Using the Nystrom Method to Speed Up
Kernel Machines

Christopher K. I. Williams and Matthias Seeger
Institute for Adaptive and Neural Computation
University of Edinburgh
5 Forrest Hill, Edinburgh EH1 2QL
c.k.i.williams@ed.ac.uk, seeger@dai.ed.ac.uk
http://anc.ed.ac.uk

Abstract

A major problem for kernel-based predictors (such as Support Vec-
tor Machines and Gaussian processes) is that the amount of com-
putation required to find the solution scales as O(n?®), where n is
the number of training examples. We show that an approximation
to the eigendecomposition of the Gram matrix can be computed by
the Nystrom method (which is used for the numerical solution of
eigenproblems). This is achieved by carrying out an eigendecom-
position on a smaller system of size m < n, and then expanding
the results back up to n dimensions. The computational complex-
ity of a predictor using this approximation is O(m?2n). We report
experiments on the USPS and abalone data sets and show that we
can set m < n without any significant decrease in the accuracy of
the solution.

In recent years much attention has been paid to kernel-based classifiers such as
Support Vector Machines (SVMs) (Vapnik, 1995), Gaussian process classifiers (e.g.
see Williams & Barber, 1998) and spline methods (Wahba, 1990). One of the main
drawbacks of kernel-based classifiers is that the computational complexity required
to find the solution scales as O(n3), where n is the number of training examples. In
this paper we present a reduced-rank approximation to the Gram matrix K, giving
rise to O(m?2n) computational complexity. This approximation K is obtained by
randomly choosing m rows/columns of K (without replacement), and then setting
K = KpmK3;\ Kmn, where K, ,, is the n x m block of the orlglna,l matrix K,
and with similar definitions for the other blocks. We find that in practice we can
set m < n without any significant decrease in the accuracy of the solution.

In section 1 of the paper we discuss the theory of the method. Section 2 gives
experimental results, and we conclude with a discussion in section 3.

1 Theory of the Nystrom method

1.1 The Nystrom method for approximating eigenfunctions

In the theory of kernel machines we consider covariance kernels k(z,y). These can
be related to an expansion into a feature space of dimension N (typically N is larger

than the dimension of the input space) so that

k(z,y) = Z)\zd’z (@)¢i(y), (1)

where N < 00, A1 > Ag > --+ > 0 denotes the eigenvalues and ¢, ¢2,... denotes
the eigenfunctions of the operator whose kernel is &, so that

/ Ky, @)¢:(z) pla)dz = Aidi(y), (2)

where p(z) denotes the probability dens1ty of the input vector . The eigenfunc-
tions are p-orthogonal, so that [¢i(z)¢;(x)p(x)de = d;;. To approximate this
eigenfunction equation given an iid sample {1,...,Z4} from p(z), we replace the
integral over p(x) by an empirical average to obtain

%Zk(y,mk)qsi(mk) ~ Nidi(y). ®)

k=1

The p-orthogonality of the eigenfunctions translates into the empirical constraint
%Zzzl oi(xr)d;(xr) =~ §; ;. Equation 3 motivates the matrix eigenproblem

KOy = y@pA@ (4)

where K9 is the ¢ x ¢ Gram matrix with elements Ki(J‘-’)

= K(z;,x;) for i,j =
1,...,q, U@ € R?%? ig column orthonormal and A@ is a diagonal matrix with
entries ,\?) > ,\34) > ... ,\,‘,q) > 0. If we plug the z; for y into equation 3 and match
this against equation 4 we arrive at the following approximations:

)‘(‘1)

dile) M VALY, Aim S (5)

Plugging these back in into into equation (3) we obtain the Nystrom approximation
to the ith eigenfunction (see, e.g., Baker, 1977, chapter 3)

o)~ Y53 bl = Yol (©

where k,, is the vector (k(z1,y),...,k(z,,y))" and 'u.(9 is the ith column of U(®.
Note that equation 6 is identical (up to scaling factors) to equation 4.1 in Schélkopf
et al. (1998) which describes the projection of a new point & onto the ith eigenvector
in feature space.

1.2 TUsing the Nystrom method to approximate the Gram matrix

To avoid numerical instabilities due to ill-conditioning it is common practice to
replace the Gram matrix K by K + ol (Neal, 1998) where o is a small positive
constant called jitter factor. One method to cut down on computational costs is to
use the eigendecomposition of K

K = UpApUL (7)

where Up is orthonormal, Ar = dlag()\(F))i,)\gF) >)\(F) > > 0. Now,
for some p < n build U € R**?P from the first p columns of Ur and let

A = diag(\",...,A%)). We can then approximate K + oI by UAUT + ¢I. Ap-
proximations of this kind are widely used, e.g. in principal component analysis
(PCA) and can be motivated in a variety of ways.

If the eigendecomposition is available, using the approximation UAUT + oI will
greatly reduce the computational costs of many kernel methods. Note that this ma-
trix is not singular due to the oI term. However, computing the eigendecomposition
is a O(n®) operation. There are methods to compute the first p eigenvalues and
eigenvectors of K, but their average running times are significantly below O(n®)
only if p < n.

However, the Nystrom technique described above can be used to compute an ap-
proximation to the eigenvalues and eigenvectors we require. If we use a subset of the
training data of size ¢ = m < n to create the matrix eigenproblem of equation 7, we
can then approximate the eigenfunctions at all n points using equation 5. Let this

low-rank approximation to K be denoted by K = UAUT = S22_ XM @{™)7T,

n) (n)

where ,\5 and @; ’ are the Nystrom approximations of the elgenvalues/vectors

)\(") and u(") of the n x n matrix. By applying equations 5 and 6 with p<m < n

(and noting that)\)\("), i=1,...,p and the first p columns of U and U™
coincide), we arrive at the approxunatlon formulae:

def T

Am) ded ,\‘"‘ i=1,...,p (8)

(2

- (n) def [m 1 (m) L
a; "’ = n)\(_m)K"’m“i i=1,...,p (9)

(m)

where u; "’ is the ith eigenvector of the m x m eigenproblem and K, ., is the

= (n)

appropriate n X m submatrix of K. Note that the entries of @; ~ at the m points

are just rescaled versions of uf). We can therefore compute an approximation to

the UAUT + o1 in time O(m2® + pmn) = O(m?n) using the Nystrém technique.

The nature of the approximation of K for p = m. We consider the quality
of the approximation K for K at (i) the m points used for the eigendecomposition
and (ii) the n —m other points. Let K be partitioned into blocks K, my Kn—m,m =

KT and K,_mn-m. Plugging the approximation (9) into K = UAUT it is

m,n—m
easy to show that

K = KnmK mKmn- (10)

Further we see that K, —I?mm, Kpn-m —I?mn ms Kn—m,m —Kn m,m, but

that Kn_m nem = Kn—mmK ;2 Kmn—m. The difference Kn—m n—m -K,_ m,n—m
is in fact the Schur complement of Km,m It is easy to show that equation 10 is
exact in the case that K has rank m and that m linearly-independent columns are
chosen.

1.3 Related work

We have recently become aware of the work of Frieze et al (1998) who use a weighted
random subsampling of the rows and columns of a rectangular matrix to compute an
approximation to the SVD of that matrix. As a special case an approximate eigen-
decomposition of a SPD matrix can be obtained. Our work gives an independent
derivation of the result (without the weighting), using Nystrém theory, and applies
it to kernel machines. Also Smola and Schélkopf (2000) have recently described
a sparse greedy matrix approximation method. It turns out that the form of our

approximation is identical to theirs, although they grow the approximate matrix,
searching over which row/column to append next, rather than choosing randomly.
For a given m, the sparse greedy method produces a better approximation to K,
but at the expense of more computation. Fine and Scheinberg (2000) have also
very recently pointed out that the incomplete Cholesky factorization algorithm can
be used to yield a low-rank approximation to K. There are many other papers on
approximate methods for kernel machines, but as these do not focus on low-rank
approximations of K references are omitted due to space limitations.

1.4 Fast approximate Gaussian process classification and regression

The technique described above is potentially applicable to a wide range of kernel
methods, including Gaussian process (GP) and Support Vector machine algorithms.
We specialize here on GP regression and classification.

GP regression requires us to solve the system (K +oI)a =t where t are the training
targets. The Bayes predictor is then given by §j(z) = a”k(x) where k(z) is the
vector of length n with elements k(x;,«). Replacing the Gram matrix in the linear
system by the approximation K, the system can easily be solved using the Woodbury
formula (see, e.g. Press et al., 1992):

~ O Nt TV
a=1 (t -U (aI + AUTU) AUTt> (11)

g

which is O(p?n). The memory cost is O(np).

The posterior for the Gaussian process classification model cannot be computed
in a tractable way, but an approximation based on the Laplace approzimation has
been proposed which works well in practice (e.g. see Williams and Barber (1998)).
The method is iterative and requires for each iteration the solution of a system of
the form

I+W(E+ol)a=Wy+m (12)
to be computed, where y = (K + ol)a,4, W is a diagonal matrix and = and W
depend on y. Using the approximation K this can be computed efficiently as follows.
Let A= AUT. In each iteration, we compute D = I + oW, b= D=1 (Wy + =) and
B = D™'WU. Then we have by Woodbury’s formula:

a=b—B(I+AB)™" Ab. (13)
Each iteration is therefore O(p®n). The memory cost is again O(np).

A formula for the computation of determinants analogous to the Woodbury formula
for matrix inversion is also available. This allows the marginal likelihood P(£|#) to
be approximated efficiently, and used as a means of selecting the kernel parameters
6. (Williams and Barber (1998) describe how to approximate the marginal likeli-
hood in the classification case.) Of course other methods like cross-validation could
also be used for kernel optimization.

2 Experimental Results
We present experimental results on classification and regression tasks.

2.1 Classification Experiments

Our experiments were carried out using the US Postal Service (USPS) handwritten
digit database. Each example has 256 inputs, being the scaled grey-level values of

the 16 x 16 pixels. There are 7291 training examples and 2007 test examples. There
are ten different output classes, corresponding to the digits 0, ... ,9.

Gaussian process classifiers were trained using the Laplace approximation as de-
scribed in Williams and Barber (1998). The kernel was of the form k(z,y) =
voexp(— || € —y ||? /(0.5-162)) where the width 0.5 equals twice the average of the
data variance on each dimension, as used in Scholkopf et al. (1999). The scaling
factor vy was set to the reasonable value of 10. The jitter factor o was set to 1076,
We describe three experiments!.

. . . R e a e
128 256 512 1024 10' 10° 10° 10°

Figure 1: (a) log-log plot of the number of errors against m. Dashed line shows
performance of the classifier using the full GP classifier, the + symbol denotes the
mean of the 10 results for each m. (b) log-log plot of number of flops against m.

Experiment 1. In the first experiment, the task is to discriminate the digits of
class “4” from the rest. We vary m, the size of the subset used, and for each value
of m use 10 different subsets of training data of size m so as to be able to assess
the effect of this variability on the results. These results are compared to a score
of 36 errors (out of 2007) for the full GP classifier (i.e. without approximating K).
In Figure 1(a) we plot (on a log-log scale) the results for m = 1024, 512, 256 and
128. Good performance is obtained down to m = 256, although it deteriorates for
m = 128. Good performance can also be obtained using p < m; for example with
m = 1024 good results are obtained with p = 512,256 and 128. In Figure 1(b) the
number of flops taken to compute the MAP value of a (as defined in equation 12)
is plotted against m; this verifies the O(m?) scaling behaviour of the computation.

Experiment 2. The fact that the best performance obtained is close to (and
sometimes better than) that of the full GP classifier using all 7291 training examples
suggests that all of the information in the training set is being utilized, not just
the targets corresponding m training points. To examine this issue in more detail
we compared the performance of a full GP classifier using only a subset of the
training data of size m, against the Nystrom approximation (with p = m) which
computes a m X m matrix eigendecomposition, but makes use of all n training data
points. Again for each m we used 10 different samples from the n training examples
(sampled without replacement), and performed paired comparisons. The task was
to discriminate ‘4’s from the rest of the digits, as in the first experiment.

The mean and standard deviation for the performance of each classifier for m =

'In these classification experiments each ﬁg") (see equation 9) was normalized to have
length 1.

[m [1024 512 | 256 | 128 | 64 |
Ny mean | 35.9 | 34.7 | 345 | 468 | 101.3
Ny std dev | 1.97 | 2.54 | 2.99 | 6.80 | 22.92
GP mean | 54.1 | 646 | 772 | 102.9 | 1274
GP std dev | 4.48 | 6.28 | 13.16 | 25.01 | 28.47
Diff mean | 18.2 | 29.9 | 42.7 | 56.1 | 26.1
f-statistic | 11.02 | 12.20 | 9.00 | 6.37 | 3.41

Table 1: Performance of the full GP classifier using only m data points (denoted
GP) compared with the Nystrom classifier using a eigendecomposition of size m
(denoted Ny), for m = 1024, 512, 256, 128, 64. The mean and standard deviation
of the number of errors is reported for both classifiers, along with the mean and
t-statistic computed from the paired differences.

1024, 512, 256, 128, 64 are given in Table 1, along with mean of the differences
and the ¢-statistic computed from the paired differences. We see that the mean
performance is always better for the Nystrom classifier. As £9.025,9 = 2.26 all five
results are significant at the 5% level. Note also that the variance due to different
samples of size m is smaller for the Nystrom classifier than for the full GP classifier.

01234567809
GP(7291) |18 | 15 | 37 | 33 | 36 | 33 | 14 | 15 | 36 | 24
Fig(256) | 10 | 15 | 35 | 30 | 36 | 28 | 13 | 15 | 33 | 21
Ny(256,1024) | 15 | 15 | 37 | 36 | 37 | 29 | 14 | 14 | 33 | 20
Ny(256, 512) | 22 | 14 | 35 | 32 | 32 | 27 | 14 | 13 | 36 | 24
Ny(256,256) | 18 | 15 | 33 | 31 | 26 | 33 | 12 | 18 | 43 | 31

Table 2: Comparison of the errors rates of the GP(7291), Eig(256), Ny(256,1024),
Ny(256,512) and Ny(256,256) classifiers for the 10 different tasks.

Experiment 3. The third experiment considers the results obtained for the ten
different tasks of discriminating one digit from all of the others. In Table 2 we
give the number of errors for four different predictors (a) GP(7291), the full GP
classifier; (b) Eig(256), the GP predictor using an exact eigendecomposition of the
full K matrix and retaining p = 256 eigenvalues (c) Ny(256,1024) the Nystrém
predictor using p = 256, m = 1024 (d) Ny(256,512) and (e) Ny(256,256). The
results in most cases are very similar. Notice that the results for Eig(256) and
Ny(256,512) are the same as or better than GP(7291) for 9 out of the 10 cases, the
results of Ny(256,1024) are the same as or better than GP(7291) in 8 out of 10 cases
and the results of Ny(256,256) are the same as or better than GP(7291) in 7 out of
10 cases.

We have also implemented an equal-weight committee of up to 10 Ny(p, m) predic-
tors for small p and m, but have not found improvements over a single predictor of
the same size.

2.2 Regression Experiments

We have also tested the Nystrém method on the abalone regression problem, taken
from the UCI repository http://www.ics.uci.edu/ mlearn/MLRepository.html,
as used by Smola and Schoélkopf (2000). The problem has 8 input variables (scaled to
zero mean and unit variance), 3133 training examples and 1044 test examples. We

used a Gaussian kernel with the same parameter settings as Smola and Scholkopf.
Excellent agreement with the exact method was obtained for m = 1000, 500 and
250, but performance declined quite markedly for m = 125.

3 Discussion

We have seen above that the Nystrom approximation can allow a very significant
speed-up of the computations required for the GP classifier without sacrificing ac-
curacy. This speed-up comes about from the insight that matrix eigenproblems of
different dimensions are related because they are all approximations of the eigen-
function equation 2. An advantage of the method is that it is not necessary to
compute or store the whole Gram matrix, but only a m X n portion of it. For
problems with thousands of examples we have shown that good performance can be
obtained using values of m of only a few hundred. As n increases, we would expect
that the ratio m/n could be made even smaller. The approximation is likely to be
particularly good for kernels (like the Gaussian kernel) for which the eigenvalues
decay rapidly.

Acknowledgements

We thank Amos Storkey for helpful discussions and the anonymous NIPS referees who
helped improve this paper. MS gratefully acknowledges support through a research stu-
dentship from Microsoft Research Ltd.

References

Baker, C. T. H. (1977). The numerical treatment of integral equations. Oxford: Clarendon
Press.

Fine, S., & Scheinberg, K. (2000). Efficient SVM Training Using Low-Rank Kernel Rep-
resentationResearch Report RC 21911). IBM T. J. Watson Research Center.

Frieze, A., Kannan, R., & Vempala, S. (1998). Fast Monte-Carlo Algorithms for finding
low-rank approximations. 89th Conference on the Foundations of Computer Science
(pp. 370-378).

Neal, R. M. (1998). Regression and classification using Gaussian process priors (with
discussion). In J. M. Bernardo et al. (Eds.), Bayesian statistics 6, 475-501. Oxford
University Press.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical
Recipes in C. Cambridge University Press. Second edition.

Scholkopf, B., Mika, S., Burges, C. J. C., et al. (1999). Input space vs feature space in
kernel-based methods. IEEE Transactions on Neural Networks, 10(5), 1000-1017.

Schélkopf, B., Smola, A., & Miiller, K.-R. (1998). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10, 1299-1319.

Smola, A. J., & Scholkopf, B. (2000). Sparse Greedy Matrix Approximation for Machine
Learning. Proceedings of the Seventeenth International Conference on Machine Learn-
ing. Morgan Kaufmann.

Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer Verlag.

Wahba, G. (1990). Spline models for observational data. Philadelphia, PA: Society for
Industrial and Applied Mathematics. CBMS-NSF Regional Conference series in applied
mathematics.

Williams, C. K. I., & Barber, D. (1998). Bayesian classification with Gaussian processes.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12), 1342-1351.

