

SARA Report

© SARA W.G., 1999-2002 1 Version 1.0

Software Architecture Review
and Assessment (SARA) Report

Version 1.0

SARA Report

© SARA W.G., 1999-2002 2 Version 1.0

Revision History
Date Version Description Author

03 May 1999 0.1 Creation at the Burlington meeting Philippe Kruchten

04 May 1999 0.2 Add material from the 3 subgroups on:
- Social aspects

- Workflow

- Foundations

Rick Kazman, A. Ran
H. Obbink, Ph. Kruchten
R. Hilliard, T. Mikkonen

09 September 0.3 Add material from the 3 subgroups on:

Gr1, Analysis framework for ASR’s
section 8.1

Gr2, Architecture Description
Document Chapter 6

Gr3, Review typology section 5.3

Alexander Ran, Herman
Postema,

Wojtek Kozaczynski, Henk
Obbink

Ed. Kahan, Juergen Mueller

04 October 04 Added revised material from Juergen
on Architecture impact matrices

Henk Obbink

Jan 26, 2000 05 Includes new material on workflow,
foundations, methods & techniques

Rick Kazman, Ed Kahan

Jan 26, 2000 06 Adds section on pragmatics, reformats Rick Kazman

Jan 27, 2000 07 Cleaning up the document Henk Obbink, Steve Heise, Ed
Kahan

28 February
2000

07a Revision to Section 4 Conceptual
Framework

Rich Hilliard

May 10-11,
2000

07b Munich review: modified Conceptual
Framework, Review input and
outcomes, Workflow, Pragmatics

R. Hilliard, A.Ran, L.
Dominick, N. Werner, F.
Paulisch, R. Kazman, T.
Mikkonen, H. Obbink

May 11, 2000 08 Create master document and
subdocuments

Propose alternate strategy for section
on method and techniques

Ph.Kuchten, A Ran, R. Hilliard

September 06,
2000

09 Reviewed the version 0.8 and the
suggested changes are in the file.
Sections 1-7 have been changed.

H..Obbink, A.Ran,
W.Kozaczynski, Lutz
Dominique, H. Postema

August 27, 2001 0.95 Amsterdam meeting

General clean up; Define template for
technique;

Ph. Kruchten, R. Hilliard,
H..Obbink, A.Ran, W. Tracz,
W.Kozaczynski, H. Postema

November 1,
2001

0.96 Technical Presentation Edit Will Tracz

SARA Report

© SARA W.G., 1999-2002 3 Version 1.0

November 21,
2001

0.96a Revision of Chapter 4 A.Ran

January 28th,
2002

0.97 Incorporated templates

Dealt with several comments from a
reviewer, a colleague of Henk

Fixed external references.

Added Siemens’s example

Philippe Kruchten

4 February 2002 0.98 Fixed Glossary and definitions. Rich Hilliard

6 February 2002 1.0 Issue version 1.0 for ICSE Workshop Philippe Kruchten

SARA Report

© SARA W.G., 1999-2002 4 Version 1.0

Table of Contents

1 Acknowledgments... 7
2 Objectives ... 7
3 Document Structure .. 8
4 Conceptual Framework for Architectural Review.. 8

4.1 The Context of Architecture Design ... 8
4.2 Main Concepts of Software Architecture for Software Architecture Review 9

4.2.1 Scope... 9
4.2.2 Concerns ... 10
4.2.3 Requirements .. 10
4.2.4 Component Domains .. 10
4.2.5 Structures .. 10
4.2.6 Views .. 10
4.2.7 Texture .. 10
4.2.8 Concepts.. 11

4.3 Finding and Structuring ASR.. 11
4.4 Finding the Architecturally Significant Decisions (ASDs) .. 12
4.5 Software Architecture Review Reference Model ... 13

5 Review Inputs ... 17
5.1 Introduction... 17
5.2 Review Objectives .. 17
5.3 Review Scope.. 18
5.4 Architectural Artifacts .. 18

5.4.1 System Description ... 18
5.4.2 Architecture Descriptions ... 18
5.4.3 Architectural Decisions... 19
5.4.4 Reused Solutions... 19
5.4.5 Guidelines and Rules .. 19
5.4.6 Architecture Supporting Evidence.. 20

5.5 Other Relevant Inputs ... 20
5.5.1 Architecturally Significant Requirements (ASRs).. 20
5.5.2 Product Strategy and Product Planning .. 20
5.5.3 Requirements .. 21
5.5.4 Standards and Constraints... 21
5.5.5 Quality Assurance Policies ... 22
5.5.6 Risk Assessment Artifacts .. 22

6 Review Outcomes ... 23
6.1 Introduction... 23
6.2 Assessment Report.. 23

6.2.1 Objectives ... 23
6.2.2 Scope... 23
6.2.3 Methodology... 23

SARA Report

© SARA W.G., 1999-2002 5 Version 1.0

6.2.4 Evaluation Criteria for Architecture ... 24
6.2.5 Employed Architectural Foundation and Approach ... 24
6.2.6 Architecture Analysis, Findings and Recommendations 24

6.3 Additional Review Outcomes ... 25
6.3.1 Executive Summary .. 25
6.3.2 Architecture Review Plan Update and Lessons Learned...................................... 26

7 Architecture Review Workflow.. 26
7.1 Inception Activities... 27

7.1.1 Identify Type of Review and Its Business Objectives .. 27
7.1.2 Identify Key Stakeholders and Review Scope.. 28
7.1.3 Identify (Initial) Set of Detailed Review Objectives .. 28
7.1.4 Prepare Review Plan and Obtain Approval .. 28

7.2 Review Activities.. 29
7.2.1 Identify, Describe and Prioritize ASRs... 29
7.2.2 Identify/develop architecture description ... 29
7.2.3 Analyze Architecture Description Against ASRs... 30

7.3 Post-Review Activities.. 30
7.3.1 Summarize Findings and Review Them with Architecture Owners 30
7.3.2 Present Review Report and Recommendations .. 31
7.3.3 Refine Review Methods.. 31

8 Methods and Techniques .. 32
8.1 Introduction... 32
8.2 Template for Describing a Method or Technique... 32
8.3 Inventory of Techniques ... 35

8.3.1 Individual Interviews .. 35
8.3.2 Critical Scenario.. 35
8.3.3 Change Case.. 35
8.3.4 Check List ... 36
8.3.5 Rate Monotonic Analysis.. 36
8.3.6 Module Structure Analysis ... 36
8.3.7 Probing About Alternatives .. 37
8.3.8 Prototyping.. 37
8.3.9 Queuing Model ... 37
8.3.10 Quality Function Deployment... 38

9 Pragmatics and People Issues ... 39
9.1 People Issues... 39

9.1.1 Scheduled and Homogeneous ... 39
9.1.2 Stakeholder Triggered and Homogeneous.. 40
9.1.3 Scheduled and Non-homogeneous.. 40
9.1.4 Stakeholder Triggered and Non-homogeneous .. 41

9.2 Pragmatic Issues.. 41
9.2.1 Inception Activities... 41
9.2.2 Pragmatics During a Review .. 42

SARA Report

© SARA W.G., 1999-2002 6 Version 1.0

9.2.3 Post-review Activities... 43
10 Case Studies, Examples .. 45

10.1 Medical Imaging Platform (Origin/Philips, Herman Postema) 45
10.1.1 Objective and Scope ... 45
10.1.2 Approach and Organization .. 45
10.1.3 Review Conduct.. 46
10.1.4 Review Outcome... 47
10.1.5 Lessons Learned.. 47

10.2 Assessment of the architectural approach for a telecommunications environment 48
10.2.1 Background Information... 48
10.2.2 Goal of the assessment.. 48
10.2.3 Assessment approach .. 48
10.2.4 Assessment Information Input .. 49
10.2.5 Assessment Issues... 49
10.2.6 Results... 50

11 References... 51
12 Appendix: Glossary .. 53
13 Appendix: Logistics and Templates.. 55

13.1 Agenda for an Architecture Assessment... 55
13.2 Architecture Review Agreement Template .. 57
13.3 Review report template ... 58

SARA Report

© SARA W.G., 1999-2002 7 Version 1.0

Report on Software Architecture
Review and Assessment

1 Acknowledgments
Many people representing multiple companies worked on this report. Below is the list of the major contributors:

Henk Obbink Philips

Philippe Kruchten Rational Software

Wojtek Kozaczynski Rational Software

Herman Postema SIOUX

Alexander Ran Nokia

Lutz Dominick indatex

Rick Kazman SEI

Rich Hilliard ConsentCache

Will Tracz Lockheed Martin Systems Integration - Owego

Ed Kahane IBM

2 Objectives
The objective of this document is to provide concrete, practical, experience-based guidance on how to conduct
architectural reviews. This includes guidelines on:

• what steps to follow,
• what questions to ask,
• what information to collect and document,
• what documentation templates to use, and
• tips on how to manage the social, managerial, and technical issues that arise when reviewing an artifact as

important and complicated as a software architecture.

This document can be used for an external review or an internal (or self-assessment) review.

The international working group on Software Architecture Review and Assessment (SARA) has produced the
document. It is a summary of the group’s findings and conclusions on the review and assessment of software
architectures (and system architectures, where those systems are software intensive). The intention of the document
is to represent the collected best practices of a wide group of industrial architects and consultants. As such, it is
rooted in practice. It is intended to report on what actually works for evaluating architecture quality. This document
serves as a growing repository covering all aspects of reviewing and analyzing software architectures.

Note: This document does not describe how architectures are designed, how they are developed into working
systems, or how they are justified to management or stakeholders.

SARA Report

© SARA W.G., 1999-2002 8 Version 1.0

3 Document Structure
The next section of this document (Section 4) provides a conceptual framework for architectural reviews. The
concepts introduced and explained in this section are used throughout the remainder of the document.

Sections 5 and 6 describe the inputs to and the outcomes of architectural reviews respectively.

An architectural review is a structured activity and as such should follow a well-defined workflow. Section 7
describes a typical workflow and a set of typical review activities. These activities refer to common review methods
and techniques, which are described in Section 8.

The following section (Section 9) addresses the non-technical aspects of architectural reviews. These include social,
psychological, and managerial issues that the reviewers should understand and cope with.

Section 10 is a set of case studies and is followed by references and a glossary.

4 Conceptual Framework for Architectural Review
This section presents the conceptual framework for an architectural review used in the remainder of the document. It
introduces key terms and concepts associated with the process of creating an architecture, the nature of reviews,
their required inputs and expected outputs, and the role of software architecture reviews in the overall system
lifecycle.

4.1 The Context of Architecture Design
The architecture of a software-intensive system is “the fundamental organization of a system embodied in its
components, their relationships to each other and to the environment and the principles guiding its design and
evolution.” [IEEE 1471]

The Figure 4-1 presents the architecture design context conceptual model used in this document. A “system” may be
a single application, a subsystem of another system, a “system of systems,” a product line or product family, etc. A
system is designed to operate in a specific environment. That environment exerts influences on the system. These
constraints can include developmental, operational, political, and social influences.

A system is designed for direct or indirect use by people that become stakeholders in the system’s design,
construction, and deployment. System stakeholders inhabit the environment of the system (at least in the sense of
information and control flow). Stakeholders include:

• the system’s clients,
• end users,
• developers,
• maintainers,
• component vendors,
• administrators,
• owners, and
• operators.

Stakeholders have different concerns that are addressed by the system. Some stakeholders may have concerns
specific to system architecture. Some stakeholders may be concerned with the properties and quality of the
architecture description. Their concerns may range from the very specific (e.g., functional and non-functional
requirements) to the very general (e.g., needs, goals, preferences, business objectives, and opportunities).

SARA Report

© SARA W.G., 1999-2002 9 Version 1.0

The architect identifies, analyzes, and negotiates the stakeholders concerns and represents them by specific
architecturally significant requirements (ASRs). The architect creates an architecture description prescribing the
architecture to be realized by the system and that will address the concerns of the stakeholders when used in a
specific environment. Once the system is built, the architecture description will document, at a conceptual level, the
actual implemented system using abstractions to capture the essential properties of the system.

Environment System Architect

Stakeholder Concerns
Architecturally

Significant
Requirements

Architecture
DescriptionArchitecture

designed for

Inhabits

has 1..*

use

addressed by

addresses 1..*

addressed by
addresses 1..*

addressed by
addresses 1..*

implements

prescribes/
describes

created by

negotiates

designs has 1

has 1..* has 1..*

analyzes

represent

influence

realizes

abstracts

creates

identified by

includes

part of

Figure 4-1. Architecture Design Context Conceptual Model (UML class diagram).

4.2 Main Concepts of Software Architecture for Software Architecture Review
When discussing architecture review we need to use a model of what the architecture is – a conceptual framework
for software architecture. A software architecture is a set of concepts and design decisions about structure and
texture of software that must be made prior to concurrent engineering (i.e., implementation) to enable effective
satisfaction of architecturally significant, explicit functional and quality requirements, along with implicit
requirements of the problem and the solution domains.

For the sake of concreteness, in this section we summarize the main concepts of a software architecture conceptual
framework as presented in [Ran2000]. While there are other possible models of software architecture, we use the
one described below as an example that satisfies our goals. The conceptual framework consists of the eight elements
that follow.

4.2.1 Scope
In most circumstances an architecture is intended for more than one instance of a system. The architectural scope
characterizes the class of systems for which the architecture is applicable. There is usually a hierarchy of scopes that
play an important role in an application domain, a corporation, a company, a product division, etc. One should
create a software architecture for a specific architectural scope, consistently extending the architecture from its
enclosing scope and providing context and constraints on the architectures created in its sub-scopes.

SARA Report

© SARA W.G., 1999-2002 10 Version 1.0

4.2.2 Concerns
A software architecture can only play an essential (and independent) role in software development if it addresses
specific system lifecycle concerns that are not addressed by other software development functions and activities.
These concerns may not necessarily be evident from system requirement documents or any other system
descriptions. The architect should identify and document architectural concerns and their owners (i.e.,
stakeholders).

4.2.3 Requirements
The architect should refine architectural concerns into architecturally significant requirements (ASR) that are
specific in terms of desired system properties. Furthermore, the architect should define how achieving these
properties influences or constrains the architecture.

4.2.4 Component Domains
Software exists in multiple forms (e.g., source or object code components, executable components, executing
components). Each kind of components forms its own component domain. There are relationships, but oftentimes
there is no direct correspondence between components in different component domains. The component partition in
each component domain addresses different ASRs. The architect identifies relevant component domains for a given
system based on its architecturally significant requirements.

4.2.5 Structures
In each component domain a partition into components with their relationships forms an architectural structure.
Components of architectural structures are concrete system elements (files, threads, executables, source code
modules). Different architectural structures may be interdependent, however they are not different views of the same
entity.

4.2.6 Views
Architectural views are models of architectural structures or other elements of a software architecture. Architects use
views throughout the architecture lifecycle for the specific purpose of understanding and analyzing the different
aspects of system development and performance. The major characteristic of a view is its purpose and utility. Views
are not complete descriptions of the software architecture. Oftentimes views omit otherwise important architectural
information in order to be useful for their specific purpose. The major issue with the views is consistency with the
system rather than completeness. Architectural views are a necessary part of any architecture and serve as a way to
design architectural structures and to understand different aspects of system design.

4.2.7 Texture
Certain design decisions that are only visible within relatively fine-grained components are nevertheless extremely
expensive to revise. Consequently such decisions are architecturally significant even though they are concerned with
fine-grained elements. This happens when the implementation of the decision cannot be localized, but must be
replicated creating recurring uniform microstructure or texture. The texture of software is created by recurring
(uniform) microstructure of its components. There are certain aspects of software functionality that are hard to
localize using common programming languages and techniques. Such functionality cannot be implemented once and
then used in different components; rather it must be implemented multiple times. This fact raises the importance of
choices and consistency in implementation of such functionality so that it becomes a major part of software
architecture. Decisions that affect texture of software have significant impact on the system and they are as hard to
revise as decisions regarding the structure. Consistency of the texture is very often a problem since the decisions
appear to be local to a component. It is not easy to identify the common concerns present in the implementation of
different components without concentrating on the texture in the architecture of software.

SARA Report

© SARA W.G., 1999-2002 11 Version 1.0

Well-designed software has consistent texture. Software components need to observe policies for security, flow-
control, overload control, fault detection and handling; they must rely on infrastructure for communication,
coordination, state maintenance, execution tracing, etc. In order to achieve consistency in component design the
architecture should provide the necessary information. Examples of software texture that must be designed and
regulated by rules and standards include uniform component model realization, error reporting, exception
identification and handling, and execution tracing mechanisms.

4.2.8 Concepts
From the perspective that considers software architecture to be an approach to dealing with complexity, the most
important architectural decision is the selection of concepts used to reason about the system. The existence of
architectural concepts is often taken for granted. However architectural concepts are not found in the application
domain or in the implementation domain, but need to be invented in order to simplify design, construction, and
representation of complex software. All other parts of a software architecture directly depend on the invention
(selection) of architectural concepts.

According to this model the purpose of an architecture is to enable satisfaction of architecturally significant
requirements. The content of an architecture is a set of concepts and design decisions about the structure and texture
of the software – the architecturally significant decisions (ASD). The architect must make these architecturally
significant decisions prior to concurrent engineering/implementation because they influence many design decisions
associated with every component.

The purpose of an architecture review is to understand the impact of every architecturally significant decision
(ASD) on every architecturally significant requirement (ASR).

In an ideal world, ASD and ASR are clearly documented including their relationships and cross influences. In the
real world this is seldom the case. Therefore architecture reviews need to utilize available input to reconstruct this
information. The following sections provide some information useful for identifying ASR and ASD.

4.3 Finding and Structuring ASR
It is generally accepted that a software architecture directly affects system-wide properties such as availability,
reliability, security, etc. Well-structured software architectures also support requirements for change, reusability,
interoperability with other systems, etc. Of course, if all different requirements were supported by the same
architectural structure, it would be impossible to satisfy them independently. For example, requirements concerning
performance and reliability interact since software execution structure affects both kinds of properties.

Often system requirements may be grouped so that requirements in different groups may be addressed by different
(and at least partly independent) software structures established by partitions of software in different component
domains. Such partitions exist simultaneously and often are independent of each other. For example, the architect
can address:

• performance requirements by partitioning software into execution threads of varying priority (or utility),
specifying thread scheduling policies, regulating use of shared resources, etc.,

• change and reuse requirements by partitioning software into modules—substitutable, unit-testable
components having well-defined boundaries, predictable interaction with the environment, and minimal, well-
specified dependencies on other modules,

• portability requirements by defining software layers and establishing conformance of layers and their
interfaces to existing standards, and

• requirements for independent re-start or independent failure modes by partitioning the software into a set
of separately loadable and executable processes.

SARA Report

© SARA W.G., 1999-2002 12 Version 1.0

The architect must group architecturally significant requirements so that requirements in different groups may be
satisfied independently, while requirements within each group may interact and even conflict.

A good rule of thumb for finding independent requirements is to group them by the software lifecycle interval/phase
they address. For example, very often requirements that address software development and change can be satisfied
almost independently from requirements that address run time behavior, or software upgrade. Some of the lifecycle
times on can consider are:

• write (or design) time,
• build time,
• configuration time (when software is configured for delivery on a specific platform),
• upgrade time,
• start-up time (initialization),
• run-time, or
• shutdown time.

These are “significant intervals” in the lifecycle of a software system. The number of architecturally significant
requirements related to each of these significant intervals should be small (i.e., from one to three). The architect may
need to order the ASR in each group by significance. The focus of an architecture review should be limited to one,
or at most two, significant intervals and thus only ASR related to these intervals need to be considered.

Note that stakeholders have concerns with respect to the product, not only the software, and these concerns need be
translated into architecturally significant requirements. See [Jazayeri 2000], section 4.4.5.

4.4 Finding the Architecturally Significant Decisions (ASDs)
Examples of well-understood and documented ASD are difficult to find. Current industry practices at best provide
documentation for the system under review in terms of a few architectural models and facts about selected platforms
and technologies that reflect multiple decisions and trade-offs. In most cases it is the task of the review team to
understand what ASD have been actually made. This task cannot be undertaken in its entirety by the review team
during the time of a typical, 3-day architecture review. Therefore they must scope the discovery of ASD according
to the focus and objectives of the review. Fortunately, if they have identified and structured ASR as suggested in the
previous section then they can provide some suggestions on the scoping of the ASD discovery.

It is important to note that once the review’s focus is confined to a given significant interval, the review team only
needs to consider the architecture in the corresponding component domain. Models found in the architectural
documents may represent system concepts, structure, and texture in the relevant component domain. If models are
missing, then the review team may need to reconstructed them and identify the ASD implied by the models. This
process is illustrated in Figure 4-2.

SARA Report

© SARA W.G., 1999-2002 13 Version 1.0

ASR

Significant
Intervals

Component
Domains

Concepts
Structure
Texture

ASD

Satisfy

Determine Select relevant

Have

Reflect

Figure 4-2. Selecting ASR - Discovering ASD.

For example the focus of an architecture review can be on some aspect of performance, such as capacity. The ASR
of interest could be defined in terms of the number of serviced requests per unit of time. The system behavior in
high workload situations must be specified. The following questions could then be answered:

• What should happen when the rate of actual requests falls far below system capacity?
• What should happen when the actual rate of requests exceeds the maximum capacity?

These ASR are related to the run-time interval of the system lifecycle therefore the review team needs to analyze
only the execution component domain. Models of the system’s execution structure should represent threads, shared
resources, and schedulers of shared resources. Of specific interest may be the probability distributions for incoming
requests (events), the sizes of allocated queues, message sequences associated with each event, estimated time of
processing of messages by different threads, etc. In this case, the relevant ASD would include queue and thread
allocation and release policies and specific load monitoring and overload control patterns employed in the system.

In some cases the review team may find documented decisions that have definite architectural implications but are
too broad in scope to be easily analyzed. For example, the selection of specific technology such as CORBA or EJB
has profound implications on the architecture and on the ASR. In order to properly analyze the effect of these
decisions on the ASR the review team must determine their implication in different component domains by
considering them separately. Eventually, the review team should synthesize the results of this analyses and make a
conclusion regarding the value of the source decision.

4.5 Software Architecture Review Reference Model
A software architecture review is an activity to develop an assessment of an architecture (see Figure 4-3). The
assessment is made against one or more review objectives. The result of a review is an assessment (report) and other
outcomes. Since an architecture is itself an abstract entity, the review is conducted based on concrete architecture
artifacts representing the architecture, possibly including an explicitly prepared architectural description document.
The review may use other relevant input such as: business cases, stakeholders’ concerns, standards, requirements,
etc. In the course of a review, the review participants may execute one or more methods or techniques.

SARA Report

© SARA W.G., 1999-2002 14 Version 1.0

Software
Architecture

Review

architecture
artifacts

other
inputs

assessment
report

other
outcomes

review
objectives

policies
principles

review
participants

methods
techniques

Figure 4-3. Software Architecture Review (Activity View in IDEF0).

Objectives

Focus

AssessmentWorkflow

Methods and
Techniques Valuation

ASR Architecture
Description Other Inputs

enacts 1..*

producesdetermines

select results in

determine

inform
inform

inform

Stakeholder
Request

Lifecycle
Milestone

select

define
define

Figure 4-4. Software Architecture Review (workflow context diagram).

The architecture review objectives are the reasons for doing a specific review. The objectives of a review are driven
by architectural concerns of the stakeholders. These reasons fall into several categories:

• certifying the conformance to some standard,
• assessing the quality of the architecture,
• identifying opportunities for improvement, and
• improving communication between stakeholders.

SARA Report

© SARA W.G., 1999-2002 15 Version 1.0

The review objectives may also be defined by the lifecycle stage of the project. Figure 4-4 shows that review
objectives are determined either by the stakeholders-specified objectives or by “typical” lifecycle objectives.

Review objectives focus on specific aspects of an architecture. These aspects can include:

• the fit of the architecture to the problem or mission statement,
• the partitioning of system responsibilities to subsystems and components,
• the specific qualities (i.e., scalability, performance, etc.) to be architecturally controlled,
• the partitioning of the architectural design responsibilities,
• the identification of skills to implement the system,
• the verification of scenarios representing the critical functionality of the system, and
• the overall feasibility and specific risks of the architecture.

The review’s goal is to select a subset of ASR to be considered. The review focus determines which methods and
techniques may be applied to discover the relevant ASD based on available architecture descriptions and other input
and to evaluate the ASD against the ASR. As a result, valuations of ASD are produced that are collected in the
assessment.

The artifacts may be categorized as problem-oriented and solution-oriented. Problem-oriented artifacts will capture
items such as business goals, standards, constraints, vision, and priorities. The review team uses these inputs to
identify and structure the ASR.

The solution-oriented artifacts will contain items such as: principles and styles used, technologies selected, platform,
infrastructure, tradeoffs considered and made, sensitivities, deferrals, models, and analyses. The review team uses
these inputs to identify and structure the ASD.

The workflow enacts one or more methods/techniques to address the review objectives. Section 7 of this document
describes various methods and techniques for software architecture review (note that different methods are
appropriate for meeting different objectives).

A method or technique establishes a set of criteria that define a concrete means of judging whether the artifacts, and
thus the architecture, meet a particular objective. Selection of these criteria follows from the refinement of the
review objectives, relative to the particular type of assessment, and associated stakeholders. A method provides a
way of analyzing particular artifacts with respect to certain criteria and leads to results for these criteria (valuations).
The review team may aggregate or otherwise incorporate these results from the method into the architecture
assessment (report).

Table 4-1 summarizes how architecture review focus differs according to the particular lifecycle phase. Table 4-2
relates different classes of stakeholders to review focus typical to the class.

Note that the tables could be merged. The method and the concerns are of course the same. In the actual review,
both lifecycle and stakeholders are relevant.

SARA Report

© SARA W.G., 1999-2002 16 Version 1.0

Lifecycle Activity Architecture Review Objectives
Defining Scope − High level requirements for domain

− Technological feasibility within domain
Inception − Detailed requirements for class of systems in the domain

− Identification of architectural drivers
Elaboration − Architectural satisfaction of requirements
Construction − Design

− Design conformance to architecture
Deployment − Running system
Evolution − All of the above

Table 4-1. Lifecycle-initiated reviews.

Stakeholder Types Architecture Review Focus

End User Usability, functionality, customizability, performance, reliability

Customer
(Client, Sponsor, Owner)

Price, support and maintenance cost, features, schedule, on-time delivery, stability and
maintainability, cost of ownership, etc

Marketing and Product
manager

Price, time-to-market, availability, extensibility, competitive features, support for long-
term company strategy

Developer
(Designer, tester)

Understandability, clearly stated requirements, traceability, testability, etc

Component Vendors
(Supplier, contractor)

Interface and integration rules

Sales and field Personnel Price, time-to-market, competitive features, ease of installation, ease of integration, ease
of diagnosing

Project Manager Work partitioning, localization of complexity, schedule, budget, resources, contracting

Maintainer System structure, quality of documentation, consistent use of patterns and frameworks

System Administrator
(operator)

Maintainability, operational concepts and procedures

Architect Consistency, clarity of concepts

Table 4-2. Stakeholder-initiated review concerns.

SARA Report

© SARA W.G., 1999-2002 17 Version 1.0

5 Review Inputs

5.1 Introduction
This section focuses on the identification of information needed as input for an architecture review / assessment.
This section is structured according to logical aspects and not according to a typical structure of related
documentation. The following areas are discussed (also see section 1.2 and Figures 4-1-2):

• review objectives,
• review scope,
• architectural artifacts, and
• other relevant input.

Based on current practice, the initial input most likely will be incomplete at the start of the review and, therefore,
will have to be completed during the review process. The most important inputs are the architecturally significant
requirements (ASR) and the architectural descriptions.

5.2 Review Objectives
In general, there are several triggers or reasons for initiating an architecture review (e.g., poor confidence by the
management in the technical concepts the architecture is based on). These triggers serve as the basis for formulating
the review objectives.

In general there are two sources for review objective:

1. concerns of the system’s stakeholders (that got mapped to the resulting architecture) and

2. standard process milestones (i.e., a review has to be conducted during a certain stage of the project in its
lifecycle (See lifecycle-triggered reviews below)).

Review objectives explicitly describe the architecture review goals. In addition, the objectives help reviewers to
identify the assessment criteria and the appropriate review method.

Review objectives fall into the following categories:

• Certifying conformance to some standard:
- Does the architecture fulfill the constraints and requirements of the relevant standards?

• Assessing the quality of the architecture:
- Does the architecture fit to the problem or mission statement?
- Is the architecture a suitable basis for fulfilling the present and future requirements?
- Can specific qualities (e.g., scalability, performance. etc.) be architecturally controlled?
- Are there open issues that have to be clarified?
- Can the architecture be implemented using existing skills?
- Which new skills are needed to implement the system?
- Does the architecture support the realization of scenarios representing the critical functionality of the

system?
- Is the realization of the architecture and its underlying technical concepts feasible?
- What are specific technical risks of the architecture?
- How are the responsibilities of the architecture partitioned?

• Identifying of opportunities for improvement:
- Which design decisions should be revised in order to improve the architecture?
- Which improvement measures should be taken?

• Improving communication between stakeholders.

SARA Report

© SARA W.G., 1999-2002 18 Version 1.0

5.3 Review Scope
The review scope represents the subject of review (e.g., what exactly will be reviewed) and clearly should be
defined and agreed with the principal stakeholders before the review starts. Relevant questions that should be
answered in defining the scope include:
• Does the review involve the whole system, part of the system, only the software of the system, only part of the

software of the system, etc?
• Does the review involve all stakeholders or only a subset of the stakeholders?
• Does the review determine the satisfaction of all ASRs or only a subset (like the most critical)?
• Does the review involve all architectural views or only a subset?
• Does the review involve all architectural decisions or only a subset (like the most critical)?
• Will the architecture description also be subjected to the review?

5.4 Architectural Artifacts

5.4.1 System Description
The system description provides a high-level overview of the system and its context. It provides the review team
members with an understanding of the system to be developed. It is typically architecture independent and takes the
form of a problem statement (e.g., What is the system expected to provide?) not a solution statement (e.g., How does
the system realize the needed functionality?).

Typically, it includes the following aspects:

• Business opportunity and problem statement:
- What are the benefits of the system with regard to the developing organization and with regard to its

customers?
- What is the related product strategy?

• Users:
- Which users will interact with the software system?
- What is their background?
- What are their skills?
- What are the key user needs?

• Overview of system capabilities:
- On a very high level, what are the product's capabilities?
- With which other applications should it cooperate?
- What are the external interfaces?
- What are the main use cases to be supported by the system?

5.4.2 Architecture Descriptions
Architecture descriptions are the key input to an architecture review. They are the basis for identifying:

• key technical concepts underlying the architecture and
• major design decisions.

If an architecture description is unavailable or insufficient, then the necessary information has to be recovered and
collected during the review itself. This may have to be done iteratively.

There are many different ways to document architectures and related architectural decisions. This can be done in the
form of diagrams, text, etc. See [IBM 99], [HP 00], [Kruchten 95] and [Hofmeister 99] for examples of architecture
descriptions or appropriate notations.

SARA Report

© SARA W.G., 1999-2002 19 Version 1.0

One approach for specifying architectures is to use the concept of viewpoints to separate various architectural
aspects or concerns (see [RM-ODP 1995]). A viewpoint is a system representation with explicit emphasis on a
specific concern or set of concerns. Viewpoints help to structure the architecture design process by separating
architectural concerns (see Section 4.2 – Views).

The review team can use viewpoints during the review process to discuss and evaluate a specific concern. A
viewpoint helps to organize the information needed and is typically composed from many different types of
architectural artifacts.

For example, to address a performance concern, a performance viewpoint would be taken. It could be composed
from several artifacts such as a hardware depiction, the processes and threads that run on the hardware, the priorities
assigned to the processes, the arrival rates of messages or events to those processes, and timing requirements such as
deadlines and execution times. Based on this information, one could perform analysis regarding scheduling,
utilization, throughput, etc.

5.4.3 Architectural Decisions
Architectural descriptions cover the current state of the software architecture. They cannot communicate the
decision process that created the architecture. A collection of these decisions is required as input and is part of what
is reviewed.

5.4.4 Reused Solutions
Due to the importance of and interest in software architectures, a number of sources describe “typical” architectural
solutions that have become well established in the software engineering community. Examples include:

• patterns [Buschman 96],
• styles [Shaw 96], and
• reference architectures [RM-ODP 1995], [TINA 1995].

Reuse on the architectural level means the usage of these well-known concepts that cover technical software
architectures best practices. They help practitioners understand the architecture because they provide standardized
and well-known concepts and use standardized terminology. They therefore support the review process (e.g., the
typical pro’s and con’s of patterns are well-known and along with these patterns there may be a set of standard
analyses that can be reused [Klein, Kazman 1999]).

5.4.5 Guidelines and Rules
In addition to the aspects covered in the architecture descriptions, the architecture design process defines guidelines
and rules (e.g., common usage rules, principles, concepts, and conventions that must be followed during the design
and implementation of the software system). Typically, the rules and guidelines are not related to one specific
viewpoint, aspect or concern. Possible areas concerned include:

• Architecture-relevant design and coding rules, e.g.:
- naming conventions for components, objects, interfaces, etc.,
- calling conventions for interfaces,
- formats of messages and persistent data,
- debugging information,
- exception handling, and
- access rights for components and objects.

• Guidelines for using mechanisms and services, e.g.:
- system-wide mechanisms for communication to be followed (e.g., mailbox, shared memory).

• Database layout and storage layout
• Test environment, conventions and rules in order to ensure testability of the system

SARA Report

© SARA W.G., 1999-2002 20 Version 1.0

• Standards (international, application-specific, in-house, etc.)
• Documentation types and formats
• Architecture evolution steps
• Proactive modification guidelines
• Architecture governance process guidelines

5.4.6 Architecture Supporting Evidence
During the architecture design process the review team will develop other work products to support the architecture
review (i.e., to form an architects “notebook”). These work products may include:

• feasibility studies
- Technical documents discussing whether some requirements can be realized (under which constraints) or

whether specific architectural concepts or technical approaches can be used to realize the requirements
• prototypes

- Preliminary implementations used to check whether a specific architectural concept or technical approach
would be able to fulfill given requirements (regarding, e.g., performance, robustness etc.)

• minutes, notes, white papers
- Partly, these documents record the design decision process and cover the design rationale (i.e., technical

alternatives for the actual solution chosen in the architecture, criteria which have been used to make
decisions, Pro’s and Con’s of the current solution)

• measurements

5.5 Other Relevant Inputs

5.5.1 Architecturally Significant Requirements (ASRs)
Stakeholders have concerns beyond the software. All areas (e.g., product strategy, requirements, standards and
constraints, Q/A policies, etc.) form the basis for the evaluation criteria. Because not all these concerns are relevant
on an architectural level, we need to extract the issues that have a significant bearing on architectural decisions. As
introduced in Section 4.3, these requirements are called Architecturally Significant Requirements (ASRs) and they
are derived from the existing concerns.

The following two criteria help to identify ASRs:

1. If the realization of a requirement involves one or more of the other components or the system as a whole,
then it is an ASR

2. If a requirement concerns only a single component, then it is not an ASR.

Typically, ASRs are not stated explicitly in the requirement documentation (assuming that the requirements are
documented at all) and the review process will need to make them explicit. ASRs are used as the criteria for the
assessment and review process.

5.5.2 Product Strategy and Product Planning
A product strategy clarifies for a certain product or product family what role or position it is intended to have in the
market and how it compares in the long-term to competitors products. This includes aspects such as:

• location of competition: which market does the product address (e.g., niche vs. core market),
• rules of competition: according to which rules are competitors being approached (e.g., change vs. adaptation),

and
• market direction: what is the focus of the competition (e.g., cost leadership vs. performance leadership).

SARA Report

© SARA W.G., 1999-2002 21 Version 1.0

A product strategy is developed on the basis of a market analysis. This includes an understanding of:

• customers and their needs,
• main competitors, their products, and the strength and weaknesses of their products, and
• ones own current position in the market compared to the competition.

Product planning is done on the basis of the product strategy or as part of it. It includes:

• roadmap development (e.g., planning of products, releases / versions and variants) and
• economic issues (e.g., cost/benefit analysis, pricing, number of units produced, production costs, cost of R&D).

Product strategy and planning result in long term architectural requirements. They are important inputs for the
architecture review and assessment process since they describe the circumstances under which the product is
developed. They also form a basis for identifying the evaluation assessment criteria.

5.5.3 Requirements
A requirement is (see [IEEE Std 610.12.1990])

• “A condition or capability needed by a user to solve a problem or achieve an objective.”
• “A condition or capability that must be met or possessed by a system or a system component to satisfy a

contract, standard, specification, or other formally imposed documents.”

 [IEEE Std 610.12.1990] distinguishes the following types of requirements:

• Functional Requirement: It “specifies a function that a system or system component must be able to
perform, without taking physical constraints into consideration.” A functional requirement specifies the
services a system provides and the input and output behavior of a system. It includes feature sets, capabilities,
etc.,

• Design Requirement: It “specifies or constrains the design of a system or system component.”
• Interface Requirement: It “specifies an external item with which a system or system component must

interact, or that sets forth constrains on formats, timing, or other factors caused by such an interaction.”
• Implementation Requirement: It “specifies or constrains the coding or construction of a system or system

component.”
• Performance Requirement: It “imposes conditions on a functional requirement; for example, a requirement

that specifies the speed, accuracy, or memory usage with which a given function must be performed.” It is a
typical example of a nonfunctional requirement.

• Physical Requirement: It “specifies a physical characteristic that a system or system component must
possess; for example, material, shape, weight.”

Other types of requirements include:

• Usability Requirement: e.g., human factors, aesthetics, user interface, manuals, training, and
• Reliability Requirement: e.g., frequency and severity of failure

Requirements are a basic input for defining evaluation criteria. The main objective of an architecture is to define the
technical concepts regarding how the system implementation fulfills these requirements.

5.5.4 Standards and Constraints
As a separate subclass of requirements, the architecture may have to support or be compliant with standards.
Examples include:

SARA Report

© SARA W.G., 1999-2002 22 Version 1.0

• national rules, e.g., formulated by the FDA (Food and Drug Administration), TÜV (Technischer
ÜberwachungsVerein in Germany),

• company standards,
• legal constraints, and
• IEEE, ISO, standards.

The architecture review team may also have to consider other pragmatic during architectural design (even though
the stakeholders do not always explicitly state them). These include:

• compliance and compatibility with legacy systems,
• asset protection (e.g., the system under development and its architecture must not force the customer or

development team to replace all of the existing infrastructure),
• existing core competencies of the organization and know-how of its people (e.g., the architecture should not

revolutionize development and product technology in too many areas),
• political issues (e.g., compliance to ecological standards, they are not always obligatory, but they might serve as

marketing arguments), and
• multi-site development (e.g., geographically distributed development teams).

5.5.5 Quality Assurance Policies
In some cases an architecture needs to take into account an organization’s Quality Assurance policies (e.g.,
development naming conventions, design and implementation rules, and commitments for assuring quality. Some
examples include:

• integration test strategies that an architecture has to support (e.g., by providing monitoring features) and
• quality metrics and goals the architecture has to conform with.

5.5.6 Risk Assessment Artifacts
When a risk management process exists, then during the risk elicitation and evaluation phase, the architect will
identify the risks associated with the architecture or the product technology. Typical risks include:

• technological risks (e.g., maturity of the technologies to be used) and
• open issues (e.g. ,areas where the consequences of a certain architectural concept cannot be overseen at the

current status of development).

The architect should use this information, in addition to other measurements, in order to minimize the risks during
the review and to complement the review results (e.g., the findings and recommendations).

SARA Report

© SARA W.G., 1999-2002 23 Version 1.0

6 Review Outcomes

6.1 Introduction
This section focuses on the identification of information that forms the outcome / output of an architecture review /
assessment. There is tangible and intangible output. These outputs result from the review discussion that has mapped
the ASRs to architecturally significant decisions (ASDs).

The primary outcome of the review and assessment process is the documentation of:

• architecture recommendation and findings,
• decisions taken during the review, and
• suggestions to improve the quality of review plan, methodology, etc.

In addition, the review produces intangible outcomes such as:

• improved communication between stakeholders,
• better understanding of the stakeholder concerns, and

• better understanding of the limitations of the architecture.

All relevant points from the review need to be collected in an appropriate way. The review team should organize the
resulting documentation in a way that supports the project workflow efficiently. All scheduled activities require
unambiguous goals and information to base decisions on. In general, the outcome helps to improve the quality of the
architecture in all of its dimensions and ensures the seamless integration of architecture and the relevant project and
business goals. The main outcomes and results of the review are:

• the assessment report and
• additional review outcomes (e.g., executive summary, organizational issues, strengths and weaknesses).

The following sections elaborate on the content of these documents and work products.

6.2 Assessment Report
This is the main outcome of the review. An example of an assessment report is shown in the appendix. The
subsections that follow provide and synopsis of the steps the review team should following in a “typical” review and
assessment effort.

6.2.1 Objectives
Before the review begins, the team must agree on the review objectives and collect the necessary input material (see
Section 5.2). If review objectives haven't been met entirely, the team must document a decision on how the
‘leftovers’ will be handled.

6.2.2 Scope
The review team will document the scope of the review (see Section 5.3).

6.2.3 Methodology
The review team will document the methodology that will be used to conduct the review (see Section 8).

SARA Report

© SARA W.G., 1999-2002 24 Version 1.0

6.2.4 Evaluation Criteria for Architecture
The review team will define and document a set of criteria based on the ASRs (see Section 5.5.1). Note that
sometimes it is helpful for the review team to state what (well known) criteria have not been put on the list and for
what reason. When opportunity exists, the review team should reuse existing, concise domain-specific sets of
criteria that have proven valid in the past.

6.2.5 Employed Architectural Foundation and Approach
This section focuses on information gathering based on the methodology (Section 6.2.4) the review team has
decided to use to map evaluation criteria to architectural artifacts and concepts (see Sections 5.4 and 5.5).
6.2.5.1 Identification of Architectural Concerns and Concepts
A software architecture is based on common principles and expert knowledge that stems both from the problem
domain or is domain independent. The following areas should be supported by proven concepts when they are
applicable to the architecture under review:

• system topology and scalability,
• basic system structure paradigms, e.g., n-tier architecture or components,
• communication and addressing issues,
• database issues,
• fault tolerance and redundancy,
• security issues, e.g., authentication, authorization, encryption,
• GUI issues, e.g., common look an feel, web technology, internationalization,
• real-time requirements,
• administration and monitoring of the system,
• support for versioning,
• support for configuration and extensibility,
• support for interoperability,
• support for portability and multi- programming language support, and
• integration of hardware and hardware dependencies.

6.2.5.2 Identification of Key Architecture Use Cases and Scenarios
Domain modeling captures use cases and scenarios. The available documentation should reflect all necessary use
cases in order to:
• meet the requirements,
• satisfy stakeholders,
• support reuse of existing artifacts,
• support software analysis and design, and
• support test activities.

6.2.6 Architecture Analysis, Findings and Recommendations
This section forms the core part of the assessment report. According to the methodology selected by the review
team, they will map the set of criteria (ASRs) to the set of architectural concepts and decisions that they identified.
This results in a systematic evaluation of the current architecture and helps to set up an action plan for future
improvement. The outcomes of this process are described in the subsections that follow

6.2.6.1 Strength and Issues

6.2.6.1.1 Strengths
The review team detects all employed best-practice issues. These issues are such that they
• form an architectural invariant the project wants and/or has to rely on,
• form a broader base for future architectural decisions,

SARA Report

© SARA W.G., 1999-2002 25 Version 1.0

• extend current guidelines, and
• communicate best practices to project team members.

6.2.6.1.2 Issues
The review team identifies issues that are subject to further investigation. They might cover enhancements in the
following areas:
• business plan,
• process issues,
• requirements analysis,
• applied standards and technologies,
• design and implementation,
• test and monitoring, or
• human resource issues.

6.2.6.2 Other Findings
The review team may have discovered issues that haven't been evaluated because:
• documentation / information was missing,
• required experts were not available, or
• the issue was not to be taken into account at this early stage.

6.2.6.3 Recommendations
During team discussion, recommendations need to be collected that might help the project at a later date, or are
optional in the given context.

6.2.6.4 Action Plan
For all findings, the review team needs to schedule actions and assign them to working groups. The results of the
groups form new inputs to future review / assessment meetings and may result in a revision to the action plan. For
recommendations, the relevant stakeholders must take appropriate actions conditional on other stakeholder’s actions.

6.3 Additional Review Outcomes
There might be different additional outcomes according to the needs of supplier or customer. Typical examples are
listed in the sections that follow.

6.3.1 Executive Summary
The review team can use the executive summary of the review as basis for creating a presentation of the most
important results to the various stakeholders. Additional detailed information is found in the assessment report. The
subsections that follow contain suggested elements for inclusion in the executive summary.

6.3.1.1 Organizational Issues
This portion of the executive summary could contain the following:
• a description of the project that was reviewed,
• some background information on the customer who owns the project,
• a list of the review participants, and
• the time period and schedule overview.

6.3.1.2 Objectives of the Analysis
This portion of the executive summary would contain a selection of the identified objectives.

6.3.1.3 Overview of the Investigated Architecture
This portion of the executive summary would show an overview of the product architecture..

SARA Report

© SARA W.G., 1999-2002 26 Version 1.0

6.3.1.4 Summary of the Result
This portion of the executive summary would highlight the findings.
6.3.1.5 Methodology of the Analysis
This portion of the executive summary would explain, in a condensed way, the review and assessment methodology
the team used to conduct this review. It may also include a set of selected criteria and architectural concepts.

6.3.1.6 Detailed Results
This portion of the executive summary would present the condensed version of the analysis results.

6.3.1.7 Appendices
Assuming that the review has resulted in creating several more detailed documents, these documents can form
appendices to the summary. Examples of such material could include:
• the set of evaluation criteria,
• the set of concepts that were analyzed, or
• the evaluation metrics and matrices.

6.3.2 Architecture Review Plan Update and Lessons Learned
This final output of the review process is strategically important for the success of future review and assessment
efforts. During the review process, the participants will gather experience on which parts of the process, or what
types of artifacts are or are not effective. As a result, the team should recommend changes and updates to the review
plan. The detailed description of the review plan can be found in the workflow section (Section 7).

Improvements might be possible in the following areas:
• definition of the review approach,
• evaluation of the applied methodology,
• identification of the review work breakdown structure (agenda),
• establishment of the review staffing plan (team and customer),
• identification of review objectives,
• identification of key stakeholders (system and review),
• definition of the review cost estimates,
• establishment of the review logistic requirements, and
• determination of information need requests.

Other review plan improvements might be added at this point in time. Also, the stakeholders might want to list
additional information that was specific for that review, like:
• organization data,
• production environment, and
• development process.

7 Architecture Review Workflow

This section describes a typical workflow for an architecture review. We assume that a review is a relatively short
effort (three days or less) with the following underlying principles:

• the key objective of the review is to demonstrate that the architecture addresses (or does not address) a set of
architecturally significant requirements (ASRs),

• the ASRs must be understood and explicitly stated for the review to succeed, and
• the ASRs are compared with (or mapped into) an architectural description of the system that is sufficient for

reasoning about the expected system’s behavior and properties.

SARA Report

© SARA W.G., 1999-2002 27 Version 1.0

We do not assume that the ASR list and the architecture description are complete before starting the comparison
(analyzing them against each other). They may be created or discovered concurrently and iteratively as the review
progresses. This, however, does not change the principle assumption, that we are comparing explicitly stated ASRs
against an explicit architecture description.

The length of the review will depend on its type (lifecycle or stakeholder-initiated), the size of the system, and if it is
the first review or a follow-on review. However, we assume that a review should take no more than a few days.

We have divided the review activities into three groups (or phases):

1. review inception,
2. review, and
3. post review.

The first phase results in the agreement on the review scope, cost, duration, participants, etc. The second phase is the
above-mentioned, iterative process of discovering, capturing and comparing ASRs and the architecture description.
The last phase concentrates on summarizing and communicating the finding, as well as improving the review
techniques and methods.

We use a simple template to describe the review activities. The template captures:

1. activity name,
2. activity objectives,
3. input to the activity,
4. applicable methods and techniques,
5. outcome of the activity, and
6. roles/workers involved in executing the activity.

Inputs and outcomes to/of a review are described in Sections 5 and 6 respectively. Activity templates list examples
of inputs and outcomes, but are not exhaustive. Each activity template also suggests methods and techniques that can
be used to perform the activity. General description of review methods and techniques is provided in the following
section (Section 8). Finally, each activity template suggests the roles/workers involved in the activity. We recognize
the following roles/workers:

• architecture review team (ART) lead,
• architecture owner,
• ART member,
• project owner,
• project team lead/manager,
• review requester,
• lead architect, and
• product manager.

7.1 Inception Activities
The following subsections describe the activities the ART must engage in in order to generate a review plan and
secure management resource commitment to execute the review.

7.1.1 Identify Type of Review and Its Business Objectives

Activity Name Identify type of review and its business objectives

Objectives Identify what type of review has been requested and/or is required. Identify the review
goals and issues, if any that need be addressed? Try to qualify the review in terms of
business objectives and benefits.

SARA Report

© SARA W.G., 1999-2002 28 Version 1.0

Input Development schedule, process documentation, Quality Assurance policies,
stakeholders’ requests, review type selection guide, business plan, business case, road
map, project/system issues and risk assessment artifacts

Methods/Techniques Interviews, moderated discussions, business documentation analysis, or use of some pre-
defined questionnaire

Outputs Prioritized list of business objectives

Roles/Workers Line management, project owner, product manager, architecture owner, ART lead, and
review requester

7.1.2 Identify Key Stakeholders and Review Scope

Activity Name Identify key stakeholders and review scope

Objectives Understand who the key project stakeholders are. Understand what part(s) of the system
needs be reviewed. Understand the types of work-products and deliverables that we have to
be reviewed/analyzed. Define the set of qualities to be reviewed (e.g., performance, cost,
understandability, etc.).

Input Project/product line structure overview, organization charts with skills and competencies,
stakeholders’ proposal (proposed statement for work), review history, schedules, budgets,
type of review, etc.

Methods/Techniques Questionnaires, interviews, checklists

Outputs Names of subsystem(s) that will be the subject of the review, key stakeholders list

Roles/Workers ART lead, project team lead, lead architect

7.1.3 Identify (Initial) Set of Detailed Review Objectives

Activity Name Identify (initial) set of detailed review objectives

Objectives Create a specific list of review objectives (hypotheses) and information needs that can be
handed to the review team for investigation.

Input Review business objectives, review type, review scope, system requirements and
constraints, risks analysis

Methods/Techniques Interviews, risk prioritization techniques, impact analysis techniques, issue-based
analysis techniques, check-lists, …

Outputs Initial list of architecture review objectives and information needs, initial list of
deliverables

Roles/Workers ART lead

7.1.4 Prepare Review Plan and Obtain Approval

Activity Name Prepare review plan and obtain approval

SARA Report

© SARA W.G., 1999-2002 29 Version 1.0

Objectives Propose and get approval for a review plan. Make sure that roles and responsibilities are
assigned and committed to. Validate logistics (e.g., facilities, individual schedules,
access to infrastructure like phones, printers, etc.).

Input Deliverables list, schedules, scope of the review (in terms of subsystems to be reviewed),
org charts with responsibilities, skill set descriptions, staffing plans, etc.

Methods/Techniques Planning techniques and tools (e.g., MS Project), templates, interviews, etc.

Outputs Cost estimate, review plan, presentation for management, agreement document (different
from statement of work?), ART members list, what/when stakeholders are needed

Roles/Workers ART lead, project owner, review initiating stakeholder(s)

7.2 Review Activities
Architecture review is a learning process. The ART identifies and captures ASRs, develops and refines the
architecture description. and analyzes the description against the ASRs to prove that they can be met, which may
lead to discovery of new ASRs, ASR reprioritization and architecture description refinements.

One would like to perform the activities described below in a sequence. However, the nature of the review described
above indicates, that in most cases these activities will be performed iteratively.

7.2.1 Identify, Describe and Prioritize ASRs

Activity Name Identify, describe and prioritize ASRs

Objectives Create a prioritized list of ASRs that have been approved by key stakeholders

Input Initial list of ASRs

Methods/Techniques Requirements discovery methods. Requirement classification methods. Requirement
prioritization methods

Outputs Prioritized ASR table

Roles/Workers ART Members, Project Owner, review initiating stakeholder(s)

7.2.2 Identify/develop architecture description

Activity Name Identify/develop architecture description

Objectives Identify and/or develop the architectural descriptions of the system that can be analyzed
against the ASRs

Input Review objectives and information needs, ASR list, architecture description(s), system
implementation and prototypes, analytical models, etc.

Methods/Techniques System demonstrations, interviews, code analysis, architecture documentation analysis,
design recovery techniques

Outputs Architecture description, refined architecture review objectives list, refined ASR list

Roles/Workers ART members

SARA Report

© SARA W.G., 1999-2002 30 Version 1.0

7.2.3 Analyze Architecture Description Against ASRs

The above activity is the core of the review and it is exploratory and iterative in nature. The ART is analyzing the
architecture “against” the stated ASRs. For example, if one of the objectives is to verify that the system will scale up
to a certain level of throughput, the ART will be looking for design decisions, empirical evidence, or other ways of
verifying that the system will indeed scale up.

7.3 Post-Review Activities

The following is a set of activities that conclude a review. The main objective of these activities is to summarize and
present the findings. If possible, the ART should look back at the review to see if the review guidelines (like this
workflow) could be improved.

7.3.1 Summarize Findings and Review Them with Architecture Owners

Activity Name Analyze architecture description against ASRs

Objectives For each review ASR find out how it has been addressed in the design. Evaluate
architecture decisions and collect and organize preliminary findings. Refine architecture
review objectives and ASRs if needed.

Input Refined review objectives list, architecture descriptions, the system

Methods/Techniques Issue driven analysis, scenario analysis, model-driven analysis, check list of detailed
review questions, traceability analysis, etc.

Outputs Preliminary findings: risks, issues, tradeoffs, sensitivity points

Roles/Workers ART members

Activity Name Summarize findings and review them with architecture owners.

Objectives Create a preliminary summary of the review findings. Discuss the findings with the
architecture owners before producing the review report.

Input Preliminary findings

Methods/Techniques

Outputs Summary of the findings (strengths/weakness, issues, risks, tradeoffs), preliminary
version of recommendations, outline of the action plan

Roles/Workers ART members, lead architect, architecture owner

SARA Report

© SARA W.G., 1999-2002 31 Version 1.0

7.3.2 Present Review Report and Recommendations

7.3.3 Refine Review Methods

Activity Name Present review report and recommendations.

Objectives Finalize the outcome of the review. Present the outcome to the architecture owners and
stakeholders who requested the review. Review recommendations with the stakeholders.

Input Summary of the findings (strengths/weakness, issues, risks, tradeoffs), preliminary
version of recommendations, outline of the action plan

Methods/Techniques Templates of reports and presentations

Outputs Review report, review presentation, suggested corrective actions

Roles/Workers ART lead, review requester, architecture owner, lead architect

Activity Name Refine review methods.

Objectives Conduct a retrospective analysis of the review to see if there are opportunities to
improve the applied process and techniques.

Input ART observations and notes

Methods/Techniques

Outputs Improved review guidelines, techniques and methods

Roles/Workers ART lead

SARA Report

© SARA W.G., 1999-2002 32 Version 1.0

8 Methods and Techniques

8.1 Introduction
To efficiently and completely address each step of an architecture review may require a specialized method. Each
method is defined by: a set of steps (a process), an associated analytic technique, a notation, a set of outputs (work
products), and a set of roles for the participants. These are ideally associated with estimates of cost and time. This
section addresses the specific techniques needed to produce the desired outputs from each of the steps of the review
process.

This section collects the techniques that support the activities described in the Workflow section (Section 7) and are
based on the actual experiences of the authors. The basic idea is that for every ASR a particular method or technique
can be identified to assess whether the architecture under review satisfies that ASR or not.

8.2 Template for Describing a Method or Technique
All architecture review methods and techniques described in this section use the template show in Table 8-1. In
addition to the techniques that follows, the ART should consider using any applicable techniques for holding
meetings or interviews, e.g., techniques to handle difficult people, to elicit input, to get closure on an issue, etc.
These techniques can be found in [Freedman, Weinberg 1990] and [Gilb 1993]. The individual relevant methods and
techniques are described in section 7.3.

Name A succinct name given to the method or technique
Context In which circumstances would you invoke (execute, use) the technique; which activities of the

architecture review workflow does it support? What problem does it help solve?
Purpose What does the technique achieve? What additional insight does it provide? What intermediary

artifact does it produce?
Input What are the artifacts that the technique uses?
Output What are the results of applying the technique? What artifact does it produces or updates, and how

do you interpret theses results?
Steps What are the a series of steps or workflow for this method (if it is a complex technique)?
Roles Who are the participants?
Estimates What is the estimated effort to apply the technique?
Reference Where has this technique been published/described?
Tools What tools support this technique?
Alternative What other technique could used for similar purpose?

Table 8-1: Template for Method and Techniques for Architecture Analysis

There are review process techniques, related to the preparation, conduct and conclusion of the
review, and techniques related to the evaluation of issues related to certain classes of ASRs,
which can be organized following the rules and guidelines found in Section 4.3: design-time,
build-time, run-time, start-up and shutdown time, upgrade time, configuration-time. We have
identified the following techniques:

Review process methods and techniques:

• individual interviews,
• critical scenario,
• change case,

SARA Report

© SARA W.G., 1999-2002 33 Version 1.0

• check list, and
• probing about alternatives.

ASR-related methods and techniques:

• Rate Monotonic Analysis for schedulability (run-time),
• module structure analysis (design time, build time),
• queuing system evaluation

The following table lists the architectural concerns for which we are seeking evaluation methods and techniques.

CATEGORY ARCHITECUTUR
AL CONCERN

DESCRIPTION L M H

Creatability Ease of creation Degree of effort required to create the system according to
the stated requirements

 Outsourceability Degree to which the implementation of parts of the system
can be outsourced

 Buy-in Degree to which existing components can be applied in
the system

 Conformance Adherence to technology or industrial standards for
product (process)

 Manufacturability To be manufactured with low cost, high throughput, low
drop out, etc.

 Environment impact Regarding manufacturing, life time, recycling costs,
disposable consumption, power consumption

Functionality Suitability Providing an appropriate set of functions for specified
tasks and user objectives

 Interoperability Interaction with one or more specified systems

 Security Detection and prevention of unauthorized access
(accidental or deliberate) to programs or data

 Compliance Adherence to application related standards or conventions
or regulations to laws

 Integrability Degree to which components of the system can be easily
integrated

 Configurability Adaptation the system to different needs

 Compatibility Of the system with earlier or future systems

Reliability Correctness Degree to which the system conforms to the stated
requirements

 Accuracy Providing the right or agreed results or effects (including
data with needed degree of precision)

 Availability Degree to which the system is available to the user on the
time it is needed

 Fault tolerance Maintaining a specified level of performance in case of
system failures or infringement of its interface

 Recoverability Re-establishing the level of performance and recover data
directly affected in the case of a failure

 Safety Absence of unsafe system conditions that could lead to
loss of life or liability, or damage to property

SARA Report

© SARA W.G., 1999-2002 34 Version 1.0

Usability Understandability Enabling the user to understand whether the system is
suitable, and how it can be used for particular tasks

 Learnability Enabling the user to learn the system’s application

 Operability Enabling the user to operate and control the system
(required effort)

 Explicitness Clarity of the system with regard to its status

 Responsiveness Of the system regarding reaction according to user
expectations (feedback during processing)

 Customizability Enabling the system to be customized by the user to
reduce effort needed for use and increase satisfaction

 Clarity Clarity of making the user aware of the functions the
system can perform

 Helpfulness Availability of instructions for the user on how to interact
with the system

 Attractiveness To be liked by the user

Efficiency Time behavior Providing appropriate response/processing times and
throughput rates (no degeneration over time)

 Resource utilization Using appropriate resources in an appropriate time when
performing the functions (memory, comm.)

Maintainability Analyzability To be diagnosed for deficiencies or causes of failures, or
for the parts to be modified to be identified

 Correctability Enabling an identified fault to be removed

 Expandability Increasing the system’s functionality or performance to
meet new needs

 Stability Minimizing unexpected effects from modifications of the
system

 Testability Enabling the developed or modified system to be
validated

 Scalability Supporting modifications that strongly increase the
system’s internal capacity (same functionality)

 Serviceability Servicing the system in its operating environment (ease,
effort)

Portability Adaptability To be modified for different specified environments
(including hardware/software independence)

 Co-existence Co-existing with other independent software in a common
environment sharing common resources

 Installability Of the system to be initially installed, set up, calibrated,
etc. in a specified environment

 Upgradability To be upgraded (with new functions, releases, etc.) in the
system’s operating environment

 Replaceability To be used in the place of specified other system (parts)
in the environment of that system

 Reusability To be complete or partially reused in another system

SARA Report

© SARA W.G., 1999-2002 35 Version 1.0

8.3 Inventory of Techniques

8.3.1 Individual Interviews

Name Individual interviews
Context Use this techniques to gather information in a politically or emotionally difficult context, such as

potential issues.
Purpose Information gathering without open conflict or blockage
Input Depends on the information being gathered
Output Depends on the information being gathered
Steps 1. Define the scope of the interview.

2. Build a short initial questionnaire.
3. Identify key individuals to interview and make appointments.
4. Conduct a first round of interviews.
5. Using pertinent information gathered with the first few interviewees, such as perceived issues,

refine the questionnaire to focus on potential problem area to confirm; go to Step 3.
6. Consolidate results in a list of confirmed issues.

Roles The reviewers, and selected interviewees (depending on nature of information gathered)
Estimates Time consuming, indeed, but more effective than open war
Reference

8.3.2 Critical Scenario

Name Critical scenario
Context 1. Recovery of architecture

2. Evaluation of operational characteristics: performance, interfaces etc.
Purpose To get an end-to-end view of the system, its integrity, and how the critical function are

implemented, and get some insight on potential performance issues (e.g., response time and load).
Input
Output
Steps 1. Identify 2-3 scenarios that are critical to the raison d’être of the system.

2. Describe the black box view of the scenario: starting condition, events at the boundary, ending
condition.

3. …
Roles
Estimates
Reference

8.3.3 Change Case

Name Change case
Context Evaluation
Purpose Evaluate the robustness, modifiability, extensibility of an architecture
Input Architecture description
Output Identification of hard to change architectural decision; or their cost

SARA Report

© SARA W.G., 1999-2002 36 Version 1.0

Steps 1. Brainstorm a list of potential changes in the systems environment (platform, new requirements,
new functions, new scale, technology change, etc.)

2. Sort them out.
3. What would be the damage to the architecture by doing the corresponding change, what interface

or components are affected, which ones are not affected?
4. Estimate the cost of implementing the change.

Roles
Estimates
Reference SAAM [|Kazman 1994]

8.3.4 Check List

Name Check list
Context Use throughout the architecture review, from organizing it to concluding it.
Purpose Reuse the know-how from previous reviews: typical problems, problem areas, overlooked issues.

Coverage of the review.
Input Check list (in review plan or procedure)
Output Issues list
Steps
Roles
Estimates
Reference

8.3.5 Rate Monotonic Analysis

Name Rate Monotonic Analysis
Context When concerns with system behavior and timing, and evaluating execution architecture
Purpose To determine schedulability of a set of processes
Input Description of process structure (tasks, priorities, execution times, resources, periodicity,…)
Output
Steps
Roles
Estimates
Reference Lui Sha et al.. circa 1990 [Sha 1991]

8.3.6 Module Structure Analysis

Name Module structure analysis
Context When evaluating
Purpose To gain insight as to the quality of the module structure: understandability,

portability, localization of complexity, cohesion and coupling
Input Proposed module structure
Output Specific properties: cohesion, layering, circularity, coupling, etc
Steps
Roles
Estimates

SARA Report

© SARA W.G., 1999-2002 37 Version 1.0

Reference

8.3.7 Probing About Alternatives

Name Probing about alternatives
Context When the rationale of the design decision is unknown; when the rationale is not fully supported by

evidence or obvious.
Purpose To confirm that it is the best choice
Input A decision, its context and the ASR it addresses
Output Confidence in a choice, or maybe identification of an issue or a better alternative to explore
Steps
Roles
Estimates
Reference

8.3.8 Prototyping

Name Prototyping
Context When inspection of artifact or reasoning cannot reach a conclusion
Purpose Get a realistic range of value for an architectural attribute/property
Input A design and an expected range
Output A value within the expected range (hopefully)
Steps Build an operational prototype.
Roles Architect, developer
Estimates Rather costly, depending on level of expected accuracy
Reference Many…
Tools Many…
Alternative Take your chance

8.3.9 Queuing Model

Name Queuing model
Context When inspection of artifact cannot get to a conclusion; for certain classes of performance and

capacity issues
Purpose Get a realistic range of value for an architectural attribute/property related to response-time,

throughput or capacity
Input A design and an expected range; hypothesis about usage patterns and workload model
Output A set of values
Steps
Roles Specialist in queuing theory; architect
Estimates Inexpensive (excluding tool acquisition)
Reference
Tools Several commercial tools: QNAP et.
Alternative

SARA Report

© SARA W.G., 1999-2002 38 Version 1.0

8.3.10 Quality Function Deployment

Name QFD Quality Function Deployment
Context Transition from Requirements to architecture
Purpose Balance and match multiple concerns
Input Stakeholders’ needs
Output The “house of quality”; prioritized requirements
Steps
Roles
Estimates
Reference
Tools
Alternative Impact matrices

SARA Report

© SARA W.G., 1999-2002 39 Version 1.0

9 Pragmatics and People Issues

In addition to technical issues, to have a successful architecture review requires an understanding of the social,
psychological, and managerial context and implications of the review. These non-technical factors arise from the
environment in which the review is situated: when in the lifecycle it occurs, who initiates the review, who the
stakeholders are, and what is at stake in the review.

You should read this section if you will be organizing a review and want to be aware of the potential sources of non-
technical conflicts that may arise. This section discusses the different types of reviews and how you can deal with
the non-technical problems that will inevitably arise.

9.1 People Issues
We discuss people issues using two dimensions, reflecting the homogeneity of the people that are about to
participate in the review, and predictability of the review. The following table illustrates some of the key attributes
related to these dimensions. Below the table, a discussion is given for all the terms used in the table, structured in
accordance with different categories of reviews.

 Scheduled Stakeholder Triggered
Homogeneous Egoless

Civilized
Helpful

Egoless
Less Civilized
Cooperative/Duty driven

Non-homogeneous Egofull
Less Civilized
Cooperative/Duty driven

Egofull
Potentially Uncivilized
Hostile/Blaming

Table 9-1: Characteristics of Reviews

Obviously, while the table presents strict categories, practical implementations usually have a mixed set of
participants. For instance, the reviewer may come from a consulting organization, and still the audience could
remain somewhat homogeneous. Similarly, a stakeholder-triggered review could be such the development personnel
have agreed to it, resulting in a review that is egoless, helpful, and civilized. However, reviewing is very much about
teamwork, and even a single misbehaving person can ruin the entire review. So it is important to consider the
potential advantages and disadvantages of each review type.

9.1.1 Scheduled and Homogeneous
In a prescheduled architecture review with homogeneous participants, people are not trying to highlight their own
achievements. Rather, the focus tends to be on the technical aspects of the architecture. To further strengthen the
cooperative and technical nature of the event, all the participants have more or less similar background, and they
more or less share the concerns over the architecture. A review of this type is one indicated in the project plan for
instance, where minimal personal feelings are expressed.

Highlights
• Keep your review participants as homogeneous as possible.
• Focus on technical issues. In particular, do not get into a discussion on management decisions that may be

reflected in the architecture.
• Agree on rules for the review beforehand.
• Make developers feel confident, not defensive.
• Find win-win conditions of different stakeholders.
• Remember post-review work.

SARA Report

© SARA W.G., 1999-2002 40 Version 1.0

Main characteristics of this type of a review are listed as follows:
• Egoless. Participants are not trying to highlight their own achievements or degrade other people’s work. Instead,

the focus tends to be on the technical decisions, and the designers responsible for making these decisions have
minimal interest in preserving such decisions for their own sakes. Reviews have very positive spirit, as there is
no feeling of being judged by the past actions in the project. Rather, there is a common goal and consensus to
study the system as thoroughly as possible with the available resources for maximal output.

• Civilized. The focus of the meeting remains centered on technical issues. No attacks on individuals are made,
and the spirit of the meeting should be comradely. The developers are prepared to openly discuss the adequacy
of their designs. Similarly, other participants are ready to accept, comment, or argue over the technical
reasoning behind the design decisions. No strong feelings arise during these discussions, and nobody is
offended by the opinions raised during the review.

• Helpful. Participants are eager to help each other. Everybody is open to new suggestions, and nobody has strong
feelings or jealousy over their own designs. As a downside, sometimes a helpful attitude results in a review
where the focus shifts from the identification of the problem to brain storming for solution. While this may ruin
the focus of the review, it is sometimes necessary in order to ensure the smooth proceeding of the meeting.
However, if you allow side conversations, then you soon end up in a chaotic situation where there is no focus on
the actual review work. For details on how to handle pragmatic issues like the above problem, the reader is
referred to section 9.2.2. For this particular situation, refer to item 'What to do when the rules of the game are
violated.'

9.1.2 Stakeholder Triggered and Homogeneous
Whenever an architecture review is stakeholder initiated, there is a potential threat that some of the participants find
the review personally offending or threatening, i.e., that the review is organized to detect personal failures. Further, a
stakeholder-triggered review can be a sign of an alarm from higher management, which introduces even more
potential for a hostile review. Notice that there is a range of stakeholder initiated reviews, some of which need not
be hostile. For instance, if the chief architect initiates review, it can be handled more or less like a scheduled review.
Main characteristics of a stakeholder triggered homogeneous review are the following:
• Egoless. As in 9.1.1.
• Less Civilized. The focus of the review is in still technical issues. Most of the aspects in 9.1.1 hold.
• Cooperative/Duty driven. When participants of a review form a less homogeneous group, or there is an

important concern raised by some of the stakeholders, the review becomes cooperative and duty driven. Interest
in personal aspects starts to play a bigger role, resulting in less willingness to help each other. Rather, the
review is carried out as a duty. Cooperation aims at the satisfaction of other stakeholders' expectations, not from
a genuine desire to help each other. For obvious reasons, such reviews may fail to discover some problems that
should have been detected. Further, people may start to feel protective of their own work and be less willing to
admit potential design flaws. Obviously, this results in degraded productivity of the review, and potentially
introduces bigger threats to the goals of the review if not dealt with adequately.

9.1.3 Scheduled and Non-homogeneous
In a non-homogeneous review, participants have different backgrounds and/or different commitment to the system
whose architecture is being reviewed. For instance, high-level line managers may not have any idea about the
technical aspects of the system, whereas chief designers tend to be interested only in the technical portions.
Therefore, when the participants' backgrounds diverge, ranging from a general-issue designer to a project manager
to a line manager, there is a threat that no technical contribution is made in the review. Notice, however, that
although the presence of outsiders introduce non-homogeneity, it may be liberating for the developers to have
outside reviewers with whom to talk about the technical aspects of the system. This obviously increases the
productivity of the review, as the developers are not taking on fixed roles determined by the development
organization or other fixed structures. Also there can be a varying range of homogeneity.

The main characteristics of this type of a review are.
• Egoful. The developers are not willing to reveal technical issues, or openly discuss their decisions. There is

jealousy over designs, and technical arguments are overridden by personal opinions and contributions.

SARA Report

© SARA W.G., 1999-2002 41 Version 1.0

• Less Civilized. As in 9.1.2.
• Cooperative/Duty driven. As in 9.1.2.
9.1.4 Stakeholder Triggered and Non-homogeneous
This is the most difficult type of architecture review. People are not open, and they are threatened by the presence of
outsiders. Further, there is a strong feeling of pressure, as stakeholder triggered architecture reviews can be taken as
a sign of a severe project crisis. Technical staff may enter a “garrison mentality”, where they try to minimize the
effects of the review to their part of the development, and blame others for wrong decisions. Then, instead of
focusing on the technology, time will be spent on blaming and on attacks towards different stakeholders. Because
stakeholders can have contradicting concerns, like the support for a portable implementation and maximal
performance in some prefixed platform, the non-homogeneous participants of an architecture review can turn the
review into a very hostile event.
• Egoful. As in 9.1.3.
• Uncivilized. The review is intended to compensate a potential risk to the development, so it is likely to be

conducted in a crisis situation. As a result of such external audit, it may be impossible to focus on the necessary
issues without a certain amount of personal pride involved. This pride can harm openness, and result in stiff
defense or opposition out of personal likes and dislikes rather than judging the design on purely technical
aspects.

• Hostile/Blaming. The designers/developers often feel threatened by such a review. In practice, it may be that
line management participates in the review, for instance, which can be interpreted as an act of espionage on
technology achievement by the developers. Technical issues lose the focus, and the review may become a series
of quarrels over issues that people have strong feelings about. No willingness for open discussion can be found.
Discovered issues are quickly blamed on an individual designer, who feels even more threatened by the review.

Clearly from the above discussion we encourage reviews to be scheduled and to be as homogenous as possible.
While the latter is not always possible (or always desirable) the former is certainly possible; architecture review
activities should be built into the project plan from the start.
9.2 Pragmatic Issues
In the following, we list aspects that typically need attention in an architecture review. The discussion is divided into
three parts. Firstly, we introduce necessary inception stage work to be done before conducting an architecture
review. Secondly, we discuss issues to be taken into account during a review, and finally, we give a discussion on
issues that should not be overlooked after conducting the review. As the structure of these issues consists of various
bits and pieces, each different issue is separately addressed. The viewpoint is that of a review team leader, as that
usually is the role where pragmatics is most applicable. However, also auxiliary roles can benefit from
understanding the main pragmatic principles.

The discussion assumes that the reference workflow described in Section 4 is followed, and that a well-defined
method like ATAM (discussed in Section 8) can be used where applicable [Kazman 2000]. However, many of the
pragmatic issues can be adequately taken into account even if the above assumption is not valid, as they more or less
describe the typical human behavior in reviews.

9.2.1 Inception Activities
The following discussion addresses pragmatics in the inception stage of a project. The focus is on aspects that must
be clear for all the participants to ensure the smooth proceeding of the review. This includes both commitment to the
goals of the review as well as acknowledgement of the review process and practices.

Setting expectations. It is important to appropriately set the expectations of all participants in the review. This
includes explaining (and perhaps inscribing in a contract) what the evaluators do and what they don't do; who gets
told what and when; what form the outputs are in and when they arrive; and who gets a chance, if any, to respond to
the recommendations before they are made “public.“ This is a process of negotiating the win-win conditions for all
the stakeholders.

SARA Report

© SARA W.G., 1999-2002 42 Version 1.0

Committing to the process. An architecture review should follow a process model. One of the benefits of such a
model is that it explicitly lists the inputs and outputs of each step. In addition, when we explain the process to the
stakeholders we can provide examples of all artifacts: architectural documentation, scenarios, risks, sensitivities, and
tradeoffs. In this way the stakeholders know what to expect and can come appropriately prepared to provide the kind
of input that will expedite the review. It is important to nominate an architecture review team lead who can force the
review to move on if it stalls on an unimportant issue or starts to become chaotic. For more details, refer to item
'What to do when the rules of the game are violated' in the following subsection.

Deciding who must be there for what stages. Any review, no matter how crucial, will be perceived, at least by some,
as an intrusion on their precious time. Hence, it is important to identify and forewarn the stakeholders of the review
with plenty of lead-time, and to ensure that each of them knows which steps of the process require their presence. In
fact, it is often useful to strictly limit attendance in many of the steps to the minimal set of stakeholders needed,
since this typically makes for a more efficient and productive use of the time.
Putting up gates. As explained above, there are many possible contexts for a review. Reviews are frequently
perceived as undesirable by the team being reviewed. This isn’t surprising—nobody likes being tested and a review
may be imposed upon the contractor or development organization. As a result, the development team being
reviewed may drag its feet in producing the necessary documentation, or in responding to requests for information
from the review team. However, it should be made clear from the outset that the review will not take place unless
the required information is provided up front. So the development team must be told, well in advance, what things
they have to do before proceeding, including responding to requests for information and providing adequate
documentation up front. Note that this may require educating the development team about the information that is
being elicited. When considering how you will put up gates, you should insist on having a single point of contact on
the customer team--the project team leader/manager--and have this person responsible for coordinating the activities
and outputs of the stakeholders. You should also think carefully about what information is really needed and
digestible during the review, as compared with what can be provided in advance. Similarly, consider what
information must be presented during the review as opposed to what can be delivered afterwards.

Getting the correct requirements. An architectural review is driven by requirements. These requirements cover both
functional and quality aspects of the system. It is essential to get the correct and up-to-date requirements as an input
to the review. While this seems obvious and trivial, it is common to be furnished with a requirements document
prior to a review, only to be told during the review: “when we said 1 second response time we didn’t mean it always
had to be 1 second” or “when we said continuous availability in the requirements we really are only concerned with
availability from 0800 to 1800 hours”, and so forth. Many requirements are not written down, or are part of a tacit
agreement among the key stakeholders, or are in fact conflicting assumptions made by different groups of
stakeholders. So getting the correct requirements as part of the inception stage work is both essential and potentially
tricky. All of the important requirements should be discussed with the key stakeholders before embarking on the
review.

9.2.2 Pragmatics During a Review
In the following, we point out some pragmatic issues that need to be taken into account. The list is not complete, as
any pragmatic issue of people-ware could be included. Crowd control. It is critical to establish, at the start of the
review meeting, how and when people are allowed to interact with each other. For example, it is important to ensure
that there are no side conversations, for this disrupts the proceedings. It should be established whether people can
come and go, and when they need to be present.

Getting buy-in from the key stakeholders. Because reviews tend to originate from different sources within an
organization, it is often the case that some of the participants are unhappy with the review. This is particularly the
case when the review activity is not part of the normal software process. In such a case it is often viewed as an intru-
sion on the precious time of the stakeholders. So it is crucially important, both before and during the review, to sell
management, the architects, and the other stakeholders on the value of the review. This can be partially achieved by

SARA Report

© SARA W.G., 1999-2002 43 Version 1.0

letting the stakeholders know that the review is occurring to help improve the architecture, not to point fingers or to
find blame. Any activity that involves the entire group interacting also helps to achieve buy-in.

Engaging all participants. It is not uncommon, in any kind of meeting, to have people who dominate the “air
waves” and to have people who, for one reason or another, feel quite shy about participating. However, to get the
most out of the participants, it is important to figure out how you can engage them. For example, some people might
be reluctant to speak frankly in front of their bosses or their subordinates. For these people it is important to provide
a forum for them where they are either alone or only among peers so that they can speak freely. It is also important
to provide a mix of free-for-all participation and periods where each person has a dedicated time to speak. It is also
important to engage all members of the review team—they are not immune to the social forces that affect the other
stakeholders. For this reason the roles on the review team must be established well in advance.

Making decisions and determining priorities. As discussed above, one of the problems that you see over and over
again when doing architectural reviews is that requirements, even when they are well documented, are often not well
understood. Because of this it is frequently difficult to make decisions. For example, when choosing between two
architectural alternatives, if the requirements are vague or incomplete or ambiguous, how would you go about
making a decision? So any review, and architectural reviews in particular, need to have techniques for aiding
decision making and prioritization.. Voting is an effective way of eliciting a set of priorities from a group of
stakeholders. Discussion and consensus help to engage people and achieve buy-in, as discussed above, which means
that the decisions that they make will be informed ones. The precise mix of these techniques varies from review to
review and depends on understanding the organizational dynamics of the system being reviewed. For example, is the
development organization strictly hierarchical or is it more egalitarian and team-based? Sometimes a single
stakeholder makes all the important decisions and consensus is not high priority. We make no value judgments on
which of these models is better, but it is critical to understand the group dynamics to facilitate the decision making
and to make priorities.

What to do when the rules of the game are violated? There will be times when an evaluation gets out of control:
people will have side conversations, or will try to steal the agenda, or will resist providing information. The review
team needs to know who has the ultimate authority if people are being disruptive or are having catfights. The review
team leader? The customer? A specific manager? The architect? It must be clear, before the review starts, who has
the ultimate control when (not if) an evaluation becomes chaotic.

Controlling the pace. Any meeting with a wide group of (likely highly opinionated) stakeholders will range out of
control from time to time, as stated above. But sometimes these conversations are revealing—hidden agendas,
worries, future requirements, past problems, and a myriad of other issues come to light. So the facilitator must be
aware of these digressions and know both when to squelch them and when to let a conversation continue. It should
be noted, however that this kind of facilitation can be exhausting: assimilating huge amounts of information, looking
for problems, and managing all of the political and personal issues simultaneously. Thus, we have found that it is
useful to have two facilitators, and to switch between them periodically to give each other a mental break.
9.2.3 Post-review Activities
A review is not conclusive. There usually are some loose strings that need to be tied up to have the necessary
feedback for all the involved personnel. This is a two-way street: the reviewer should provide information and
feedback on the system that was reviewed, and the participants should provide information on how they felt about
the architecture review. Further, it is also possible to plan things ahead for the next review, for instance. The
following discussion summarizes the main activities that should be conducted after the review has taken place.

Getting concurrence and feedback. The activities and information generated in a review are not really directed at the
review team, even though the review team is frequently the focus of the conversation and source of many of the
probing questions that need to be answered. The outputs of the review are really for the stakeholders of the project
being reviewed—the review team is just there to act as catalysts, experts, and facilitators. Because of this mismatch
between the producers/consumers of the information and the way that the information is elicited (via the facilitation

SARA Report

© SARA W.G., 1999-2002 44 Version 1.0

of the review team) extra care must be paid to ensure that all stakeholders concur with whatever is recorded. There is
one other interesting implication of the review team’s “special” relationship to the outputs of a review: some results
that surface during the review are already known to the architecture team and so the reviewers are sometimes made a
vehicle for carrying messages to management. Other results are not known and truly represent value added by
evaluators. It is useful for the reviewers to distinguish between these two cases (at least internally if not visibly). If
the reviewers are solely the vehicles for communicating hard decisions from the architects to their management, then
the validity of the evaluations will degrade over time.

Reporting out. When the review has been completed, there must be some agreement on how the outputs will be
communicated back to the stakeholders, in particular to management and to the architecture team. So it is important
to have determined what the form of the outputs is. The review team needs to know who gets told what and when.
For example, do the architects get a chance to respond to the review report before it goes to management or to the
other stakeholders? The outputs of the review are available to the architecture and management teams as assets that
they can use in planning the future evolution of their system. These outputs are valuable and so their eventual form
and destination must be planned.

Follow-on. An out-brief or report from a review can have many possible destinies. For example:

• to validate existing project practices,
• to change existing project practices (such as how architectures are designed and documented),
• to argue for and get additional funding from management,
• to plan for future architectural evolution.

It is important, therefore, to consider what is the eventual destiny of the information that is produced from a review
activity and to plan accordingly. This is also related to item 'Putting up gates' already discussed above.

Reassessment agreement. For the review team, it is very rewarding to have continuity in their work. Similarly, for
the development team it is easier to have the same review team look at the product all over again due to personal
involvement that has already taken place. This can be best served by agreeing on a practice to hold reviews for each
release, for instance. This lets the reviewers become more integrated with the development team, thus ensuring more
rewarding reviews in the future. Further, the input from different stakeholders need not be repeated, if there have
been no changes in their requirements, as they have already been recorded. This tends to make the reassessment less
laborious. There, however, is the possibility that the review team becomes a part of the development personnel. This
may result in less objective assessments, which obviously imposes a potential risk to the development.

SARA Report

© SARA W.G., 1999-2002 45 Version 1.0

10 Case Studies, Examples

This chapter contains examples of reviews conducted by members companies of the SARA group.
1. Medical Imaging Platform (Origin, Herman Postema)
2. Public Address and Conference System (Sioux, Henk Obbink, Herman Postema)
3. Battlefield Control System (SEI, Rick Kazman)
4. Earth Observation System (EOS) (SEI, Rick Kazman)
5. Cartography (Rational, Philippe Kruchten)
6. Telecommunication (Calls, Messaging and Multimedia Support) (Siemens, Norbert Weber)

Each case study tries to address the following topics/issues:

• Brief description of the domain, the project or product, the organization and its size; what triggered the
review; type of ASR addressed

• Departure from the overall SARA template in this review, its organization and workflow; unique methods
used

• Cost/time actuals (duration, number of people and roles involved)
• Major outcome of the review, positive and negative (effectiveness) and follow-up activities
• Lessons learned relative to the process of reviewing an architecture

10.1 Medical Imaging Platform (Origin/Philips, Herman Postema)

10.1.1 Objective and Scope
A review was performed on a product platform architecture. The platform serves as the basis for deriving a number
of product lines for complex medical diagnostic equipment. The objective of the review was to identify architectural
risks at a point in time where corrective actions could still be initiated. The review was performed early in the
development project when the major architectural decisions had been made. The customer (principal) of the
assessment was the manager of the department responsible for the development of the product platform.

The scope of the review was the platform as a whole, consisting of both hardware and software components.
However, it was decided to focus primarily on the software architecture. All architectural views were subjected to
the review. The concerns of all stakeholders of the system where addressed during the review.

10.1.2 Approach and Organization
The architecture review was performed as a guided self-evaluation. This implies that the local architects perform the
analysis by themselves, possibly in co-operation with a number of external architects. In total eight local architects
were involved in the review, and four architects from outside were invited in order to bring in an objective view and
additional expertise in specific architectural areas. The architecture review approach was defined by Origin
Technical Automation. Two Origin consultants facilitated the review process (like preparing the plan, performing
interviews with the stakeholders, guiding the architects through the analysis work, documenting and presenting the
results, etc.).

The review approach comprises the following phases:

SARA Report

© SARA W.G., 1999-2002 46 Version 1.0

1. Initiation Phase: Define the review objective, scope, organization, activities, resources, schedule, and risks.
Document and approve the review plan. Perform a kick-off meeting with all review participants.

2. Requirements Consensus Phase: Identify the non-functional requirements (ASRs) and their relative priorities
by interviewing the stakeholders. Get agreement on the non-functional requirements and priorities by means of
a consensus meeting with all stakeholders.

3. Architecture Analysis Phase: Identify the architectural decisions made and relate these to the non-functional
requirements. This is done by preparing a so-called ‘impact analysis matrix’ which communicates the impact of
each decision on each requirement. Based on this matrix, architectural strengths, weaknesses, risks, and
recommendations are defined.

4. Architecture Review Phase: Document the results of the analysis in the form of presentation material (slides).
Organize a review meeting where the results are discussed with the facilitators and the external architects.
Adapt the results based on these discussions where needed.

5. Reporting Phase: Document the review results in a Review Report. Review the report with the local architects
and perform rework where required. Present the contents of the report to the principal and the stakeholders.

10.1.3 Review Conduct
During the Requirements Consensus Phase, about 22 stakeholders have been interviewed in order to identify the
non-functional requirements and their priorities. Stakeholders who represented similar interests were grouped
together. The requirements were identified by means of a pre-defined template of non-functional attributes. The
relative priorities were determined by providing each stakeholder with a budget of points that could be allocated to
‘high’, ‘medium’, and ‘low’ priority. During the consensus meeting, the conflicting requirements or priorities were
presented and solved. This resulted in a final set of over 100 non-functional requirements that would serve as input
to the next phase.

During the Architecture Analysis Phase, the local architects identified the major architectural decisions that had
been taken. These decisions were classified into ‘key enabling technologies’ and ‘architectural concepts’. Next, the
local architects were divided in three groups, each group dealing with a subset of the architectural decisions. The
groups had the task to analyze the impact of each decision on the total set of non-functional requirements. This
impact was expressed by means of so called ‘impact indicators’ (++, +, 0, -, --) reflecting whether and into what
extend an architectural decision supports (or obstructs) the realization of a non-functional requirement. At the end,
the results of the groups were integrated into an ‘impact analysis matrix’. Each group prepared a slide presentation
of their work (according a pre-defined template). Apart from a motivation of each impact indicator this presentation
included the architectural strengths, weaknesses, risks, and recommendations.

The external architects were extensively briefed in order to be adequately prepared for their contribution during the
Architecture Review Phase. Briefing items included the product context, the review approach, their specific role,
and a code of conduct. Moreover, the external architects were given an opportunity to study the available system
specifications and architectural descriptions. It was decided to organize for two review meetings covering the review
of the decisions regarding the ‘key enabling technologies’, and the ‘architectural concepts’ separately.

During the review meetings (which took a full day each), the external architects had the task to comment on the
presentations that were given by the local architects and to raise discussions where needed. As a result, the findings
from the local architects were sometimes adapted as a result of these discussions.

During the Reporting Phase, the facilitators documented the outcome of the architecture review in a Review Report.
This report was structured into the sections:
• Introduction
• Non-functional Requirements
• Findings – Key Enabling Technologies
• Findings - Architecture Concepts
• Conclusions

SARA Report

© SARA W.G., 1999-2002 47 Version 1.0

• Recommendations

The complete set of non-functional requirements was documented in an appendix. In the two ‘Findings’ chapters, a
table was prepared for each architectural decision. This table included a motivation of the decision, possible risks,
and ways to reduce these risks. Each risk was attributed to the non-functional requirements that were negatively
influenced as a result of the architectural decision. By documenting which stakeholders owned these non-functional
requirements, the stakeholders could use the table to determine into what extend their non-functional requirements
would be satisfied (or obstructed) by the architectural decisions made.

10.1.4 Review Outcome
As a result of this architecture review it was concluded that the architecture was of an adequate level of quality.
Only a few minor risks had been identified. These were translated into corresponding improvement activities. Apart
from this primary outcome, a number of additional results could be identified:

• The analysis and review phase resulted in a number of findings regarding the process of architecture

development. This was because the way of working was often discussed during the meetings. These process
findings were finally considered even more important because severe weaknesses were detected.

• The local architects were given the opportunity to work together for an intensive period during the analysis and
review phases. During their normal work they did not have many communications. As a result, the architects
have learned much from each other and teambuilding was enforced.

• The architects got familiar with the concept of non-functional requirements and the relationship with their
architectural decisions. They were not used to work in that way. In addition, the local architects learned from
the external architects.

• The organization has experienced the value of an architecture review. It was decided that this kind of systematic
review should become an integral part of the development process.

10.1.5 Lessons Learned
This architecture review was actually the first review that was performed by Origin in an operational context
according their defined approach. The most important lessons learned were:

• The large number of stakeholders, local architects and external architects involved contributed to the level of

detail and quality of the architecture review. However, the elapsed time of the review became very large (about
three months) due to scheduling difficulties (scheduling the interviews and getting people together in meetings
at the same time). In other words, quality and efficiency should be carefully balanced.

• The large number of non-functional requirements (over 100) was difficult to manage and caused a lot of effort
during the analysis phase. During the course of the review, these requirements were combined into groups. Each
group represented a set of requirements that were almost similar and that were influenced in a similar way by
the set of architectural decisions. Another way of solving this problem is to restrict the architecture review to
the most critical set of non-functional requirements.

• The involvement of external architects could have been even more effective by having these persons participate
already during the Architecture Analysis Phase. During this particular review they only participated in the
Architecture Review Phase.

• The ‘Findings’ chapters in the Review Report should be structured according to the stakeholders involved. In
this way, for each stakeholder a report section is created that communicates the findings that this stakeholder is
interested in (i.e. the level of satisfaction of the non-functional requirements that are important for this
stakeholder).

More information on this specific case can be found in two papers that are available on the SARA website.

SARA Report

© SARA W.G., 1999-2002 48 Version 1.0

10.2 Assessment of the architectural approach for a telecommunications environment

10.2.1 Background Information
Application Domain:
� Telecommunication (Calls, Messaging, Multimedia support)

Scope of the architecture
� Overall architecture specifying the way of cooperation of and interaction between switches, applications,

end devices (phones, PCs), servers, etc.
� Overall architecture for different products which are sold independently

The architectural concept under evaluation should form the basis for the future marketing strategy in this application
area (e.g. integration of call solutions and messaging). Existing systems, products and solutions were not based on
this architecture. However, the new architecture had to take into account existing products and systems already
installed at the customers site (asset protection) and provide a migration strategy for moving smoothly from the
current solution to the future one.

The Assessment was done during a very early phase in the development process: customer requirements were
available, the architecture was specified rather on a conceptual level than on a detailed one. It primarily consisted of
a high-level definition of the hardware and module structure. The definition work was done by an inter-disciplinary
team consisting of experts from marketing, development, and service from locations in the US and Germany.

10.2.2 Goal of the assessment
The Assessment was done during a very early phase in the development process: customer requirements were
available, the architecture was specified more on a conceptual level rather than on a detailed one.
The key question for the assessment was:
� Is the architectural concept suited to fulfill the strategy for multimedia communication products and other

applications like mobility as well as the future extensions of voice features?
� Therefore, the focus of the analysis was
� to examine the design decisions already made, i.e. to analyze the strengths and weaknesses of the

architectural concept
� to identify the essential risks associated with these decisions
� to identify open issues (design issues which were essential and had not been addressed so far)
� to provide an independent view of the architectural concept for the responsible senior management

10.2.3 Assessment approach
The assessment was done based on the principles and procedural model as defined by the architecture assessment
method System Architecture Analysis (SAA) (see [GJW97]).
The assessment team consisted of 3 members:
� 2 SAA experts with experiences in conducting SAA based assessment (providing general architectural

know-how, e.g. what are typical architectural issues to be covered / clarified by an architectural concept
� 1 telecommunication expert (providing specific application related know-how)

As SAA recommends, 2 teams had been built for the interviews / workshops:
� Marketing Team: 6 members with representatives from Marketing, Sales, Service (to ensure that the

requirements are fully identified and understood)
� Architecture Team: 4 members responsible for the architectural design

It is important to separate clearly between the assessment team and the interview partners (Marketing / Architecture
Team) in order to ensure that the assessment results provide a really independent view on the architecture under
assessment. Furthermore, involvement of an telecommunication expert helped to reach acceptance for the
assessment results with the development experts. As part of the preparation phase, it must be identified which

SARA Report

© SARA W.G., 1999-2002 49 Version 1.0

specific know-how is needed for the assessment; this is of course dependent on the specific architecture to be
assessed (e.g. data bases, distributed systems, real time requirements)
The full assessment (preparation / planning of the assessment to final presentation) took 8 weeks. The assessment
team dedicated 100 % of their time to the assessment. The interview partners had only to attend the workshops
� Marketing Team: 3 Workshops (3 hours) on Requirements and 2 Workshops (4 hours) on the detailed

evaluation of design decisions
� Architecture Team: 4 Workshops (4 hours) on Architecture and 2 Workshops (4 hours) on the detailed

evaluation of design decisions
In addition, a kickoff meeting (assessment goal, approach and schedules), a feedback meeting and a final
presentation had been conducted

10.2.4 Assessment Information Input
The approach to gather the input necessary for the assessment was twofold:
� Documentation
� Interviews / Workshops

Documents which were available for the assessment included:
� Requirements Specification: This document was already released and provided a structured view of the

requirements. Priorities were not available and had to be specified during the workshops together with the
Marketing Team. Because the requirements are the basis for deriving evaluation criteria, priorities are
necessary to focus the assessment on the really important criteria.

� System Design Specification: This document was still under development during the assessment. As a
consequence, some design issues were still open (not clarified / specified), some information was
inconsistent due to the fact that several persons were working at different chapters at the same time without
having the chance of synchronizing their results.

Having to base on documentation which is not consolidated makes an analysis more difficult (additional
clarifications needed). However, this seems to be a realistic scenario that an assessment cannot wait until all
documentation is released: therefore, results from the assessment can be included in the documentation before it is
finally released. However, criteria should be defined regarding which documentation status is deemed to be
sufficient for an architectural assessment.
Documentation is not enough for gathering the information needed. Therefore, interviews / workshops had been
conducted.

10.2.5 Assessment Issues
The assessment criteria used covered, in general, two aspects
� Customer and Customer Demand Aspects (in total 22 criteria, e.g. Customer Demands, Operation and

Administration Requirements, Investment Protection, Quality Aspects)
� The Strategy of the Telecom business group and Business Aspects of this group (in total 8 criteria, e.g.

Business Goals, Time and Cost Aspects)
During the Workshops with the Architecture Team a checklist of architectural issues had been used. This helped
� to cover all relevant aspects
� to clarify the agenda of the workshops (participants can prepare themselves on specific issues and provide

additional material)
The following provides a high-level overview of architectural issues discussed during the assessment:
� General concepts (e.g. “Network Topology and Scaling”, “Distribution of Intelligence”)
� Software Structure (e.g. “Software Platform for Terminals/Servers”, “Software Structure of Switches”)
� Interface and Integration Concepts (e.g. “Interfacing to Transport Layer”)
� HW Components and Operating Systems (incl. Communication Hardware)
� Dynamic Aspects (e.g. “Control Structure”)
�

SARA Report

© SARA W.G., 1999-2002 50 Version 1.0

10.2.6 Results
As the market and technical context was very complex, the requirements and system concept have been specified
and documented in different teams. One benefit of the analysis was that the SAA representation gave the first
comprehensive view on the system concept and its capability to fulfill the requirements.
During the evaluation, several potential problems caused by some design decisions were identified.
Recommendations for improvement had been identified and discussed with the Architecture Team in order to reach
agreement, e.g.
� a conflict between the encapsulation principle of the software platform and the usage of middleware

products which should be available at the system service level as well as at the application level; this
problem was solved by revising the software platform concept

� a conflict between the hardware scalability concept and one possible communication technology approach
which had been considered; this conflict motivated the definite choice of a suitable communication
technology

In addition, some architectural design issues were not covered at all, e.g.
� dynamic system behavior (interaction of components, data flow, ...)
� For several system aspects, it turned out that technically advanced solutions related e.g. to distributed

computing approaches got surprisingly low evaluations due to the influence of criteria like ”short initial
time to market” or “easy serviceability”. These evaluations were indicators for the risks involved in
choosing certain technological approaches that were best recognized by the experts during the ”localized”
evaluation procedure in SAA.

SARA Report

© SARA W.G., 1999-2002 51 Version 1.0

11 References

The documents included in the list below are explicitly referred to within this report.

[Booch96] Grady Booch; “Conducting a Software Architecture Assessment;” ROAD 1996

[Buschmann 96] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. Pattern-Oriented Software

Architecture: A System of Patterns, Wiley & Sons, 1996

[Freedman, Weinberg 1990] Daniel P. Freedman, Gerald M. Weinberg, Handbook of Walkthroughs, Inspections,

and Technical Reviews : Evaluating Programs, Projects, and Products, 3rd ed., Dorset House, 1990

[Gilb 1993] Tom Gilb and Dorothy Graham, Software Inspection, Addison-Wesley, 1993

[GJW97] M. Gloger, S. Jockusch, N. Weber. System architecture analysis - Optimizing architectures in the

industrial context at Siemens. In European Software Engineering Process Group Conference, 1997.

[Hofmeister 99] Christine Hofmeister, Robert Nord, Soni Dilip, Applied Software Architecture, Addison Wesley

Longman, 1999

[HP 00] A Template for Documenting Software and Firmware Architectures 1.3, draft, 27 Jan 2000

[IBM 99] SI/AD Architecture Description Standard: Overview V1.0 LWP 13/08/99, IBM Corporation

[IEEE 1471] ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural Description of Software

Intensive System, October 2000.

[IEEE Std 610.12-1990] Glossary of Software Engineering Terminology, 1990.

[Jazayeri 2000] Mehdi Jazayeri, Alexander Ran, Frank Van Der Linden, Philip Van Der Linden, Software

Architecture for Product Families: Principles and Practice, Addison-Wesley, 2000.

[Kazman 1994] Rick Kazman, Len Bass, Gregory Abowd, Mike Webb, “SAAM: A Method for Analyzing the

Properties of Software Architectures” Proc. ICSE 16., 1994, pp.81-90

[Kazman 2000] Kazman, R.; Klein, M.; & Clements, P. ATAM: Method for Architecture Evaluation, CMU/SEI-

2000-TR-004

[Klein, Kazman 1999] M. Klein, R. Kazman, Attribute-Based Architectural Styles, Software Engineering Institute

Technical Report CMU/SEI-99-TR-22

[Kruchten 95] Philippe B. Kruchten, The 4+1 View Model of Architecture, IEEE Software, November 1995, pages
42-50.

[RM-ODP 1995] Reference Model of Open Distributed Processing Part 1 – 4; ISO/IEC DIS 10746

[Ran 2000] Ran, A. “ARES Conceptual Framework for Software Architecture” in M. Jazayeri, A. Ran, F. van der
Linden (eds.), Software Architecture for Product Families Principles and Practice, Addison Wesley,
2000.

SARA Report

© SARA W.G., 1999-2002 52 Version 1.0

[Sha 1991] Sha, L, Klein, M. & Goodenough, J. "Rate Monotonic Analysis for Real-Time Systems," 129-155.
Foundations of Real-Time Computing: Scheduling and Resource Management. Boston, MA: Kluwer
Academic Publishers, 1991

[Shaw 96] Shaw, M., Garlan, D., Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall,
1996.

[TINA 1995] Overall concepts and principles of TINA, TINA Consortium, February 1995,
http://www.tinac.com/specifications/specifications.htm

SARA Report

© SARA W.G., 1999-2002 53 Version 1.0

12 Appendix: Glossary
Architect: “The person, team or organization responsible for systems architecting.” [IEEE 1471]

Architecting: “The activities of defining, documenting, maintaining, improving and certifying proper implementation of an
architecture.” [IEEE 1471]

Architectural Assessment: The end result of conducting an architectural review.

Architectural Description (AD): A collection of artifacts used to document an architecture. [IEEE 1471]

Architectural Review: The process and activities performed to develop an architecture assessment.

Architecturally-Significant Decision (ASD): A concept or decision pertaining to the structures or textures of a software
system, addressing one or more architecturally-significant requirements.

Architecturally-Significant Requirement (ASR): A requirement upon a software system which influences its architecture.

Architecture: “The fundamental organization of a system embodied in its components, their relationships to each other and to
the environment and the principles guiding its design and evolution.” [IEEE 1471] The set of concepts and design
decisions about the structures and texture of software that must be made prior to concurrent engineering to enable
effective satisfaction of architecturally significant, explicit functional and quality requirements, and implicit
requirements of the problem and the solution domains. [Ran 2000]

Conceptual Framework: A common set of terms and concepts used to elucidate a subject of interest.

Concern, Architectural: An area of interest pertaining to a “system’s development, its operation or any other aspects which
are critical or otherwise important to one or more stakeholders.” [IEEE 1471] Architectural concerns include system
considerations such as feasibility, functionality, performance, reliability, security, distribution, and evolvability. See
also: architecturally-significant requirement, quality attribute.

Criterion, Architectural Review: A concrete criterion for judging whether the architectural artifacts under review, and thus
the architecture under study, meet a particular objective. An architectural review method establishes a set of review
criteria.

 Method, Architectural Review: A documented, repeatable approach for carrying out one or more activities of an architectural
review. Also known as: architectural review technique.

Objective, Architectural Review: A reason for conducting a specific architecture review, a question about the system to be
answered by a review. The objectives of an architectural review are driven by architectural concerns of the
stakeholders.

Quality Attribute: An observable aspect of a system that contributes to system quality, a desired characteristic of a system.
Also known as: “ility”. See also: architectural concern.

Scenario: A pattern of use or operation of a software system. Often extended to include patterns of maintenance,
modification, or other types of interaction with the system. Also known as: use case.

Stakeholder: “An individual, team, or organization (or classes thereof) with interests in, or concerns relative to, a system.”
[IEEE 1471]

Structure, Architectural: An identification and arrangement of the concrete elements of a software system to address
architectural concerns.

Texture, Architectural: The repeating characteristics of an architectural structure, particularly at a fine-grained level of
concern.

Valuation: The result of applying a particular architectural review criterion to a specific system, using an architectural review
method.

SARA Report

© SARA W.G., 1999-2002 54 Version 1.0

View, Architectural: “A representation of a whole system from the perspective of a related set of concerns.” [IEEE 1471] An
architectural view may capture one or more architectural structures or textures.

Viewpoint, Architectural: “A specification of the conventions for constructing and using a view. A viewpoint acts as a pattern
or template from which to develop individual views by establishing the purposes and audience for a view and the
techniques for its creation and analysis.” [IEEE 1471]

Workflow: The definition of a process in terms of its constituent activities, its participants and the methods and techniques
enacted in its execution.

SARA Report

© SARA W.G., 1999-2002 55 Version 1.0

13 Appendix: Logistics and Templates
Examples of agenda’s. Kickoff presentations, Sample Assessment Reports, Sample plans, Sample interview guides,
Scripted presentation sample, templates for statement of work, example minutes, Cost estimates, Promotion
presentation, …

13.1 Agenda for an Architecture Assessment

By default a two-days period followed by a presentation session :
First day : ‘Initiation’ + number of ‘Aspect Investigations’ (second part afternoon)
Second day : number of ‘Aspect Investigations’ + ‘Finalization’ (second part afternoon)
Presentation session : ‘Findings Review and Presentation’

The total number of aspects to be investigated determine the number of days required for the assessment.

TIME INITIATION Remarks
30 min Problem statement

Goals of the assessment
Intended follow-up
Scope of the assessment

Presentation

15 min Expectations Flip-over
15 min Agenda for the 2 days period

Assessment concepts & approach
Structure and content of the agenda
Remarks, adjustments, agreement

Handouts

15 min Rules of the road
Assessment roles and names
Separation of process and content
Good meeting behaviour
Parking lot

Presentation
Flip-over

15 min Global system architecture (business view) Presentation
15 min Break
1h30 Market Perspective

Current market opportunities and trends
Role claimed by the organization
Implication of products in general
Consequences for the architecture
Consequences for the Product Creation Process
Product Requirements
Kind of products to be delivered by organization
Resulting functional requirements (new/remain/disappear)
Resulting non functional requirements

Presentation
Discussion

Presentation
Discussion

1h Lunch
30 min Architectural Aspects to be addressed

Summary of topics identified so far
Filtering/clustering of Aspects
Assigning weighing factors
Selection of 5-7 most important Aspects

Impact matrix
Discussion

1 h Global system architecture (technical view) Presentation

SARA Report

© SARA W.G., 1999-2002 56 Version 1.0

Major architecture issues (up front)
Architecture overview
How architecture issues have been resolved
Architecture tradeoffs made
Remaining architecture issues (if any)

Discussion

15 min Planning for the remainder of the assessment Handouts
15 min Break

Two benefits and concern reviews will be planned (15 min each)
� At the end of the first day (including discussing the plan for the second day)
� Around noon of the second day

TIME ASPECT INVESTIGATION REMARKS
10 min Definition of Aspect

Keyword
Clarification
Other topics

Discussion

30 min Architecture coverage of Aspect
Supporting architecture choices
Destructing architecture choices
Impact indicators for choices

Architects tell
Assessors ask
Discussions
Impact matrix

20 min Conclusions for Aspect
Coverage of Aspect (statement)
Review topics list (for additional conclusions)
Possible ‘hot issues’ (that cannot be agreed on, postpone)
Possible recommendations

Flip-over
Impact matrix
Discussion

TIME FINALIZATION REMARKS
30 min Discuss possible ‘hot issues’ Flip-over

30 min Summary of conclusions

Conclusions per aspect
Overall conclusions

Impact matrix
Discussion

30 min Summary of recommendations
Recommendations per aspect
Overall recommendations

Discussion

15 min Evaluation of assessment & assessment process
Review expectations, benefits and concerns
Evaluate assessment process

Flip-over
Discussion

TIME FINDINGS REVIEW AND PRESENTATION REMARKS
15 min Review problem statement

Goals of the assessment
Intended follow-up
Scope of the assessment

Presentation

1 h Concept findings presentation Presentation
30 min Remarks on concept findings presentation Discussion

SARA Report

© SARA W.G., 1999-2002 57 Version 1.0

15 min Update of follow-up (to-do) activities
Outcome of ‘To-do’ issues
Additional insights

Discussion

1 h Adjusting the findings presentation
1 h Final presentation to management

13.2 Architecture Review Agreement Template

1. Objectives
� Provide information about the organization requesting the assessment: name, address, type of business, etc.
� Describe objectives as a set of issues or questions to be addressed during the review. These should have

been discussed at least with the key stakeholders: customer, development management, architect(s), and
possibly with sales and filed support.

2. Scope
Provide a brief description of what information will be collected and analyzed. In particular what system or sub-
systems will be the subject of review. This should eliminate late surprises such as “I thought you would have
analyzed the XYZ subsystem as well?”.

3. Architecture review team
Identify individuals from the customer organization and from the outside that should be on the review team.
Describe their respective roles.

4. Costs and Schedule
Architecture reviews are more open-ended in terms of scope and cost than architecture capability assessments.
Depending on the size and complexity of the systems they can last from 5 to 10 days. If they last more than to two
weeks they are probably more than just reviews and include elements of consulting and mentoring.
In addition to variable price of a review, the customer has to accept potentially significant internal costs of a review.
This is briefly discussed in the review guidelines.

The document should specify
� Standard fee structure for review based on few critical variables: size of organization, product complexity,

proposed duration of the assessment and number of people involved
� Costs to the customer. This will be mainly labor, so list all customer people that will be involved and

provide min/max time estimate for each of them.
� Project schedule at the milestone level: information gathering and analysis, initial findings, final report and

presentation.

5. Summary
Restate the benefits, necessity of having the right people participating in the review, and a need of a buy-in from the
key stakeholders to produce useful results.

SARA Report

© SARA W.G., 1999-2002 58 Version 1.0

13.3 Review report template

1. Executive summary
This is a one-page reiteration of the key objectives for the assessment and a summary of the most important findings
and recommendations.

2. Goals and the review process
� Recap the objectives as stated in the review agreement document
� List the members of the architecture review team and other key contributors
� Briefly describe the information gathering and analysis methods applied
� Thank people for their contributions

3. Key findings
3.1 Strengths
Describe the positive findings of the assessment. Rank them from most significant to less significant. Use a simple
enumeration (the MSW Numbering feature).

3.2 Issues
Describe issues identified during the evaluation. Rank them from most severe to less severe. Use the following table
for consistency.

Issue Give the issue a name
Description Describe the nature of the issue and its

consequences
Info-source Provide references to the information sources

(documents, models, interviews, etc.) that illustrate
the issue.

Recommendation Propose an approach to addressing the issue

The report should be concise. If there is an issue that needs an extended discussion, such discussion should be
moved to the Appendixes section. Hence, the recommendations should be short and to the point.

3.3 Architecture Review Profile
Discuss the result of the Architecture Review Profile. To a large degree this should be a summary of the findings
discussed in Section 3.

4. Supplementary findings
During a review it is common to come across issues and concerns that are not directly related to the architecture or
architecting capabilities, but may still be important. This section can be used to address the top few of them.
This section may be also used to point out the need for other assessments (process, project, and infrastructure).

5. Recommendation
Summarize the recommendations.

6. Appendixes
Discuss here any/all issues that need special attention but were too complex or too large to be exhaustively discussed
in the main sections.

