
several different values of a (0.01, 0.05, 0.1,
0.5, 1, and 2 for the 42-taxon phylogeny; 0.01,
1, 2, and 5 for the 9-taxon phylogeny).

Statistical Analyses

Use of any particular method to estimate
ancestral states for a single run of the simu-
lation led to 1,000 estimates of the state (X)
at each node of the phylogeny and 1,000 esti-
mates of thestandard error of that nodal esti-
mate (S). To determine the relative accuracy
of each method in terms of ancestral state es-
timation, I compared the estimates for each
node with the values obtained directly from
the simulation procedure (A). First, I calcu-
lated the bias (X – A) for each run of the
simulation and node of the phylogeny and
also the mean bias across 1,000 runs. I also
calculated a Pearson product-moment cor-
relation [Corr.] between the ancestral state
estimated by a particular method and the
ancestral state obtained from the simulation
procedure: Corr[X, A].
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To determine the relative accuracy of
standard error estimates, I calculated the
squared deviation of each estimate from
the true value of the ancestor: (X – A)2.
The result is the true standard error of a
method. I used the difference between this
squared deviation and the standard error es-
timated by the method (S) as a measure of
the bias in standard error for each method:
(X – A)2 – S. For simplicity, the mean of
this quantity across 1,000 runs is termed
the mean error bias (MEB, comparable with
mean squared error). Again, I also calcu-
lated a Pearson product-moment correlation
between the standard error estimated by a
particular method and the true standard er-
ror obtained from the simulation procedure:
Corr[(X – A)2, S].

RESULTS

As expected, for data generated under a
Brownian motion model of evolution, ances-
tral state estimates were virtually identical
for linear-GLS, ML, and SSP (Fig. 1, Table 1).
These estimates were reasonably good in an
absolute sense, especially for very recent an-
cestors. The mean bias for all three methods
was usually negligible, but occasionally be-
came quite large, ranging up to 4.0 times the
magnitude of the ancestral state. Similarly,
the estimated states for almost all the an-
cestors were highly correlated with the true
value for the ancestor (r = 0.90–0.96), ex-
cept for two nodes on the 9-taxon tree (the
two mostdistant from all extant taxa), which
were poorly estimated (r = 0.50 and 0.54).

Estimates of error provided by GLS-linear
and ML were substantially worse, with the
squared difference between estimated and
true values for either method (MEB) rang-
ing up to 223 and correlation coef�cients
between estimated and known standard er-
rors ranging between 0.30 and 0.40 (Fig. 2,
Table 1). Moreover, the true standard error
was always underestimated by the phylo-
genetic methods, such that values of MEB
were always positive. Although error esti-
mates provided by the two methods occa-
sionally differed from each other for a par-
ticular data set, these differences were triv-
ialwhen summed across 1,000 runs (Table 1).

MEB values of the twomethods were always
within 0.2 of each other, and differences be-
tween methods in correlations with the true
values were always > 0.01.

GLS-linear, ML, and SSP all performed
substantially worse with data generated un-
der the constrained OU model (Table 1,
Fig. 1). Mean bias in estimating ancestral
states occasionally reached as high as 5 times
the magnitude of the state itself, and corre-
lations with the true ancestral states were
never far from zero (Table 1). Estimates of
error were less biased, being sometimes un-
derestimated and sometimes overestimated.
Nevertheless, correlations with truth were
close to zero, suggesting that the error esti-
mates were quite poor (Table 1, Fig. 2).

Unfortunately, use of GLS-exponential
did little, if anything, to improve the sit-
uation with OU-generated data. Given the
correct value of a and OU-generated data,
GLS-exponential tended to give better es-
timates of ancestral states (Table 1, Fig. 1).
Mean bias was slightly lower and the corre-
lation between estimated and true ancestral
states was somewhat higher. These differ-
ences, though, were exceedingly small for
the 42-taxon tree and negligible for the 9-
taxon tree. Moreover, although estimates of
error were better for GLS-exponential on the
9-taxon tree, they were actually worse for
this method on the 42-taxon tree (Table 1,
Fig. 2).

Unfortunately, given incorrect values of
a , the exponential-GLS method could also
give very poor results for the 42-taxon tree
(see Table 1, GLS-exponential performing
with Brownian motion data, Figs. 1 and 2).
With incorrect values of a , mean bias was
still as much as 5 times the magnitude of
the ancestral state, and correlations with
true ancestral states usually ranged between
–0.42 and 0.56 (not better than SSP, ML, or
GLS-linear). MEB ranged up to 3,100, and
correlations with the true error ranged be-
tween –0.46 and 0.46 (the same as when
a was known). Surprisingly, the correla-
tion between the true and the estimated
standard errors was occasionally substan-
tially greater for these methods than for the
linear methods. Again, virtually no differ-
ence was found between results for GLS-
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FIGURE 1. Correlation coef�cients between the known state at the root of the 42-taxon phylogeny (from the
simulation procedure) and the states estimated by each method. Values along the abscissa represent different
versions of the GLS method. The value at 0 represents the GLS-linear method, whereas all other values refer to
different values of the restraining force ( a ) assumed by the GLS-exponential method. Note that both the SSP and
ML methods yield results identical to the GLS-linear method (method a = 0). Each line connects values for a
single run of the simulation procedure using a different microevolutionary model: ´ ’s mark Brownian motion
evolution; all other lines refer to OU models, with values of a given in the box to the right.

exponential and GLS-linear on the 9-taxon
phylogeny.

DISCUSSION

From one perspective, the results of this
study are reassuringly positive. In the best-
case scenario (Brownian motion evolution),
SSP, ML, and GLS-linear often produced ex-
cellent estimates of some ancestral states,
far better than has been anticipated by ear-
lier authors (e.g., Schluter et al., 1997). Un-
fortunately, they also occasionally yielded
exceedingly poor estimates for an ances-
tor, particularly those that were phyloge-
netically distant from the extant species
data. Thus, it really is quite important to
have some measure of estimation uncer-
tainty. Unfortunately, the two methods (ML
and GLS) that provide measures of the un-
certainty of those states do so with only
mediocre accuracy. Furthermore, the accu-
racy of ancestral state estimates depends
critically on the type of evolution underly-

ing the characters involved. In a much less
favorable scenario (i.e., with traits evolv-
ing under a strong constraint), all methods
yielded very poor estimates of both ancestral
states and estimation uncertainty. Use of the
GLS-exponential method improved the sit-
uation very slightly with the 42-taxon phy-
logeny, but its use requires knowing the cor-
rect microevolutionary model, and the im-
provement was really quite small. Virtually
no improvement was seen with data gener-
ated on the 9-taxon phylogeny, except (per-
haps) in the estimates of error.

As suggested by Schluter et al. (1997), it
seems quite dif�cult to estimate historically
ancient events by using only comparative
data. Long periods of time and the �uctu-
ations of microevolutionary rates and sce-
narios all conspire to make ancestral state
estimation seem an impossible task. Nev-
ertheless, when phenotypic evolution was
modeled as a Brownian motion process,
47 of the 49 nodes in this study were
estimated quite well by SSP, ML, and
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TABLE 1. Results for the 49 nodes on the 2 phylogenies. Bias refers to the difference between the state estimated
by each method and the actual ancestral state. Corr. refers to the Pearson product-moment correlation between
estimates from each method and the actual ancestral state. MEB is the difference between the standard error calcu-
lated by each method and the true standard error (the squared deviation of each estimate from the true value of the
ancestor) for each nodal estimate. MEB Corr. is the Pearson product-moment correlation between those two types
of standard error. ML refers to Schluter et al.’s (1997) maximum likelihood method; GLS-linear is Martins and
Hansen’s (1997) method, assuming a linear model (unconstrained evolution); and GLS, a = 1 is the same method
assuming an exponential model (constrained evolution) with a set equal to 1. BM refers to data generated under
a Brownian motion model of phenotypic evolution. OU refers to data generated under an Ornstein–Uhlenbeck
model of phenotypic evolution. See text for details.

Range (and mean)

Bias Corr. MEB MEB Corr.

42-taxon tree
BM

ML –0.71 to 0.39 (–0.07) 0.94 to 0.96 (0.96) 10.72 to 223.05 (50.58) 0.30 to 0.37 (0.33)
GLS-linear –0.71 to 0.39 (–0.07) 0.94 to 0.96 (0.96) 10.72 to 223.04 (50.67) 0.30 to 0.36 (0.33)
GLS, a = 1 –1.56 to 0.77 (–0.06) 0.45 to 0.56 (0.50) 194.45 to 564.66 (423.33) 0.23 to 0.50 (0.41)

OU, a = 1
ML –0.09 to 0.09 (0.00) –0.06 to 0.04 (–0.02) –1.21 to 1.10 (0.59) –0.17 to –0.12 (–0.15)
GLS-linear –0.09 to 0.09 (0.00) –0.06 to 0.04 (–0.02) –1.20 to 1.11 (0.60) –0.17 to –0.12 (–0.15)
GLS, a = 1 –0.07 to 0.06 (0.00) –0.02 to 0.04 (0.01) –1.97 to 1.91 (–1.66) –0.45 to –0.04 (–0.38)

9-taxon tree
BM

ML –0.18 to 0.07 (–0.04) 0.50 to 0.99 (0.82) 0.27 to 31.3 (6.11) 0.94 to 1.00 (0.96)
GLS-linear –0.18 to 0.07 (–0.04) 0.50 to 0.99 (0.82) 0.27 to 31.3 (6.11) 0.97 to 1.00 (0.98)
GLS, a = 1 –0.18 to 0.08 (–0.04) 0.50 to 0.99 (0.82) 0.30 to 31.4 (6.34) 0.73 to 0.95 (0.82)

OU, a = 1
ML –0.06 to 0.02 (–0.02) –0.03 to 0.03 (–0.00) 0.17 to 3.28 (0.86) 0.80 to 1.00 (0.93)
GLS-linear –0.06 to 0.02 (–0.02) –0.03 to 0.03 (–0.00) 0.17 to 3.28 (0.86) 0.80 to 1.00 (0.93)
GLS, a = 1 –0.06 to 0.02 (–0.02) –0.03 to 0.03 (–0.00) 0.17 to 3.26 (0.85) 0.99 to 1.00 (0.99)

GLS-linear; i.e., bias was negligible and cor-
relation coef�cients between true and esti-
mated ancestral states were > 0.90. Thus,
in some situations, it may be reasonable
to place quite a bit of con�dence in our
estimates of hypothetical ancestors. Fur-
thermore, because these three methods
all give essentially identical ancestral esti-
mates, they can be used interchangeably for
this purpose.

In some cases (for nodes that are deep in
the tree or otherwise far from most of the
extant taxa on a phylogeny), however, trait
values for ancestors may be off by as much
as 5 times the actual value of the ancestor.
Unfortunately, both ML and GLS methods
gave relatively poor estimates of the uncer-
tainty involved in reconstructing ancestral
states. Thus, it is dif�cult to know when to be
con�dent and when to be worried. One sug-
gestion would be to estimate standard er-
rors with several possible methods (e.g., ML

and several versions of GLS-exponential),
with the hopes that the combined result
would bound the possibilities. Under Brow-
nian motion evolution, standard errors were
routinely underestimated by all the methods
tested. Thus, itwould be reasonable toexam-
ine the range of possible standard errors and
consider the largest as a rough minimum es-
timate. Nevertheless, any speci�c standard
error should be regarded with some degree
of caution.

On another pessimistic note, certain mi-
croevolutionary scenarios may cause all
three of the methods to provide exceedingly
poor or even misleading estimates of both
ancestral states and their standard errors.
Brownian motion is commonly used as a
model of phenotypic evolution under ran-
dom genetic drift or under directional selec-
tion when the direction of selection �uctu-
ates at random. It is a powerful null model
and is a common assumption underlying
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FIGURE 2. Correlation coef�cients between the known and estimated standard errors for each method for the
root of the 42-taxon phylogeny. Values along the abscissa represent different versions of the GLS method. The
value at 0 represents the GLS-linear method, whereas all other values refer to different values of the restraining
force ( a ) assumed by the GLS-exponential method. Note that the ML method yields results that are virtually
identical to the GLS-linear method (method a = 0). Each line connects values for a single run of the simulation
procedure using a different microevolutionary model: ´ ’s mark Brownian motion evolution; all other lines refer
to OU models, with values of a given in the box to the right.

many comparative analyses (e.g., Felsen-
stein, 1985). Thus, this model is often suf�-
cient to describe the evolution of a variety of
traits (e.g., Schluter et al., 1997). Still, many
of the traits used in comparative analyses
are thought to have evolved under other mi-
croevolutionary models, including stabiliz-
ing selection, adaptation to �uctuating en-
vironments, and “burst-like” change. These
types of microevolutionary scenarios tend
to erase history from phenotypic data, re-
placing it with responses to an environment
or changes in the environment (Hansen and
Martins, 1996). Traits evolving under these
types of scenario are unlikely to be well de-
scribed by Brownian motion.

In the current study, I used an OU (rub-
ber band) process to describe phenotypic
evolution with a restraining force (measured
as the parameter a ). Not surprisingly, all of
the methods have a much harder time es-
timating ancestral states with data gener-
ated by means of this model. Even fairly
low levels of constraint (e.g., very weak

stabilizing selection) caused problems for
ancestral state estimation, and strong con-
straints could lead the methods to give pos-
itively misleading results (i.e., negatively
correlated with the true values). The rather
tiny improvement of the GLS method set up
to assume (correctly, in this case) that evo-
lution was constrained under an OU model
is discouraging. Future studies might con-
sider even larger phylogenies to see whether
a larger number of taxa would improve
our ability to estimate the nuisance parame-
ters in the GLS-exponential model. For now,
though, it seems that stabilizing selection is
similar to directional selection (which im-
poses a trend) in the way it quickly destroys
our ability to infer phenotypic history.

Thus, although ML does not entirely solve
the problem of obtaining standard errors, it
improves the situation by providing some
initial information (a minimum estimate) re-
garding the uncertainty of estimated ances-
tral states. Similarly, although GLS does not
entirely solve the problem of alternative mi-
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croevolutionary models, it does provide a
way of obtaining a set of possible ances-
tral states under different microevolution-
ary scenarios. Future development of tests
among these models would be quite useful,
as would further simulation studies to de-
termine whether this poor performance of
standard error estimators and sensitivity to
microevolutionary scenario is also true for
methods used to estimate ancestral states
of categorical characters. Finally, studies ex-
amining the effects of branch length trans-
formations and within-species variability
would also be useful.
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