

SAS I: Getting Started

Updated: August 2012

SAS I: Getting Started

2

The Department of Statistics and Data Sciences, The University of Texas at Austin

Table of Contents

Section 1: Introduction .. 3
1.1 About this Document ... 3
1.2 Prerequisites .. 3
1.3 Documentation .. 3
1.4 Accessing SAS .. 4
1.5 Getting Help .. 4

Section 2: The Example Dataset ... 5

Section 3: An Overview of SAS for Windows ... 6
3.1 Starting and Navigating the Components of SAS for Windows ... 6
3.2 The Explorer and Results Windows .. 7
3.3 The Enhanced Program Editor .. 7
3.3 The Output and Results Window .. 8
3.4 The Log Window ... 9

Section 4: SAS Programming Steps ... 10
4.1 Introduction ... 10
4.2 The Data Step .. 10
4.3 The Procedure Step.. 10
4.4 Syntax Conventions ... 11

Section 5: Data Step Basics: How to read and format your data in SAS 11
5.1 Introduction ... 11
5.2 SAS Data Sets ... 11
5.3 SAS Data Set Names ... 14
5.4 Reading In-Stream Data .. 14
5.5 Reading in an SPSS Data File ... 15
5.6 Reading in an Excel Spreadsheet .. 15
5.7 Reading Data from a Text File .. 18
5.8 Formatting Data ... 20

Section 6: Data Management and Programming .. 22
6.1 Computing Variables ... 22
6.2 Recoding Variables ... 23
6.3 Subsetting Data .. 24
6.4 Examining the Log .. 25

Section 7: The Procedure Step .. 26
7.1 Introduction ... 26
7.2 Sorting Data ... 26
7.3 Viewing Dataset Contents ... 27
7.4 Analytical Procedures .. 29

Conclusion .. 30

SAS I: Getting Started

3

The Department of Statistics and Data Sciences, The University of Texas at Austin

Section 1: Introduction

1.1 About this Document

SAS is a software package used for conducting statistical analyses, manipulating data,

and generating tables and graphs that summarize data. Examples of statistical analyses

range from basic descriptive statistics, such as generating rankings, means, and standard

deviations, to advanced inferential statistics such as regression, analysis of variance, and

factor analysis. Examples of data manipulation include recoding data (such as reverse

coding survey items), computing new variables from old variables, and merging and

aggregating data sets. SAS also has advanced exploratory features such as data mining.

This document introduces you to SAS programming using version 9. It is intended to

provide first time users with the programming tools needed to perform elementary data

manipulation and analytical tasks in SAS. The first section introduces the components of

the SAS system. The remaining sections focus on the datastep and descriptive statistics

procedures.

This tutorial can be thought of as a sequential progression of common tasks involved in

analyzing a data set. In Section 2: Setting Up the Data, you will download the

cars_1993 data sets. In Section 3: An Overview of SAS for Windows, you learn to start

SAS on a PC, and learn the components of the SAS system. Familiarity with SAS

components is essential for reading in data, preparing data for analysis, and finally,

analyzing the data. Section 4: SAS Programming Steps consists of an introduction to

the data step and the procedure step. Section 5: Data Step Basics and Section 6: Data

Management and Programming shows you how to read in various types of data files in

SAS as well as how to manipulate (i.e., transform) your variables. Section 7: Procedure

Step gives a brief introduction to SAS procedures that allow you to sort and view your

data.

1.2 Prerequisites

Being familiar with data management, data analysis, and interpretation of output will be

helpful, but not necessary. You should also understand basic Microsoft Windows

navigation techniques: opening files and folders, saving your work, and recalling

previously saved work.

1.3 Documentation

Over the years SAS has developed a reputation as being a powerful and full-featured data

analysis software package that has a steep learning curve. First time users are often

daunted by the necessity of working with complex SAS syntax in order to perform even

the most elementary kinds of statistical analysis. Thus, finding and using documentation

SAS I: Getting Started

4

The Department of Statistics and Data Sciences, The University of Texas at Austin

is a necessary part of programming in SAS. Documentation for SAS is available in the

following forms:

1) SAS manuals (some are available at the PCL for check-out)

2) SAS Online documentation is available at the SAS website at:

http://support.sas.com/documentation/onlinedoc/index.html

3) Papers from SAS Global Forum (formerly the SAS Users Group International -

SUGI): http://support.sas.com/events/sasglobalforum/previous/index.html and SAS

FAQs (https://stat.utexas.edu/software-faqs/sas) are also available from the Department

of Statistics and Data Sciences.

1.4 Accessing SAS

If you are a faculty, student, or staff member at the University of Texas at Austin, you

may access SAS through a license from ITS Software Distribution Services

(http://www.utexas.edu/its/sds).

1.5 Getting Help

If you are a member of UT-Austin, you can schedule an appointment with a statistical

consultant or send e-mail to stat.consulting@austin.utexas.edu . See

stat.utexas.edu/consulting/ for more details about consulting services, as well as answers

to frequently asked questions about SAS and other programs.

http://support.sas.com/documentation/onlinedoc/index.html
http://support.sas.com/events/sasglobalforum/previous/index.html
https://stat.utexas.edu/software-faqs/sas
http://www.utexas.edu/its/sds
mailto:stat.consulting@austin.utexas.edu
http://stat.utexas.edu/consulting/

SAS I: Getting Started

5

The Department of Statistics and Data Sciences, The University of Texas at Austin

Section 2: The Example Dataset

Throughout this document, a single data set, cars_1993, is used for all of the examples.

We will now download four versions of this dataset. First create the following folder on

your computer: C:\SAS-examples. This tutorial will use the following files:

cars_1993.sas7bdat

cars_1993_excel.xls

cars_1993_text.txt

SAS Syntax March 2007.sas

The files used in this tutorial are located in a single ZIP file located HERE. Download the

file to your desktop and extract. Then, move the four individual files to the C:\SAS-

examples directory.

SAS provides information about the cars_1993 file, which is reproduced below (units of

measurement have been added for illustrative purposes):

Name: cars_1993

Analysis: descriptive statistics, t-tests, ANOVA, Regression, ANCOVA, data

transformation

Reference: This represents a subset of the information reported in the 1993

Cars Annual Auto Issue published by Consumer Reports and from Pace New Car

and Truck 1993 Buying Guide

Description: A random sample of 92 1993 model cars is contained in this data

set. The information for each car includes: manufacturer, model, type (small,

compact, sporty, midsize, large, or van), price (in thousands of dollars), city mpg,

highway mpg, engine size (liters), horsepower, fuel tank size (gallons), weight

(pounds), and origin (US or non-US). The data are excellent for doing descriptive

statistics by groups or an ANOVA or regression with price as the response

variable. Note that violations of the assumptions are probably present and

transformation of the response variable is most likely necessary.

 Below, a portion of the data set is shown. Note that a SAS dataset can contain either

string variables (such as Manufacturer) or numeric variables (such as Price).

http://stat.utexas.edu/images/SSC/Site/documents/SAS-I.zip

SAS I: Getting Started

6

The Department of Statistics and Data Sciences, The University of Texas at Austin

Section 3: An Overview of SAS for Windows

3.1 Starting and Navigating the Components of SAS for Windows

To start SAS 9 on a PC go to:

 Start

 Program Files

 SAS

 SAS 9.1

SAS 9 contains the following components: (1) The Results and Explorer window, (2) The

Enhanced Program Editor, (3) The Output Window, and (4) The Log Window. Knowing

the uses of these components is crucial to navigating and using the SAS system. When

you start SAS you will see all of these windows except the Output window. The Output

window automatically opens whenever you submit a job that produces output.

SAS I: Getting Started

7

The Department of Statistics and Data Sciences, The University of Texas at Austin

3.2 The Explorer and Results Windows

The Explorer and Results Windows will appear on the left side of your screen whenever

you start SAS. The Explorer Window is a tool for browsing SAS libraries (which we will

discuss in more detail later), and the Results Window enables you to navigate through the

output more effectively. By default, the Explorer Window will appear in front of the

Results Window upon startup. However, you can switch between these two windows by

clicking on the tabs located below the Explorer and Results Windows.

3.3 The Enhanced Program Editor

The Program Editor is used to create, edit, and execute SAS programs. Programming

allows the user to create SAS syntax to manipulate and analyze data files. The Enhanced

Program Editor uses colored text which allows you to easily distinguish between the

individual components of a SAS program. In the example below, you can see that SAS

keywords automatically appear in blue, and numbers appear in blue-green. Misspelled

SAS keywords would appear in red, to warn you of a potential error. SAS will also

automatically place a visual dividing line between different program steps. Also note the

SAS I: Getting Started

8

The Department of Statistics and Data Sciences, The University of Texas at Austin

small white box with a negative sign that appears to the left of the DATA statement

shown below. By clicking that box, you can collapse the entire data step into a single

line.

In order to open a SAS program, make the Program Editor the active window (i.e., click

on it with your mouse), pull down the File menu item, and select Open Program. A

dialog box will appear allowing you to select the type of file you want to open as well as

browse local drives and directories. SAS program files contain the suffix .sas; when the

file type SAS Files is selected, any SAS programs that exist on the currently selected

directory should appear in the dialog box. In the example above, a SAS program called

SAS Syntax.sas has been opened and is currently being displayed in the Enhanced

Program Editor. After a program has been opened, you can submit it from the Program

Editor by clicking on the running man icon located on the right side of the toolbar . If

you make changes to the program, you can save it by pressing on the Save icon. If the

program you submitted contains procedures that generate output (e.g., descriptive

statistics, data set descriptions, etc.), then you can view this output in the Output

Window, which will be described below.

3.3 The Output and Results Window

After a SAS program has been submitted from the Enhanced Program Editor, the output

is printed in the Output Window. The Output Window allows you to view, print, or save

the information it displays. Output files have the default extension .lst. If you want to edit

SAS I: Getting Started

9

The Department of Statistics and Data Sciences, The University of Texas at Austin

SAS output, you will have to save the contents of the Output Window as a text file and

then use an application like Microsoft Word or Notepad to make changes or include

additional information. It is also possible to export the output as HTML, or other file

formats, by the SAS Output Delivery System (ODS, described later in this document).

The Results Window works in conjunction with the Output Window and it organizes the

information contained in the Output Window in a hierarchical fashion. In the default

mode, output pointers appear in a procedural hierarchy. To work with your SAS output,

you can locate the folder that matches the output for a given procedure you want to view

and use the expansion icons (+ or - icons) next to the folder to open or hide its contents.

In the example below, the output from the Print procedure has been expanded so that the

page of output entitled Data Set WORK.CARS2 can be viewed. In order to display a

particular page, simply double-click the appropriate page icon.

3.4 The Log Window

The Log Window is a tool for diagnosing problems with SAS programs, i.e., the data

steps or procedures submitted to the SAS system by way of the Enhanced Program

Editor. For expert and novice alike, it is always a good idea to check and decipher the log

to ensure that the program did not encounter any errors. The Log Window also contains

important summary information that might be useful to you. For example, in the Log

Window below, the number of observations and variables in the cars data set is given.

Comments of this kind always appear in blue. Error messages appear in red and usually

indicate that some portion of the program failed to work properly. Warnings appear in

green.

SAS I: Getting Started

10

The Department of Statistics and Data Sciences, The University of Texas at Austin

Section 4: SAS Programming Steps

4.1 Introduction

Most SAS programs consist of two basic steps: the data step and procedure step. It is

important to note that all SAS commands must be followed by a semicolon (;), which is

the conventional SAS command terminator. This command terminator tells SAS that the

particular command has ended. If no command terminator is included, SAS will combine

the next line of syntax with the previous line as a single command. This is a frequent

source of errors in SAS programming.

4.2 The Data Step

The data step is the portion of the program that accomplishes most of the data

manipulation tasks. In the data step, SAS data sets are created and prepared for analysis.

The data step will end once the SAS system either recognizes a RUN statement, or a new

procedure (e.g., PROC FREQ) is used.

4.3 The Procedure Step

The procedure step consists primarily of one or more SAS statements which carry out a

particular analytical task. SAS procedures are easy to recognize and remember;

procedures almost always begin with a PROC statement, followed by a descriptive name

SAS I: Getting Started

11

The Department of Statistics and Data Sciences, The University of Texas at Austin

(e.g., PROC MEANS, which analyzes and reports the mean of a quantitative variable). It

is important to note that not all SAS procedures perform statistical analysis. For example,

the SORT procedure sorts the data according to the values of a specified variable(s), the

CONTENTS procedure provides a list of the names and formats of the variables in a

SAS data, and the PRINT procedure allows the user to print a SAS data set.

4.4 Syntax Conventions

In this tutorial, uppercase letters will be used to indicate SAS keywords that should be

entered as shown. Lowercase letters will be used to indicate items supplied by the user,

such as data set names and variable names. These conventions are for illustrative

purposes only: you can enter them in your program in any mixture of uppercase and

lowercase. As a good programming practice, a space will be placed before each

terminating semicolon to facilitate scanning for missing semicolons when

troubleshooting program errors.

Section 5: Data Step Basics: How to read and format your data in

SAS

5.1 Introduction

This section covers the use of the data step to read in data from the following sources: In-

stream data contained in the program editor, Excel and SPSS datasets, and data from a

text file. Once data has been read into the SAS system, it can be saved as a permanent

SAS data set, or it may be used only for the duration of the SAS session (this is known as

a temporary SAS data set). This section also covers the basics of data formatting as well

as the differences between permanent SAS data sets and temporary SAS data sets.

5.2 SAS Data Sets

There are two types of data sets, a permanent SAS data set and a temporary SAS data set.

A permanent SAS data set is saved for later use in a SAS library that you have already

created. In contrast, a SAS temporary data set is created for use during a particular SAS

session, is stored by SAS in the WORK library during that session, and is automatically

deleted after you exit SAS.

If you're going to use an already existing SAS data set or want to create a permanent SAS

data set, the first step in most SAS programs involves creating a SAS library to specify

the location of the data set (or where you would like to save the raw data as a SAS system

file). A SAS library is best thought of as a pointer to a directory or folder on a computer

that contains the SAS data set(s). This unique feature of SAS was originally intended to

make the writing of SAS programs more efficient; however, it is often a source of

confusion to new users. In the example below, the cars_1993 data set is stored in

SAS I: Getting Started

12

The Department of Statistics and Data Sciences, The University of Texas at Austin

C:\SAS-examples. In order to read this data, we need to create a SAS library and assign

it a library name. We may either do this by creating a temporary or a permanent library.

Temporary libraries

Here, a library named project is created that points to the directory called SAS-examples

on the C drive.

LIBNAME project 'c:\sas-examples';

This syntax is typed at the beginning of the Enhanced Program Editor window and is run

by highlighting it and clicking on the running man icon located on the toolbar .

The essential features of the LIBNAME statement are the libref and the pathname. The

libref is simply a name for a SAS library that should immediately follow the LIBNAME

statement (in this case, project). The primary utility of a libref is that it allows SAS

programmers to refer to a potentially long pathname using a simple abbreviation. The

pathname follows the libref and is written in double or single quotes. The pathname

specifies the physical location of the SAS library. All SAS libraries created in this

fashion will disappear after you end your SAS session. However, this does not mean your

data has disappeared. It only means that each time you start SAS, you will have to

resubmit the syntax above in order to read and write data to the SAS-examples directory.

Permanent libraries

Alternatively, you could use the create library icon (it is shaped like a file cabinet

and is located on the toolbar) to enable a SAS library every time you begin a SAS

session. This is useful if you always use SAS on the same computer. To enable a library

at startup, click on the create library icon and then click Enable at startup. Enter a name

for the SAS library in the Name box. Next, click the Browse button to search for the

desired directory and then click OK twice.

SAS I: Getting Started

13

The Department of Statistics and Data Sciences, The University of Texas at Austin

By clicking on the Libraries icon in the Explorer Window you can explore the various

default libraries that contain a number of sample SAS data sets. You can view a SAS

data set in a spread-sheet like window called a Viewtable by double clicking its icon. The

example below illustrates how you can access cars_1993 in the SAS library Project.

Close the viewtable. If you wish to move backwards in the Explorer Window, click the

leftmost icon on the toolbar that looks like a folder while the Explorer Window is

activated (to activate, click on the window).

SAS I: Getting Started

14

The Department of Statistics and Data Sciences, The University of Texas at Austin

5.3 SAS Data Set Names

You can either use one-level or two-level names when referring to SAS data sets in

programs. A one-level name consists of just the data set name (with an implied temporary

library called work), whereas a two-level name consists of the libref and the data set

name with a period in between. For example the two-level name project.cars_1993 refers

to the data set cars_1993 located in the project library. One-level names do not explicitly

refer to a SAS library, but SAS will looks for or create these data sets in the work library,

so such datasets may also be referred to with a two-level name (for example,

work.datasetname). SAS datasets stored in the work library are temporary data sets since

all datasets in the work library are deleted when you exit your SAS session. It is generally

a good practice to consistently use two-level SAS data set names so that the location and

usage of particular data sets is clearly defined. This process will be demonstrated

throughout this tutorial. (Note: if neither a one-level nor a two-level name is used in a

procedure, then SAS will use the most recently used data set to implement the procedure.

In general, it is good programming practice to always explicitly refer to the SAS dataset

you wish to use.)

5.4 Reading In-Stream Data

Reading in-stream data is a method for entering data directly into the editor window by

using a Data step. This is very useful when you need to enter a small data set or want to

create a quick sample data set in order to test SAS syntax. The data step typically begins

with the DATA statement. In the example below, the DATA statement is creating a

temporary SAS data set named cars2 and storing this particular data set in the work

library. As described above, if you do not specify a permanent library name, then SAS

automatically stores the data set in the work library as a temporary data set. However,

SAS syntax can be saved to a directory of your choice and used to recreate the temporary

SAS data for subsequent analyses.

DATA work.cars2 ;

INPUT model$ price origin$;

CARDS ;

Mustang 15.9 US

Accord 17.5 non-US

Metro 8.4 non-US

;

RUN ;

The INPUT statement names the fields (i.e., columns or variables) and defines the

formats of the fields. SAS will assume that all variables are numeric; if you want to use a

string variable, then you must append the character $ to the variable name. Both model

and origin are followed by the character $ to indicate to SAS that these are string

variables. The CARDS statement (which is interchangeable with DATALINES) tells

SAS to begin reading the data. The command CARDS dates back to the days when data

was actually input on keypunch cards and it was used to tell SAS to begin reading the

SAS I: Getting Started

15

The Department of Statistics and Data Sciences, The University of Texas at Austin

data cards. On the next line, begin entering the data; when the data is complete, include a

line containing only a semicolon, then finish with the RUN statement.

To verify that the temporary SAS data set work.cars2 has been successfully created,

visually inspect the file using the viewtable spreadsheet, as in the example below. To do

so, click on the Explorer tab in the bottom left hand corner of your screen. This will bring

you to the active libraries dialogue box as seen below. From here, double click on the

SAS Library work. Within this file structure, the SAS data set named cars2 can be found.

Double click on the icon for the data set, cars2, and the viewtable will open. This is the

SAS data set created from the in-stream data. By default, viewtable opens in browse

mode. This means that the data set cannot be edited. To edit in viewtable, go to the edit

command on the menu and select edit mode. In addition, it is worth mentioning that

analyses cannot be performed on a data set if it is open in viewtable. You must close the

spreadsheet after inspecting and/or editing.

5.5 Reading in an SPSS Data File

In recent versions of SPSS, you may save your SPSS file as a SAS file (in SPSS, save the

files as type “SAS 7+ Windows long extension”). If you have an older version of SPSS

without this option, it is simplest to save the SPSS file as an Excel file, and then import

the Excel file into SAS following the example in the Excel section below. In addition, as

of SAS 9.2, the Import Wizard supports the direct importation of SPSS data files. See

below for an introduction to the Import Wizard.

5.6 Reading in an Excel Spreadsheet

SAS I: Getting Started

16

The Department of Statistics and Data Sciences, The University of Texas at Austin

SAS 9 can access Microsoft Excel Spreadsheets in two ways: through the point-and-click

Import Wizard or through syntax using the IMPORT procedure. To use the Import

Wizard, select:

File
 Import Data

By default, the Import Wizard assumes that you would like to import an Excel file, so

you may choose Next. SAS will prompt you to identify the location of your Microsoft

Excel Spreadsheet via the Browse button; go to C:\SAS-examples and choose

cars_1993_excel.xls, then click Open and OK. Next, click the options button and make

sure the option Use data in the first row as SAS variable names is checked. Click OK and

then Next. Define the library as work and the name of the dataset (or member) as

cars_1993_excel.

SAS I: Getting Started

17

The Department of Statistics and Data Sciences, The University of Texas at Austin

Choose Next. If you need to import the same file on numerous occasions, the SAS Syntax

for the IMPORT procedure can be saved here; but for now, simply choose Finish. You

should see a note in your log similar to the one below.

Note that the Excel spreadsheet was saved to the temporary work library, which means

that the dataset will disappear next time you exit SAS. If you would rather save your new

dataset permanently, you have two options. First, when importing the data, if you have

already created a library, then you can save the dataset to that location when you are

prompted in the Import Wizard – select library and member dialog box. Second, you can

SAS I: Getting Started

18

The Department of Statistics and Data Sciences, The University of Texas at Austin

use a SET statement. In the following example, the SET statement in the data step allows

the user to save work.cars_1993_excel as a permanent data set project.cars_1993_excel

DATA project.cars_1993_excel ;

 SET work.cars_1993_excel ;

RUN ;

In the example below, we can see, that under the libref project, the SAS data set called

cars_1993_excel now exists.

5.7 Reading Data from a Text File

Go to the directory C:\SAS-examples and double-click on the datafile cars_1993_text.

You will note that there are no variable names in the dataset; also, all of the columns in

the dataset are lined up neatly. This usually means that the dataset is organized as a fixed

width dataset, rather than as a delimited dataset. A delimited dataset can be easily read by

SAS using the Import Wizard, which is under File, then Import Data. However, a fixed-

width dataset requires you to write syntax using the INFILE statement. The example

below tells SAS to look in the SAS-examples directory of the C drive and read the raw

data file named cars_1993_text.txt. This data set will be named cars_1993_txt and stored

in the work library in accordance with the DATA command.

DATA work.cars_1993_txt ;

 INFILE "C:\SAS-examples\cars_1993_text.txt" ;

 INPUT Manufacturer$ 1-13 Model$ 14-23 Type$ 24-37 Price 38-50

 CityMPG 51-61 HighwayMPG 62-71 EngineSize 72-82

 Horsepower 83-94 FuelTank 95-106 Passengers 107-114

 Weight 115-122 Origin$ 123-128;

RUN ;

In the INPUT statement, the range of numbers after each variable tells SAS which

columns the variable is stored in. In the INFILE statement, you tell SAS where to store

the new file and what to name it. If you modified this statement by replacing the

SAS I: Getting Started

19

The Department of Statistics and Data Sciences, The University of Texas at Austin

reference work.cars_1993_txt with project.cars_1993_txt, the dataset would be saved to

the project library rather than the work library.

If you wish to delete a dataset, just navigate to the dataset and use the Delete button on

your keyboard. You can practice with the dataset work.cars_1993_excel.

Using PROC PRINT

You can double-click on a SAS dataset to open it in the Viewtable, but with large

datasets, SAS may take quite a while to show the dataset. To see pieces of the dataset

more quickly, many people prefer to use PROC PRINT. Here is an example.

PROC PRINT DATA = project.cars_1993 (OBS=2);

 VAR model price;

RUN;

As can be seen in the output, you can use the option (obs = 2) to print only the first two

rows of data. In addition, the optional statement VAR tells SAS to print only those

variables named.

Commenting Your Syntax

In SAS, you can annotate your programming statements with comments or explanations

as to what is being done and why. This is a necessary part of good programming that

allows other users to understand another person’s code. In addition, comments allow a

user to step back into an analysis months or years later, and remember the steps to the

routine. Comments can be added into SAS syntax in two ways. First, comments can be

inserted by preceding them with an asterisk and following them with a semicolon; for

example:

* This is a short comment;

SAS I: Getting Started

20

The Department of Statistics and Data Sciences, The University of Texas at Austin

This method is often used for short comments that do not have a semicolon within the

comment itself. If a semicolon were included within a comment of this type, it would

serve as a premature terminator. For longer comments or for those containing

semicolons, the comment is preceded with a forward slash and an asterisk and followed

by an asterisk then forward slash. For example:

/* This is a longer comment.

 It can contain semicolons; it can span several lines. */

This method is also useful to comment out SAS code that you are not currently using

within a program, but want to retain for future use.

5.8 Formatting Data

An important distinction should be made between two terms that are often confused:

variable and value. A variable is a measure or classification scheme that can have several

values. Values are the numbers or categorical classification representing individual

instances of the variable being measured. For example, a data set could contain a

variable called gender where the value “m” represents male and the value “f” represents

female. Similarly, the variable called “type” in the project.cars_1993_excel data set has

values 1 to 6 representing the different types of cars where 1=small, 2=compact,

3=sporty, 4=midsize, 5=large, and 6=van. It is often helpful to assign value labels to

them to aid with output interpretation. For example, if an uninformed observer saw that

car type was 3, they would not know what this number represented without a value label.

PROC FORMAT allows you to define the label for each value of a variable. Later,

when you print or do other procedures with the dataset, you can invoke the information

specified in the PROC FORMAT by using a FORMAT statement. In addition, you can

use a LABEL statement to assign a descriptive title to a particular variable.

In the example below, we will use PROC FORMAT to create a format named ftype,

with six value labels: Small, Compact, Sporty, Midsize, Large, and Van. To print the

values of a variable in a particular format, a FORMAT statement is added to the SAS

procedure being used. In addition, the LABEL statement specifies that the title of the

type variable is "Type of car."

PROC FORMAT ;

 VALUE ftype 1 = 'Small'

 2 = 'Compact'

 3 = 'Sporty'

 4 = 'Midsize'

 5 = 'Large'

 6 = 'Van' ;

RUN ;

PROC PRINT DATA = project.cars_1993_excel (obs = 10) LABEL ;

 FORMAT type ftype. ;

 LABEL type = 'Type of car' ;

RUN ;

SAS I: Getting Started

21

The Department of Statistics and Data Sciences, The University of Texas at Austin

Note that there is a period (.) after the format name ftype. This period is needed to tell

SAS that ftype is not a variable name, but a format name. When you add the period, ftype

turns blue-green, which indicates that SAS now understands that it is a format name.

When you exit SAS, the format ftype will be de-activated. To activate it again, you would

have to re-run the PROC FORMAT syntax. If, however, you wish to keep the format

active, you can store it in a special type of library called library. In the example below,

two different library pointers are created. The first creates the library project for the SAS

dataset cars_1993. The second creates another library called library, which points to the

same location. To tell SAS that you wish to store your formats there, include the option

LIBRARY=library in the PROC FORMAT line.

* Create a permanent format stored in SAS-examples ;

LIBNAME project 'C:\SAS-examples' ;

LIBNAME library 'C:\SAS-examples' ;

/* FORMATTING CATEGORIES OF CAR TYPE */

PROC FORMAT LIBRARY = library ;

 VALUE ftype 1 = 'Small'

 2 = 'Compact'

 3 = 'Sporty'

 4 = 'Midsize'

 5 = 'Large'

 6 = 'Van' ;

RUN ;

* To apply the permanent format, you still need to invoke it

explicitly;

PROC PRINT DATA = project.cars_1993_excel (obs = 10) LABEL ;

 TITLE 'Assigning value formats and labels' ;

 FORMAT type ftype. ;

 LABEL type = 'Type of car' ;

RUN ;

To verify that your formats have been saved in the library library, use the Explorer Tab.

You should see an open folder with a red dot on it, similar to the one below.

SAS I: Getting Started

22

The Department of Statistics and Data Sciences, The University of Texas at Austin

Other examples of things you can do with formats include:

 print numeric values as character values (for example, print 0 as FEMALE and 1

as MALE)

 print one character string as a different character string (for example, print YES as

SI)

 print numeric values using a template (for example, print 012001 as 01/20/01).

Section 6: Data Management and Programming

6.1 Computing Variables

When we use a SET statement to create a new dataset copied from an old dataset, we can

make changes to the dataset at the same time. For example, if it were necessary to make

changes to the data set cars_1993, but without permanently affecting the original copy,

the changes could be saved to the new data set cars_1993b. For example, the variable

named enginesize could be converted from liters to cubic inches. Historically,

automobile engines in the United States used to be measured in cubic inches but are now

commonly reported as liters. If you wanted to compare the 1993 car data set to a 1965

car data set, you would have to convert engine size to the same units. A conversion

SAS I: Getting Started

23

The Department of Statistics and Data Sciences, The University of Texas at Austin

factor is usually used to convert units of measurement. For example, to convert from

years to months you simply multiply years by 12. Likewise, to convert liters to cubic

inches, you would multiply the number of liters by a conversion factor of 61.024. In the

example below, a new variable called engsize_cubinch that represents an automobiles

engine size in cubic inches is created and saved to the project library.

DATA project.cars_1993b ;

 SET project.cars_1993 ;

 Engsize_cubinch = enginesize * 61.024 ;

RUN ;

If you need to calculate the sum or average of two or more variables, you can use the

SUM or MEAN functions. For example, you can average city and highway mpg by

summing the variables citympg and highwaympg and dividing by 2. Alternatively, you

could simply use the MEAN function. Both of these options are shown below. This

dataset is saved to the work library (a common choice for programmers who are creating

many intermediate-step datasets):

DATA work.cars_1993c ;

 SET project.cars_1993b ;

 mpgsum = SUM(citympg,highwaympg) ;

 avgmpg = mpgsum/2 ;

 avgmpg2 = MEAN(citympg,highwaympg) ;

RUN ;

The SAS on-line documentation

(http://support.sas.com/documentation/onlinedoc/index.html) provides more information

on the different kinds of operations that can be performed to create new variables.

6.2 Recoding Variables

In addition to creating new variables by defining a numeric expression, it is common for

data analysts to create a new variable by redefining an existing variable. For example,

you may wish to collapse a continuous variable into a smaller set of categories. You

could do this with the enginesize variable where you collapse enginesize into the three

categories of small (below 2.0), medium (2.0 to 3.5), and large (3.5 and larger). This is

done using a series of logical statements that link the existing variable enginesize, to the

new variable engsizecat. Those falling in the small, medium and large categories will be

given the values 1, 2, and 3 respectively.

In this example, we will overwrite the project.cars_1993 dataset, rather than creating a

copy and then modifying the copy.

/* Recoding engine size, overwriting original dataset */

DATA project.cars_1993 ;

 SET project.cars_1993 ;

 IF enginesize = . THEN engsizecat = . ;

 ELSE IF enginesize > = 0 AND enginesize < 2.0 THEN engsizecat = 1

;

http://support.sas.com/documentation/onlinedoc/index.html

SAS I: Getting Started

24

The Department of Statistics and Data Sciences, The University of Texas at Austin

 ELSE IF enginesize >= 2.0 AND enginesize < 3.5 THEN engsizecat =

2 ;

 ELSE IF enginesize >= 3.5 THEN engsizecat = 3 ;

RUN ;

The first IF statement in the code represents one way of dealing with the problem of

missing values in your data. For numeric variables, missing values are represented in

SAS as periods, and it’s a good idea to get in the habit of dealing with them explicitly

when defining new variables. If the first line of this code had been omitted, the second

line would have assigned zeros for cases with missing values of enginesize. In the ELSE

IF statements, ranges of the existing variable, enginesize, are defined using greater than

or equal to operators and cases are assigned values for the new variable, engsizecat,

based on their value for enginesize.

Now we create formats for the new values, and then print part of the dataset to make sure

the recoding statement worked.

 * Formatting our new engine size categories ;

PROC FORMAT LIBRARY = library ;

 VALUE fengsizecat 1 = 'Small'

 2 = 'Medium'

 3 = 'Large' ;

RUN ;

PROC PRINT DATA = project.cars_1993 (obs = 10) LABEL ;

 FORMAT engsizecat fengsizecat. ;

 LABEL engsizecat = 'Engine size categories' ;

RUN ;

In addition to recoding data derived from variables with continuous distributions into

categories, you can also collapse categorical data into fewer categories. For example,

you could create a new variable called eng_large that categorizes engine size as large or

not large. This type of dichotomous variable creation or “dummy coding” is particularly

useful if you plan to use categorical variables in a regression. To do this you could

combine the 1 and 2 levels into the “not large” group as follows:

* Creating a dummy variable for 'Large Engine Size';

DATA project.cars_1993 ;

 SET project.cars_1993 ;

 IF engsizecat = 1 or engsizecat = 2 THEN eng_large = 0 ;

ELSE IF engsizecat = 3 THEN eng_large = 1 ;

 ELSE IF engsizecat = . THEN eng_large = . ;

RUN ;

PROC FORMAT ;

 VALUE f2englarge 0 = 'Not large'

 1 = 'Large' ;

RUN ;

6.3 Subsetting Data

SAS I: Getting Started

25

The Department of Statistics and Data Sciences, The University of Texas at Austin

A commonly performed data manipulation task that occurs in the data step is subsetting

data. You can either subset your data by variables (columns) or by observations (rows).

In order to subset your data by variables, you can use the KEEP or DROP option in the

data step. As an example, say you wanted to drop the eng_large variable. The following

syntax demonstrates this process.

 /* Dropping the variable eng_large */

DATA project.cars_1993 ;

 SET project.cars_1993 ;

 DROP eng_large ;

RUN ;

Because the data statement and the set statement contain the same SAS name, the syntax

above writes over the data set cars_1993 with a new data set that is identical to the old

data set except that it no longer contains the variable eng_large.

Often, researchers need to analyze a subset of the observations in a data set. One way to

accomplish this is to create another, smaller data set that contains only those

observations. When eliminating information from a data set for a special purpose, it may

help to save the smaller data set as a temporary data set to prevent an often confusing

multiplication of datasets stored in a SAS library. For example, suppose you want to

create a temporary data set containing only those cases in the first engine size category

group (WHERE engsizecat = 1). To do this, you would write a temporary data set to the

work library and insert a WHERE statement directly after the SET statement: You can

also define cases using multiple criteria by using AND operators and OR operators. For

example, suppose you only wanted to create a data set consisting of cases from the first

group that are of non-US origin (note that character variable values must be enclosed in

either single or double quotation marks). The following syntax demonstrates this

procedure

 /* SUBSETTING CASES */

DATA work.cars_1993_subset ;

SET project.cars_1993 ;

 WHERE engsizecat = 1 and origin = 'non-US' ;

RUN ;

To see whether this data step worked properly, you could navigate to the work library in

the Explorer tab and double-click on the new dataset to examine it.

6.4 Examining the Log

It is a good idea to get into the habit of examining the log after submitting a SAS

program. The log is used primarily to confirm that a submitted program ran correctly,

and it helps locate problems in the program should any exist. In the new dataset

work.cars_1993_subset, 17 cars met the specified criteria for the subset, i.e., WHERE

(engsizecat = 1) and (origin = ‘non-US’). The log provides this information for you.

SAS I: Getting Started

26

The Department of Statistics and Data Sciences, The University of Texas at Austin

Messages in the log are usually printed in black, blue, or red. The syntax commands are

copied in black; successful results are printed in blue, and error messages appear in red. If

your procedure doesn’t run correctly, it is best to scan the log and look for red font in

order to locate the problem.

Section 7: The Procedure Step

7.1 Introduction

In this tutorial, we discuss only data manipulation and display procedures. In the next

tutorial, we will discuss analytic procedures. The PROC statement always contains a

command invoking a particular procedure, as well as a command indicating the SAS

name of the target data set upon which the procedure will be performed. Other

commands may also appear in the PROC statement, depending on the procedure that is

being invoked.

7.2 Sorting Data

The SORT procedure sorts the observations in your data in the numeric or alphabetical

order of a specified variable. As with all SAS procedures, you begin the sort procedure

with a PROC statement, followed by a DATA command to specify the SAS data set

upon which the procedure will be performed. Next you specify the OUT = command,

which indicates the name of the output data set containing the sorted cases. (Using the

OUT command is a good practice, but it is not necessary.) In addition, you need to

specify the variable by which the cases will be sorted. This is done using the BY

statement:

 /* SORTING BY HORSEPOWER */

SAS I: Getting Started

27

The Department of Statistics and Data Sciences, The University of Texas at Austin

PROC SORT DATA = project.cars_1993 OUT = work.cars_1993_sorted ;

 BY horsepower ;

RUN ;

The default for the SORT procedure is to sort the BY variable in ascending order.

Accordingly, in this example the first observation in the data set will be the car with the

lowest horsepower while the last observation will be the car with the greatest horsepower.

The resulting dataset is shown in the Viewtable below. To designate a descending SORT,

type the word DESCENDING before the variable name(s) in the BY statement.

7.3 Viewing Dataset Contents

It is often the case that a dataset may be too large to view in the output window. In such

cases, the CONTENTS procedure may be useful. The CONTENTS procedure prints a

very general description of the data set in the output window and can come in handy

when you have a large data set with which you are unfamiliar. To view the contents of

the cars_1993_sorted data set, you would write:

PROC CONTENTS DATA = work.cars_1993_sorted ;

RUN ;

SAS I: Getting Started

28

The Department of Statistics and Data Sciences, The University of Texas at Austin

The output of the contents procedure contains information about the data set and how it

was created, as well as basic information about each variable.

SAS I: Getting Started

29

The Department of Statistics and Data Sciences, The University of Texas at Austin

Frequencies

One common descriptive analysis of data involves obtaining the frequency counts of

cases within levels of a variable. For example, a researcher may wish to display the

numbers of males and females in a data set or the number of cases in each experimental

group in a data set. To obtain frequency counts you must use the frequency procedure.

For example, suppose you would like to view the frequency counts for the values of the

type variable. This could be accomplished using the following syntax:

PROC FREQ DATA = project.cars_1993 ;

 TABLES manufacturer ;

RUN ;

The TABLE statement is used to specify the variables you would like included in a

frequency table. The output from this procedure is shown below. Note that because the

variable manufacturer is a string variable, there is no need to format it in the procedure

statement.

7.4 Analytical Procedures

You can analyze your data in a variety of different ways using the numerous analytical

procedures available in SAS. Most of these procedures are documented in the

SAS I: Getting Started

30

The Department of Statistics and Data Sciences, The University of Texas at Austin

SAS/STAT manual, which is one of the manuals contained in the SAS online

documentation (http://support.sas.com/documentation/onlinedoc/index.html).

Several of these analytical procedures are reviewed in the next tutorial in this series (SAS

II). Once you have gained a basic understanding of how procedures work in SAS using

the examples in this tutorial, you should be able to consult the on-line documentation or

other references for information about the procedure that meets your particular needs.

Conclusion

In this tutorial you learned how to:

 Open SAS and create SAS libraries

 Create and import data

 Manipulate data

 Run basic SAS procedures

http://support.sas.com/documentation/onlinedoc/index.html

