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abstract: The phylogenetic mixed model is an application of the
quantitative-genetic mixed model to interspecific data. Although this
statistical framework provides a potentially unifying approach to
quantitative-genetic and phylogenetic analysis, the model has been
applied infrequently because of technical difficulties with parameter
estimation. We recommend a reparameterization of the model that
eliminates some of these difficulties, and we develop a new estimation
algorithm for both the original maximum likelihood and new re-
stricted maximum likelihood estimators. The phylogenetic mixed
model is particularly rich in terms of the evolutionary insight that
might be drawn from model parameters, so we also illustrate and
discuss the interpretation of the model parameters in a specific com-
parative analysis.

Keywords: comparative method, mixed model, phenotypic evolution,
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It is now well appreciated that interspecific analyses can
be compromised if they fail to account for the statistical
dependence resulting from shared evolution along a phy-
logeny. A number of researchers have provided solutions
to this problem by developing statistical approaches for
incorporating phylogenetic information (see Martins and
Hansen 1996b for review). More recently, a few researchers
(e.g, Charnov 1993; Westoby et al. 1995; Price 1997) have
pointed out that the more popular of these phylogenetic
comparative methods (Felsenstein’s [1985] independent
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contrasts) may sometimes overcorrect for phylogenetic ef-
fects when, in truth, selection has led to comparative data
that are not strongly influenced by phylogenetic history.
One solution in these cases is to ignore phylogeny com-
pletely, but doing so can also lead to poor results when
selection has not been as strong as assumed. Alternatively,
a handful of researchers have developed methods that ex-
plicitly include the effects of selection or other evolution-
ary assumptions (see Martins 2000 for review).

Recall that Felsenstein’s (1985) independent contrasts
method is based on an assumption that the traits of interest
have evolved via Brownian motion along the phylogeny.
Under this model, the phenotype randomly increases or
decreases each generation, as is usually expected for phe-
notypes undergoing random genetic drift or fluctuating
directional selection. The resulting correlation in the trait
values between two species is the proportion of time the
two species shared a common ancestor. Thus the corre-
lation structure of the trait data is given pictorially by the
phylogeny.

Many other forms of selection result in sets of com-
parative data that are not well described by a Brownian
motion model (Hansen and Martins 1996). The phylo-
genetic generalized least squares approach described in
Martins and Hansen (1997) provides an extension of Fel-
senstein’s (1985) independent contrasts method that al-
lows the researcher to choose among a variety of explicit
evolutionary alternatives to the Brownian motion model
(e.g., those summarized in Hansen and Martins 1996). In
particular, Martins and Hansen (1997) recommended use
of an Ornstein-Uhlenbeck model, applied by population
geneticists to describe phenotypes undergoing stabilizing
selection, selective response to fluctuating environments,
and other types of long-term constraints (for further dis-
cussion and examples, see Felsenstein 1988; Hansen and
Martins 1996; Hansen 1997). The resulting correlation in
the trait value between two species is a function of an
evolutionary model–specific transformation of the branch
lengths of the original phylogeny.

Other authors have encouraged researchers to apply sta-
tistical approaches to this problem. Some propose mod-
ifying Felsenstein’s basic Brownian motion approach (e.g.,
Diaz-Uriarte and Garland 1996) by transforming the
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Figure 1: Illustration of the phylogenetic mixed model (PMM) drawn
as a phylogeny in units of expected variance of character change. The
PMM envisions extant taxon phenotypes to be the result of a linear
combination of gradually accumulated evolutionary changes occurring
along a true species phylogeny and short-lived evolutionary changes (pos-
sibly selective responses to rapid environmental shifts) occurring in each
taxon independently and not passed on between ancestor and descendant
taxa.

branch lengths in a statistical rather than an evolutionary
model–specific way, such as by taking the logarithm of all
the branches. The resulting correlation in the trait value
between two species is then a function of this transfor-
mation of the branch lengths of the original time-based
phylogeny. Others invent entirely new statistical methods
(e.g., Cheverud et al. 1985; Diniz-Filho et al. 1998).

In introducing the phylogenetic mixed model, Lynch
(1991) recognized that in addition to the gradual accu-
mulation of evolutionary changes envisioned by Felsen-
stein’s independent contrasts and phylogenetic generalized
least squares approaches, traits sometimes evolve so readily
that aspects of their current states are essentially uncon-
strained by their phylogenetic past. For example, many
Daphnia species are able to produce protective head ex-
tensions (helmets and neck teeth) when growing in the
presence of invertebrate predators, whereas other species
do not possess this ability. The ability to produce protective
head extensions has some genetic component (Spitze and
Sadler 1996) and appears to evolve quickly and indepen-
dently as species shift from ephemeral ponds to lakes or
vice versa (Colbourne et al. 1997). Thus, interspecific var-
iation may be best explained by rapid, reversible evolu-
tionary changes (perhaps in response to environmental
shifts) than by long-lasting, gradual change. The phylo-
genetic mixed model (PMM) estimates the relative con-
tribution of these two types of evolutionary change. The
resulting correlation in the trait value between two species
comes partially (with proportion , which is mathemat-2h
ically defined below) from the phylogenetic relationship
between species and partially (with proportion )21 � h
from an independent, species-specific contribution. The
transformation to the original phylogeny that pictorially
describes the correlation structure in the trait values be-
tween species is given in figure 1.

The PMM is an analog of the mixed model from quan-
titative genetics, which partitions phenotypes of individ-
uals related by a pedigree into additive genetic (heritable)
and residual (nonheritable) components (Henderson
1984; Lynch and Walsh 1998). The mixed model describes
the trait phenotype ( for the ith individual or ith taxonyi

mean) as the sum of a grand mean (m), a heritable factor
( ), and a residual deviation ( ); that is,a e y p m � a �i i i i

(Lynch 1991). The grand mean is a scaling term thatei

can be interpreted in the phylogenetic context as the ge-
notypic state of the ancestor at the root of a phylogeny.

For a pedigree from quantitative genetics, the correla-
tion structure of the heritable components is given by a
relationship matrix describing genetic similarities. For in-
stance, an individual has 100% genetic similarity with him-
self and 50% similarity with a parent or sibling (assuming
no inbreeding). For species, the correlation structure of
the phylogenetically heritable components is given by the

proportion of time that taxa share a common ancestor in
the phylogeny. In the phylogenetic context, the heritable
component contains not only genetic changes but also
nongenetic contributions to the phenotype, such as en-
vironmental or cultural contributions, that are described
by the phylogenetic relationship among the taxa.

Similarly, for a pedigree, the residual, nonheritable com-
ponent to an individual’s phenotype is often considered
to be the environmental component and is often modeled
as being independent for each individual in the pedigree.
This component is the part of the phenotype not explained
by the relationship between individuals in the pedigree. In
the phylogenetic context, the nonheritable component to
a taxon’s phenotype is modeled as being independent for
each taxon and is the part of the taxon phenotype not
explained by the phylogenetic relationship between taxa.
The phylogenetically nonheritable component includes
phenotypic plasticity, rapid genetic response to the envi-
ronment or to fluctuating selection, and measurement er-
ror. Because the phylogenetically heritable component is
modeled via Brownian motion (following Felsenstein’s
[1985] example), the PMM might also be described as an
extension of the independent contrasts method that in-
corporates the possibility of species-specific evolutionary
change.

In quantitative genetics, the heritability of a trait is the
proportion of the variance in the trait explained by the
relationship between individuals as given in the pedigree.
Similarly, we define the phylogenetic heritability of a char-
acter as the proportion of variance in the character ex-
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plained by the relationship among taxa as given by the
phylogeny. In both cases, the mathematical formula is

. Although there are clear similarities be-2 2 2 2h p j /(j � j )a a e

tween the quantitative genetic and the phylogenetic defi-
nitions of heritability, there are important differences in
the interpretation due to the fact that, in the phylogenetic
context, genetic, environmental, and other factors con-
tribute to both the heritable and nonheritable components
and, as explained further in the “Discussion,” the heri-
tability of a trait will likely depend on the depth of the
phylogeny.

We note that the univariate phylogenetic heritability es-
timator is mathematically equivalent to the phylogenetic
correlation estimator l examined recently in Freckleton et
al. (2002) despite those authors’ claim to the contrary. The
Freckleton et al. article makes a very nice companion to
our current work because those authors determined the
value of for numerous real phylogenies and data2l p h
sets from the biology literature. In this article, we discuss
these ideas in the context of bivariate analyses and discuss
the interpretation of the parameters for one worked ex-
ample (fig. 7 in the online edition of the American Natu-
ralist).

In principle, the PMM has the potential to be more
informative than many other phylogenetic comparative
methods that for the most part have been used only for
estimating phylogenetically corrected correlations between
traits. The PMM performs roughly as well as other sta-
tistically flexible phylogenetic comparative methods, such
as phylogenetic generalized least squares (PGLS; Grafen
1989, 1992; Martins and Hansen 1997) or Cheverud et
al.’s (1985) autoregressive model, in terms of estimating
a correlation between two characters under evolutionary
scenarios that differ from the PMM assumptions (Martins
et al. 2002). The PMM can also be used to estimate an-
cestral states on a phylogeny (breeding values of all mem-
bers of the phylogeny) and the fraction of the total inter-
specific phenotypic variance that is associated with
phylogenetically heritable effects (the phylogenetic heri-
tability, ). For bivariate or multivariate analyses, the2h
PMM also allows the separation of the phenotypic cor-
relation between two traits (r) into components associated
with phylogenetically heritable ( ) and nonheritable ( )r ra e

contributions to the phenotype. The PMM makes efficient
use of the data, is unbiased by phylogenetically uninfor-
mative contributions to the mean phenotypes, and corrects
for phylogenetic dependence of the data only to the extent
that the observed variation has a phylogenetically heritable
basis (Lynch 1991).

However, practical applications of the method have been
hampered by technical difficulties with estimating model
parameters. Although the mixed model is commonly used
in the analysis of large complex pedigrees (Meyer 1989,

1991; Thompson and Shaw 1990, 1992), it was not clear
whether the model would work well even with large phy-
logenies, which are considerably smaller than most pedi-
grees. As illustrated by the worked example in the original
description of the method (Lynch 1991), small sample sizes
often lead to bivariate correlation estimates ( and ) ofr ra e

�1.0 or 1.0, regardless of the data used in the study.
We begin by providing an overview of the PMM and

by discussing the problems that have been encountered in
estimating the parameters of the model. We then propose
a shift in focus to parameters that are better estimated
with the small sample sizes typical of phylogenetic com-
parative analyses. We also present a new algorithm for
parameter estimation that provides a simple and efficient
alternative to the expectation-maximization (EM) algo-
rithm proposed by Lynch (1991; following Thompson and
Shaw 1990, 1992). We use computer simulation to explore
the statistical properties of PMM and present a worked
example using our algorithm and interpreting the PMM
parameters in a phylogenetic context. Although we largely
focus on phylogenetic analyses, our results are also relevant
to quantitative genetic analysis of pedigrees.

Small Sample Sizes and the PMM

The mixed model was designed for pedigree analyses,
which often consist of hundreds or even thousands of
independent families. In quantitative genetics (and in
Lynch 1991), emphasis is usually placed on partitioning
out the effects of additive genetic (heritable) versus en-
vironmental (nonheritable) components. For bivariate
analyses, for example, we might be particularly interested
in the correlation between heritable components of the
variation ( ) and how that might differ from a correlationra

between nonheritable components ( ). Unfortunately,re

these two parameters can be very poorly estimated with
the sample sizes commonly found in comparative analyses.
The problem is that small sample sizes often lead to neg-
ative variance estimates (for or for one or both traits)2 2j ja e

because the mixed model does not mathematically con-
strain both of these variance components to be positive.
Negative variance components in turn lead to heritabilities
outside their natural range and to correlations out-(0, 1)
side their natural range . Negative variance estimates(�1, 1)
are a well-known difficulty in quantitative genetics and
can occur even with very large pedigrees when considering
multiple traits and the correspondingly greater numbers
of parameters (Hill and Thompson 1978).

Computer simulation can be used to illustrate this
small sample size problem. To begin, we developed four
symmetric phylogenies of 32 (fig. 2A), 64, 128, and 256
taxa. For each phylogeny, we used SAS (SAS Institute
1990) to generate 1,000 sets of two traits for each taxon



The Phylogenetic Mixed Model 87

Figure 2: Two hypothetical relationship structures used in theoretical
and computer simulation consideration of the phylogenetic mixed model.
Each phylogeny was generated using a repeated branching process to add
as many taxa as were needed (usually 32, but sometimes more). In all
cases, lengths were set so that the total distance from root to tips equals
1. A, Symmetrical phylogeny created using an idealized branching process
model, such that times between speciation events are inversely propor-
tional to the number of extant taxa. B, Bifurcating star phylogeny equiv-
alent to a parent-offspring pedigree.

that satisfy , . That2 2h p h p 0.5 r p r p 0.0 r p1 2 a e a

means that both components of the two traitsr p 0.0e

were evolving independently of each other. The expression
means that, for both traits, 50% of the2 2h p h p 0.51 2

variation among extant taxa was explained by the phy-
logenetic relationship (heritable effects) and the remaining
50% is explained by abrupt evolutionary changes occur-
ring at or since the last speciation event (nonheritable
effects). We then used the PMM to estimate the heritable
( ) correlations between the two traits, bounding the cor-ra

relation by �1 and 1. Figure 3 shows the results of these
simulations. For 32 taxa, estimates of the heritable cor-
relations ( ) were usually pegged at �1 or 1, only rarelyra

falling anywhere near the true value of 0. The situation
improved with larger numbers of taxa. With 256 taxa, for
example, the heritable correlation estimates ( ) at leastra

followed a bell-shaped distribution. Even so, the distri-
bution was very broad. Further, we determined analytically
that for data generated along a 32-taxon bifurcating star
phylogeny (fig. 2B; leaving all other assumptions the same
as above), at least one of the parameter estimates was out-
of-bounds 72% of the time. Far more than 32 taxa will
be required to obtain reasonable estimates of all the PMM
parameters.

Note that although the problem of out-of-bounds pa-
rameters occurs with both phylogenies and pedigrees, the
likelihood of obtaining out-of-bounds parameters depends
on tree or pedigree shape as well as the number of mea-
sured taxa or individuals. Given the same number of taxa
or individuals, data arising from a phylogeny are usually
slightly less likely to yield out-of-bounds heritabilities than
are data from a pedigree. As explained in the appendix
(available in the online edition of the American Naturalist),

the possible range for the heritability, , is determined2h
by the eigenvalues of the genetic or phylogenetic relation-
ship matrix. Taxa related by a phylogeny (e.g., fig. 2) are
generally less independent than individuals related by a
pedigree, simply because phylogenies usually bifurcate
from the root, whereas pedigrees may originate with sev-
eral unrelated families. Thus most phylogenetic matrices
have a wide range of eigenvalues with a few very large
values and many smaller values, some of which are very
close to 0. This leads to a range of possible heritabilities
close to the proper range 0 to 1. When fewer historical
effects are shared (e.g., in starlike phylogenies), the phy-
logenetic relationship matrix approaches the identity ma-
trix, and all of its eigenvalues approach 1. The result is a
wider range of possible heritability estimates and hence a
greater chance of obtaining a value outside the natural
range .(0, 1)

Another technical difficulty with applying the PMM to
sample sizes common in phylogenetic analyses is that the
standard error and likelihood ratio tests proposed in Lynch
(1991) rely on large sample estimator properties that are
not likely to be true. Thus we also do not recommend the
use of the variance estimators recommended in Lynch
(1991). Instead, researchers should apply simulation tech-
niques to obtain confidence intervals and hypothesis tests
(e.g., as suggested in Martins and Garland 1991). To do
so, researchers can generate large numbers of data sets
under the PMM for a particular phylogeny, estimate the
desired parameters using each of these data sets, and use
the resulting sampling distribution to conduct hypothesis
tests or generate confidence intervals. This will result in
Type I error rates that are necessarily correct given the
assumptions of the mixed model.

Reparameterization and a New Algorithm

Fortunately for comparative analysis, small sample size
affects some PMM parameter estimates more than others,
and the parameters of most interest may differ between
phylogenetic and genetic studies. For example, instead of
focusing on the heritable and nonheritable correlations
separately, in a phylogenetic context we are often interested
in calculating total phenotypic correlation properly (but
not overly) corrected for the phylogeny, r p h h r �1 2 a

, where the letter subscripts refer to2 2 1/2[(1 � h )(1 � h )] r1 2 e

heritable (a) and nonheritable (e) effects and the number
subscripts refer to traits 1 and 2. Although this parameter
was not introduced in the original description of the PMM
(Lynch 1991), it is more directly comparable to the cor-
relations estimated by other phylogenetic methods. Esti-
mators of this parameter are also more robust to small
sample sizes than are the separate estimators for the her-
itable ( ) and nonheritable ( ) correlations. When ap-r ra e
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Figure 3: Example of frequency distributions of heritable correlation estimates ( ) obtained through analyses of bivariate simulations on symmetricra

phylogenies (fig. 2A) of different size: A, 32 taxa; B, 64 taxa; C, 128 taxa; and D, 256 taxa. Results are for 1,000 sets of bivariate data generated via
computer simulation with both means set to 0, both variances set to 1, the true values of correlations set equal to 0 ( ), andr p r p r p 0a e

phylogenetic heritabilities set to 1/2 ( ). Additive correlations were not calculated whenever or was estimated to be 0, so results2 2 2 2h p h p 0.5 h h1 2 1 2

are presented for 822 data sets in A, 932 data sets in B, 972 data sets in C, and 995 data sets in D.

plied to the above simulated data, even with only 32 taxa,
the sampling distribution of the estimator for the total
phenotypic correlation ( ) was bell shaped around ther

value it was intended to estimate (0).
We also recommend a shift in focus from the heritable

( ) and nonheritable ( ) variance components used in2 2j ja e

the original description (Lynch 1991) to the total variance
( ) and the phylogenetic heritability (2 2 2 2j p j � j h pa e

). For univariate analyses, for a given heritability, the2 2j /ja

most likely mean and total variance can be found explicitly.
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We use the golden section algorithm (Cheney and Kincaid
1980) to obtain the maximum likelihood heritability es-
timator. A major advantage of this parameterization is that
one can also obtain the likelihood profile as a function of

over the full interval, verifying that the true max-2h (0, 1)
imum likelihood estimator, and not a secondary peak in
the likelihood surface, has been located. This maximum
in the likelihood profile identifies the joint estimates for
the phylogenetic mean (m), total variance ( ), and phy-2j

logenetic heritability ( ) that best explain the observed2h
data. If desired, estimates of and can be obtained2 2j ja e

directly from the latter two quantities. For two traits, we
apply the golden section algorithm iteratively in random
directions, calculating the maximum likelihood estimators
for the means and variances given each possible value of
the heritabilities and correlations.

Finally, we propose the use of restricted maximum like-
lihood (REML; as in Meyer 1989, 1991) rather than max-
imum likelihood estimators for model parameters. The
most burdensome part of finding the maximum likelihood
estimators in bivariate analyses is solving for the means
( and ) numerically. REML estimators do not requirem m1 2

estimation of the mean and also take into consideration
the loss of degrees of freedom associated with estimating
the means, often yielding less-biased estimators for vari-
ances than those obtained by straight maximum likelihood
methods (e.g., Lynch 1991). The popular independent con-
trasts method (Felsenstein 1985; Grafen 1989, 1992) is an
REML procedure that transforms n phenotypes with mean
m into contrasts with mean 0 (Rohlf 2001). To de-n � 1
velop REML estimators for the PMM parameters, we begin
with descriptions of independent contrast estimators in
matrix form and extend these to include a nonheritable
component. All mathematical details are provided in the
online appendix.

Relative Statistical Performance

Because the phylogenetic heritability is obtained numer-
ically, the distribution of its estimator is neither analytically
known nor easily approximated analytically. The estima-
tors for the grand mean, variances, and covariances depend
on the heritability, so their distributions are also not
known. Thus, we used limited computer simulations to
explore the statistical performance of the PMM and the
model’s dependence on the details of the phylogenetic
structure. We did so (as above) by using SAS (SAS Institute
1990) to generate comparative data that corresponded di-
rectly to the assumptions of the PMM, given a particular
relationship structure and set of parameters. We then ap-
plied our algorithms to these data to estimate both the
restricted maximum likelihood and straight maximum
likelihood versions of the PMM parameters. While we re-

port results only for the symmetric and bifurcating star
phylogenies in figure 2, we also examined a comb phy-
logeny and a pedigree. The general conclusions reported
below are the same for all these structures.

We estimated the bias and root mean square error
(RMSE) for each estimated parameter as has been done
in earlier simulation comparisons of phylogenetic methods
(e.g., Martins et al. 2002). We focus on RMSE rather than
on Type I error rates simply because for sample sizes typical
of interspecific analyses, we recommend that hypothesis
tests for the PMM parameters be conducted against a null
distribution obtained through simulations, and such a dis-
tribution will necessarily yield the correct Type I error
rates.

In Martins et al. (2002), data for two traits were gen-
erated under various Ornstein-Uhlenbeck models of con-
straining selection for which the PGLS method was
adapted. Many phylogenetic comparative methods, in-
cluding the PMM, were used to estimate the evolutionary
(phenotypic) correlation between the two traits. The PMM
performed roughly as well as other statistically flexible
methods (e.g., Cheverud et al.’s [1985] autoregressive
model, Diniz-Filho et al.’s (1998) phylogenetic eigenvector
regression), regularly outperforming independent con-
trasts and the nonphylogenetic method. The simulations
conducted for this article contribute to these previous re-
sults by comparing the relative performance of three of
these methods (PMM, independent contrasts, and the
nonphylogenetic method) for estimating correlations
when confronted with data generated under the mixed
model assumptions. The results below are based on sim-
ulated data for 32 taxa.

With only 32 taxa, the bounded estimates of the phy-
logenetic heritability were highly variable and tended to
underestimate the true heritability (fig. 4). Unbounded
forms of both maximum likelihood (ML) and restricted
maximum likelihood (REML) heritability estimates (not
constrained to fall between 0 and 1) were generally less
biased than their bounded counterparts (results not
shown). REML estimates were more reliable than ML es-
timates (lower RMSE) when the true heritability was large
(figure 5). Our results also confirm that the efficient as-
ymptotic properties of ML estimators have not uniformly
taken effect with only 32 taxa. The bifurcating star phy-
logeny (fig. 2B) is equivalent to a parent-offspring pedi-
gree, but neither the ML nor the REML estimator was
significantly better than the regression-based heritability
estimator (twice the slope of the parent-offspring regres-
sion line) when the true heritability was large (fig. 5B).

Bias for estimates of the grand means (the ancestral
states at the root of the tree, and ) was negligiblem m1 2

( in all cases, results not shown). Estimates ofbias ≤ 0.01
the grand mean were also pretty good in an absolute sense,
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Figure 4: Box plots showing the distribution of phylogenetic heritability
( ) estimates obtained using the bounded restricted maximum likelihood2h
estimator at true heritabilities of 0.10, 0.25, 0.50, 0.75, and 0.90. Results
are for 1,000 sets of data generated via computer simulation on the
symmetric phylogeny (fig. 2A) with and . Lines in the boxesm p 0 j p 1
show the median, edges show twenty-fifth and seventy-fifth percentiles,
whiskers extend a distance of 1.5 times the interquartile range, and dots
depict outlying points.

with RMSE ranging between 0.2 and 0.6 (increasing with
the phylogenetic heritability and the dependency of the
tree structure) for a true ancestral state of 0.0. Estimates
of the standard errors for the ancestral mean based on the
estimate for the variance in the trait were also quite re-
spectable, never differing by more than 0.02 from those
calculated using the known heritability and variance (re-
sults not shown).

Although ML yielded underestimates of the total phe-
notypic variance ( ) consistently, this bias was relatively2j

small and was generally corrected by the REML estimator.
However, REML estimates had larger sampling variances,
making ML and REML estimators of this parameter
roughly comparable in terms of RMSE (results not shown).

Total phenotypic correlation ( ) estimates were withinr

the correct bounds and had negligible bias in all the cases
we examined. In general, the PMM yielded estimates that
were roughly as good as the other methods in many cases
and substantially better than Felsenstein’s independent
contrasts (equivalent to ) or the nonphylo-2 2h p h p 11 2

genetic method (equivalent to ) when the2 2h p h p 01 2

assumptions of those two methods were far from being
met (fig. 6). As expected, independent contrasts gave the
best performance (lowest RMSE) when heritabilities were
large and (fig. 6A, 6C). Independent contrasts alsor p ra e

did remarkably well when heritabilities were small and
(fig. 6A, 6C), despite the violation of its assump-r p ra e

tions. When , however, the independent contrastsr ( ra e

method overcounts the nonheritable contribution, , lead-re

ing to very biased estimates (fig. 6B, 6D) for larger values
of the heritabilities. The nonphylogenetic method yielded
the lowest RMSE when heritabilities were small, but the
improvement is not substantial. The nonphylogenetic ap-
proach did not suffer the same bias as independent con-
trasts when . When the heritabilities were large,r ( ra e

however, it sometimes resulted in very poor performance
(high RMSE values; fig. 6). Overall, independent contrasts
noticeably outperformed the PMM only in really extreme
cases with high heritabilities and similar heritable and non-
heritable correlation values. The nonphylogenetic ap-
proach only barely outperformed the PMM when the true
heritabilities were small. The better performance comes
from the assumptions of the other models being approx-
imately met and those models having fewer parameters to
estimate from the data.

An Example

To illustrate our new approach to the phylogenetic mixed
model, we offer an analysis of body length and geographic
range size in a group of 50 platyrhine primate taxa using
data and phylogeny as compiled by Diniz-Filho et al.
(2000; phylogeny, relationship matrix, and data are in the
online appendix). We use these data purely as an illustra-
tion and offer no opinions on the validity of either data
or phylogenetic hypotheses as real descriptions of primate
biology. We apply the mixed model to these data to es-
timate the correlation between body length and geographic
range size for these primates. For comparison, we report
results also for the nonphylogenetic correlation, Felsen-
stein’s (1985) independent contrasts method, Cheverud et
al.’s (1985) spatial autoregressive model, and the PGLS
method described in Martins and Hansen (1997; with an
exponential model involving estimation of a single a pa-
rameter for the two traits, as in Martins et al. 2002). All
calculations were conducted in COMPARE 4.4 (Martins
2001). COMPARE finds the REML estimates of bivariate
mixed model parameters.

First, there appears to be little if any evidence of a re-
lationship between body length and geographic range size
for these primates (table 1). Even the strongest correlation
estimate, the nonphylogenetic Pearson correlation of the
raw data, is not significantly different from 0. The PMM
estimates of the total phenotypic correlation ( ) wasr

�0.025, falling at the lower end of the range of those
obtained for other phylogenetic methods ( ; ta-�0.04, 0.17
bles 1, 2).

With the PMM, however, we can take the results a few
steps further to gain insight into the evolution of these
two traits. The estimate of phylogenetic heritability for
body length in these primates was essentially 1.0, indi-
cating that heritable change accumulating along the entire
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Figure 5: Root mean square error (RMSE) for estimates of the phylogenetic heritability ( ). One graph is shown for each of the tree structures2h
(letter labels correspond to those in fig. 2). Solid circles correspond to results for the maximum likelihood estimator, and open circles depict results
for the restricted maximum likelihood estimator. Open triangles indicate results for the heritability estimate obtained from a parent-offspring
regression. Results are for 10,000 sets of data generated via computer simulation with , , and .2m p 0 j p 1 h p 0, 0.1, 0.2, … , 0.9, 1

length of the phylogeny explains 100% of the interspecific
phenotypic variation in body length and that recent, short-
lived changes do not contribute much, if anything, to ex-
plaining interspecific variation in this trait.

The second trait, geographic range size, also exhibited a
relatively high estimate of phylogenetic heritability ( 2h p

). Randomization tests showed that this value is sig-0.6
nificantly !1 ( using 1,000 computer-generatedP p .027
data sets) and significantly 10 ( , again using 1,000P p .04
computer-generated data sets). Although some might argue
that geographic range size is a property of a species rather
than of individual organisms and that it is not, therefore,
expected to evolve along a species phylogeny, the high es-
timate of the heritability indicates that about 60% of the
phenotypic variation in geographic range is explained by
changes accumulating along the phylogeny. Since the her-
itability is !100%, it would probably be a mistake to analyze
geographic range size using independent contrasts, which
assumes that and is thus likely to overestimate the2h p 1.0
importance of phylogeny for this trait. On the other hand,
there seems to be phylogenetic dependence in the data, and
it is probably also a mistake to ignore phylogeny completely.

Note that these heritability estimates are quite different
from measures of phylogenetic inertia estimated by Chev-
erud et al.’s (1985; Gittleman and Kot 1990) spatial auto-
regressive method (table 2). Although both the autoregres-
sive parameters (autocorrelation) and (phylogenetic2r R
inertia) are larger for body length than for geographic range
size, actual values for the phylogenetic inertia for both traits
are quite small ( %). Following the advice of this2R ≤ 10.1
method’s proponents (Cheverud et al. 1985; Gittleman and

Kot 1990), we would probably decide that phylogenetic
transformation of either variable is not necessary. Thus the
autoregressive method and the mixed model approach come
to nearly opposite conclusions about the importance of the
phylogeny in explaining these data.

Although both the autoregressive model and the mixed
model partition phenotypic variation into phylogenetic
and specific components, the mathematical differences be-
tween them are profound. With a little algebra (similar to
that in Martins and Hansen 1996a and Rohlf 2001), we
can rewrite the measure of phylogenetic inertia proposed
by Cheverud et al. (1985; ) in mixed model terms. Doing2R
so, we obtain

T 2 2 �1 Ty K[h G � (1 � h )I] K yK2R p 1 � ,
T Ty KK y

where are the REML standardized trait values andTK y
is the corresponding transformed relationship matrix.GK

See the online appendix for the details of the choice for
. Clearly, the autoregressive phylogenetic inertia param-K

eter, , is really quite different from the mixed model2R
measure of phylogenetic heritability, . For the mixed2h
model, measures the percent reduction in the variance2R
estimate for the trait assuming the trait evolves according
to the mixed model with heritability versus assuming2h
that the trait evolves independently of the phylogeny. Even
if the heritability of a trait is 1 and there is no nonphy-
logenetic component to the trait, may well not be large2R
unless the mixed model variance estimate is much, much
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Figure 6: Root mean square error (RMSE) for the total phenotypic correlation from bivariate analyses using the phylogenetic mixed model (open
bars), Felsenstein’s (1985) contrasts (assumes ; bars with left-to-right upward hatching), and a nonphylogenetic approach (assumes2 2h p h p 11 2

; bars with left-to-right downward hatching) to analyze data generated via computer simulation along the symmetric phylogeny (fig. 2A,2 2h p h p 01 2

32 taxa). The results are for 1,000 sets of bivariate data generated via computer simulation with both means set to 0, both total phenotypic variances
set to 1, both heritabilities set to the value listed on the horizontal axes, and heritable and nonheritable correlations set to the values given in the
figures.

smaller than the nonphylogenetic variance estimate for the
trait.

Although sample sizes of 50 taxa are probably not large
enough to get very good estimates of the heritable and
nonheritable correlation components, the partitioning of
the bivariate correlation between body length and geo-
graphic range size may also be of interest. In this case,
however, an estimated phylogenetic heritability of 1.0 for
body length means that there is no relevant nonheritable
correlation estimate involving body length. Thus, estimates
of the nonheritable correlation component between body

length and geographic range size (e.g., ) are meaningless.re

The total phenotypic correlation ( ) is determined entirelyr

by the correlation between the phylogenetic components
of the two traits ( ) and the heritability of the geographicra

range size (table 1).

Discussion

The phylogenetic mixed model offers greater evolutionary
insight and more realistic evolutionary assumptions than
many of the other existing methods for conducting com-
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Table 1: Results from a worked example using the data and phylogeny in figure 7

PMM FIC TIPS

Trait 1: geographic range:
Phylogenetic heritability 2h1 .63 1 0
Total phenotypic variance 2j1 4.56 # 105 8.65 # 105 4.11 # 105

Trait 2: body length:
Phylogenetic heritability 2h1 1 1 0
Total phenotypic variance 2j1 3.66 # 106 3.67 # 106 7.77 # 106

Bivariate results:
Correlation between heritable effects �.02
Correlation between nonheritable effects NA
Total phenotypic correlation �.025 �.06 .17

Note: All calculations were done in COMPARE (Martins 2001). Figure 7 is available in the online

edition of the American Naturalist. mixed model; (1985) in-PMM p phylogenetic FIC p Felsenstein’s

dependent contrasts method; correlation.TIPS p nonphylogenetic

parative studies. It envisions phenotypic evolution as being
the result of a complex of forces including some that are
retained over long periods of time, forming patterns in
trait variation that reflect the underlying phylogenetic
structure, and others that act more quickly, in bursts of
change that are lost easily at new speciation events. Our
model reparameterization and new algorithms provide
good estimates of several evolutionarily interesting param-
eters, including a phylogenetic heritability measuring the
relative importance of phylogenetic versus nonphyloge-
netic evolutionary effects.

Comparison to the Phylogenetic Generalized
Least Squares Method

The choice between the PMM and the PGLS method is
one of underlying evolutionary assumptions. Both the
PGLS method and the PMM are extensions of the inde-
pendent contrasts method. As mentioned above, indepen-
dent contrasts is a special case of the mixed model with
phylogenetic heritability ( ) assumed to equal 1. Inde-2h
pendent contrasts can also be viewed as a special case of
the generalized least squares method in which the con-
straining force (a) tends to 0. The additional parameters
are what give PGLS and the PMM the flexibility to avoid
the poor statistical performance of independent contrasts
and the nonphylogenetic method when the underlying
evolutionary model is not known (Martins et al. 2002).
In terms of evolutionary interpretation, however, the two
parameters (a and ) are quite different and extend in-2h
dependent contrasts in different directions. The mixed
model phylogenetic heritability parameter measures the
relative importance of long-lasting versus short-lived
change in explaining interspecific variation, whereas the
PGLS parameter a estimates the strength of evolutionary
constraints acting throughout the phylogeny. Although ei-
ther model could be expanded to include the parameters

of the other, this does not seem practical given the small
sample sizes typical of phylogenetic analyses and the al-
ready observed challenges for the mixed model parameter
estimation.

Instead, the choice between these two models should
depend on the types of traits and historical processes
thought to be important for a particular set of data. For
example, the mixed model may be particularly effective
with large clades evolving over very long periods of time,
which might exhibit considerable phenotypic plasticity at
the tips of the phylogeny (e.g., the Daphnia head extension
example above). PGLS may be more effective with smaller
clades when a single constraining force or optimum is
thought to have acted throughout the history of the clade
(e.g., forcing overall body length not to become too large
or too small). Cheverud et al.’s (1985; Gittleman and Kot
1990) autoregressive method and Diniz-Filho et al.’s
(1998) phylogenetic eigenvector regression are more sim-
ilar to the mixed model than to independent contrasts and
PGLS, at least in spirit, because they also partition phe-
notypic variation into phylogenetic and specific compo-
nents. But as shown above, they are mathematically very
different models than the mixed model, and direct com-
parisons may not be possible. In the end, a multipronged
approach comparing the results of all or several of these
methods on the same data set may be the most infor-
mative.

Interpretations and Applications

Although the PMM decomposition of the total phenotypic
variance is analogous to the traditional quantitative genetic
approach, the interpretation of its parameters is quite dif-
ferent. In quantitative genetics, variance within a species
is partitioned into components associated with heritable
and nonheritable effects, and the heritability explicitly es-
timates the proportion of observed variation that is due
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Table 2: Results from analysis of data and phylogeny in figure 7

Body length Geographic range

ARM:
Phylogenetic autocorrelation (r) .04 .64
Phylogenetic inertia (R2) 10.10% .02%
Correlation of phylogenetic effects .76
Correlation of specific effects

(comparable to other methods) .15
PGLS:

Total phenotypic correlation �.04

Note: All calculations were done in COMPARE (Martins 2001). Figure 7 is available in the online

edition of the American Naturalist. model (Cheverud et al. 1985);ARM p autoregressive

generalized least squares (Grafen 1989, 1992; Martins 1999).PGLS p phylogenetic

to additive genetic causes. In contrast, at the interspecific
level, the heritable component includes not only gradual
genetic changes accumulated over the phylogeny but also
any nongenetic response to an environment that is shared
by an entire clade of organisms. The phylogenetic non-
heritable component includes any short-lived change in
phenotype, whether they are the result of genetic change,
phenotypic plasticity, or response to changes in the en-
vironment. In the phylogenetic context, the distinction
between heritable and nonheritable effects is one of time
rather than mechanism, and the phylogenetic heritability
is a function of the depth of the phylogeny. Since the
phylogenetic component to the phenotype is modeled as
evolving via Brownian motion, the heritable variation in
the trait satisfies , where m is the rate of origin2j p mta

of heritable variation and t is the length of time spanned
by the phylogeny. This leads to the heritability parameter
satisfying . All other things being equal,2 2h p mt/(mt � j )e

estimated phylogenetic heritabilities will be larger when
estimated using phylogenies that span greater lengths of
evolutionary time. Thus comparisons between heritabili-
ties will be most relevant when they involve traits evolving
along the same tree (with the same total time, t).

In addition to providing reasonable parameter estimates
of the phylogenetic heritability and the usual bivariate cor-
relations, the mixed model can be used to estimate several
other parameters (e.g., , , ) that would be of con-2j r ra e

siderable evolutionary interest. For example, it would be
very interesting to compare two component correlations
( and ), which respectively provide insight into ther ra e

constraints on long- versus short-term phenotypic evo-
lution. Also, the grand mean of the mixed model is an
estimate of the ancestral state at the root of the phylogeny,
with similarities to the maximum likelihood estimator of
Schulter et al. (1997) and to the generalized least squares
estimator of Martins and Hansen (1997) but with a dif-
ferent underlying model (see the online appendix for ex-
planation of how to estimate the phenotypes of internal
nodes).

Practical Considerations

Unfortunately, it is already well known that the accurate
estimation of genetic and environmental correlations gen-
erally requires phenotypic data on several hundreds of
independent families (Van Vleck and Henderson 1961;
Brown 1969; Lynch and Walsh 1998). Thus the poor be-
havior of the mixed model with small sample sizes has
little to do with phylogenies per se. As mentioned above,
the required numbers of taxa for phylogenetic heritability
analyses between species are actually smaller than the re-
quired numbers of individuals for quantitative genetic her-
itability analyses, due to the architectural differences be-
tween typical phylogenies and pedigrees. Although good
estimates of the total phenotypic correlation ( ) can ber

obtained with the small sample sizes typical of most phy-
logenetic studies, good estimates of the component cor-
relations in bivariate phylogenetic analyses may require
information on the mean phenotypes of hundreds of taxa.
We see this as a strong reason to conduct large-scale com-
parative studies rather than as a weakness of the method
because of the unprecedented opportunity to gain new
insight into the phenotypic architecture of interspecific
data.

While a simple test of whether the phylogenetic heri-
tability is significantly different from either 0 or 1 may
seem a useful way to justify formally the use of a non-
phylogenetic approach or Felsenstein’s (1985) independent
contrasts method, we must be cautious because with the
sample sizes typical of most recent phylogenetic analyses,
the statistical power for rejecting these sorts of null hy-
potheses is generally quite limited. If is substantially2h
lower than 1.0, independent contrasts can perform poorly
and if is only a little larger than 0.0, the nonphylogenetic2h
approach will also perform poorly. Furthermore, it is not
even sufficient to consider values of close to 1.0 or 0.0.2h
For example, when is very different from , independentr ra e

contrasts can yield very poor estimates of the evolutionary
relationship between traits ( ), even when is relatively2r h
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large but unequal to 1.0. Thus neither independent con-
trasts nor the nonphylogenetic method should be applied
unless the researcher is very certain that the PMM view
of evolution does not apply to the traits of interest.

Within-Taxon Variation

In outlining the PMM, we treated the mean phenotype of
a taxon as being a linear sum of phylogenetically heritable
and nonheritable components, both of which are assumed
to apply to all members of the associated taxon. If taxon-
specific means are estimated with error (due, for example,
to the measurement of a finite number of individuals and
populations within species), there will also be a third con-
tribution to the taxon-specific mean—a residual deviation
resulting from sampling error, yielding the mathematical
model . As outlined in the online ap-y p m � a � e � eij i i ij

pendix, this third term is readily added to the mixed model.
The primary modification to the analysis is the use of mea-
sures of individuals rather than of population mean phe-
notypes, and application of the modified mixed model equa-
tions then yields three variance components, the third of
which is a measure of evolutionarily irrelevant sampling
variance. In the absence of this modification, measurement-
error variance will be confounded with the estimate of the
phylogenetically nonheritable (but biologically relevant)
component of variance, yielding slightly downward-biased
estimates of the phylogenetic heritability as well as likely
small biases in other parameter estimates.

A related approach was taken in PHYLIP version 3.6
(Felsenstein 2000), in which Felsenstein adapted the ideas
in Lynch (1991) to develop a test for the phylogenetic effect
present in a set of comparative data by incorporating
within-species variation into his independent contrasts
method. Specifically, the program requires data from in-
dividually measured organisms (rather than taxon mean
phenotypes) and then applies the model y p m � a �ij i

, where m is the grand mean, is the heritable effect fore aij i

taxon i, and is the independent residual for individualeij

j in taxon i. Christman et al. (1997) used this model in
their analysis of morphological data on four populations
of amphipods. Felsenstein’s extended model and the
Christman et al. (1997) analyses still differ from the PMM
in that they do not include a term for nonheritable effects
(e.g., fast genetic changes) that apply to all individuals
within a taxon.
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