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SUMMARY

As species evolve along a phylogenetic tree, their phenotypes diverge. We expect closely related species
to retain some phenotypic similarities owing to their shared evolutionary histories. The degree of
similarity depends both on the phylogeny and on the detailed evolutionary changes that accumulate each
generation. In this study, I review a general framework that can be used to translate between
macroevolutionary patterns and the underlying microevolutionary process by comparing the observed
relationships among measured species phenotypes and the expected relationship structure due to the
phylogeny and underlying models of phenotypic evolution. I then show how the framework can be used
to compare methods used (1) to reconstruct phylogenies, (2) to correct comparative data for phylogenetic
non-independence, and (3) to infer details of the microevolutionary process from interspecific data and
a phylogeny. Use of this framework and a microevolutionary perspective on the analysis of interspecific
data opens up new fields of inquiry and many new uses for phylogenies and comparative data.

1. INTRODUCTION

Usually, interspecific or ‘comparative’ data are not
independent of one another because the species from
which the data are measured have been evolving
together for some period of evolutionary time (see, for
example: Felsenstein 1985; Harvey & Pagel 1991).
The exact amount of non-independence depends both
on the phylogeny by which the species are related and
on the underlying processes of phenotypic evolution
working at each generation.

Traditionally, systematists have used this non-
independence of comparative data to infer the
branching patterns of speciation (i.e. the phylogeny)
underlying extant organisms (see, for reviews: Felsen-
stein 1988; Swofford & Olsen 1990). Several pheno-
typic traits are chosen that fit the assumptions of some
numerical algorithm (e.g. traits that are believed to
have evolved neutrally or parsimoniously), and the
relationships between interspecific measurements of
these traits are used to infer the historical relationships
between the measured species. Throughout this pro-
cedure, the emphasis is on the evolution of species (or
other taxonomic group).

In contrast, the ‘comparative method’ is a family of
techniques in which interspecific measurements are
used to infer something about the biology of particular
traits. Independence of data points is one of the
primary assumptions of most parametric statistical
procedures; so, when ordinary statistics are used to
analyse comparative data, this assumption is regularly
violated. In recent years, a number of techniques have
been proposed to correct this problem by incorporating
phylogenetic or taxonomic information into the analy-
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sis (see, for reviews: Harvey & Pagel 1991; Miles &
Dunham 1994; Maddison 1994; Martins & Hansen
1995). Unlike phylogeny reconstruction, in the stat-
istical correction of comparative data, the emphasis is
on the organismal traits themselves rather than on the
species that exhibit those traits. Traits are chosen
because of some particular hypothesis, rather than
because they fit a set of predefined assumptions, and
generally the phylogeny and models of phenotypic
evolution are assumed to be known.

As new phylogenetic comparative methods were
developed, researchers also began to consider the many
other evolutionary questions that can be answered
given a set of interspecific measurements and a
phylogeny. Using comparative data, we can now infer
the ancestral states of phenotypes, the strength and
type of microevolutionary forces acting on characters,
the relationships between evolutionary changes in two
or more traits, and the degree of phylogenetic inertia in
a character.

Thus, there have been three primary uses of
interspecific data in evolutionary biology: (1) to
reconstruct phylogenies, (2) to correct a problem in the
statistical analysis of comparative data, and (3) to infer
the detailed evolutionary history of particular charac-
ters. In this paper, I discuss how a microevolutionary
perspective can be used to link these three processes,
and thereby clarify the issues underlying all three.
Using the general framework proposed in Hansen &
Martins (1995), I discuss what can and cannot be
inferred from comparative data and a phylogeny, and
how that framework can be used to evaluate and
compare proposed methods. In many cases, statistical
techniques to estimate the desired parameters have not
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yet been developed and/or phylogenetic information
may not be adequate to answer the questions. At the
risk of being overly optimistic, this paper strives only to
discuss what may be possible given appropriate in-
formation.

2. GENERAL FRAMEWORK

The following is an applied version of the general
framework proposed by Hansen & Martins (1995). If
we measure the phenotypes or genotypes of several
species in a clade, we can describe the relationship
between the measurements of each pair of species as a
symmetrical N x N matrix, where & is the number of
species in the clade. I shall refer to this matrix as the
observed relation matrix (orRM; e.g. table 1). The elements
of the orM may be phenetic distances, estimates of
genetic variance and covariance, or any other function
of the measured data. The orM can be for a single
character or multiple characters (in which case the
orM would be multidimensional).

We can obtain a complementary matrix of the
expected pattern of relationship among measured
species by considering the evolutionary processes that
led to those relationships. At each generation, natural
selection and random genetic drift interact with
heredity and environmental fluctuations to form the
observed phenotype. Most of these forces are likely to
be stochastic, such that the phenotype at each
generation can be viewed as a probabilistic phenom-
enon with some mean expectation and variance about
that expectation. During multiple generations and
speciation events, evolution unfolds along the branches
of a phylogenetic tree resulting in phenotypes of extant
species. Because the microevolutionary forces involved
are stochastic, evolution along a phylogeny might
have occurred in any one of an infinite number of
possible ways. The evolutionary pathway that actually
occurred can be viewed as a single sample from
this statistical population of possible evolutionary
scenarios.

The single result of the ‘true’ evolutionary scenario
(i.e. the phenotypes of extant species) can be described
as an orM. Similarly, the endpoints of each of the other

Table 1. An example with use of hypothetical comparative data

species mean phenotypes

2.0
3.0
1.5
1.0
4.5
3.5

SlcRwNel =

sample observed relation matrix (orM)

A B C D E F
A 0.34 0.90 0.30 0.30 0.28 0.34
B 0.90 0.35 0.31 0.27 0.29 0.32
C 0.30 0.31 0.31 0.85 0.31 0.34
D 0.30 0.27 0.85 0.30 0.32 0.29
E 0.28 0.29 0.31 0.32 0.29 0.88
F 0.34 0.32 0.34 0.29 0.88 0.30
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Table 2. Examples of expected relation matrices for phylogenies
i figure 1.

(Phylogeny A, figuure la. Under a Brownian motion model
of gradual phenotypic evolution, V, = ot, where o is the
variance of evolutionary changes and ¢ is the time from the
root of the tree to the present. Under a speciational or
punctuational version of the same model, V, = a4, still, but ¢
is the number of speciation events from the root of the tree to
the present (in this case, one).

Phylogeny B, figure 16 . Under a Brownian motion model
of gradual phenotypic evolution, V, = of, where o is the
variance of evolutionary changes and ¢ is the time from the
root of the tree to the present. Similarly, C;, = ot,, where ¢,
is the time that each pair of sister species evolved together
from the root of the tree to the point of diversification into
different species. Under a speciational or punctuational
version of the same model, V, = ot and C}, = o, still, but ¢ is
measured in units of the number of speciation events. In this
case, ( is the number of speciation events occurring from the
root of the tree to the present (i.e. two) and ¢, is the number
of speciation events occurring from the root of the tree to the
point of diversification of the pairs of sister species (one).)

expected relation matrices (ERMs) for:

phylogeny A

A B c D E r
A v, 0 0 0 0 0
B 0 A 0 0 0 0
C 0 0 A 0 0 0
D 0 0 0 A 0 0
E 0 0 0 0 v, 0
F 0 0 0 0 0 v,
phylogeny B

A B c D E r
A Vy Cy 0 0 0 0
B Cy |28 0 0 0 0
c 0 0 Vs Cy 0 0
D 0 0 Cy Vs 0 0
E 0 0 0 0 Vs Cy
F 0 0 0 0 Cy Vs

possible scenarios in the statistical population can also
be described as relationship matrices. These relation-
ship matrices will share some statistical properties (e.g.
means, variances, covariances) determined by the
microevolutionary forces acting throughout evolution.
Given information about those microevolutionary
forces, we can infer the expected relationships between
all possible pairs of species, and describe them as an
expected relation matrix (ERM; table 2).

3. EFFECTS OF VARYING PHYLOGENY AND
MODEL OF CHANGE - SOME EXAMPLES

Imagine a star phylogeny in which all species in
clade A diverged instantaneously from a single ancestor
and have been evolving by the same processes
independently of each other ever since (figure 14). The
expected relationship (e.g. covariance) between the
phenotypes of each pair of species on this phylogeny
will be the same as the expected covariance between all
other pairs of species on this phylogeny, because each



time

Figure 1. Two phylogenies for use with the examples.

species has been evolving independently of every other
species for exactly the same amount of time and under
the same sort of microevolutionary processes. Thus, the
off-diagonal elements of the ErM will be identical (see
table 2). The variance of each species also depends on
the stochastic nature of evolution such that if each
species has been evolving for the same amount of total
time and under the same sorts of microevolutionary
processes, the expected variance of all species will be
identical. Thus, the ErM in this situation is a matrix
with diagonal elements V,, and off-diagonal elements,
C,.

Now imagine a phylogeny in which two major
speciation events occurred (figure 14). In this example,
the ancestral lineage divided once into three taxa, each
of which later divided again into two sister species,
resulting in a total of six taxa (figure 1b). Each
species is expected to be as similar to its sister species as
each other species in the clade is to its sister species,
since all sister species have been evolving together or
independently of one another for the same amount of
time and under the same sorts of microevolutionary
processes. All sister species will thus share a single value
of expected covariance (Cy;) (see table 2). For the same
reasons, each species is also expected to be as similar to
its non-sister taxa as is every other species in the clade
(Chs). Again, the expected variance of each species will
be the same as the expected variance of all other species
on the phylogeny (V) because they have all been
evolving for the same total length of time.

The erms of clades A and B will also depend on the
details of the microevolutionary process underlying
phenotypic change (e.g. table 2). For example, if
phenotypic evolution is due solely to random genetic
drift in a simple model of neutral evolution, similarity
among species will depend primarily on the time that
the species have been evolving together or independ-
ently of one another. In this case, we should expect
V, = Vg, because the species in clade A have been
evolving for the same total amount of time as the
species in clade B. On the other hand, we should expect
Cgs < Cg;, because in clade B each pair of sister species
has evolved together as a single common ancestor for
more time than the three sister species ancestors
evolved together as the single ancestor of the entire
clade. Similarly, we expect C, = Cy, = 0 because the
species in clade A and the sister species pairs in clade B
have been evolving independently of one another from
the root of their phylogenies.

Two common models of neutral evolution assume
that (1) the total amount of evolutionary change is
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proportional to time with some change possible at each
generation (i.e. a model of ‘gradual’ evolution) and
(2) the total amount of evolutionary change is
proportional to the number of speciation events, with
change occurring only at branching points on a
phylogeny (i.e. a model of ‘punctuated’ or ‘speci-
ational’ evolution). In simple Brownian motion forms
of both models (for example, as described by Edwards
& Cavalli-Sforza (1964), Felsenstein (1973, 1981) and
Lynch & Hill (1986)), variances and covariances of
species mean phenotypes will equal o, where o is the
infinitesimal variance of the stochastic process (i.e. the
variance of evolutionary changes occurring at each
generation or speciation event) and ¢ is a measure of
time that the species have been evolving in total (for
estimates of the variance) or with other species as a
single common ancestor (for estimates of covariance).
Measures of time are in number of generations for a
true time-based model, or in number of speciation
events for a punctuational type of model. Table 2
shows how differences between these types of models
and phylogenies can affect the ErM.

4. PHYLOGENY RECONSTRUCTION

Now imagine that we have actually measured six
species in an existing clade (see, for example, table 1),
and that we wish to infer the phylogeny underlying the
evolution of their phenotypes. We can estimate the orm
empirically, for example, by calculating the phenetic
distances between all species in the clade. Given a
known model of the microevolutionary process, we can
also calculate the ErM predicted for any phylogeny
containing these six species (see, for example, table 2).
If we calculate the ErM predicted for many different
phylogenies, then we might define the ‘best’ phylogeny
as one that gives us the closest match between empirical
measurements (orM) and theoretical expectations
(ErM). For example, given the orMm in table 1, and the
assumption that the character used to calculate this
oRrM has been evolving purely by random genetic drift,
the phylogeny in figure 14 would be judged as a better
phylogenetic hypothesis than the one in figure la
because its ERM is more similar in form to the orM.

In very broad terms, most phylogeny reconstruction
methods can be represented as a similar comparison of
orM and ErRM. Different methods use different criteria
for determining whether the orM and ErRM are similar.
For example ‘distance’ methods generally use some
sort of least squares criterion, such that the sum of
squared differences between orRM and ERM Is mini-
mized. Maximum likelihood approaches derive a
probability statement from the ERM and then maximize
the probability that the ormM was sampled from a
population with the characteristics described by the
ERM. Other approaches (e.g. parsimony) do not
determine an ErM explicitly, but simply prefer an orm
with certain characteristics. For example, parsimony
approaches minimize the number of evolutionary
changes occurring along the phylogeny. An ErM that
reflects this would have small absolute values of both
variances and covariances and an internal structure
that clearly reflects the phylogeny.
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Once orM and ERM have been determined, there are
still many practical difficulties involved in recon-
structing phylogenies. For example, there are 945
possible phylogenies for six species and the number of
possible trees increases rapidly with the number of
species (Felsenstein 1978). Therefore, it is not usually
possible to try all of the possible phylogenies, and
numecrous algorithms for searching among possible
phylogenies have been developed. It is also not clear
which measure of ‘match’ between orM and ERM is the
most appropriate. Computer simulation studies suggest
that most of the existing approaches give reasonable
answers (sce, for example, Kuhner & Felsenstein 1994 ),
and still other methods may be possible. Finally and
probably most importantly, the best model of the
microevolutionary process is not known and is con-
tentiously argued by systematists. The neutral
Brownian motion model of molecular evolution used
by Felsenstein (1973, 1981) in his maximum likelihood
method, the parsimony model of phenotypic evolution
developed by Farris (1970) and other authors and the
‘distance method’ models all have proponents and
detractors (see, for reviews: Felsenstein 1988 ; Swofford
& Olson 1990).

5. ‘CORRECTING’ FOR PHYLOGENY

Most standard parametric statistics (e.g. regression,
ANOVA) make three assumptions when estimating
parameters and conducting hypothesis tests. These are
that the error terms in general linear models underlying
the statistical procedure (1) are statistically inde-
pendent of one another, (2) have homoscedastic (the
same or similar) variances and (3) are normally
distributed. From an evolutionary perspective, these
assumptions can be translated into assumptions re-
garding the form of the orm and thus correspondingly
the ErRM. If the comparative data are statistically
independent, they will be uncorrelated with each other
such that the off-diagonal elements of the orM all equal
zero (C, = Cy, = Cy, =0 in the examples of table
2). Similarly, the requirement that the error term be
homoscedastic translates into a requirement that the
diagonal elements of the orM be equal to one another
(all V, are equal; all V; are equal). The two
assumptions together are equivalent to requiring that
the orM be of the form ¢*I where ¢ is the variance of
the transformed contrasts and I is the identity matrix
(with numbers 1 the diagonal, and numbers 0
elsewhere). In evolutionary terms, only comparative
data measured from species related to one another by
star phylogenies (figure 1a) or with characters evolving
under certain microevolutionary models (e.g. strong
stabilizing selection) will have orus of this type. The
final requirement is that the error terms (and thus,
usually, the measured data) be normally distributed.
Again, only certain microevolutionary processes will
lead to normally distributed species phenotypes with
an orM of the above type.

Different comparative methods propose different
ways of ensuring that these assumptions will be met.
Most, however, can be viewed as a transformation of
the raw species data into statistics that meet these
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assumptions. Many comparative methods use a known
phylogeny and assumed model of phenotypic change
to transform an existing orRM into one of the form found
in the first ErM of table 2. For example, Felsenstein’s
(1985) method uses an assumption that the characters
have been evolving as if by Brownian motion to
generate his ‘standardized, independent contrasts’.
Brownian motion is a mathematical model commonly
used in population genetics to describe evolution under
random genetic drift. Felsenstein’s procedure might be
described as use of a model " = Cy to transform raw
species data () into a set of contrasts (p) that have
zero covariance (the off-diagonals of their orM equal
zero) and the same variance (the diagonals of the orm
are all equal) by using the information contained in the
erM for that phylogeny and the Brownian motion
model of change (combined in a complex way to form
the transformation matrix, C). For example, the ERMS
described in table 2 can be used to transform data
measured from species related to each other by the
phylogenies in figure 1 such that the resulting orms are
of the form ¢?I. Under Brownian motion, the species
mean phenotypes will be normally distributed. Thus, if
the Brownian motion model is appropriate for the
measured data, Felsenstein’s contrasts are guaranteed
to fit the three primary assumptions of most parametric
statistics.

Other comparative methods also solve the problem
of non-independence by using ERMs to transform the
data such that the orM of the transformed data is of the
form ¢?I. For example, Cheverud et al. (1985) and
Gittleman & Kot (1990) proposed a spatial auto-
correlation method for incorporating phylogenetic
information into the analysis of interspecific data.
Using a first order autoregressive model, they partition
variation in the comparative data into a phylogenetic
component (pWy, where p is an estimated auto-
correlation coefficient, W is a relationship matrix
similar to the ErRMs described in this paper and y is a
vector of the measured data) and a non-phylogenctic
component (¢ = y—pWy). The model is again, a way
of transforming the raw data (y) into independent
statistics (p’ = e = y—pWy) that are expected to fit
the assumptions of most standard statistical procedures.

Whereas Felsenstein’s  (1985) model explicitly
assumes a Brownian motion model of phenotypic
evolution, the p coefficient in the model of Cheverud et
al. (1985) offers some statistical flexibility as to the
actual microevolutionary process. Although the
authors of this method do not discuss the micro-
evolutionary processes underlying the assumptions of
their model, if we consider the method from the
evolutionary framework described above, there is still
an ERM underlying their transformation of the raw
comparative data into the desired form, as there is for
all statistical models of comparative data. For example,
according to the spatial autoregressive model, the
variance of any species mean phenotype (y,) will be
given by Var(pZ[w, y] +¢,) where w, is the row of the W
relationship matrix corresponding to species ¢, and ¢; is
one of a set of independent, homoscedastic, normally
distributed variables. The equation for the covariance
between species phenotypes is similar. Thus, from an



evolutionary perspective there is a hidden assumption
underlying the use of this spatial model that, whatever
microevolutionary processes have been acting in the
clade, they have resulted in species data with variances
and covariances of the above form. Unfortunately,
although several stochastic models of the micro-
evolutionary process have been considered in modern
evolutionary biology (with and without selection of
various types), none of the commonly used models are
expected to produce species data with the above form
(Martins & Hansen 1995). Similar consideration of
other methods for the analysis of comparative data can
be useful in comparing methods in terms of their
underlying assumptions.

6. OTHER EVOLUTIONARY QUESTIONS

With the availability of so many approaches to the
problem of incorporating phylogenetic information
into comparative analyses, researchers have also begun
to explore a number of other interesting evolutionary
questions that can be answered by combining com-
parative data with phylogenies. For example, com-
parative analyses can be used to estimate the degree of
‘phylogenetic effect’ in a character, the magnitude of
the relationship between evolutionary changes in two
characters, or the rate of phenotypic evolution of
different characters. They can be used to infer the
ancestral states of characters and to test whether
selection has been acting on a character or group of
organisms, and to estimate the strength of that
selection. Although statistical methods to conduct
these analyses have not all been fully developed, new
methods are being proposed every year, and 1 shall
concentrate on discussion of what techniques are
theoretically possible, rather than which have already
been implemented.

To answer the above questions requires reference to
an explicit microevolutionary framework and a known
phylogeny. As with phylogeny reconstruction and the
correction of statistical problems, the comparison of
orM and ErRM provides that framework. In essence,
given a known phylogeny and a model of the
phenotypic evolutionary process, we can estimate the
ERM that corresponds to those assumptions. Given an
explicit ERM, we can compare the underlying model of
the microevolutionary process with the actual patterns
observed in a set of comparative data (the orm) and
use the relations between these two matrices to answer
the above questions.

For example, as pointed out originally by Cheverud
et al. (1985), a measure of the statistical fit of a
phylogenetic transformation model to a set of inter-
specific data can be used as a reasonable estimate of the
degree of phylogenetic ‘effect’ or ‘inertia’ inherent in
a character. With any method based on standard
regression techniques (see, for example: Cheverud et al.
1985; Grafen 1989; Lynch 1991), a coefficient of
determination (r*) can be used as a reasonable estimate
of the fit of the model to the data. This statistic
summarizes the correspondence between the patterns
found in the measured comparative data (orM) and the
statistical or evolutionary model (ERM), and can thus
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Figure 2. Relation between phenotypic divergence among
species and time expected under a microevolutionary model
of neutral evolution via random genetic drift alone (straight
line) and a model of evolution under stabilizing selection and
random genetic drift (curved line).

serve as a reasonable estimate of the ‘phylogenetic
effect” of a character. In theory, other measures of
similarity can be developed for other methods such as
Felsenstein’s maximum likelihood approach and
parsimony.

Another important question is whether a character
has been evolving purely by random genetic drift or
whether selection has played an important role. In
Martins (1994), I developed a generalized least squares
(cLs) procedure to estimate the rate of phenotypic
evolution that can also be used as a test of whether the
Brownian motion model of phenotypic evolution via
random genetic drift provides an adequate fit to a set
of comparative data, or whether a model of stabilizing
selection (such as that developed by Lande (1976,
1979)) would be more appropriate. This method
consists of calculating the divergence between pairs of
species on a phylogeny (the orM) and relating this
divergence to the time that the species have been
evolving independently of one another. Under a
Brownian motion model of evolution, the relation
between divergence and time is expected to be linear,
with pairs of species that have been separated for long
periods of time also exhibiting greater phenotypic
differentiation (this is the Erm; figure 2). Under a
model of stabilizing selection, the relation between
divergence and time is expected to be exponential
rather than linear (figure 2). Given a known phy-
logeny, either or both models can be fitted to a set of
comparative data, and the fit of the models to the data
can be assessed by using GLs regression procedures. The
relative appropriateness of the two competing models
can also be compared by using likelihood ratio tests,
and estimates of the internal parameters of the models
(e.g. the rate of phenotypic evolution, the strength of
stabilizing selection) can be obtained. Again, in theory,
similar methods could be developed to compare the fit
of any microevolutionary model for which an ErRM can
be defined.

The relation between orRM and ERM can also be used
to develop estimators for the ancestral states of a
character, or the relation between evolutionary
changes in two characters, or to transform the raw
comparative data into phylogenetically relevant units
that can then be used in other statistical procedures (as
discussed in the previous section). Probably, the most
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useful ErMs will be obtained from explicit micro-
evolutionary models. For example, in Hansen &
Martins (1995) we describe a general model of
phenotypic evolution that assumes only that (1)
phenotypic evolution can be described as a Markovian
stochastic process, (2) the process unfolds along a
branching phylogenetic tree and (3) species evolve
independently after a split (i.e. speciation event) on the
phylogeny. We further describe the macroevolutionary
pattern of relationships among species expected under
this general model (the ErM). Most of the mathematical
models of phenotypic evolution that have been
considered in population and quantitative genetics are
special cases of this general framework. Thus, we also
show how several population genetic models (e.g.
evolution via random genetic drift, with or without
stabilizing selection, directional selection or environ-
mental fluctuations) can be described in terms of the
expected variance-covariance structure (the ERM) of
the resulting extant species phenotypes. As mentioned
above, ERMs can also be obtained from different
statistical procedures (e.g. spatial autoregression) or
numerical algorithms (e.g. parsimony). By developing
inferential methods based on different ERMs we can
create a link between the macroevolutionary pattern
observed In comparative data and the micro-
evolutionary processes underlying change at each
generation. We can thus create techniques to estimate
parameters such as the strength of selection, rates of
mutation and even basic genetic variances and
covariances.

7. DISCUSSION

Evolutionary biology is by nature an inferential
science. We do empirical studies to monitor current
evolutionary forces in the field and then infer that the
same forces were prevalent in earlier times. Artificial
selection experiments show us how microevolutionary
forces can act on existing phenotypes and suggest what
the result would be if those forces continued over
geological time. Even palaeontologists are often forced
to infer the former existence and phenotypes of species
from the tiniest traces of evidence in the fossil record.
Rarely does evolution occur sufficiently quickly or
within our view, so that we can observe and measure it.

One of the few types of information that we have
about how evolution actually occurred can be meas-
ured as the phenotypic and genetic diversity of existing
species. By assuming that extant species are the result
of long-term evolution along phylogenetic trees, with
shared ancestors reaching back to the very beginning
of life, we can work backwards and infer the history of
those species and their phenotypes. We can observe
existing species to measure their phenotypes, their
properties of inheritance and the types of environment
in which they live. Using this information and some
assumptions about the type and magnitude of micro-
evolutionary processes (e.g. selection, drift) that were
active in the past, we can develop hypotheses about the
patterns of species diversification and division that led
to the patterns of phenotypic and genetic similarity
observed in extant species. Similarly, if we assume that
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certain microevolutionary processes were acting, we
can work backwards and infer the ancestral states of
particular characters, how quickly they evolved and
whether or not evolutionary changes in those charac-
ters have been subjected to various types of constraints
through evolutionary time. Although there are many
problems that still need to be addressed regarding
inferences made inappropriately from methods that
have already been developed (see, for example, Leroi
et al. 1994) and although some authors (for example,
Harvey & Pagel 1991) may despair at ever having
sufficiently good phylogenies or methods that are
sufficiently assumption-free, the phylogenetic com-
parative method remains one of the most powerful
techniques in modern evolutionary biology.

I thank Thomas Hansen, Paul Harvey and Joe Felsenstein
for the many discussions that led to the ideas in this paper.
This work was supported by a grant from the National
Science Foundation (no. DEB-9406964).
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