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Abstract.—We explored the impact of phylogeny shape on the results of interspecific statistical analyses
incorporating phylogenetic information. In most phylogenetic comparative methods (PCMs), the
phylogeny can be represented as a relationship matrix, and the hierarchical nature of interspecific
phylogenies translates into a distinctive blocklike matrix that can be described by its eigenvectors
(topology) and eigenvalues (branch lengths). Thus, differences in the eigenvectors and eigenvalues
of different relationship matrices can be used to gauge the impact of possible phylogeny errors by
comparing the actual phylogeny used in a PCM analysis with a second phylogenetic hypothesis that
may be more accurate. For example, we can use the sum of inverse eigenvalues as a rough index to
compare the impact of phylogenies with different branch lengths. Topological differences are better
described by the eigenvectors. In general, phylogeny errors that involve deep splits in the phylogeny
(e.g., moving a taxon across the base of the phylogeny) are likely to have much greater impact than will
those involving small perturbations in the fine structure near the tips. Small perturbations, however,
may have more of an impact if the phylogeny structure is highly dependent (with many recent splits
near the tips of the tree). Unfortunately, the impact of any phylogeny difference on the results of a PCM
depends on the details of the data being considered. Recommendations regarding the choice, design,
and statistical power of interspecific analyses are also made. [Comparative method; eigenvalues;
eigenvectors; evolution; phylogeny; principal components; theory.]

In recent years, it has become generally
accepted that statistical analyses of interspe-
cific data should be conducted in a phylo-
genetic context using the phylogenetic com-
parative method (PCM; for description and
reviews, see Martins and Hansen, 1996, 1997;
Nunn and Barton, 2001). Whether incorpora-
tion of phylogenetic information will have a
major impact on the results of a specific anal-
ysis, however, depends on the details of the
phylogeny and of the data being analyzed.
In some cases, this information will make a
major difference; in others, the difference will
be slight. Similarly, some researchers may be
hesitant to apply a PCM because the phylo-
genetic information available for their mea-
sured taxa may be unreliable or not avail-
able. The actual effect of phylogenetic errors
on the results of a PCM analysis depends in
part on how those errors affect tree shape.
Other researchers prefer not to make the re-
strictive assumptions necessary for applica-
tion of some of the existing PCMs, especially
given that phylogenetic information some-
times has only a minor impact on the re-
sults of an analysis (e.g., Price, 1997). But
again, whether unreasonable assumptions
will have an impact on the results of a PCM
analysis depends on the details of the incor-
porated phylogeny. Here, we explore these

issues mathematically and draw some gen-
eral conclusions about the impacts of histor-
ical information on comparative analyses.

In general, we expect interspecific data
measured from taxa that are more closely
related on a phylogeny to be more similar
to each other than they are to measures of
more distant phylogenetic relatives simply
because the closely related taxa evolved to-
gether for a longer period of time as a sin-
gle common ancestor. However, most statis-
tical procedures assume that the measured
data are independent. Thus, as pointed out
by Felsenstein (1985), if no extra phyloge-
netic information is included in a compar-
ative analysis, the procedure assumes im-
plicitly that the taxa are related by a “star”
phylogeny, with all of the taxa emerging es-
sentially instantaneously from a single com-
mon ancestor and evolving independently
of each other after that point. Felsenstein’s
(1985) independent contrasts method and
other PCMs fix this problem by allowing a
researcher to specify alternatives to a star
phylogeny. For example, Felsenstein’s (1985)
method combines phylogenetic information
with a mathematical model of how pheno-
types or characters are expected to evolve
along that phylogeny (Brownian motion)
and develops a prediction of how similar
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the measured data should be given their
shared evolutionary history. The method
then uses this prediction to rescale the inter-
specific data, making them statistically inde-
pendent of each other and thus appropriate
for most standard statistical procedures (e.g.,
ancestral state estimation, regression, factor
analysis).

From this perspective, whether incorpora-
tion of phylogenetic information will have
an impact on the results of a comparative
analysis depends in part on the difference be-
tween the way the true phylogeny is incor-
porated into the model of phenotypic evo-
lution and the way the implicitly assumed
star phylogeny is used in a nonphylogenetic
approach. If none of the taxa are closer phy-
logenetic relatives than others, it may not be
important to incorporate phylogenetic infor-
mation. Similarly, for analyses that explic-
itly require phylogenetic information (e.g.,
ancestor reconstruction), whether particular
phylogenetic errors will invalidate the results
of an analysis will depend in part on any
difference between the true phylogeny and
the incorrect one used in the analysis and
specifically how those errors interact with
the data. Even the impact of PCM assump-
tions depends on the details of the analysis.
For example, whether or not the Brownian
motion assumption underlying Felsenstein’s
(1985) method is too unrealistic to be useful
depends on the specific details of the evolu-
tion of the particular phenotypes of interest.

PHYLOGENY SHAPE AND RELATIONSHIP
MATRICES

All of the above issues require a compar-
ison of correct and incorrect phylogenetic
information within the context of a PCM.
In most phylogenetic comparative analy-
ses, the phylogeny is incorporated into the
underlying evolutionary model as a relation-
ship matrix describing the expected similar-
ity (or difference) between the phenotypes
of phylogenetically related taxa due to their
previous shared evolution (e.g., Martins,
1995). For many PCMs, the relationship ma-
trix is explicit. For example, the phylogenetic
generalized least squares approach (Grafen,
1989, 1992; Martins and Hansen, 1997) and
the phylogenetic mixed model (Lynch, 1991)
require a matrix describing the expected
amount of phenotypic change occurring be-

tween each pair of taxa on a phylogeny.
Similarly, the spatial autoregressive model
(Cheverud et al., 1985) uses a phylogenetic
distance matrix to partition interspecific vari-
ation into phylogenetic and “specific” ef-
fects. Even those PCMs that do not explic-
itly apply a relationship matrix can usually
be translated into matrix terms. For exam-
ple, although Felsenstein’s (1985) contrasts
method was originally described as an al-
gorithm, it can equivalently be described as
a restricted maximum likelihood procedure
in which we begin by finding an n× (n− 1)
matrix K, in which KTGK = I, where I is the
(n− 1)× (n− 1) identity matrix and G is a re-
lationship matrix describing similarities due
to phylogenetic relatedness of the measured
taxa (Rohlf, 2001). We then use this K matrix
to transform the data into phylogenetically
independent contrasts.

Thus, to determine the impact of phylo-
genetic information on a PCM, we begin by
comparing relationship matrices, specifically
the correct one and the one assumed by a
particular analysis. In general, the rows and
columns of the relationship matrix (G) cor-
respond to the measured taxa, whereas the
elements of the G matrix describe the ex-
pected similarity (or distance) between the
phenotypes of each pair of taxa due to the
shared evolution of taxa along a common
phylogeny. These elements are usually de-
scribed as variances and covariances and can
be transformed into correlations by factoring
out a common variance term, thereby scaling
the entries to a range between 0 and 1 (equiv-
alent to scaling branch lengths on the phy-
logeny so that the maximum length equals 1).
Here, we assume that G is a correlation
matrix.

Under most microevolutionary models,
the expected similarity between two taxa
depends on the relative amount of time they
evolved together versus apart (Hansen and
Martins, 1996). For example, under a simple
Brownian motion model of evolution, the el-
ement of G corresponding to the relationship
between two taxa can be obtained by deter-
mining the length of the phylogeny from the
root of the tree (when the taxa evolved
together as a single common ancestor) to
the most recent common ancestor of the
two taxa (when they diverged and began to
evolve independently of each other), using a
phylogeny scaled so that the maximum
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distance from root to tips equals 1. The
diagonal elements of G are 1 because each
taxon shares all of its evolutionary history
with itself.

For a star phylogeny, the G relationship
matrix is the identity matrix, I, with diag-
onals of 1 and off-diagonals equal to 0. Off-
diagonals are 0 because taxa in the study have
shared no phylogenetic history beyond the
root. Thus, unless the G matrix differs sub-
stantively from the identity matrix, PCMs are
likely to yield results very similar to those
obtained using a nonphylogenetic analysis.
Similarly, whether errors in the phylogeny or
in the underlying model of phenotypic evo-
lution are likely to affect the results of a PCM
depends on the differences between the true
G and the available, but erroneous, G. Phy-
logenetic errors that result in only small dif-
ferences between the two matrices are less
likely to have a major impact than are errors
resulting in major differences.

PHYLOGENY RELATIONSHIP MATRICES

As pointed out by Piazza and Cavalli-
Sforza (1974), all phylogeny relationship ma-
trices have a distinctive block-type structure
(Fig. 1) imposed by the bifurcating nature
of the phylogeny. We can use this blocklike
nature to compare phylogeny matrices on a
common and evolutionarily relevant scale.
Each bifurcation in the phylogeny, beginning

FIGURE 1. The blocklike nature of a phylogeny re-
lationship matrix (G) and how that matrix can be de-
scribed by its eigenvectors (T) and eigenvalues (λ, such
that T′λ T = G). X and Y are fictitious phenotypic mea-
sures of the four taxa used for an example in the text.

at the root, splits the descendant taxa into two
subclades. Because each row of the G matrix
corresponds to the expected similarity be-
tween a subject taxon and every other taxon
in the phylogeny, the bifurcating split at the
root of the phylogeny splits the G matrix into
four blocks. The upper left block of the G
matrix corresponds to expected similarities
between taxa within the first subclade (AB;
Fig. 1), and the lower right block corresponds
to expected similarities between taxa within
subclade CD. The upper right and lower left
correspond to expected similarities between
taxa across the two subclades (e.g., between
AB and CD) and are (for most PCMs) scaled
to 0 for this initial bifurcation at the root of
the tree. Each subclade is defined by a set of
common ancestors within the subclade and
by not sharing common ancestors with taxa
outside the subclade subsequent to the bi-
furcation event. Thus, further subclade divi-
sions also translate directly into subblocking
of the G matrix.

The phylogeny matrix and its hierarchi-
cal blocking structure can be described suc-
cinctly in terms of its eigenvalues and eigen-
vectors. Any n× n relationship (correlation)
matrix, G, will have n eigenvalues (λi ) and n
eigenvectors (Ti ) satisfying GTi = λi Ti . Dif-
ferences in the phylogenetic topology affect
primarily the eigenvectors, whereas small
differences in the branch lengths are reflected
primarily in the distribution of the eigenval-
ues. Each eigenvector (row of the eigenvector
matrix in Fig. 1) identifies a particular bifur-
cation event on a phylogeny, and the signs of
the eigenvector entries describe the branch-
ing events that comprise an unordered phy-
logenetic topology (see Piazza and Cavalli-
Sforza, 1974). Some changes in the phylogeny
structure will have a greater impact on the
eigenvectors of a phylogenetic relationship
matrix than will others. For example, move-
ment of a single taxon from one point to an-
other within a subclade (Fig. 2) is likely to
have less impact on the pattern of eigenvec-
tors than movement of a taxon across the
root of the phylogeny. Thus, errors in the fine
branching structure of a phylogeny are likely
to have less of an impact on the results of a
PCM than would the erroneous placement
of a single taxon on the wrong side of the
root.

Each eigenvector has a corresponding
eigenvalue that in a rough sense describes
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FIGURE 2. How a phylogeny error involving a sin-
gle taxon can affect the eigenvectors of a phylogenetic
relationship matrix. Movement of the taxon within a
clade has less of an impact on the eigenvectors than does
movement across the root.

the lengths on the phylogeny or the weights
associated with that bifurcation event. For a
starlike phylogeny (Fig. 3, top), the G matrix
will be the identity matrix (I), with all eigen-
values of roughly equal size (1). For other
phylogenies, eigenvalues corresponding to
deeper splits in the trees (nearer the root)
will be larger than those for splits nearer the
tips of the tree (Piazza and Cavalli-Sforza,
1974). Thus, a phylogeny with one deep split
followed by many more recent speciation
events (e.g., Fig. 3, bottom) will result in a G
matrix with two large eigenvalues (reflecting
the two sides of the most ancient split) and
several smaller ones (corresponding to the
more recent splits). When there is a marked
difference between large and small eigenval-
ues, most of the expected similarity between
interspecific data is explained by the deepest
splits on the tree.

FIGURE 3. Distribution of eigenvalues obtained for
two phylogenies with the same topologies but dramat-
ically different branch lengths. The sum of the inverse
eigenvalues can be used as a relative index of the ex-
pected independence of taxon phenotypes.

HOW SIMILAR IS SIMILAR?
Matrices are complex structures, and it is

not obvious how to compare them. In gen-
eral, the distribution of eigenvalues lies on a
continuum, and there are several indices that
could be used to describe the location of any
specific G matrix on that continuum. For ex-
ample, if the sum of the inverse eigenvalues
of the G matrix is close to the total number
of taxa in the study (n), the relationship ma-
trix resembles that for a star phylogeny. In
this case, the results of a PCM using this phy-
logeny are unlikely to differ much from those
of a nonphylogenetic analysis. When the sum
of the inverse eigenvalues is larger (e.g., n2),
measures of extant taxa are expected to be
very similar to each other because of shared
phylogenetic history, and incorporation of
the phylogeny is likely to have a far greater
impact on the results of PCM analysis.

This sort of index, however, will be most
useful in comparing phylogenies with dif-
ferent branch lengths and does not capture
possible variation in the phylogeny matrix
eigenvectors (which summarize the topolog-
ical structure). Sometimes, differences in the
eigenvalues and eigenvectors will also in-
teract. For example, smaller perturbations in
the phylogenetic topology will have a greater
impact on the eigenvectors and eigenvalues
of the relationship matrix if the phylogeny
has a highly dependent structure (i.e., with
long branches near the root of the tree) than
will similar perturbations if the phylogeny is
more independent (i.e., with long branches
leading to the extant taxa).

Although several randomization proce-
dures for comparing matrices are available
(e.g., Smouse and Long, 1992; Legendre et al.,
1994; Phillips and Arnold, 1999), none of
these seems fully adequate to the task of
comparing phylogenetic relationship matri-
ces for use with PCMs. Because of similarities
among all relationship matrices, we expect
any two phylogenies to share some aspects
of their matrices simply because they are
phylogenies. Thus, simply shuffling the ele-
ments along the rows or columns of a matrix
may not be adequate. For example, Phillips
and Arnold (1999) recently developed ran-
domization tests to compare genetic rela-
tionship matrices using the Flury hierarchy.
Their procedure involves sequentially deter-
mining whether two matrices have common
principal components, are fully proportional,
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or are actually equal. The principal compo-
nents of a matrix are the eigenvectors multi-
plied by the square root of their associated
eigenvalues. Because of the shared block-
like structure of relationship matrices, we ex-
pect any two genealogies (or phylogenies) to
share some aspects of their principal com-
ponents. Thus, Phillips and Arnold (1999)
developed a randomization test for Flury
comparisons of genetic relationship matrices
based on shuffling families within popula-
tions so that the two matrices are compared
with a null background of matrices sharing
a genealogical relationship structure. Similar
randomization procedures involving models
of speciation (e.g., Martins, 1996; Housworth
and Martins, 2001) could also be developed
for phylogeny matrix comparisons.

Unfortunately, direct comparison of two
phylogeny matrices will not provide a final
answer because the impact of a phylogeny on
the results of a comparative analysis also de-
pends on the details of the data and how they
interact with the PCM of choice. For exam-
ple, consider the phylogenetic generalized
least squares approach (PGLS; Grafen, 1989,
1992; Martins and Hansen, 1997), which in its
simplest form gives answers that are math-
ematically equivalent to those produced by
Felsenstein’s (1985) method. In this case, the
phylogeny enters as a relationship matrix, G,
describing expected similarities due to phy-
logenetic relatedness of the measured taxa.
Imagine that we are using the independent
contrasts method to estimate the relationship
between two traits (X and Y). Using PGLS,
we can estimate the regression slope between
two traits while taking phylogenetic infor-
mation into account using

b = [X′G−1X]−1X′G−1Y

Var(b) = σ 2[X′G−1X]−1,

where X and Y are the data, σ 2 is a scaling
constant (variance in the residuals), and G
is, again, a matrix describing the expected
similarities between all pairs of taxa due to
shared evolution along a phylogeny. If we do
not incorporate phylogenetic information, G
is the identity matrix, and these equations
reduce to their usual least-squares versions.

Thus, the actual impact of G on estimates
of the regression slope depends in a com-
plex way on the data represented in X and
Y. For example, errors in the small branches

near the tips of the phylogenies are unlikely
to have much of an impact on the results of
the comparative analysis. Consider estimat-
ing the relationship between two traits (X and
Y) as a regression slope, b, using the data in
Figure 1 and a simple PGLS method (similar
to Felsenstein’s contrast method) to incorpo-
rate phylogenetic information. We estimate
a slope of 18.5 (SE = 0.17), which (assum-
ing normality) is significantly greater than 0.
Imagine that there was an error in the origi-
nal phylogeny such that taxa A and B actu-
ally share 80% rather than 70% of their phy-
logenetic history. Redoing the calculations
with our new relationship matrix, we find the
same conclusion of a strong, positive linear
relationship: b = 16.8; SE = 0.17.

We could invent a data set, however, in
which even minor changes in G will have
a major impact on the resulting regression
slope. Specifically, whenever there is a con-
flict between the covariance structure of the
data and the similarities represented by the
phylogeny, small changes in the G matrix
could interact with the data to have large
impacts on the results. For example, imag-
ine that XD = 1.0 (instead of 5, as in Fig. 1),
such that despite the phylogenetic distance
between taxa C and D, these two taxa share
the same value for trait X (XC = XD = 1). By
changing one data point, we have introduced
a severe conflict between the phenotypic data
and the phylogeny. When we estimate the
regression slope (using the phylogeny in
Fig. 1), we find that the traits continue to
be positively related but to a lesser extent
(b = 2.3, SE = 0.33). Imagine though that we
again find the problem with the phylogeny,
and note that taxa A and B are related by 80%
rather than 70%. Suddenly, b = −1.0 (SE =
0.28), indicating a significant negative rela-
tionship between the traits. A minor change
in the phylogeny has led to a major change
in the conclusions and final interpretation.

We can understand this phenomenon by
rephrasing the G matrix in terms of its eigen-
vectors (Ti ) and eigenvalues (λi ) in the above
variance equation. In doing so, we find that
the variance is in the form of a harmonic
mean:

σ 2/Var (b)

= (X′T1)2λ1
−1 + (X′T2)2λ2

−1

+(X′T3)2λ3
−1 + (X′T4)2λ4

−1 + · · · .
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Each term in this harmonic mean corre-
sponds to a particular node on the phy-
logeny, beginning with the largest eigen-
value (λ1) at the root and continuing on
through the smaller eigenvalues near the
tips (e.g., λ4). This harmonic mean pro-
vides further justification for the use of
the sum of inverse eigenvalues as an in-
dex of tree shape in considering relation-
ships among phenotypic measures. When
closely related taxa are phenotypically di-
vergent (e.g., taxa C and D in Fig. 1 for
trait X), the data vector is perpendicular to
the G matrix eigenvector at the conflicted
node (TCt), making the product, X′TCt = 0
(in our example, the product = [XA ∗ 0] +
[XB ∗ 0] + [1 ∗ − 0.7]+ [1 ∗ 0.7] = 0 for the
conflicted node), thus eliminating the impact
of this conflicted node on the variance esti-
mator. Summing over all nodes leads to an in-
crease in the relative importance of the other
nodes, particularly those with the smallest
eigenvalues (near the tips of the phylogeny).
Thus, because of the peculiarities of this data
set, minor changes in the nodes or branch
lengths at the tips of the phylogeny can pro-
duce major changes in the results of a PCM.

PRACTICAL RECOMMENDATIONS

This mathematical consideration of phy-
logeny shape on PCMs leads us to sev-
eral general conclusions and practical recom-
mendations.

1. Small errors in the phylogeny involving,
for example, shuffling of sister taxa within
a clade may have little if any impact on
the results of PCM analyses. Changes in
the phylogeny that involve moving taxa
across the root of the tree are more likely
to have a major effect.

2. Smaller perturbations will have a greater
impact if the phylogeny has a highly de-
pendent structure (i.e., with long branches
near the root of the tree) than if it is in-
dependent (with long branches leading to
extant taxa).

3. The sum of the inverse eigenvalues of
the phylogeny relationship matrix (rang-
ing from 0 to the total number of taxa in
the study) may provide a useful metric for
comparing phylogenies or models of mi-
croevolutionary change in terms of their
impact on PCM results.

4. Phylogenies are constrained structures
that result in matrices with a particular

blocklike structure. Randomization tests
developed to compare matrices should
involve procedures that generate compa-
rable blocklike structures (e.g., using spe-
ciation models to generate random phy-
logenies). Simple shuffling of the rows or
columns may not be sufficient.

5. The impact of phylogeny errors on the re-
sults of a PCM depends intrinsically on the
data. For example, small phylogeny errors
may have a large impact if there is con-
siderable disagreement between pheno-
typic and phylogenetic similarities among
taxa.

All of the above are rough generalizations,
and the impact of changes in the phylogeny
or underlying model of phenotypic evolu-
tion on each data set must be considered.

We can also use the eigenvectors and
eigenvalues of a relationship matrix to help
design a statistically more powerful or ro-
bust comparative analysis. For example,
relationship matrices with a more even dis-
tribution of eigenvalues (sum of inverse
eigenvalues closer to the number of taxa, n)
indicate less dependence between taxon
measures because of shared history. Thus,
to maximize statistical power for estimat-
ing ancestral states or robustness against er-
rors in the phylogeny when estimating cor-
relations or regression coefficients, we might
calculate the eigenvalues for different possi-
ble combinations of taxa and choose the one
with the most even range (e.g., the smaller
sum of inverse eigenvalues). For example,
instead of conducting a full-fledged phylo-
genetic analysis, several authors have advo-
cated using comparisons between several in-
dependent pairs of taxa (e.g., two bats, two
whales; Felsenstein, 1985). Pairwise compar-
isons are sometimes viewed as providing
a stronger evolutionary argument because
they provide independent bits of evidence
for the same phenomenon (e.g., Read and
Nee, 1995). However, the pairwise compar-
ison approach leads to a G matrix with sev-
eral large eigenvalues corresponding to the
deep splits between independent pairs and
several small eigenvalues corresponding to
the recent splits between taxa within each
pair. The resulting distribution of eigenval-
ues is highly uneven (large sum of inverse
eigenvalues), resulting in relatively low sta-
tistical power or robustness for the associated
analyses. We can reduce the relative number
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of small eigenvalues (and thereby increase
statistical power) simply by considering only
one taxon from each of several independent
clades (e.g., one bat, one whale, one fox, and
one mouse) but increasing the total number
of clades.

6. Whenever possible, increase statistical
power by including as many independent
taxa as possible. Comparisons of pairs of
taxa within each clade may provide bet-
ter representation of those clades but may
be ineffective in terms of increasing the
effective sample size or robustness of the
analysis.

The distribution of eigenvalues can also
inform the choice of phylogenetic method
or provide a better understanding of differ-
ences between methods. For example, Diniz-
Filho et al. (1998) summarized a phylogeny
in terms of the principal coordinates (eigen-
values) of a double-centered distance matrix
and used only the most important of these
to correct interspecific analyses. In theory,
this method should perform well (robustly)
with highly dependent phylogeny structures
in which the two or three eigenvalues corre-
sponding to deep splits in the phylogeny are
much larger than the other eigenvalues of the
relationship matrix. Moreover, the method
should be largely insensitive to small errors
near the tips of the phylogeny. As another ex-
ample, Martins and Hansen (1997) proposed
an extension of Felsenstein’s (1985) method
involving an exponential transformation of
the G matrix to replace the Brownian mo-
tion assumption underlying the independent
contrast method with a more general family
of models that can be used to describe a wider
family of microevolutionary scenarios (e.g.,
those summarized by Hansen and Martins,
1996). On statistical rather than evolutionary
grounds, Diaz-Uriarte and Garland (1996)
also proposed that we extend Felsenstein’s
(1985) contrasts method by using logarith-
mic or arcsine transformations of the data
or branch lengths to improve the fit of the
Brownian motion model to the data. Al-
though all of these possible transformations
will lead to increased evenness of the eigen-
values, they will do so at different rates and
thereby translate into different evolution-
ary assumptions. By examining the rate of
change in the sum of inverse eigenvalues for
any particular phylogeny, we can compare

the effects of these very different transforma-
tion procedures on PCM results.

7. Use caution when applying statistical
transformations to comparative data or
branch lengths to improve the fit of a PCM
model. Transformations2 will affect the
evolutionary assumptions underlying the
method and are likely to increase the inde-
pendence of phylogenetically related taxa
at different rates, leading to major differ-
ences in the interpretation of any particu-
lar result.

We hope that future researchers will con-
sider the use of eigenvectors and eigenval-
ues in both the design and analysis of com-
parative studies. Further work (both theory
and simulations) is needed to assess the use-
fulness of the sum of the reciprocals of the
eigenvalues in determining the robustness of
phylogenetic comparative analyses to small
uncertainties in the phylogeny. Gene trees
and population-level networks may pro-
duce relationship matrices with very differ-
ent eigenvector structures than are produced
by bifurcating phylogenies, for example, be-
cause of horizontal gene transfer. More com-
plex objects such as whole genomes and gene
networks may also be better described by a
relationship matrix than by a simply phy-
logeny. Understanding the eigenvalues and
eigenvectors of both bifurcating trees and
more complicated relationships will facili-
tate comparisons between the two. Eigen-
vectors and eigenvalues may also be useful
in developing randomization procedures for
generating phylogenies, perhaps, for exam-
ple, leading to more efficient Markov chain
Monte Carlo approaches (e.g., Kuhner et al.,
1982; Yang and Rannala, 1997; Beerli and
Felsenstein, 1999, 2001) for exploring the
vastness of tree space.

REFERENCES

BEERLI, P., AND J. FELSENSTEIN. 1999. Maximum likeli-
hood estimation of migration rates and effective popu-
lation numbers in two populations using a coalescent
approach. Genetics 152:763–773.

BEERLI, P., AND J. FELSENSTEIN. 2001. Maximum likeli-
hood estimation of a migration matrix and effective
population sizes in n subpopulations by using a coa-
lescent approach. Proc. Natl. Acad. Sci. USA 98:4563–
4568.

CHEVERUD, J. M., M. M. DOW, AND W. LEUTENEGGER.
1985. The quantitative assessment of phyloge-
netic constraints in comparative analyses: Sexual



P1: GIU

TF-SYB TJ476-06 November 29, 2002 9:33

880 SYSTEMATIC BIOLOGY VOL. 51

dimorphism in body weight among primates.
Evolution 39:1335–1351.

DIAZ-URIARTE, R., AND T. GARLAND, JR. 1996. Testing
hypotheses of correlated evolution using phylogenet-
ically independent contrasts: Sensitivity to deviations
from Brownian motion. Syst. Biol. 45:27–47.

DINIZ-FILHO, J. A. F., C. E. RAMOS DE SANT’ANA, AND
L. M. BINI. 1998. An eigenvector method for estimat-
ing phylogenetic inertia. Evolution 52:1247–1262.

FELSENSTEIN, J. 1985. Phylogenies and the comparative
method. Am. Nat. 125:1–15.

GRAFEN, A. 1989. The phylogenetic regression. Philos.
Trans. R. Soc. Lond. B 326:119–157.

GRAFEN, A. 1992. The uniqueness of the phylogenetic
regression. J. Theor. Biol. 156:405–424.

HANSEN, T. F., AND E. P. MARTINS. 1996. Translating
between microevolutionary process and macroevolu-
tionary patterns: The correlation structure of interspe-
cific data. Evolution 50:1404–1417.

HOUSWORTH, E. A., AND E. P. MARTINS. 2001. Conduct-
ing phylogenetic analyses when the phylogeny is par-
tially known: Random sampling of constrained phy-
logenies. Syst. Biol. 50:628–639.

KUHNER, M. K., J. YAMATO, AND J. FELSENSTEIN. 1982.
Estimating effective population size and mutation rate
from sequence data using Metropolis–Hastings sam-
pling. Genetics 140:1421–1430.

LEGENDRE, P., F. J. LAPOINTE, AND P. CASGRAIN. 1994.
Modeling brain evolution from behavior—A permu-
tational regression approach. Evolution 48:1487–1499.

LYNCH, M. 1991. Methods for the analysis of compara-
tive data in evolutionary biology. Evolution 45:1065–
1080.

MARTINS, E. P. 1995. Phylogenies and comparative data,
a microevolutionary perspective. Philos. Trans. R. Soc.
Lond. B 349:85–91.

MARTINS, E. P. 1996. Conducting phylogenetic compar-
ative analyses when the phylogeny is not known.
Evolution 50:12–22.

MARTINS, E. P., AND T. F. HANSEN. 1996. The statistical
analysis of interspecific data: A review and evaluation
of phylogenetic comparative methods. Pages 22–75 in
Phylogenies and the comparative method in animal
behavior (E. Martins, ed.). Oxford Univ. Press, Oxford,
U.K.

MARTINS, E. P., AND T. F. HANSEN. 1997. Phylogenies
and the comparative method: A general approach
to incorporating phylogenetic information into the
anlaysis of interspecific data. Am. Nat. 149:646-667.
(Erratum, Am. Nat. 153:448.)

NUNN, C. L., AND R. A. BARTON. 2001. Comparative
methods for studying primate adaptation and allom-
etry. Evol. Anthropol. 10:81–98.

PHILLIPS, P. C., AND S. J. ARNOLD. 1999. Hierarchical
comparison of genetic variance-covariance matrices.
I. Using the Flury hierarchy. Evolution 53:1506–1515.

PIAZZA, A., AND L. L. CAVALLI-SFORZA. 1974. Spectral
analysis of patterned covariance matrices and evo-
lutionary relationships. Pages 76–105 in Proceedings
of the Eighth International Conference on Numerical
Taxonomy. W. H. Freeman, San Francisco.

PRICE, T. 1997. Correlated evolution and independent
contrasts. Philos. Trans. R. Soc. Lond. B 352:519–529.

READ, A. F., AND S. NEE. 1995. Inference from binary
comparative data. J. Theor. Biol. 173:99–108.

ROHLF, F. J. 2001. Comparative methods for the analy-
sis of continuous variables: Geometric interpretations.
Evolution 55:2143–2160.

SMOUSE, P. E., AND J. C. LONG. 1992. Matrix correlation
analysis in anthropology and genetics. Yearb. Phys.
Anthropol. 35:187–213.

YANG, Z., AND B. RANNALA. 1997. Bayesian phylogenetic
inference using DNA sequences: A Markov chain
Monte Carlo method. Mol. Biol. Evol. 14:717–724.

First submitted 5 January 2002; revised manuscript
returned 2 May 2002; final acceptance 15 August 2002

Associate Editor: Arne Mooers


