
Olympiads Olympiads
in Informaticsin Informatics14

IOI
International Olympiad in Informatics

I S S N 1 8 2 2 - 7 7 3 2

Olympiads
in Informatics
Volume 14, 2020

O
lym

p
iad

s in
 In

form
atics V

olu
m

e 14, 2020

Olympiads
in Informatics
Volume 14, 2020

A. ALNAHHAS, N. MOURTADA
Predicting the Performance of Contestants in Competitive Programming Using Machine
Learning Techniques

3

P.T. DO, B.T. PHAM, V.C. THAN
Latest Algorithms on Particular Graph Classes

21

M. DOLINSKY, M. DOLINSKAYA
The Technology of Differentiated Instruction in Text Programming in Elementary School
Based on the Website dl.gsu.by

37
D.I. ESTEVEZ

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains

47
P. FANTOZZI, L. LAURA

Recommending Tasks in Online Judges using Autoencoder Neural Networks

61
D. GINAT

Operator Utilization and Abstract Conceptions

77
M. JOVANOV, E. STANKOV

Introduction of “Honorable Mention” Award at the International Olympiad in Informatics

87
A. LAAKSONEN, T. TALVITIE

CSES – Yet Another Online Judge

105
M. LODI

Informatical Thinking

113

M. MIRZAYANOV, O. PAVLOVA, P. MAVRIN, R. MELNIKOV, A. PLOTNIKOV,
V. PARFENOV, A. STANKEVICH

Codeforces as an Educational Platform for Learning Programming in Digitalization

133
P.S. PANKOV, A.A. KENZHALIEV

Pattern Recognition and Related Topics of Olympiad Tasks

143
M.S. TSVETKOVA, V.M. KIRYUKHIN

Top 10 Key Skills in Olympiad in Informatics

151

REPORTS
A.S. GUTIÉRREZ. Argentine Olympiad in Informatics 169
S. HALIM. Competitive Programming 4: The New Lower Bound of Programming

Contests in the 2020s

177
B. KOSTADINOV, M. JOVANOV. IOI Talks: New Initiative for Publishing Presenta-

tions, Events, Interviews, Book Recommendations and Videos of Interest to the IOI
Community

181
L. NIKHÁZY, L. ZSAKÓ. National Programming Competitions, Team Selection and

Training in Hungary

185

ISSN 1822-7732

ISSN 1822-7732

INTERNATIONAL OLYMPIAD IN INFORMATICS

VILNIUS UNIVERSITY

OLYMPIADS IN INFORMATICS

Volume 14 2020

Selected papers of
the International Conference joint with

the XXXII International Olympiad in Informatics
(online) Singapore, 13–19 September, 2020

OLYMPIADS IN INFORMATICS

Editor-in-Chief
Valentina Dagienė
Vilnius University, Lithuania, valentina.dagiene@mif.vu.lt

Executive Editor
Mile Jovanov
Sts. Cyril and Methodius University, Macedonia, mile.jovanov@finki.ukim.mk

Technical Editor
Tatjana Golubovskaja
Vilnius University, Lithuania, tatjana.golubovskaja@mif.vu.lt

International Editorial Board
Benjamin Burton, University of Queensland, Australia, bab@maths.uq.edu.au
Sébastien Combéfis, Computer Science and IT in Education NPO, Louvain-la-Neuve, Belgium,
 sebastien@combefis.be
Michal Forišek, Comenius University, Bratislava, Slovakia, misof@ksp.sk
Gerald Futschek, Vienna University of Technology, Austria, futschek@ifs.tuwien.ac.at
Marcin Kubica, Warsaw University, Poland, kubica@mimuw.edu.pl
Ville Leppänen, University of Turku, Finland, villelep@cs.utu.fi
Krassimir Manev, New Bulgarian University, Bulgaria, kmanev@nbu.bg
Seiichi Tani, Nihon University, Japan, tani.seiichi@nihon-u.ac.jp
Peter Waker, International Qualification Alliance, South Africa,
 waker@interware.co.za
Willem van der Vegt, Windesheim University for Applied Sciences, The Netherlands,
 w.van.der.vegt@windesheim.nl

The journal Olympiads in Informatics is an international open access journal devoted to publishing
original research of the highest quality in all aspects of learning and teaching informatics through
olympiads and other competitions.

https://ioinformatics.org/page/ioi-journal

ISSN 1822-7732 (Print)
 2335-8955 (Online)

© International Olympiad in Informatics, 2020
 Vilnius University, 2020
 All rights reserved

Olympiads in Informatics, 2020 Vol. 14, 1–2
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.00

Foreword

IOI, the International Olympiad in Informatics, organized by Singapore from September
13th to 19th, 2020, is held online for the first time in the IOI history, due to the worldwide
spread of COVID-19. This is a big challenge for host organizers, as well as IOI commit-
tees. A traditional one-day scientific conference is replaced by only virtual presentations
of the papers by the authors, and publishing papers in this volume in printed and online
version at IOI website. The authors are welcome to make short onsite presentations at
next year IOI, which will be hosted by Singapore onsite, 20–27 of June, 2021.

The IOI journal is focused on the research and practice of computing professionals
who work in the field of teaching informatics to talented secondary and high school stu-
dents. The journal is closely connected to the scientific conference annually organized
during the IOI. Unfortunately, the conference this year will be held as virtual event with
online presentations from the authors. The 14th volume has two tracks: the first section
of the journal focuses on research, and the second section includes reports for sharing
national experiences and other news important for the community.

In their paper, A. Alnahhas and N. Mourtada study the possibility of using machine
learning techniques in order to build a system that will be able to predict the future perfor-
mance of contestants in competitive programming contests, based on historical rating lists.
They describe an experiment in which they use public data from the Codeforces website
and show that machine learning techniques achieve acceptable results for the problem.

P.T. Do, B.T. Pham and V.C. Than summarize the latest algorithms for solving some
classical NP-hard optimization problems on the particular graph classes. Furthermore,
they discuss the application of the α–redundant method in order to obtain linear-time al-
gorithms for finding a Maximum Induced Matching on interval and circular-arc graphs.

M. Dolinsky and M. Dolinskaya describe a system for teaching text-based program-
ming in elementary schools, built on the basis of the website dl.gsu.by, and explain the
main advantages of using this technology.

The paper of D.I. Estevez introduces theory of blockchain technology, implementa-
tion, and applications while focusing on its types of consensus algorithms. The method-
ology is linguistic and consists of a comparative analysis of the most popular algorithms.
The problems related to blockchain architecture and algorithms could serve as an inspi-
ration and a training resource for olympiads because of their potential to be intellectually
stimulating and to contribute to our knowledge.

In their paper „Recommending Tasks in Online Judges using Autoencoder Neural
Networks”, P. Fantozzi, and L. Laura propose the design of a recommender system for
tasks in Online Judges. The authors think that their system is a first step to the develop-
ment of recommender systems.

In his paper “Operator Utilization and Abstract Conceptions”, D. Ginat deals with ab-
straction. The abstract perspectives of ignoring details and relating to particular properties
of recognizable parts are fundamental in problem solving. The task solutions presented in
the paper encapsulated them in computations with repeated utilizations of operators. Two
operators are used for sorting and one is used for transforming binary matrix colors.

In the paper “Introduction of Honorable Mention award at International Olympiad in
Informatics”, M. Jovanov and E. Stankov present analysis of the results at IOI and other
Scientific Olympiads in previous years, and present a final solution for the introduction
of the fourth level award at IOI.

A. Laaksonen and T. Talvitie present the current state and future plans for the CSES
(Code Submission Evaluation System) online judge system, which has been used for orga-
nization of several online programming courses as well as contests in Finland since 2013.
The CSES problem set is an ongoing project whose purpose is to create a high-quality
collection of educational algorithm programming problems. At the time of publishing the
problem set consists of 200 problems, and the final goal is to reach 1,000 problems.

M. Lodi analyses the concept of computational thinking by providing a review of
its many definitions and finding that they share a lot of common elements, classified in
mental processes, methods, practices, and transversal skills. He concludes that elements
of computational thinking should be intended inside Informatics as a discipline, being its
“disciplinary way or thinking” – Informatical thinking.

A group of authors (M. Mirzayanov, O. Pavlova, P. Mavrin, R. Melnikov, A. Plot-
nikov, V. Parfenov, and A. Stankevich) discuss Codeforces as an educational platform
for learning programming. They argue that the infrastructure of Codeforces provides a
solid open ecosystem for building a programming learning process, and describe all the
aspects and relationships of this ecosystem, as well as examples of successful integration
into educational processes in the age of digitalization.

A paper of P.S. Pankov and A.A. Kenzhaliev deals with tasks on recognition and on
restoration of data from a unified viewpoint.

M.S. Tsvetkova and V.M. Kiryukhin elaborate top 10 key skills which they have
concluded to be most valuable for the success of students at IOI, based on their 30 years
long experience on preparation of IOI gold medallist in Russia, as well as on preparation
of curriculum of school informatics.

Finally, in the second part of the volume, two reports are presented focusing on team
selection and training in Hungary, and in Argentine Olympiad in informatics. S. Halim
presents the latest edition of his book aimed at all potential IOI contestants around the
world, for their preparation for the contest. B. Kostadinov gives report of a new IOI
activity aimed at the period in between two actual IOIs, that will keep the interest and
spirit of the involved people from IOI community.

Many thanks to all of those who have assisted with the volume – especially authors
and reviewers. A lot of work goes, not only to the writing of the papers, but to an ex-
tended period of review and correction.

Editors

Olympiads in Informatics, 2020, Vol. 14, 3–20
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.01

3

Predicting the Performance of Contestants
in Competitive Programming
Using Machine Learning Techniques

Ammar ALNAHHAS, Nour MOURTADA
Faculty of information technology engineering
Damascus University – Damascus – Syria
e-mail: eng.a.alnahhas@gmail.com, nourmourtadaite@gmail.com

Abstract. Training is an important task in competitive programming, coaches can improve the
training experience if they can get information about the performance of contestants. In this paper,
we study the possibility of using machine learning techniques to build a system that is able to
predict the future performance of a contestant by analyzing their historical rating list. This system
learns from a dataset of contestant ratings. We propose to apply five different baseline machine
learning techniques, then we propose a new deep learning model. We conduct an experiment us-
ing public data from the Codeforces website. We show that most techniques achieve acceptable
results. In addition, the proposed deep learning model outperformed all baseline methods and
achieved results that proved its efficiency in predicting the future performance of contestants.
This paper confirms the possibility of using machine learning techniques to help in the process of
preparing contestants in competitive programming.

Keywords: competitive programming, machine learning, artificial intelligence, programming
training, Informatics Olympiads.

1. Introduction

Competitive programming has become very popular in recent years. It has been attract-
ing more interest all over the world. Many important competitions in competitive pro-
gramming are organized each year, such as the International Olympiad in Informatics
(IOI) and the International Collegiate Programming Contest (ICPC). Thousands of con-
testants are participating in competitive programming competitions that are held online
and onsite all over the world.

Training is a key element in preparing for competitive programming, therefore,
many institutions like organizers of national Olympiads in informatics and universities
are interested in creating and adopting successful training plans for their contestants
(Combéfis & Paques, 2015), and many training methods are introduced and discussed.

A. Alnahhas, N. Mourtada4

Because of the importance of the training, many coaches follow up with their contes-
tants to support their training process and provide suitable materials and tools. For
this reason, it is important for coaches and people in charge of training to observe and
track contestant performance. It is useful if they have an indicator if the performance
of a contestant is decreasing, so they can help in the early stage and support the con-
testant.

Artificial intelligence has gained more interest in both research and application in
the recent years, it is becoming part of everyday life, many intelligent applications are
helping people doing their work, and it has been used in modern educational systems
to make them more adaptive for learners (Colchester, Hagras, Alghazzawi, & Aldab-
bagh, 2017), machine learning is one of the most interesting branches of artificial intel-
ligence, this field of science is interested in building intelligent systems that can learn
by itself, usually by observing and analyzing a large amount of available data.

As thousands of contestants are now interested in competitive programming, online
training websites like Codeforces provide large amounts of contestant data, so it is pos-
sible to build an intelligent system to help analyze this data and support the training
process using artificial intelligence.

In this paper, we are going to present a methodology that aims at using machine
learning techniques in order to build a system that can predict the future performance
of competitive programming contestants by analyzing a sequence of their historical rat-
ings. We implement some known machine learning models, then we propose a new deep
learning model and prove its efficacy in tracking contestants’ performance by providing
results of empirical experiments on data from Codeforces.

Although coaches can observe their contestants to ensure their performance is not
going to decrease, there are some reasons an automatic system can support this pro-
cess:

The relation between contestant performance and their historical ratings may be ●●
not simple to be detected by humans. Complex patterns may exist in this case.
Computer systems can detect these patterns especially using machine learning
techniques by analyzing big amount of data, and extracting useful information by
generalization.
The number of contestants may be large for coaches to follow up in some cases, ●●
so an automatic system can help by pointing the coaches to potential performance-
decreasing contestants, so that they can do further observations and check the
situation.

Therefore, the proposed system can be seen as a decision support system that helps
coaches during the training process by providing an early alarm, so that they can act in
a timely manner. This system can help coaches of national Olympiads where number of
contestants participating in the training process may be large.

This paper is organized as follows: section 2 provides some related works in the field
of predicting student performance, section 3 presents a formal description of the prob-
lem we are trying to solve, section 4 introduces the baseline machine learning models
application, section 5 proposes a new deep learning model, section 6 contains the details
and results of the experiments, and finally section 7 concludes this paper.

Predicting the Performance of Contestants in Competitive Programming ... 5

2. Related Work

Although no researchers have tried to predict the performance of contestants in competi-
tive programming using artificial intelligence techniques; much research has focused on
using related methodologies to predict school or university student performance as well
as detecting students with poor educational progress. This research varied in the way
they addressed and solved the problem. Some of them used traditional machine learning
techniques, while others tried to use deep learning methods such as convolutional and
recurrent neural networks.

Kotsiantis, Pierrakeas, & Pintelas (2004) proposed to use various machine learning
algorithms to predict the performance of students in a distance learning environment,
they used a dataset that consists of students in an informatic course. The students were
represented by two types of attributes: demographic and performance. Five different
machine learning techniques were applied to predict if a student would succeed or
fail in the final exam. The results showed that the Naïve Bayes algorithm achieved
the best results. Tanner & Toivonen (2010) tried to predict students’ final exam results
in an online touch-typing course in which each student had to pass 12 lessons and a
final exam. The goal of the research was to predict in early stages of the course if a
student was going to fail the exam so that the teachers could provide more tutoring.
The researchers suggested using the K-nearest neighbors (KNN) algorithm, a machine
learning technique that depends on the idea that students with similar attributes tend to
have similar exam results. The authors reported good results using KNN in predicting
student performance. Tan & Shao (2015) presented a machine learning-based system
that helped predict student dropout in an educational system. They argued that the per-
formance of the students is an important factor of dropout, so they suggested building
a binary classifier that can predict if a student will drop out or graduate eventually.
The proposed system used the grades of each student as input, and applied two differ-
ent algorithms to analyze the data: logistic regression and decision trees. The authors
showed that both methods achieved good results. Amra & Maghari (2017) proposed a
system that can predict secondary students’ future performance based on various attri-
butes. They compared two different machine learning algorithms: K-nearest neighbors
and the Naïve Bayes classifier. The results they presented showed that the Naïve Bayes
model achieved higher accuracy. Babić (2017) presented a system that aimed at pre-
dicting student academic motivation. The proposed system depended on the behavior
of students in an online learning management system, and used three different machine
learning methods to classify students: artificial neural networks (ANN), decision trees
and support vector machines. The results were promising and could help educators find
students with poor performance at early stages. Waheed et al. (2020) tried to build a
system that can predict the academic performance of students in a virtual learning envi-
ronment based on clickstream data and assessment results. Their system used artificial
neural networks to categorize students into two classes: success and failure. Authors
compared the results with baseline methods: logistic regression and support vector ma-
chines, and proved that ANN outperformed them. Similarly, researchers Hussain et al.
(2019) proposed to use artificial neural networks to predict student performance based

A. Alnahhas, N. Mourtada6

on internal assessment results. They presented the issue as a classification problem, as
other researchers did, but they compared the results of ANN with two different classi-
fiers: The Artificial Immune Recognition System and AdaBoost. The proposed model
used exam scores and internal assessment marks; the results showed that ANN out-
performed other methods. Sekeroglu, Dimililer, & Tuncal (2019) also used neural net-
works to predict student performance. They suggested two different neural networks,
multilayer perceptron (MLP) and recurrent neural networks, and compared the perfor-
mance of these two networks with support vector machines. MLP proved to be best at
classifying students and predicting performance. Koutina & Kermanidis (2011) tried
to build a system to predict the performance of postgraduate students in order to help
tutors detect students at risk of failing in early stages. The authors used students’ marks
along with some demographic attributes to predict the performance and compared six
well-known machine learning algorithms including support vector machines, Naïve
Bayes and K-nearest neighbor. Their research led to the result that the Naive Bayes
classifier achieved the best results.

Many other researchers were interested in this field (Al-Shabandar et al., 2017; Ofori,
Maina, & Gitonga, 2020; Thai-Nghe, Drumond, Krohn-Grimberghe, & Schmidt-Thie-
me, 2010; Xu, Moon, & Van Der Schaar, 2017). The successful use of machine learning
and deep learning techniques to predict the performance of students in the previous work
is a good indicator that these methods can help predict the performance of contestants
in competitive programming. Especially as many researchers use a similar input pattern
which is the sequence of level rates of the contestant. We are going to apply different
well-known traditional machine learning techniques along with a new deep learning
model to try to achieve the research goal.

3. Formal Problem Statement

The problem we present in this paper is about predicting the future performance of a
contestant participating in a competitive programming training program. Each contes-
tant is assumed to have a rate that reflects their excellence level, which changes over
time to reflect change in contestant performance. The goal is to predict if the level of the
contestant is going to increase or decrease according to the historical ratings we already
recorded for them.

We can measure the performance of a contestant by the average of their level ratings,
so if the average increases over time, then we can say that the student performance is
getting better and vice versa.

Formally, if a contestant c has a sequence of n temporally ordered ratings R = r1, r2,
…, rn, we define the function RC(R) as the following:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1

Predicting the Performance of Contestants in Competitive Programming ... 7

The function RC denotes the difference in rating average between the first half and
the second half of the rating sequence. Intuitively, if the function RC has a positive value,
the contestant performance is increasing while a negative value means the performance
is decreasing, and this is the case we are interested in, because detecting contestants who
tend to do worse in the future will guide the coaches to provide suitable solutions.
Formally, we define the function T(R) as the following:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

So, the goal of the models in this paper is to predict the value of T(R) given n/2
ratings of a contestant. As the value of T(R) is binary, the problem can be addressed as
a binary classification, that is, each sequence of ratings belongs to either a positive or
negative class. Binary classification problems are well-known to be solved by many ma-
chine learning and deep learning methods that can be trained using a dataset of existing
instances, so the model can generalize and classify new instances of data.

To solve the proposed classification problem, we will apply different types of
baseline machine learning algorithms, then present a novel deep learning model that
achieves good results and outperforms all other methods, as we will elaborate in the
results section.

4. Baseline Machine Learning Algorithms

Machine learning is used to discover data patterns and relationships between variables,
which is helpful in the decision-making process. It is a useful tool for detecting contes-
tants whose level is going to decrease based on their rating sequence. Coaches are then
able to help the weakest ones in a timely manner, and to promote the strongest, thereby
improving contestants’ level. There are several well-known machine learning models
that are usually used in classification tasks. We choose five of them to apply in our study,
and will provide a brief description of how we apply them in this section.

4.1. Random Forest

Random forest (Liaw & Wiener, 2002) is a classification methodology widely used in
machine learning. Random forest is a collection of decision trees (Quinlan, 1986) built
up with some element of random choice. Each decision tree is constructed using ran-
dom features of the data. The trees are not pruned, and each leaf of each tree represents
a class. The algorithm is trained using a bootstrap sampling method. The prediction of
a new item is done by the voting technique, that is, the prediction of each tree is found
according to the leaf reached, then each class is assigned a ratio of trees that voted for it.
The random forest algorithm has been successfully used in many applications; in our

A. Alnahhas, N. Mourtada8

case we construct the forest using our dataset. We build trees from the ratings of the con-
testants, and the forest we construct contains 100 decision trees. We use Gini impurity as
a criterion for splitting tree nodes.

4.2. Logistic Regression

Logistic regression is a binary classification model. It is considered as a baseline for
any binary classification problem, and is a basic fundamental concept in machine learn-
ing. It describes data and estimates the relation between one dependent binary variable
and independent variables. It is a special case of linear regression where the dependent
binary variable is categorical in nature. Linear regression gives a continuous output, but
logistic regression gives a constant output. Logistic regression is suitable for our goal,
where the dependent variable is the contestant class or performance prediction, and the
independent variables are the historical ratings of this contestant. Given the rating se-
quence R = r1, r2, …, rn of a contestant, we define a linear function Z:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

The factors

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛 are the model parameters whose value should be found
by the model fitting process.

We apply a logistic function L to the result of the above function to get the value in
the range (0,1):

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

The function L represents the output of the model, and the predicted class is then
found by choosing a suitable threshold th and find the class accordingly:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟�

�=𝑛

�=𝑛/2
− 1
𝑛 2⁄ � 𝑟�

𝑛/2−1

�=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

The training of the model is done by minimizing the mean squared error between the
function L of the model and the real output of the training samples.

4.3. Artificial Neural Networks

A neural network consists of connected items called neurons, where each neuron has
multiple inputs and a single output. There are many types of neural networks which vary
in the way the neurons are connected to each other. Multilayer perceptron (MLP) is one
of the famous types of neural networks. In MLP neurons are arranged in consecutive
layers where the output of neurons of each layer constitutes the input of the next layer.

Predicting the Performance of Contestants in Competitive Programming ... 9

The first layer is the input layer, and the last layer is the output layer whose output is
considered the output of the whole network. MLP is used widely in machine learning as
it can learn from existing samples of data and generalize the pattern to be applied to new
items, so it is useful in various classification and regression tasks. In our work, we use
MLP as a binary classifier; we use a three-layer MLP. The first layer is the input layer
which consists of neurons where each neuron corresponds to a rating from the input, the
second layer is a hidden layer and the third layer is the output layer which consists of a
single neuron. Fig. 1 shows the network architecture. The activation function for the first
and second layers is the ReLU function, which is a positive linear function, whereas the
activation function of the output layer is sigmoid:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

The output of the Sigmoid function is in range (0,1). To get the final class we choose
a suitable threshold th and find the class accordingly:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

To train the network we use the Adam algorithm (Kingma & Ba, 2014) and cross
entropy as a loss function.

Contestant's rating list

Output

Fig. 1. Proposed MLP architecture.

A. Alnahhas, N. Mourtada10

4.4. Naïve Bayes Classifier

The Naive Bayes algorithm is an effective and efficient classification method in machine
learning. A Naive Bayes classifier is a simple probabilistic classifier based on applying
Bayes’ theorem with strong (naive) independence assumptions. Bayes’ theorem depends
on the following relationship, given class variable y which denotes contestant perfor-
mance prediction and the dependent feature vector, which is the historical ratings of this
contestant r1 through rn:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

To train our model, we use two different methods. Firstly, we train a Gaussian Naïve
Bayes Model which implements the Gaussian Naive Bayes algorithm for classification.
Gaussian Naïve Bayes theorem states the following relationship:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

Secondly, we train a Multinomial Naïve Bayes Model which implements the naive
Bayes algorithm for multinomial distributed data. The distribution is parametrized by
vectors

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛) for each class y.
Where:

 ●● n is the number of ratings.
 ●●

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

 is the probability

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦) of rating i appearing in a sample belonging to class
y.

Multinomial Naïve Bayes theorem states the following relationship:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

Where:

 ●●

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1, 𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

 is the number of times rating appears in a sample of class in
the training set .
 ●●

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

 the total count of all ratings for class .

4.5. Support Vector Machine

The Support Vector Machine (SVM) is one of the most popular machine learning clas-
sifiers. It is a supervised learning algorithm used for both classification and regression.
SVM is effective and efficient for two-class problems; it is based on finding a hyper-

Predicting the Performance of Contestants in Competitive Programming ... 11

plane in n dimensional space that splits the data points. This hyperplane should have the
maximum margin to the nearest data points, and it forms a decision boundary so that
the separation between two classes is as wide as possible. In this paper, as our target is
formulated as a binary classification problem, we train a Support Vector Machine Classi-
fication Model in the space with n dimensions where n is the number of historical ratings
we consider for each contestant. We train a nonlinear support vector machine with the
kernel trick, using the radial basis function kernel.

As SVM output is discrete, probabilistic Support Vector Machine (PSVM) is a varia-
tion of SVM where multiple SVM is applied with multiple cross-fold operations on the
dataset, the output of PSVM is continuous and falls in range [0,1]. In this paper we try
out both SVM and PSVM.

5. Proposed Deep Learning Model

Deep learning is a subclass of machine learning. In deep learning, data itself is not con-
sidered as features for classification, but higher-level features are extracted from the data
in order to enhance the accuracy of the classification process by finding features that are
conceptually more expressive.

Deep neural networks are the most common implementation of deep learning, where
some layers are added to extract semantic representation of data that is used for clas-
sification with ANN layers.

Recurrent neural networks (RNN) (Jain & Medsker, 1999) are well-known for process-
ing sequential data, especially when the data is temporally ordered. This network consists
of units, where each unit corresponds to an item of the processed sequence. The input of
each unit is formed by both the output of the previous unit and the corresponding item
from the sequence; hence, the network is able to capture the temporal relation between the
items of the data sequence. Long short-term memory (LSTM) (Hochreiter & Schmidhuber,
1997) is a special type of RNN which is more suitable for processing longer sequences.

LSTM can extract latent vector representation, called embedding, from a data se-
quence; the embedding can represent data in a different (usually lower) dimension and
with some useful semantics.

The model we propose in this paper is a deep neural network that consists of five layers:
an embedding layer followed by two LSTM layers and finally two ANN layers. The ratings
of the contestants are integers that reflect their levels. These integers are not sufficient to be
used as the input to recurrent networks, so the role of the embedding layer is to find a vec-
tor representation of these ratings expanding the dimensionality of data from 1 to 64 (we
chose to have the layer generate a vector of 64 values for each rating value). The output of
the embedding layer is n vectors, each with 64 values. This output goes to the second layer,
which is an LSTM layer consisting of 16 units. Each sequence item is used as an encoder
which transforms each vector of its input from 64 values into 16 values, decreasing the
sparsity of the embedding representation. To achieve this, the output of this unit is formed
by the output of each unit, that is, the output is n vectors each having 64 values. The output
is passed to the next LSTM layer which contains 16 units for each item as well; this layer

A. Alnahhas, N. Mourtada12

generates a single vector representation of the ratings sequence, which is the output of the
last unit of this network. This vector has 16 values. The vector representation is passed to
a fully connected ANN network with 10 neurons, this layer is a classification layer whose
activation function is ReLU. Its output is connected to a single neuron which constitutes
the last layer of the network. This neuron has a Sigmoid activation function whose output
is the probability that the input ratings sequence belongs to the positive class, that is, the
contestant performance will decrease. Fig. 2 shows the network structure.

The network is trained by minimizing the cross-entropy loss function and the Adam
optimizer is used to train the network.

6. Experiment and Results

To evaluate the proposed machine learning method along with the deep learning model,
we conduct a real experiment. This section explains the data collection, the evaluation
metrics and the detailed results.

Rating sequence

Embedding layer

LSTM layer

LSTM layer

Dense layer

Output dense layer

Input (n values)

n*64

n*16

16

10

Output: Single value, probability of positive class

Fig. 2. Structure of proposed deep learning model.

Predicting the Performance of Contestants in Competitive Programming ... 13

6.1. The Dataset

To get data about competitive programming contestants, we use the data available from
the website CodeForces.* This website is widely used for training people in competitive
programming, moreover, it provides a rating system that allows each member to have a
rate, which reflects the level of this member and changes after each round of competition
conducted by the website.

Codeforces provides a public application programming interface (API)**, this API
allows access to public data from the website and its users. To collect our dataset, firstly
we used the ‘user.ratedList’ API method to get a list of users who have participated in
at least one rated contest, we are interested only in active users, so we got about 21,000
users. We could get the rating history of each user by using ‘user.rating’ API method, so
we eliminated the users who had less than 20 ratings, leaving us with 6876 users.

We chose 10 as the length of rating sequence that can reflect the contestant perfor-
mance. We generated the dataset items where each item input is a sequence of 10 ratings
and the output is a binary number 0 or 1 calculated by the next 10 ratings using the func-
tion T as described in section 3 of this paper.

Many items may be generated by a single user, as every 20 consecutive ratings of the
user can generate an item, so we used a window with a width of 20 to pass over the con-
testant ratings and generate the items. Eventually our dataset contained 233629 items.

The dataset is imbalanced, that is, the number of items getting better results in the
future is greater than the number of contestants getting worse results. It seems this is
natural as contestants try to get better results, but this fact makes our goal harder to
achieve, as we are seeking contestants with worse results predicted, in order to detect
them early on. Fig. 3 shows the class distribution in the dataset.

The dataset is split into two parts:
Training set: used to train machine learning models and is 80% of the dataset.●●
Testing set: used for evaluation and is 20% of the dataset.●●

*	http://www.codeforces.com
**	https://codeforces.com/apiHelp

Class distribution

Positive Negative

Fig. 3. Class distribution in the dataset.

A. Alnahhas, N. Mourtada14

6.2. Evaluation Metrics

To evaluate the different proposed models, we are going to use well-known evaluation
metrics in classification tasks.

6.2.1. Area Under ROC Curve (AUROC)
The receiver operating characteristics (ROC) curve is an important curve used to evaluate
machine learning models. It represents the relation among sensitivity of the model with
the specificity and the threshold used to choose the class. This curve reflects the perfor-
mance of the model, so the area under this curve can reflect how perfect the model is.

6.2.2. Accuracy
The accuracy of the model is the ratio of the items that are classified correctly:

]

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑁

Where TP is the number of positive items classified correctly, TN is the number of
negative items classified correctly, and N is the number of all classified items.

6.2.3. Precision
The precision of the model is the ratio of correct positive items:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Where FP is the items that are wrongly classified as positive when they are negative.

6.2.4. Recall
The recall is the ratio of positive items that are correctly classified as positive:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Where FN are positive items that are wrongly classified as negative. This metric is the

most important one in our study, because it is more important to detect most of the con-
testants with performance decreasing rather than getting high classification precision.

6.2.5. F1 Score
F1 score can merge both precision and recall; it is more suitable than accuracy when data
is imbalanced:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

Predicting the Performance of Contestants in Competitive Programming ... 15

7. Results

The six models presented in this paper are trained using the training part of the dataset,
then the testing set is used to evaluate the performance of these models.

To handle the data imbalance problem of the dataset, we use class weights during the
training of the models, where each class is weighted so that the weights reflect the ratio
of class in the training data:

𝑅𝐶(𝑅) = 1
𝑛 2⁄ � 𝑟𝑖

𝑖=𝑛

𝑖=𝑛/2
− 1
𝑛 2⁄ � 𝑟𝑖

𝑛/2−1

𝑖=1

𝑇(𝑅) = �1, 𝑅𝐶(𝑅) < 0
0, 𝑅𝐶(𝑅) ≥ 0

𝑍(𝑅) = 𝛽0 + 𝛽1𝑟1 + 𝛽2𝑟2 + ⋯+ 𝛽𝑛𝑟𝑛

𝛽0,𝛽1,𝛽2, … ,𝛽𝑛

𝐿(𝑅) = 1
1 − 𝑒−𝑍(𝑅)

𝑐𝑙𝑎𝑠𝑠 = �0, 𝐿(𝑅) < 𝑡ℎ
1, 𝐿(𝑅) ≥ 𝑡ℎ

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥

𝑐𝑙𝑎𝑠𝑠 = �0, 𝑜𝑢𝑡𝑝𝑢𝑡 < 𝑡ℎ
1, 𝑜𝑢𝑡𝑝𝑢𝑡 ≥ 𝑡ℎ

𝑃(𝑟, … . , 𝑟𝑛) = 𝑃(𝑦)𝑃(𝑟1, … , 𝑟𝑛|𝑦)
𝑃(𝑟1, … . . , 𝑟𝑛)

𝑃(𝑦) = 1
�2𝜋𝜎𝑦2

exp� −
�𝑟𝑖 − 𝜇𝑦�

2

2𝜎𝑦2
�

𝜃𝑦 = (𝜃𝑦1,𝜃𝑦2, … ., 𝜃𝑦𝑛)

𝜃𝑦𝑖

𝑃(𝑟|𝑦)

𝜃𝑦𝑖 =
𝑁𝑦𝑖+∝
𝑁𝑦+∝ 𝑛

𝑁𝑦𝑖 = ∑ 𝑟𝑖𝑟∈𝑇

𝑁𝑦 = ∑ 𝑁𝑦𝑖 𝑛
𝑖=1 .

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

𝑊𝑐 = 𝑁
2 ∗ 𝑁𝑐

Where Wc is the weight for class c, N is the total number of items in the dataset and

Nc is the number of items with class c in the dataset.
Fig. 4 shows the AUROC of the models:

Linear regression (LR).●●
Random forest (RF).●●
Artificial neural network (ANN).●●
Multinomial Naïve Bayes (MNB).●●
Gaussian Naïve Bayes (GNB).●●
Probabilistic Support vector machine (PSVM).●●
Deep learning model (DL). ●●

Note that this measure cannot be calculated for support vector machines as their out-
put is discrete, unlike other models where the output is a probabilistic continuous value
that falls in range (0,1).

We can notice that the deep learning model achieved the best value for this metric.
MLP and RF achieved good results as well, whereas probabilistic models had poor per-
formance.

Class distribution

Positive Negative

Class distribution

Positive Negative

0,53306943
0,638623737 0,672690034 0,679866965 0,720696435 0,733851101

0,899119249

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

GNB MNB LR PSVM RF MLP DL

AUROC

AUROC

Fig. 4. AUROC of different models.

A. Alnahhas, N. Mourtada16

Fig. 5 shows the accuracy of different models: deep learning achieved the best result
for this metric, and the support vector machine had good accuracy as well, whereas lin-
ear regression had the poorest result.

Fig. 6 shows the precision of different models: linear regression outperformed all
other models including the deep learning one. However, this metric does not reflect
the overall performance of the model, because it is more important to detect most con-
testants with poor predicted performance rather than getting a high ratio of correctly
detected contestants.

Fig. 7 shows the recall metric of the different models: the deep learning model has
the highest recall while the random forest model also achieved good results. Recall is
very important as it refers to the ratio of contestants with poor performance that are

Class distribution

Positive Negative

Class distribution

Positive Negative

0,53306943
0,638623737 0,672690034 0,679866965 0,720696435 0,733851101

0,899119249

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

GNB MNB LR PSVM RF MLP DL

AUROC

AUROC

0,408787399
0,497410435

0,669434576 0,674485297 0,674990371 0,696657107
0,754697599

0,837242649

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

LR RF MNB MLP PSVM GNB SVM DL

Accuracy

Accuracy

Fig. 5. Accuracy of different models.

Class distribution

Positive Negative

Class distribution

Positive Negative

0,408787399
0,497410435

0,669434576 0,674485297 0,674990371 0,696657107
0,754697599

0,837242649

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

LR RF MNB MLP PSVM GNB SVM DL

Accuracy

Accuracy

0,34092219
0,37759229 0,399142128 0,411353803 0,417046228

0,564546784
0,636617704

0,755522828

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

RF GNB MNB SVM MLP PSVM DL LR

Precision

Precision

Fig. 6. Precision of different models.

Predicting the Performance of Contestants in Competitive Programming ... 17

positively classified. The support vector machine model tends to get very few positive
items, so that it has a very low recall value.

Although recall is important, precision should not be bad, so because the F1 score can
reflect both precision and recall, it is more suitable than accuracy when the data is imbal-
anced as in our case. Fig. 8 shows the F1 score for different models. We can observe that
deep learning model outperforms all other models for F1 score for a high margin.

We can see that the deep learning model achieved good results. In fact, it gets the
best results for most metrics, which can be explained by the capability of the LSTM
network to encode sequential data. In addition, we used a vectorized representation of
ratings in this model using the embedding layer. Fig. 9 shows the ROC for this model.
The height of the peak near the top left corner with high AUROC proves the efficiency
of this model for this task.

Class distribution

Positive Negative

Class distribution

Positive Negative

0,408787399
0,497410435

0,669434576 0,674485297 0,674990371 0,696657107
0,754697599

0,837242649

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

LR RF MNB MLP PSVM GNB SVM DL

Accuracy

Accuracy

0,043441443

0,197726893

0,455499853

0,575463814
0,665719539 0,668219155

0,733411332
0,829452113

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

SVM GNB PSVM MNB LR MLP RF DL

Recall

Recall

Fig. 7. Recall of different models.

Class distribution

Positive Negative

Class distribution

Positive Negative

0,408787399
0,497410435

0,669434576 0,674485297 0,674990371 0,696657107
0,754697599

0,837242649

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

LR RF MNB MLP PSVM GNB SVM DL

Accuracy

Accuracy

0,082158873

0,250290913

0,471353275 0,498523063 0,504194549 0,509228188 0,512827116

0,720353006

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

SVM GNB MNB RF PSVM MLP LR DL

F1 score

F1 score

Fig. 8. F1 score of different models.

A. Alnahhas, N. Mourtada18

8. Conclusion

It is useful for competitive programming coaches to track the performance of their con-
testants, so we can benefit through machine learning techniques to build systems that
can predict the future performance of contestants and draw coaches’ attention to those
who are not on track to do well in future. In this paper, we presented the application of
six different machine learning models in this regard; five of these models are baseline
methods, and the sixth is a novel deep learning model. The results showed that it is pos-
sible to predict the future performance of contestants. Although most models achieved
acceptable results, the deep learning model outperformed all models and proved to be
effective and efficient.

To apply this results in reality, we have many options, but as informing contestants
with the prediction of their future performance can affect their real performance; this
information should be restricted to the coaches and supervisors. It can be presented as
an indicator for each contestant information page, if using an information system, or
it can be incorporated in any computer system used for observing contestant training
process.

This study is a starting point for future development of intelligent systems that can
help the process of training in competitive programming, the demographic features of
contestants should be considered in future. In addition, artificial intelligence can help in
many other ways in the training process like personalizing the materials or automatic
content generation, which should be addressed in future research.

Fig. 9. ROC curve for the deep learning model.

Predicting the Performance of Contestants in Competitive Programming ... 19

References

Al-Shabandar, R., Hussain, A., Laws, A., Keight, R., Lunn, J., & Radi, N. (2017). Machine learning approaches
to predict learning outcomes in Massive open online courses. Paper presented at the 2017 International Joint
Conference on Neural Networks (IJCNN).

Amra, I. A. A., & Maghari, A. Y. (2017). Students performance prediction using KNN and Naïve Bayesian.
Paper presented at the 2017 8th International Conference on Information Technology (ICIT).

Babić, I. Đ. (2017). Machine learning methods in predicting the student academic motivation. Croatian Opera-
tional Research Review, 443–461.

Colchester, K., Hagras, H., Alghazzawi, D., & Aldabbagh, G. (2017). A survey of artificial intelligence tech-
niques employed for adaptive educational systems within e-learning platforms. Journal of Artificial Intel-
ligence and Soft Computing Research, 7(1), 47–64.

Combéfis, S., & Paques, A. (2015). Organising national olympiads in informatics: A review of selection pro-
cesses, trainings and promotion activities. Olympiads in Informatics, 9.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
Hussain, S., Muhsion, Z. F., Salal, Y. K., Theodoru, P., KurtoÄ lu, F., & Hazarika, G. (2019). Prediction model

on student performance based on internal assessment using deep learning. International Journal of Emerg-
ing Technologies in Learning (iJET), 14(08), 4–22.

Jain, L. C., & Medsker, L. R. (1999). Recurrent Neural Networks: Design and Applications: CRC Press, Inc.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kotsiantis, S., Pierrakeas, C., & Pintelas, P. (2004). Predicting students’ performance in distance learning using

machine learning techniques. Applied Artificial Intelligence, 18(5), 411–426.
Koutina, M., & Kermanidis, K. L. (2011). Predicting postgraduate students’ performance using machine learn-

ing techniques Artificial intelligence applications and innovations (pp. 159–168): Springer.
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18–22.
Ofori, F., Maina, E., & Gitonga, R. (2020). Using machine learning algorithms to predict students’ performance

and improve learning outcome: A literature based review. Journal of Information and Technology, 4(1),
33–55.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
Sekeroglu, B., Dimililer, K., & Tuncal, K. (2019). Student performance prediction and classification using ma-

chine learning algorithms. Paper presented at the Proceedings of the 2019 8th International Conference on
Educational and Information Technology.

Tan, M., & Shao, P. (2015). Prediction of student dropout in e-learning program through the use of machine
learning method. International Journal of Emerging Technologies in Learning, 10(1).

Tanner, T., & Toivonen, H. (2010). Predicting and preventing student failure-using the k-nearest neighbour
method to predict student performance in an online course environment. International Journal of Learning
Technology, 5(4), 356.

Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., & Schmidt-Thieme, L. (2010). Recommender system for
predicting student performance. Procedia Computer Science, 1(2), 2811–2819.

Waheed, H., Hassan, S.-U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academ-
ic performance of students from VLE big data using deep learning models. Computers in Human Behavior,
104, 106189.

Xu, J., Moon, K. H., & Van Der Schaar, M. (2017). A machine learning approach for tracking and predicting
student performance in degree programs. IEEE Journal of Selected Topics in Signal Processing, 11(5),
742–753.

A. Alnahhas, N. Mourtada20

A. Alnahhas is a teacher at the faculty of information technology en-
gineering, Damascus University, he holds a Ph.D. in artificial intel-
ligence, he was involved in the training and preparation of national
Olympiad in informatics since 2005, he was involved in many com-
petitive programming activities, he has been the leader of Syrian del-
egation to IOI for many years.

N. Mourtada is an information technology engineering student at the
department of artificial intelligence, faculty of information technology
engineering, Damascus University.

Olympiads in Informatics, 2020, Vol. 14, 21–35
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.02

21

Latest Algorithms on Particular Graph Classes

Phan Thuan DO1,*, Ba Thai PHAM1, ⃰, Viet Cuong THAN2

1Hanoi University of Science and Technology
2University of Nebraska-Lincoln
e-mail: thuandp@soict.hust.edu.vn, thai9cdb@gmail.com, cthan2@huskers.unl.edu

Abstract. Many optimization problems such as Maximum Independent Set, Maximum Clique,
Minimum Clique Cover and Maximum Induced Matching are NP-hard on general graphs. How-
ever, they could be solved in polynomial time when restricted to some particular graph classes
such as comparability and co-comparability graph classes. In this paper, we summarize the lat-
est algorithms solving some classical NP-hard problems on some graph classes over the years.
Moreover, we apply the -redundant technique to obtain linear time  O(j j)  algorithms which
find a Maximum Induced Matching on interval and circular-arc graphs. Inspired of these results,
we have proposed some competitive programming problems for some programming contests in
Vietnam in recent years.

Keywords: graph classes, interval graph, circular-arc graph, co-comparability, maximum in-
duced matching.

1. Introduction

Despite the fact that the study field of particular graph classes has been skyrocketing over
the years, there is still modest number of competitive programming problems inspired
by this field for Olympic programming contests, especially for high school contests. One
reason is that the particular graph classes are excluded in the IOI syllabus. However,
many particular properties of these graph classes can be expressed as some other knowl-
edge included in the syllabus. We have explored some of these properties to propose
problems for some programming contests in Vietnam in recent years. These problems
are not mentioned about particular graph classes by being stated as practical situations.
They can be consequently solved by knowledge included in the IOI syllabus.

Usually, NP-hard problems may become much easier when restricted on particular
graph classes. Exploring this way, we first study graph optimization problems such as
Maximum Independent Set, Maximum Matching, Maximum Clique, Minimum Clique

*	Corresponding authors

P.T. Do, B.T. Pham, V.C. Than22

Cover. We summarize latest algorithms for these problems on some co-comparability
graph classes such as interval, permutation and trapezoid graphs.

Besides, in the literature, there exist only a few trivial algorithms of finding Maxi-
mum Induced Matching (MIM) on particular graph classes. This problem was first pro-
posed in 1989 by Cameron (Cameron, 1989). While the maximum matching problem
can be solved in polynomial time in an arbitrary graph, the MIM problem is a NP-Hard
problem, even for bipartite graphs. The MIM problem can be trivially solved in polyno-
mial time for interval graphs and chordal graphs (Cameron, 1989), circular-arc graphs
(Golumbic, 1993), Trapezoid graphs and co-comparability graphs (Golumbic and Le-
wenstein, 2000), Asteroidal-triple-free graphs (Cameron, 2004; Chang, 2001), Weakly
chordal graphs (Cameron et al., 2003), Interval-filament graphs (Cameron, 2004). There
are algorithms that can find MIM in linear time  O(jj + j j)  in chordal graphs (Brand-
städt and Hoàng, 2008), interval graphs (Golumbic and Lewenstein, 2000), tree graphs
(Golumbic and Lewenstein, 2000) and permutation bipartite graphs (Chang, 2001). In
this paper, we present two  O(j j)  algorithm solving the MIM problem on interval and
circular-arc graphs. Our approach is to use the -redundant technique to reduce the search
space while still preserving optimal solutions.

In the last section, we describe some of our competitive programming problems pro-
posed for Vietnam Team Selection Tests (TST) in recent years. These problems are in-
spired by the latest results on circular-arc, trapezoid and disc graphs for the problems of
maximum induced matching and minimum vertex cover.

2. Preliminary

2.1. NP-Hard Graph Problems

Given a graph   = ( ), a set   µ   is called an independent set of    if no two
members of    are adjacent. The number of vertices in a maximum independent set
(MIS) of    is called the independence number, denoted by  ().

!

"

#

$

%

&

'

Fig. 1. An illustration of Independent Set and Graph Coloring.

Latest Algorithms on Particular Graph Classes 23

A subset    of    is a clique if and only if every two vertices of    are adjacent.
A clique of graph    corresponds to an independent set of the complement graph  –.
The cardinality of a maximum cardinality clique (MC) is called  (). A clique cover
of    is a partition of the set    into cliques. The number of cliques in a minimum clique
(MCC) cover of    is denoted by  ().

A coloring of a graph is an assignment of labels, also called color, to each vertex
such that no two adjacent vertices share the same color. The minimum number of colors
needed to assign a graph subject the constraint is called the chromatic number of that
graph and is denoted by  (). Vertices with the same color of    are in a clique of the
complement graph  –  of  . Hence a coloring of    is a minimum clique cover of  –.

These four problems MIS, MC, MCC, and Coloring have been known to be NP –
hard in general graphs. However, many of them can be solved efficiently with polyno-
mial time complexity in following particular graph classes.

2.2. Particular Graph Classes

A graph    is comparability if there is a transitive orientation, an assignment of direc-
tions to the edges of the graph, i.e. an orientation of the graph, such that the adjacency
relation of the resulting directed graph is transitive: whenever there exist directed edges
( ) and  ( ), there must exist an edge  ( ). A co-comparability graph is a com-
plement of the comparability graph. The MC and Coloring problem in comparability
graphs can be solved in linear time  O(jj +  j j)  using the lexicographic depth-first
search algorithm (Golumbic, 2004) while a maximum independent set and minimum
clique cover could be found by using maximum flow algorithms (Golumbic, 2004).
These algorithms could be taken advantage of solving MIS, MC, MCC and Coloring
problems in co-comparability graphs.

A graph is an intersection graph if each vertex corresponds to a set and two vertices
are adjacent iff their set share same members. If each set is an interval on a line, the
graph is called an interval graph.

A simple greedy  O(j j)  algorithm can be used to solve the MIS and MCC problem
in interval graphs, with an assumption that every interval in the input is sorted by their
left ends. The Coloring and MC problem can be solved in  O(j j log j j).

Fig. 2. An illustration of Clique and Clique Cover.

P.T. Do, B.T. Pham, V.C. Than24

A permutation graph is a graph whose vertices represent the elements of a permuta-
tion, and whose edges represent pairs of elements that are reversed by the permutation.
Permutation graphs may also be defined geometrically, as the intersection graphs of line
segments whose endpoints lie on two parallel lines.

Permutation graphs are both comparability and co-comparability. There is an
O(j j log log j j)  algorithm based on the longest increasing subsequence to solve
the MIS problem in permutation graphs. This algorithm can be used to find MC, MCC
and Coloring also in  O(j j log log j j).

A trapezoid graph is an intersection graph of trapezoids in which two sides line on
two parallel lines. The MIS and MCC problem in this graph class can be solved in
O(j j log log j j)  using the sweep line technique (Felsner et al., 1997). A MC and
Coloring could be found in  O(j j log j j).

Table 1
Latest algorithms on some particular graph classes

Problem Comparability Co-comparability Interval Permutation Trapezoid

MC O(jj + j j) Polynomial O(j j log j j) O(j j log log j j) O(j j log j j)
Coloring O(jj + j j) Polynomial O(j j log j j) O(j j log log j j) O(j j log j j)
MIS Polynomial O(jj + j j) O(j j) O(j j log log j j) O(j j log log j j)
MCC Polynomial O(jj + j j) O(j j) O(j j log log j j) O(j j log log j j)

Fig. 3. An illustration of Interval Graph and Permutation Graph.

1 2 1 2 3 4 4 3 5 5 6 7 7 6 8 8

3 3 2 2 1 1 5 5 4 6 8 4 8 7 7 6

Fig. 4. An illustration of Trapezoid Graph.

Latest Algorithms on Particular Graph Classes 25

3. The  - Redundant Method

Given a graph   = ( ), the  -th  power graph of    is denoted by    = (  0)  hav-
ing the same vertex set with  . Two vertices     in     are adjacent iff there exists
a path from    to    of length less than or equal to  . Let  ()  denote the line graph
of  , i.e., each edge of    is a vertex of  (), two vertices of  () are adjacent iff
two corresponding edges share a common endpoint. An edge set   µ   is called a
matching of    iff there does not exist a pair of edges in    with a common vertex. An
induced matching of    is a matching where the distance between two arbitrary vertices
in two different edges is at least two.

An induced matching of a graph    corresponds with an independent set of  ()2.
So there will be a polynomial complexity algorithm for MIM whenever MIS of a graph
can be found in polynomial time. In some circumstances, avoiding fully constructing the
graph  ()2  may lead to better time complexity.

A vertex of    is   - redundant iff its removal does not affect the size of the MIS
in  . The approach is to remove   - redundant vertices from  2()  before finding a
MIS of the remaining graph  ¤.

4. Maximum Induced Matching in Interval Graphs

In this section, we propose a linear time  O(j j)  algorithm solving the MIM problem in
interval graphs based on the -redundant technique with an assumption that every inter-
val in the input is sorted by their left ends. The algorithm will be improved to find a MIM
in circular-arc graphs with the same computational complexity  O(j j). For any interval
, we denote the coordinate of its left and right end by  ()  and  (), respectively. We
first give an important property.

Lemma 1. If    is an interval graph, the graph  2()  is also an interval graph.

Proof. For each edge  ( ), with  () ∙ (), we draw a line from  ()  to  maxf()

()g, the right end of the union line of    and  .  2()  is an interval graph in which

Fig. 5. An illustration of induced matching.

P.T. Do, B.T. Pham, V.C. Than26

each vertex of  2()  corresponding with its union line. If  ( )  and  ( )  are adja-
cent, there is at least one edge between 2 two pairs of vertices  ( )  and  ( ). Assume
that the interval    and    cut each other. So the union interval  ( )  and  ( )  also
intersect each other. It is trivial that if two union interval  ( )  and  ( )  are not ad-
jacent, there does not exist any edge connect    or    to one of  f g.

4.1. The Construction of  ¤

From the aforementioned lemma, the graph  2()  is an interval graph so the new graph
¤  is an interval graph as well. Following the same idea in finding a MIM in permuta-
tion graphs, we will remove   - redundant vertices from  2(). For each interval  ,
the algorithm will find the optimal interval    of  . The definition of the optimal interval
can be express as follows:

Definition 1. Given an interval  , the optimal interval    of    is interval that
() ¸ () ¸ ()  and union interval  ( )  is shortest.

If there exists an optimal interval    of interval  , every union interval of    and an
interval    ‘smaller’ than    except  ( )  is   - redundant. This property can be proved
by the argument exchange method because every interval in the maximum independent
set of  2()  can be replaced by a union interval of a vertex and its optimal interval. So
the number of vertices in  ¤  is at most    and finding the maximum independent set of
an interval graph costs  O(j j)  if the intervals are sorted by their left ends.

4.2. Algorithm

The algorithms finding a MIM of an interval graph can be divided into two steps, the first
one is constructing the graph  ¤  and the second is finding a MIS of  ¤. The intervals in
the input are already sorted by their left ends.

Algorithm 1 ( )

 1: Input: Set of intervals   .
 2: Output: Optimal interval of each members in  

 3: _() Ã  for every   2 

 4: Stack   ; 
 5: for   2  do
 6: while   = ; do
 7:  Ã 

 8: if  ()  ()  then
 9: Break
10: end if
11: _() Ã 

12: 

Latest Algorithms on Particular Graph Classes 27

13: end while
14: if    6= ;  and  () ∙ ()  then
15: _() Ã 

16: end if
17: ()

18: end for
19: Return _

Algorithm 2  ()

 1: Input: Set of intervals  

 2: Output: An MIM of the interval graph  ()

 3: _ Ã ()

 4:  
¤
 Ã ; 

 5: for   2   do
 6: if  _()  6=   then
 7:  Ã _()

 8: Add the interval   [ 

 9: end if
10: end for
11: Stack   Ã ; 
12: for   2  

¤  do
13: if   = ;  then
14:  Ã 

15: if    does not cut    then
16: .push()
17: end if
18: end if
19: end for
20: Return  

4.3. Complexity

Each interval in    will be pushed and popped at most once. So, the time complexity of
the algorithm is  O(j j)

5. MIM in Circular-arc Graphs

The algorithm finding a MIM in interval graphs can be extended to solve the MIM prob-
lem in circular-arc graphs. Like in interval graphs, we give first the important property
of  2()  of a circular-arc graph  .

P.T. Do, B.T. Pham, V.C. Than28

Lemma 2. The graph  2()  of a circular-arc graph    is also a circular-arc graph.
This lemma can be proven using the same technique as in interval graphs. Assume that
there is an origin in the circle, every end of the arc are coordinated.    is the left end of an
arc  ( )  if and only if the arc from    to    is clockwise. We propose an  O(j j)  algo-
rithm to find a MIM of a circular-arc graph with the assumption that the arcs are already
sorted by their left end and their length. The idea of the algorithm is always to find an op-
timal neighbor corresponding with each vertex. We first re-coordinate the arcs to identify
the stating arc on the circular, and then applying the same algorithm for interval graphs
from the starting arc.

Algorithm 3  ( )

 1: Input:   is a sorted set of arcs.
 2: Output: Optimal neighbor with each vertex of   .
 3: 0  is the shortest arc of  

 4: Re-coordinate arc in    with the origin is the left end of  0.
 5: Stack   Ã ;
 6:  () Ã   for every   2 

 7: for   2   do
 8: while    6= ;  do
 9:  Ã 

10: if  ()  ()  then
11: Break
12: end if
13:  () Ã 

14: .pop
15: end while
16: if    6= ;  and  () ∙ ()  then
17:  () Ã 

18: end if
19: .push()
20: end for
21: Update     of arcs intersecting  0
22: Return   

The correctness of the algorithm is proven by the following lemma.

Lemma 3. The procedure ( ) return the optimal arc of each arc in   .

Proof. With an arc  , if  () ¸ (), the work finding its optimal neighbor is simi-
lar to interval graph. Consider the arc    with  ()  (), which means this arc con-
tains the origin, we will prove that the optimal neighbor of    can only be an arc  
that  ()  (), or be  0. If the optimal neighbor of    is an arc    that  ()  ()
and  ()  (), which mean this arc does not contain the origin, the length of the union
arc  ( )  is smaller than that of  ( 0). So,  ()  (0)  and  ()  (0). This im-
plies length of    is smaller than length of  0, which is contrary to our choice that  0  is
the shortest arc.

Latest Algorithms on Particular Graph Classes 29

6. Some Induced Competitive Programming Problems

6.1. Circular-arc (Vietnam TST 2018)

Given a circle defined by the center coordinates  ( ), radius    and    lines, in which
the     line is determined by the equation    +   +  = 0. There is no secant
passing through the center of the circle. A secant if cut the circle at  2  points    and  ,
the arc  small of the circle is called the characteristic arc of that line. Note that if the
secant touches the circle, the characteristic arc degrades to  1  point. Next, to examine the
relationship between arcs, Hai constructs a simple undirected graph   = ( ), where
each vertex of    corresponds to a typical arc of the circle, and the set edge    consists
of all the edges connecting the two vertices in    where the two characteristic arcs cor-
respond to them. We call the path length    between two edges    and    as a sequence
of edges  ( 1 2   )  so that two consecutive edges in this sequence have a
common vertex. The distance between the two sides    and    is the length of the short-
est path between them. If there is no path between  and  , the distance between them
is set to + inf. Hai wants to find the set of edges   

0 µ   with the largest cardinality
such that the distance between any two edges in   

0  is at least  2. See Fig. 6 for an
example.

The problem can be directly solved by the  O()  MIM algorithm on Section 5 plus
the time  O( log )  to sort arcs by their left end and their length. Hence the size    of
input can go to  106.

Fig. 6. An example of Problem 6.1.

P.T. Do, B.T. Pham, V.C. Than30

6.2. ESEA (Vietnam TST Camp 2018)

The eastern territorial sea has  critical area ( ∙ 106). The entire territorial sea is
depicted on a map of coordinates, where each critical area is represented by a rectangle
with vertices at points with integer coordinates. In preparation for the unprecedented
training session “ESEA” at sea, the Naval Military Command is planning a battle on the
original map of simulated territorial waters.    pair of detectors, each pair of detectors
(1 2) at two critical points:

●● 1  detector set at coordinates  (1 1)  is capable of detecting objects within its
left lower quadrant, i.e. all points with coordinates  ( )  satisfies:   ∙ 1  and
 ∙ 1.
●● 2  detector set at coordinates  (2 2)  is capable of detecting objects within its
right higher quadrant, i.e. all points with coordinates ( ) satisfies:   ¸ 2  and
 ¸ 2. Know that  1 ∙ 2  1 ∙ 2.

Two pairs of detectors    and    are called interconnected if both detectors of    pair
are fully within the detection range of either detector of  .

The military command requires the collection of sets of detectors into at least groups
so that each pair must belong to exactly one group and in each group, there are no two
pairs that are interconnected. See Fig. 7 for an example.

Hint. Consider two parallel lines    and   . Each point  (0 0)  corresponds with a
line connecting the point  0  on    with  0  on   . Each detector  (1 2)  forms a trap-
ezoid. See Fig. 8 or an Illustration. Two detectors are interconnected iff two trapezoids
are separate. The problem becomes to find the MCC of the trapezoid graph constructed
from the trapezoid model corresponding to the detectors.

Fig. 7. An example Problem 6.2.

Latest Algorithms on Particular Graph Classes 31

We first sort the trapezoids by their left most point. Denoted the cardinal-
ity of the maximum independent set of the trapezoid graph  1 2       contain-
ing    by  . Let   = max=1 , then the partition   = f 2 f1 2     g :

 = g   = 1 2       is the MCC. Consider two trapezoid      such that    ,
if    and    are not adjacent then   ¸  + 1, so    and    are in 2 different subset
of  . Therefore    is a clique cover.

Let    be an arbitrary clique cover and    be an arbitrary independent set. Since
any two members of    must be in 2 different clique then  jj ¸ jj. Otherwise there
exists an independent set with size    for all   = 1 2     , then  jj ¸ max=1 ,
in other words  jj ¸ jj.

We have a recurrence equation:   = max


\

=;  + 1. Using the same technique

as in finding a longest increasing subsequence, we obtain the computational complex-
ity  O( log )  with Binary Indexed Tree.

Reg(u)

Reg(v)

u

v

1 2 1 2 3 4 4 3 5 5 6 7 7 6 8 8

3 3 2 2 1 1 5 5 4 6 8 4 8 7 7 6

Fig. 8. A Trapezoid Diagram.

P.T. Do, B.T. Pham, V.C. Than32

6.3. The Battle on the River (Vietnam TST 2019)

Hung is simulating a battle on the river as follows. The map of the river is shown on
the coordinate plane. The two banks of the river are given by two parallel lines   = 

and   = . There are  piles (numbered from  1  to  ) is nailed on the river section, pile
  is nailed at the point of integer coordinates  ( ). Let    and    be the largest and
the smallest ordinate respectively. To simplify the problem, each boat battle is considered
a circle of diameter  . Thus, a boat when entering between two piles   = ( ),
 = ( ) will be stuck if its diameter is larger than the distance between points 

and . A boat can cross the river section if it finds a way to move from one point of the
river with the ordinate   +   passing through the piles without stuck to reach any point
with ordinate   – . Finding the largest value of    so that Hung can cross the river.
Constraint  ∙ 105.

Hint. Consider each pile is a circle with radius  . We can construct an intersection graph
()  with each vertex corresponding to a circle or a bank. Our problem can be reduced
to finding the largest value of    such that two banks are not in the same connected
component.

6.4. Building (VOI 2020)

There are  buildings in Alice’s city. In the Cartesian coordinate, a building is repre-
sented by a rectangle with sides parallel to the coordinate axes. Two buildings are ad-
jacent if the intersection of their sides is not empty. There is a short path between each

Fig. 9. An example of Problem 6.3.

Latest Algorithms on Particular Graph Classes 33

pair of adjacent buildings. Alice really likes the architectures of the buildings in the city
and she usually walks along those short paths. After a few days, she relies some paths
are unique-paths. A path  between two building    and    is unique-path if after going
from    to  , there is no way to come back to    without walking through    again. For
each pair of buildings  ( )  which is a unique-path, Alice calculates the maximum
number of buildings she can visit for    and for    with the assumption that the path
( )  is closed, we call those numbers    and    respectively.

Given the coordinate of each rectangle, help Alice find the pair  ( )  which has
an unidirectional path between them and the absolute difference of    and    is mini-
mum. See Fig.10 for an example.

Hint. The problem is related to interval graphs.
Construct the graph1.	     representing the adjacent relation between buildings:

Sort all rectangles in a list by the ascent order of(a)	    - coordinate;
Sort all rectangles in another list by the ascent order of(b)	    - coordinate;
For each rectangle, find its adjacent list by the two sorted lists above. The num-(c)	
ber of edges in    is only a linear function of the number of rectangles.

Use Tarjan’s algorithm to find all bridges.4.	
Find the bridge5.	   ( )  with minimum absolute difference between    and  .
The time complexity is  O( log ).

Fig. 10. An example of Problem 6.4.

P.T. Do, B.T. Pham, V.C. Than34

7. Conclusion

Although these induced problems are related to particular graph classes that are ex-
cluded in the IOI syllabus, our proposed algorithms to solve these problems are in the
scope of the syllabus.

Throughout the paper, our approach of removing the -redundant vertices is proved
to be effective to reduce the complexity of the algorithms for some problems on par-
ticular graph classes. In the future, we intend to apply this method for other suitable
problems on some particular cases of graph theory.

Acknowledgment

This research is funded by the Hanoi University of Science and Technology (HUST)
under the project name “Exploiting discrete structures and artificial intelligence to solve
optimization problems on mobile IoT networks” with grant number T2020-PC-007.
This manuscript was almost accomplished when the first author was working at the
Vietnam Institute for Advanced Study in Mathematics (VIASM).

References

Brandstädt, A. and Hoàng, C. T. (2008). Maximum induced matchings for chordal graphs in linear time. Algo-
rithmica, 52(4), 440–447.

Cameron, K. (1989). Induced matchings. Discrete Applied Mathematics, 24, 97–102.
Cameron, K. (2004). Induced matchings in intersection graphs. Discrete Mathematics, 278, 1–9.
Cameron, K., Sritharanb, R., and Tangb, Y. (2003). Finding a maximum induced matching in weakly chordal

graphs. Discrete Mathematics, 266, 133–142.
Chang, J. M. (2001). Induced matchings in asteroidal triple free graphs. Discrete Applied Mathematics, 132,

67–78.
Felsner, S., Muller, R., and Wernisch, L. (1997). Trapezoid graphs and generalizations, geometry and algo-

rithms. Cornell Family Papers.
Golumbic, M. C. (1993). Irredundancy in circular arc graphs. Discrete Applied Mathematics 4, pages 79–89.
Golumbic, M. C. (2004). Algorithmic Graph Theory and Perfect Graphs, Volume 57. Elsevier.
Golumbic, M. C. and Lewenstein, M. (2000). New results on induced matchings. Discrete Applied Math-

ematics, 101, 157–165.

Latest Algorithms on Particular Graph Classes 35

P.T. Do is currently Associate Professor and Deputy-Head of Depart-
ment of Computer Science at Hanoi University of Science and Tech-
nology. He is also a member of the national committee for selecting,
training and leading Vietnamese IOI/APIO/ICPC Teams. His current
research interests include combinatorics, theory of graphs and applied
algorithms in various practical problems such as logistics, network,
artificial intelligence and bioinformatics.

B.T. Pham is currently a last year student of the talented engineer pro-
gram at Hanoi University of Science and Technology. He participated
in many ICPC Asia Pacific Regional Contests during his 5 academic
years. He had some publications about graph theory.

V.C. Than is currently a Master student at University of Nebraska-
Lincoln. He participated in ICPC Asia Pacific Regional Contests and
in ICPC North Central North American Regional Contest. He had
some publications about graph theory and game theory.

Olympiads in Informatics, 2020, Vol. 14, 37–46
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.03

37

The Technology of Differentiated Instruction
in Text Programming in Elementary School
Based on the Website dl.gsu.by

Michael DOLINSKY, Mariya DOLINSKAYA
Faculty of Mathematics and Technologies of Programming, F. Skorina
Gomel State University, Sovetskaya str., 104, Gomel. 246019. Republic of Belarus
e-mail: dolinsky@gsu.by, mkugejko@gsu.by

Abstract. The technology of teaching text-based programming on the basis of the website
DL.GSU.BY is described. The main advantages of the technology include: “zero entry thresh-
old”, training adapted to the pupil, many years of practical experience, effectiveness and scal-
ability.

Keywords: distance learning, textual programming, primary school, Olympiad in Informatics,
website DL.GSU.BY, F. Skorina Gomel State University.

Introduction

The authors have been actively preparing schoolchildren and students for Olympiads in
Informatics and programming for many years (Dolinsky, 2016). Since 1997, this work
has been carried out on the basis of the computer science cabinet of secondary school
No. 27 in Gomel. Since 1999, this work has been actively supported by the distance
learning website DL.GSU.BY of F. Skorina Gomel State University. An important dis-
tinguishing feature of the authors’ approach is the built-in text-based training system in
elementary school, the description of which this work is devoted to, emphasizing the
following advantages of the authors’ approach:

Zero entry thresholds.●●
Propaedeutics of text programming.●●
Developing interesting differentiated training.●●
Task – oriented training.●●
Minimalist approach to theory.●●
Regional programming Olympiads for pupils in grades 1–4.●●
Preparation for the Olympiads of grades 5–8 (general tasks with the Olympiads of ●●
grades 5–8).

M. Dolinsky, M. Dolinskaya38

Problems in school mathematics, Olympiad mathematics and informatics math-●●
ematics.
Competitions motivating to permanent studies.●●
Many years of practical experience.●●
Experience-based training scalability.●●
Productivity.●●
Low requirements for teacher professional qualifications.●●
“Accelerated Course 2013”.●●
Support for the transition to the study of C ++.●●

Zero Entry Thresholds

A programming training system based on the DL.GSU.BY website was conceived as
a means of helping a teacher teaching in a computer class. But since in the learning
process we permanently reduced the age at which classes began (grade 10, grade 8,
grade 5, grade 1), it became fundamentally important to ensure selfeducation, because
otherwise the effectiveness of joint learning of a group of children would drop sharply.
Moreover, in the secondary school No. 27 of the city of Gomel, the work is done fron-
tally – that is, with all elementary school pupils whose parents stated in writing that
they want informatics classes to be held with their children. As a rule, almost 100% of
parents write such statements.

In other words, in the secondary school No. 27 of the city of Gomel we teach all
pupils, not selected ones. Children who come to the first grade of our school are differ-
ently prepared for learning. This forced us to develop the educational system in such a
way that not only well-prepared children, but also everyone else, would participate in
our classes with interest and learn effectively. All first graders begin their studies with
the course “Informatics 2015” (2015 means that it was formed and fixed in 2015) in the
package of tasks “Learning to think 2012” (Dolinsky, 2014). This package is aimed at
developing thinking skills, which helps to learn more productively in the future. The
tasks of this package with five levels of difficulty develop the following basic mental
operations:

Operations on pairs:●● comparison, ordering, association.
Operations on sets:●● union, intersection, subtraction.
Operations on the set:●● classification, structuring, generalization.
Logical operations:●● negation, conjunction, disjunction, equivalence, implication.
Complex operations:●● synthesis, memorization, analysis, imagination, analogy,
abstraction, positioning.

All tasks are focused on the ability to be performed by children who cannot read, for
which they are presented in the form of a picture, some of the components of which need
to be moved to another location with the mouse or just click on them.

The Technology of Differentiated Instruction in Text Programming in ... 39

If the pupil cannot do the task, there is a button “I don’t know”, which transfers him
to the tree of facilitating tasks. You can return back by completing the assignments, or by
clicking the “I understand” button. Note that the “Learning to Think 2012” task package
contains 620 main tasks and 1408 along with facilitating tasks.

In addition, for children who have systematic problems with some kind of mental
operation, there are special task packages “Technical minimum. Differences”, “Techni-
cal minimum. Analogy”, etc., which are designed to improve the performing skills of
such tasks from level zero to the ability to complete tasks in the main course “Learning
to think”.

For children who have systematic problems with all tasks, there is a special introduc-
tory package of tasks “Technical minimum. Learning to think – 0”.

For children who do not own a mouse, there is a special package of tasks “Technical
minimum. Learning to work with the mouse”.

Finally, for children who needed a lot of help with the Learning to Think 2012
course, we created the Learning to Think (Quickly) course, which consists of 128 key
tasks of the “Learning to Think” course (544 tasks with facilitators). Repetition is the
mother of learning!

Thus, we have ensured that every first-grader of the secondary school No. 27 goes
to computer science classes with pleasure, and at the same time, everyone is mov-
ing towards the development of basic mental skills to the level that provides effective
follow-up training. Actually, in our system, children who have learned to walk and talk,
that is, from 3–4 years old, can be engaged. And practice has shown that such classes
can be conducted at home alone or with minimal help from parents.

Propaedeutics of Text Programming

Historically, text programming classes start with Pascal. The first barriers that must be
overcome at the beginning of training are:

Remember the order of keywords in the program (program, var, longint, begin, ●●
readln, writeln, end).
Remember their translations into Russian. ●●
Be able to name an analogue of the Russian word in English and vice versa.●●
Remember the spelling of each of the English words (in small and capital letters).●●
Remember the location of the English letters of the studied keywords on the key-●●
board.
Formulate sustainable skills for quick typing of keywords.●●

All these problems are solved within the framework of two packages of tasks “Pro-
paedeutics of words” (207 main tasks, 787 with leading tasks) and “Learning words
(slowly)” (127 tasks, 1491 with leading tasks) (Dolinsky and Dolinskaya, 2018). At
the same time, the course “Propaedeutics of words” presents tasks that do not require
memorization. Each task has the necessary hints up to the location of the letter on the
keyboard.

M. Dolinsky, M. Dolinskaya40

But the course “Learning words (slowly)” gradually helps the pupil to remember the
order of letters in each word, their location on the keyboard, to train their typing. More-
over, the study of a new word ends with a control set of all learned words together.

As a result, almost all children cope with the task, although, of course, they do this
with a significant difference in the time spent.

The propaedeutics of text programming is completed by studying the course “Num-
ber” (Dolinsky and Dolinskaya, 2019) containing 398 main tasks, along with 1244 auxil-
iary tasks. It begins with a slow transition from keywords to the first program (enter and
display a number), presented below:

program p1;

var

 s : longint;

begin

 readln(s);

 writeln(s);

end.

And the ultimate goal of training in the “Number” course is to teach pupils to solve
the first three problems of the 20 problems of the Olympiad in programming for pupils
in grades 1–4 for input, formatted output, and simple number processing. The conditions
for such tasks at the regional Olympiad held on April 20, 2018 are given below:

As a result, almost all children cope with the task, although, of course, they do this with a significant difference

in the time spent.

The propaedeutics of text programming is completed by studying the course “Number” (Dolinsky and Dolin-

skaya, 2019) containing 398 main tasks, along with 1244 auxiliary tasks. It begins with a slow transition from keywords

to the first program (enter and display a number), presented below:
program p1;

var

 s : longint;

begin

 readln(s);

 writeln(s);

end.

And the ultimate goal of training in the “Number” course is to teach pupils to solve the first three problems of

the 20 problems of the Olympiad in programming for pupils in grades 1–4 for input, formatted output, and simple number

processing. The conditions for such tasks at the regional Olympiad held on April 20, 2018 are given below:

№ 1

Output Example:
(018)>(017)

№ 2

Input Example:
1
2
3

Output Example
1 plus 2 minus 3

Input Example:
5
1
4

Output Example
5 plus 1 minus 4

№ 3

Input Example:
2
3
8

Output Example
3+2=5
8-3=5

Input Example:
3
4
12

Output Example
4+3=7
12-5=7

Fig.1. Conditions of Tasks 1–3.

Developing Interesting Differentiated Training

The learning process is structured in such a way that, first of all, it is focused on the general development of the child:

thinking, memory, independence, attention, hard work and creativity. Practice shows that far from all children continue

study programming in secondary school, but certainly everyone gets the development. And the more they do the more

development they get.

Since the child is engaged with us until he shows interest, we try to build the learning process as motivated as

possible. This is done, first of all, due to the variety of presentation forms and ways of completing tasks. Another area is

ensuring assignment of tasks for all pupils.

However, the feasibility of tasks for everyone with a linear system of building tasks leads to the loss of interest

in classes for stronger children. That is why we have introduced differentiated training. In each topic, the main tasks are

highlighted. They form the backbone of learning. To complete the package of tasks it is enough to complete only them.

The strongest children can do so. However, if some main task is performed incorrectly, the pupil is automatically sent to

the first facilitating task. Also he can get there if he presses the “I don’t know” button. There can be several such assign-

ments, gradually explaining how to complete the main task. Each of the facilitating tasks may have its own system of

Fig.1. Conditions of Tasks 1–3.

The Technology of Differentiated Instruction in Text Programming in ... 41

Developing Interesting Differentiated Training

The learning process is structured in such a way that, first of all, it is focused on the
general development of the child: thinking, memory, independence, attention, hard work
and creativity. Practice shows that far from all children continue study programming in
secondary school, but certainly everyone gets the development. And the more they do
the more development they get.

Since the child is engaged with us until he shows interest, we try to build the learning
process as motivated as possible. This is done, first of all, due to the variety of presenta-
tion forms and ways of completing tasks. Another area is ensuring assignment of tasks
for all pupils.

However, the feasibility of tasks for everyone with a linear system of building tasks
leads to the loss of interest in classes for stronger children. That is why we have intro-
duced differentiated training. In each topic, the main tasks are highlighted. They form
the backbone of learning. To complete the package of tasks it is enough to complete
only them. The strongest children can do so. However, if some main task is performed
incorrectly, the pupil is automatically sent to the first facilitating task. Also he can get
there if he presses the “I don’t know” button. There can be several such assignments,
gradually explaining how to complete the main task. Each of the facilitating tasks may
have its own system of facilitating tasks, etc. Such a tree of teaching tasks provides a
differentiated and adaptive approach, where each pupil can have his own educational
trajectory, taking into account not only his general level of training, but also the current
psychophysical state during a particular lesson. You’re worse in thinking – you often ask
for help, move more slowly on educational material. You think well – you ask for help
less often, you move faster on educational material.

Task – Oriented Training

The training material is a set of tasks for the development of programs. If the child can-
not solve the problem, he is offered a selection of tasks for the development of programs
that gradually lead to the solution of this problem. If a new theory is required to solve the
problem, it is given in the most concise and understandable form. If this is not enough, a
lot of training tasks are offered for entering answers according to the initial data, compil-
ing algorithms by permuting lines, composing permuting lines of programs according to
given algorithms, a set of programs by algorithms, and many others.

Minimalist Approach to Theory

Theoretical information (Dolinsky, 2013) is given exactly in the quantity that is neces-
sary for solving current problems.

To solve problems 4–10 of the Olympiad in programming in grades 1–4, you need
to know the char, string data types, the concept of how to access the string character s at

M. Dolinsky, M. Dolinskaya42

position i (s [i]), as well as the built-in string processing functions length, copy, delete ,
pos. These data are entered by us in the learning process.

To solve the problems 11–15 of the Olympiad in programming in grades 1–4, you
need to know the concept of a one-dimensional array, as well as the following standard
algorithms for cyclic processing of one-dimensional arrays: summation of elements;
counting elements with a given property (including complex conditions using AND /
OR unions); determination of the maximum / minimum element and its number (all use
the FOR loop); search for elements that have the specified property (using the WHILE
loop operator).

To solve problem 16, one needs to be familiar with the concept of a two-dimensional
array and its components (rows, columns, main and secondary diagonals) and be able
to apply standard algorithms studied for one-dimensional arrays on a two-dimensional
array and its components.

To solve problem 17, you must be able to find the distances: between two points;
from one point to several; adjacent distances; all distances between two sets of points.
And then apply the studied standard algorithms on one-dimensional and two-dimension-
al arrays.

To solve problem 18, you need to be able to come up with algorithms for processing
strings of characters, practically without learning a new theory, with the exception of
several new built-in procedures and functions (str, val, chr, ord, insert).

To solve problem 19, it is required to study and be able to apply any of the algo-
rithms for sorting the elements of a one-dimensional array, for example, “bubble” or
“exchange”.

To solve problem 20, you need to be able to read a page of text – the conditions of the
task and understand what exactly needs to be done (as a rule, apply one of the methods
for standard processing of one-dimensional or two-dimensional arrays).

Regional Programming Olympiads for Pupils in Grades 1–4

It is very important that in the Gomel region 5 regional competitions are held for pupils
of grades 1–4, which are held in October (school Olympiad), November (city Olym-
piad), March (school Olympiad) and April (two: city Olympiad and regional Olympiad).
All of them have a standard format of 20 of the above tasks with a slight increase in com-
plexity from the first to the fifth Olympiad. Since all competitions are held on the basis
of the DL.GSU.BY website, anyone can take part in each of them. The official results at
city and regional Olympiads include, of course, only official participants who decided
the Olympiad under the control of the jury.

Training is organized in the direction of the Olympiads (or vice versa, the Olympiads
correspond to the learning process). One way or another, the results of the Olympiads
accurately show for each pupil which topics he has studied and which topics he has yet
to study (or which topics he has learned poorly). And therefore, the Olympiads provide
a strong motivating effect on pupils and teachers.

The Technology of Differentiated Instruction in Text Programming in ... 43

Preparation for the Olympiads of Grades 5–8

From the 2016–2017 academic year, the tasks 16–20 of the Olympiad for pupils in grades
1–4 are exactly the same as the tasks 3–7 of the Olympiad for pupils in grades 5–8. In ad-
dition, task 1 of the 5–8 grade Olympiad is a task on the topic “Introduction to Program-
ming” and requires no more skills than the third task (processing the entered numbers
and formatted output) of the 1–4 grade Olympiad. And the task 2 of the Olympiad of
grades 5–8 is a problem on the topic of a one-dimensional array and, again, it does not
require additional knowledge to solve it compared to the tasks of the 11–15 Olympiad
for grades 1–4. Thus, it turns out that the best pupils of grades 1–4 can simultaneously
participate in the Olympiad of grades 5–8 and not only participate, but also win diplomas
in them, since in the Olympiad of 5–8 grades there are 10 problems, seven of which the
best pupils can solve Grades 1–4. Thus, it turns out that students in grades 1–4, preparing
for their olympiads, are simultaneously preparing for the olympiads that are waiting for
them after moving to the 5th grade.

Problems in School Mathematics, Olympiad Mathematics
and Informatics Mathematics

On the DL.GSU.BY website there is a course “Mathematics”, which contains tasks
in mathematics in the program of grades 1–5, Olympiads in mathematics (Kangaroo;
Beaver; Canadian, United Kingdom and Texas University Math Contests), informative
math. Informatics math problems were obtained by automatically converting program-
ming tasks into math problems, where according to the problem condition, for each of
the proposed input data sets; the corresponding result must be manually calculated.

Continuing Education Motivation Contests

Obviously, the more time a pupil devotes to learning, the faster he will move on the
training material, and the better his results at the Olympics. This is especially true in
the case of an effective system of automatic differential learning, designed by us. In
order to intensify the independent work of pupils at home, with his grandmother, in a
sanatorium, etc. we hold Cups: “Autumn”, “Winter”, “Spring”, “Summer”, “Person of
the Year”. The main goal of this kind of competition is to determine who has solved the
more problems for the fall, winter, spring, summer, for the whole academic year (from
autumn to summer inclusive), respectively. For pupils in grades 1–4, such competitions
are held separately for the courses “Informatics 2015” and “Mathematics”. At the time
of writing (August, 2019) in the academic year 2018–2019, more than 700 pupils have
already taken part in the “Informatics 2015” competition, and more than 100 pupils have
taken part in the “Mathematics” competition.

M. Dolinsky, M. Dolinskaya44

Many Years of Practical Experience

The pupils who were the first to study according to the system described above from the
1st grade, finished school in September 2018 (in Belarus it is 11 years of study). It is
clear that annual operation and constant feedback led to the improvement in the training
system.

Table 1 shows the number of pupils who studied in the competitions “Informatics”
and “Mathematics” since the beginning of their conduct.

Experience-based Training Scalability

On the basis of the DL.GSU.BY website, classes are conducted with primary school
pupils by teachers from several educational institutions of Belarus, Russia, Armenia.
I want to talk in more details about such work for younger schoolchildren in St. Peters-
burg. In the summer of 2017, the parent of one of the pupils who studied on our web-
site, created a VKontakte group https://vk.com/spb_dl. The group has informa-
tion about our system, invite to use DL.GSU.BY, serves for the experience exchange
of parents, teachers and pupils.

At the time of writing of the article, there are already 4,150 subscribers. 1065 el-
ementary pupils from St. Petersburg are taking the course "Informatics 2015". Along
the way, obviously, according to the information received from this group, elementary
school pupils from other cities of Russia began to study in the Informatics 2015 course:
Tula, Chelyabinsk, Novokuznetsk, Mytishchi, Vologda, Ozersk.

Productivity

Children who study in the system described above on the basis of the DL.GSU.BY web-
site regularly become graduates of city, regional, republican and international competi-
tions (http://dl.gsu.by/olymp/result.asp).

Table 1
Number of participants in the “Person of the Year” contest

2011
/12

2012
/13

2013
/14

2014
/15

2015
/16

2016
/17

2017
/18

2018
/19

Informatics 249 301 144 166 335 655 760 755
Mathematics - 146 43 118 131 144 257 135

The Technology of Differentiated Instruction in Text Programming in ... 45

Low Requirements for Teacher Professional Qualifications

The main advantage of teaching using the DL.GSU.BY website is automatic differenti-
ated learning.

A teacher is required to:
Open / close class.●●
Be friendly to children.●●
Maintain a working atmosphere in the classroom.●●
Explain children how to work at home.●●

But, of course, if the teacher is interested in a better result, he himself will want to
study, and will begin to think how to motivate / teach better.

“Accelerated Course 2013”

Initially, the package of tasks “Accelerated Course – 2013” was developed and imple-
mented in the training course “Basic Programming”, for pupils of grades 5–8. It contains
assignments on 8 topics. The first 8 tasks in computer science Olympiads for pupils in
grades 5–8: introduction to programming, one-dimensional array, two-dimensional array,
geometry, strings, sorting, text problem, research. Each of the topics includes folders:
“Technical minimum”, “Olympiad 1–4 grades”, “Olympiad 5–8 grades”. This ensures
the fastest possible advancement in the educational material of the most capable pupils.

In the learning process, it turned out that there are quite a few pupils in elementary
school for whom the usual rate of learning slows down their development. Then “Accel-
erated Course – 2013” was copied from the course “Basic Programming” to the course
“Informatics 2015”. There are currently about 30 such pupils.

Support for the Transition to the Study of C ++

The system of automatic instruction in C++ programming (Dolinsky, 2017), in which all
training tasks are generated on the fly based on the author’s C++ solutions to the pro-
posed problems, has been introduced on the DL.GSU.BY website since the summer of
2016. Practice has shown that the most natural and simple transition to C++ is carried out
after studying the “Accelerated Course –2013”, on the initiative and if the pupil wishes.

Conclusion

A system for teaching text programming in an elementary school, built on the basis
of the DL.GSU.BY website at F. Skorina Gomel State University is described in this
article. This system has the following advantages: zero entry threshold; propaedeutics

M. Dolinsky, M. Dolinskaya46

of text programming; developing, developing, interesting, differentiated training; task –
oriented training; minimalist approach to theory; regional programming Olympiads for
pupils in grades 1–4; preparation for the Olympiads of grades 5–8 (general tasks with
the Olympiads of grades 5–8); problems in school mathematics, Olympiad mathemat-
ics and informatics mathematics; competitions motivating to permanent studies; many
years of practical experience; experience-based training scalability; productivity; low
requirements for professional qualifications of teachers; “Accelerated Course 2013” and
support for the transition to the C ++ study.

References

Dolinsky M. (2013). An approach to teach introductory-level computer programming. Olympiads in Informat-
ics, 7, 14–22.

Dolinsky M. (2014). Technology for the development of thinking of preschool children and primary school
children. Olympiads in Informatics,8,63–68.

Dolinsky M. (2016). Gomel training school for Olympiads in Informatic. Olympiads in Informatics, 10, 237–
247.

Dolinsky M. (2017). A New Generation Distance Learning System for Programming and Olympiads in Infor-
matics

Dolinsky M.,Dolinskaya M (2018). How to Start Teaching Programming at Primary School. Olympiads in
Informatics, 12, 13–24.

Dolinsky M.,Dolinskaya M (2019). Training In Writing The Simplest Programs From Early Ages, 13, 21–30.
Performance Statistics of Gomel pupils at international and national olympiads in informatics since 1997 up to

2019 (In Russian). http://dl.gsu.by/olymp/result.asp

M. Dolinsky is a lecturer in Gomel State University “Fr. Scoryna”
from 1993. Since 1999 he is leading developer of the educational site
of the University (dl.gsu.by). Since 1997 he is heading preparation
of the scholars in Gomel to participate in programming contests and
Olympiad in informatics. He was a deputy leader of the team of Be-
larus for IOI’2006, IOI’2007, IOI’2008 and IOI’2009. His PhD is de-
voted to the tools for digital system design. His current research is in
teaching Computer Science and Mathematics from early age.

M. Dolinskaya is student in Gomel State University “Fr. Scoryna”
from 2005 then graduate student from 2017. Since 2006 she is one of
developer of the educational site dl.gsu.by as well as teacher of pupils
from first grade. Her current research is in teaching programming from
early age.

Olympiads in Informatics, 2020, Vol. 14, 47–60
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.04

47

Consensus Algorithms for Highly Efficient,
Decentralized, and Secure Blockchains

Diego I. ESTEVEZ
University of Waterloo
200 University Ave W, Waterloo, ON N2L 3G1, Canada
e-mail: destevez@uwaterloo.ca

Abstract. This paper about blockchain technology introduces its theory, implementation, and ap-
plications while focusing on the types of consensus algorithms. The methodology is linguistic and
consists of a comparative analysis of the most popular algorithms. This paper is part of a broader
effort to make these concepts more accessible and help develop an environment where students
can grow and be part of this technological revolution.

Students with a background in algorithmic programming are uniquely suited to tackle highly
impactful questions about the algorithms underpinning blockchains. After reading this paper,
students should be able to build their own implementation of a blockchain and start doing re-
search into this technology.

Keywords: blockchain, consensus algorithms, peer-to-peer networks, cryptocurrency.

1. Introduction

1.1. Bitcoin as Leader of the Decentralized Revolution

Bitcoin has been a very popular topic recently. It’s been the promise of a technological
revolution while simultaneously a rather controversial concept for governments and
banks around the world. It introduced several concepts such as the blockchain and con-
sensus algorithms, which enabled an effective scheme for decentralized ownership of
information and transactions through a peer-to-peer network on the internet.

Bitcoin’s core ideas can be summarized as transactions made between users without
a middle-man and units of the currency directly owned by the individuals, not regulated
by a central party like a bank or a company. The latter is a direct consequence of con-
sensus algorithms, which, through cryptography and game theory, the network uses to
verify the interactions and spread the changes across the network. Consensus algorithms

D. Estevez48

replace the need for trust between users and explicit coordination. In fact, in the words
of Satoshi Nakamoto, the pseudonym of the inventor of Bitcoin, “What is needed is an
electronic payment system based on cryptographic proof instead of trust, allowing any
two willing parties to transact directly with each other without the need for a trusted
third party.” (Nakamoto, 2008)

1.2. What the Blockchain is

The blockchain works as a public ledger that stores the interactions that users make
within the network. As explained in the Bitcoin whitepaper by Nakamoto, in this sys-
tem:

Sending money between parties represents a change in the balance of the nodes ●●
involved. This change is referred to as a “transaction,” and, as soon as it’s made,
it is broadcast to all the nodes.
Members of the network, otherwise known as nodes or peers, store these trans-●●
actions locally in a pool of unconfirmed transactions. Eventually, they will group
these transactions into a block, a container of transactions, which, in Bitcoin’s
case, has a memory limit of 1MB.
A blockchain contains a linear chain of blocks, with each of the blocks containing ●●
the cryptographic hash of the previous one. Thus, if any block prior to the current
one is changed, its hash will change, and the chain of hashes will break.
After collecting transactions to build a new block, a node has to confirm it and ●●
broadcast it to the rest of the nodes. To confirm the block, and the transactions
contained in it, the node needs to meet the criteria of the consensus algorithm
of the network. In Bitcoin’s case, this algorithm is called Proof of Work (PoW)
and asks for nodes to find a “nonce” (a number) that, when concatenated to some
information in the block, leads to a hash with a specific number of leading ze-
roes. Therefore, since the node doesn’t know which nonce will work beforehand,
it needs to spend computational power by iterating through integers to find this
number.
After finding a nonce that works, nodes broadcast the block to the network along ●●
with the nonce. The rest of the nodes will receive this information and verify it.
Verifying whether the nonce works is much easier than calculating it in the first
place. Therefore, it is easy to check that computational power was spent by some-
one else.
Bitcoin applies the principle that the longest chain will always be the “correct” ●●
one. This means that if the broadcasted block will lead to a longer chain and
is verified, nodes will adopt it and add this new block to their blockchains. It’s
possible when two blocks are broadcasted at the same time that one block gets
to some nodes before the other. Eventually, as nodes keep adding blocks, one
of the chains will become the longest and will be adopted by the rest of the
network.

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains 49

The fact that the blocks are connected by their hashes allows for immutability. Ad-
ditionally, anyone can join the network and get a copy of this immutable ledger, meaning
that the information there is public and can’t be censored.

Through consensus algorithms like PoW and the principle of the longest-chain, Na-
kamoto was able to solve the problem of double-expenditure, as well as circumventing
some of the shortcoming of peer-to-peer networks, such as users/nodes going offline and
the possibility of having nodes with different versions of the chain.

1.3. Why Scalability is so Important

In this paper’s context, scalability means that the blockchain can handle a high transac-
tion rate without clogging. This is key because, otherwise, it may be possible that appli-
cations of this technology will not be fully adopted. As a consequence, the capacity for
a positive change of this technology in society will be undermined.

A network that fails to scale will negatively affect any participant’s experience,
thereby decreasing their retention and potentially incentivizing the use of worse alterna-
tives that are useful in the short-run but centralized in the long-run.

2. The Problem

2.1. Consensus Algorithms

As previously explained, consensus algorithms are the mechanism that the network uses
to confirm transactions. These algorithms pick the node that will add the next block
based on a factor: with Proof of Work, a node with t percent of the total computational
power of the network, known as hash rate, has a probability of t percent of finding the
nonce and having his block confirmed. With other algorithms like Proof of Stake, a node,
also known as validator in this context, is selected to add a block based on its total share
of the blockchain’s currency

As more transactions are made in the network in a short period of time, the size of
the pool of unconfirmed transactions grows. Thus, transaction makers include a small
amount of cryptocurrency, known as a transaction fee, as an incentive for validators to
include the transaction in a block. This is due to the fact that when a validator confirms a
block, it collects all the fees of the transactions contained within it. Therefore, the larger
the transaction fee, the higher the incentive and the chance that it will be added soon in
a block and confirmed.

Additionally, in Bitcoin’s Proof of Work, a node is awarded newly generated cur-
rency by the system for every new block that it confirms. However, as time passes, these
rewards are halved until they eventually converge to 0. At that point, the network’s cur-
rency reaches the maximum supply that will ever be available. In Bitcoin’s case, this
number is about 21 million.

D. Estevez50

2.2. The Difficulty of this Issue

Because of the nature of these algorithms and peer-to-peer networks, there’s usually a
trade-off between scalability, security, and decentralization.

A consensus algorithm that scales is typically less secure since it is likely to be more
fault-tolerant and have more relaxed requirements for validators. Higher validation stan-
dards results in more challenging tasks that delay the process.

Keeping a system totally decentralized also has an impact on performance since it re-
quires more users to verify a single transaction and mitigate the chance of a node gaining
an edge in the verification process and centralizing power. More complicated tasks by
the consensus algorithms lead to a smaller set of nodes that can validate, concentrating
power in them and taking away decentralization from the network.

An extremely secure system requires an extremely challenging task to confirm a
block. Consequently, nodes need more incentives and resources to pursue this chal-
lenge of adding a block. Nodes with the most resources will have a higher chance of
becoming successful validators. However, this tends to be a very small minority in
very secure systems, which negatively affects the decentralization and scalability of
the network.

In terms of security, blockchains in general tend to be vulnerable to 3 attacks: In the
51% attack, the malicious agent creates an unofficial copy of the network’s blockchain.
The agent then makes a transaction only in the official chain. For this transaction, the
agent would have exchanged the cryptocurrency for something else. However, the prob-
lem arises when this user has so much computational power that, while the transaction
still remains unconfirmed in the main chain, it can add blocks on its nonofficial chain
faster than the rest of the network on the official chain. Thus, the nonofficial blockchain
would eventually become larger than the official one, which, if broadcast, the rest of
nodes would adopt based on the principle that the longest chain is the correct one. This
means that the agent can now double-spend the money since the unofficial chain, which
is the one that nodes would now have, does not contain the transaction that he or she had
made. The double expenditure problem is called the Byzantine Generals problem.

3

transaction fee, as an incentive for validators to include the transaction in a block. This is due
to the fact that when a validator confirms a block, it collects all the fees of the transactions
contained within it. Therefore, the larger the transaction fee, the higher the incentive and the
chance that it will be added soon in a block and confirmed.

Additionally, in Bitcoin's Proof of Work, a node is awarded newly generated currency
by the system for every new block that it confirms. However, as time passes, these rewards
are halved until they eventually converge to 0. At that point, the network's currency reaches
the maximum supply that will ever be available. In Bitcoin's case, this number is 21 million.

2.2 The difficulty of this issue
Because of the nature of these algorithms and peer-to-peer networks, there's usually

a trade-off between scalability, security, and decentralization.
A consensus algorithm that scales is typically less secure since it is likely to be more

fault-tolerant and have more relaxed requirements for validators. Higher validation standards
results in more challenging tasks that delay the process.

Keeping a system totally decentralized also has an impact on performance since it
requires more users to verify a single transaction and mitigate the chance of a node gaining
an edge in the verification process and centralizing power. More complicated tasks by the
consensus algorithms lead to a smaller set of nodes that can validate, concentrating power in
them and taking away decentralization from the network.

An extremely secure system requires an extremely challenging task to confirm a block.
Consequently, nodes need more incentives and resources to pursue this challenge of adding
a block. Nodes with the most resources will have a higher chance of becoming successful
validators. However, this tends to be a very small minority in very secure systems, which
negatively affects the decentralization and scalability of the network.

Figure 1: There's a trilemma of trade-offs between security, scalability, and decentralization

in blockchains consensus algorithms.

Decentralization

Fig. 1. There’s a trilemma of trade-offs between security, scalability, and decentralization in
blockchains consensus algorithms.

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains 51

Another famous attack is Sybil, where the malicious agent tries to fill the network with
its own nodes to gain a larger total share. In PoW, the probability of mining the next block
is equal to the share of the total computational power. Thus, the number of nodes that the
agent controls is irrelevant. What matters is the share of the absolute CPU/GPU power.

Peer-to-peer networks are also vulnerable to denial of service attacks (DoS), where
a node is bombarded with packets. In this case, the node gets flooded and cannot oper-
ate normally.

2.3. The Purpose of the Question & Approach

One of the most pressing questions is which consensus algorithm has the right balance
between security, scalability, and decentralization for permissionless, open blockchains.
In this qualitative paper, I try to answer that question by providing a linguistic framework
to make a comparative analysis of the most popular algorithms that fall in this category.

3. The Implementation

To show how blockchains work, I will develop a basic version from scratch using Py-
thon. The snippets shown throughout the document are either in Python 3 or JSON.

Fig. 2 shows a reduced version of a Bitcoin transaction that highlights its most im-
portant features: the input amount, the fee for miners, a hash identifying the transaction,
and the addresses of both the sender and the recipient. Nodes collect these transactions
into their pools of unconfirmed transactions and then select some of these to go into
their next block.

{
 "hash":"8639c99fafd10ef8cd0b1c0499eb8983b4bc7810642589df374a0f87bb337ff4",
 "received-time":"2020-06-18 21:26",
 "input-amount":10.02440268,
 "fee":0.00006780,
 "sender":"1Ptv5qNTg6bpoMrH8zKqpiSA62jC3i76Nr",
 "recipient":"35EAYWQmq7nwBYqkYNLZKZf5WAY4sXs7BT"
}

Fig. 2. A simplified model of a Bitcoin transaction in JSON.

{
 "hash":"0000000000000000001072a36c38d3c9e6cf1b3bc85d457606a39830574ba8c0".
 "previous-block":"53cc5f7efb064a603a1dca0ca9747c716ce4862e32e99f762a209b",
 "timestamp":"2020-06-18 22:54",
 "index":635362,
 "nonce":318525442,
 "transactions": {...}
}

Fig. 3. A simplified model of a Bitcoin block in JSON.

D. Estevez52

Fig. 3 is a simplified version of Bitcoin’s Block 635362, which stores 2,386 trans-
actions. Since each block contains the hash of the previous block, it would require
an enormous power to change a value in a block prior and rebuild the chain. Thus,
with every additional block, the chain is reinforced as it would require more power to
modify the data.

The snippet in Fig. 4 contains a further simplified version of a transaction and block,
as well as functions to instantiate the first block (genesis), add new blocks and transac-
tions, and hash a block.

Since this blockchain is not part of any peer-to-peer network, it doesn’t have any
consensus algorithm or mechanism to prevent double-expenditure. However, several
nodes need to have this chain and be able to synchronize it in real-time. Thus, next, we
will see the most popular algorithms and implement Proof of Work, the most simple and
common one.

from time import time
import hashlib
import json

class Blockchain:
 def __init__(self):
 self.unconfirmed_transactions = []
 self.chain = []
 self.new_block(previous_hash='1', nonce=1) # Create the genesis block

 def new_block(self, nonce, previous_hash):
 block = {
 'index': len(self.chain) + 1,
 'timestamp': time(),
 'transactions': self.current_transactions,
 'nonce': nonce,
 'previous_hash': previous_hash or self.hash(self.chain[-1]),
 }

 # Reset the current list of transactions
 self.current_transactions = []
 self.chain.append(block)
 return block

 def new_transaction(self, sender, recipient, amount):
 self.current_transactions.append({ 'sender': sender,
 'recipient': recipient,
 'amount': amount})
 return self.last_block['index'] + 1

 @staticmethod
 def hash(block):
 block_string = json.dumps(block, sort_keys=True).encode()
 return hashlib.sha256(block_string).hexdigest()

Fig. 4. A Python 3 implementation of a basic blockchain1.

1	 This implementation is based on that described in the article: Van Flymen, D. (2017, September 25).
Learn Blockchains by Building One. From
https://medium.com/@vanflymen/learn-blockchains-by-building-one-117428612f46

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains 53

4. Popular Algorithms

4.1. Proof of Work

Proof of Work (PoW) consists of combining the header of the block (that is, the part
that includes the hash of the previous block and a Merkle tree) with the nonce to get
a hash that meets a condition stipulated by the network. In Bitcoin’s case, the task’s
complexity gets automatically adjusted every 2,016 blocks (or about 14 days) so that one
block is confirmed, on average, every 10 minutes. To increase the difficulty, the network
demands more zeroes in the hash, thereby exponentially increasing the computational
power needed to confirm a block.

Since the first validator, known as miner in PoW, who discovers the nonce receives
a reward (typically newly generated currency and all the transaction fees in the block),
there’s an incentive for nodes to compete to confirm the blocks as fast as possible.
The node that can spend the most computational power has the highest chance of find-
ing it first.

Some reasons why the difficulty of the task increases are to make up for advance-
ments in technology that could make the task trivial and to decrease the chance that a
nonce is found by chance. Additionally, the fact that finding the nonce requires so much
‘work’ means that it’s hard for a single agent to gather 51% of the computational power
of the network and be in the position to implement an attack.

Fig. 5. Diagram illustrating the behaviour of the PoW algorithm, which consists of finding the
cryptographic hash of a nonce, the hash of the previous block, and the transaction Merkle root
and evaluating the resulting hash against a condition. (Kumar, 2018).

D. Estevez54

4.1.1. The Implementation
To implement PoW, we need the logic to compute nonces and verify them. We will
continue using the example above (Fig. 6) that takes a further simplified approach to
PoW.

In this fragment, three new functions are present:
Hash ●● computes the hash of a JSON block using SHA-256.
Valid_nonce ●● takes a suspected nonce, the last confirmed nonce, and the hash of the
last block. Then, it joins them together, computes the hash, and checks whether the
first 4 digits of the hash are all zeroes. This is a slightly different version of PoW
than the one described previously, but the same principles still apply.
Proof_of_work ●● receives the hash and the nonce of the last block and looks for the
nonce by iterating through a loop.

4.1.2. Analysis
Given that PoW requires so much computational power, it is a very safe consensus algo-
rithm. For critical networks like Bitcoin, the probability of implementing a 51% attack
is very low because it would require immense computational power. On the other hand,
the chances of finding the nonce by sheer luck are also slim.

Scalability-wise, given the limit on block size and frequency, significant traffic in-
creases (i.e., Bitcoin bubble in late 2017) lead to “bottlenecks” in the pool of uncon-
firmed transactions. This means that it might take many blocks (or days) until a specific
transaction gets confirmed. Thus, the average transaction fee also must increase to in-
centivize miners to include the transaction in a block.

In PoW, decentralization is negatively impacted as the network grows. As the
task’s difficulty increases, it becomes more unaffordable for the average user to take
part in the verification process because she or he might lack a powerful enough com-

class Blockchain:

 ...

 @staticmethod

 def valid_nonce(last_nonce, nonce, last_hash):

 guess = f'{last_nonce}{nonce}{last_hash}'.encode()
 guess_hash = hashlib.sha256(guess).hexdigest()

 return guess_hash[:4] == "0000"

 def proof_of_work(self, last_block):

 last_nonce = last_block['nonce']
 last_hash = self.hash(last_block)

 nonce = 0

 while self.valid_nonce(last_nonce, nonce, last_hash) is False:

 nonce += 1

 return nonce

Fig. 6. The implementation of PoW into our basic blockchain model (van Flymen, 2017).

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains 55

puter to compete. The algorithm centralizes mining power in users who have high-end
computers (ASICs mainly) and are located in countries where electricity is compara-
tively cheap.

The consumption of so much energy for PoW has a negative environmental impact,
which cannot be ignored in the long run. In fact, Bitcoin alone (which implements PoW)
uses the same amount of energy in a year as Denmark (Vashchuk & Shuwar, 2018).
Besides, all this computational work is wasted: finding a nonce doesn’t contribute or
add to society in any meaningful way. Alternatives have been proposed that make use
of this computational power to solve heavy computations in scientific research, thereby
contributing to humanity (Wahab & Mehmood, 2018).

PoW is still a relevant algorithm that enabled many of the first applications of block-
chain technologies (Bitcoin and Ethereum, to name a few) and provided a very secure
method of verifying transactions. However, a system like PoW may be utterly inappli-
cable to applications that require transactions to be confirmed quickly and can scale to
billions of users. A social network on the blockchain using PoW, for instance, would be
unfeasible.

In the long-run, mainstream applications won’t be able to use PoW because of the
system’s tendency for centralization, the lack of scalability, and the exponentially in-
creasing costs of computation. PoW can still be very practical for small projects and as a
means to generate the currency, but the community must realize that it will have to adopt
another system if the application grows significantly. Furthermore, given that electricity
won’t be paid using the cryptocurrency, the currency’s price will be negatively affected
as mining costs increase.

4.1.3. Task
The best way to fully understand how a consensus algorithm works is by implementing
one. At the beginning of the section, a basic model of a blockchain was shown using
Python. Now, you can implement PoW using the information on this paper.

4.2. Proof of Stake

With PoW, a node has a probability of being selected to mine a block directly pro-
portional to its share of the total computational power of the network. With Proof of
Stake (PoS), computational power is replaced by the amount of the cryptocurrency, or
tokens, that the node has. In most implementations of PoS, the user has to freeze some
funds to be considered by the consensus algorithm as a possible validator, or minter in
this context, where the higher these funds are and the longer they have been frozen, the
higher the chance that the user is selected to add the next block. Other users have to at-
test that the block is correct and, if that’s the case, the transaction fees of the block are
distributed to the minter and the verifiers, and the frozen funds are returned. If the vali-
dator adds an invalid block, it is economically penalized by losing a part or all of his

D. Estevez56

or her frozen funds. Consequently, it is in the best interest of the wealthy nodes, which
have the highest chance of being selected, to be honest, as being dishonest would have
them lose a significant amount of money. For nodes to be considered as minters, they
need to be online 24/7. Any computer with access to the internet can participate.

In PoS, the network takes a virtual approach to consensus. Instead of requiring a
physical investment such as CPU/GPU power, the algorithm pseudo-randomly deter-
mines it based on a virtual investment, the amount of the native cryptocurrency that
the node is willing to freeze. Thus, Proof of Stake is an energetically low-consump-
tion alternative to Proof of Work and seeks to reward the nodes’ commitment to the
network.

In terms of decentralization, there’s undoubtedly a propensity for wealthy nodes to
get wealthier, as they would have a higher chance of being selected to validate a block
and earning the transaction fees. The system can still be gamed by trying to hold as
much currency for as long as possible, but the algorithm by slightly randomizing its
choice for minter guarantees a minimum decentralization level and that the same agent
will not always be chosen. Some networks, however, require a minimum amount to be
staked, limiting an average person’s capacity to become a minter. But, most of the time,
this barrier tends to be smaller than buying high-end computers and paying signifi-
cant electricity bills. Thus, there’s a lower chance of disparaging economic inequality
among the nodes.

Scalability-wise, PoS outperforms PoW. Furthermore, a system called sharding has
been proposed that improves the scalability very significantly. In sharding, the network
is split into different chains, on which validators work independently, and blocks are
processed simultaneously.

However, a significant drawback of this algorithm is that, given that PoW doesn’t
award minters with newly generated currency like in PoW, there’s no way for supply to
be created of the cryptocurrency or token. Therefore, to produce the tokens of the block-
chain, a variation of PoS should be implemented that also distributes these tokens fairly
across the network. An option could be to use PoW to generate currency at the beginning
and then switch to PoS once a number of tokens is met.

Unfortunately, pure PoS is less secure than PoW, as the incentive to not work on
multiple chains is not present. In PoW, working on parallel chains would require a lot
of computational power. In PoS, however, the nodes could simultaneously stake on
multiple chains and increase the chance of being selected as minter. To solve this is-
sue, called “nothing at stake,” nodes that stake on various chains could be penalized
by losing their frozen funds. Another vulnerability was exposed by Bitcoin researcher
Andrew Poelstra, who showed that pure Proof of Stake (without any extra logic or
procedures) is reversible, leading to the possibility of previous blocks being altered and
enabling double-expenditure (Poelstra, 2015). Fortunately, the chance of a 51% attack
is less realistic in PoS because the attack would require the agent to acquire a huge
percentage of the tokens of the network. Based on economic supply and demand, each
extra token purchased would become slightly more expensive. Thus, for blockchains
worth billions of dollars, this would cost immensely.

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains 57

4.3. Delegated Proof of Stake

Delegated Proof of Stake (DPoS) is a popular algorithm that consists on the community
deciding on the nodes that will add the next blocks. The individuals who possess cur-
rency can vote for witnesses and delegates. Witnesses are the nodes that add blocks, and
the network keeps a list of the nodes that receive the highest number of votes and picks
the top X that will be adding the blocks. This number X changes by blockchain, and the
network iterates through the top X witnesses giving each a few seconds to add its block.
If the witness doesn’t add the block in time, she or he gets penalized. Delegates, who
are also voted on, check the validity of these nodes, ensure the network’s well-being,
and can propose modifications to the blockchain. In DPoS, there’s continuous voting of
delegates and witnesses.

DPoS positions itself as a system of decentralized governance. Holders of the cryp-
tocurrency or token are the voters whose votes are weighted by how much currency they
hold. To incentivize stakeholders to vote for them, witnesses have to share a percentage
of the transaction fees they earn with their voters. As a consequence, witnesses have to
appear trustworthy and that they will add many blocks and on time. On the other hand, if
any party acts dishonestly, it can be immediately expelled by the voters.

This scheme removes the random factor of PoS and concentrates the validators among
nodes with the highest credibility. The centralization parameter is trustworthiness, not
wealth, which may be beneficial for the network because there’s a competition to gain
credibility among users. There are no significant barriers to entry, like investing in a
high-end computer, and a node doesn’t need capital to increase its chance of becoming
a witness or delegate. This means that there’s likely to be a higher degree of opportunity
and economic equality among the nodes. Proponents of DPoS campaign that the fact
that it is easy to enter the network means that the system is more decentralized than PoW
or PoS. However, this forgets that voters need wealth to have some meaningful voting
power. It is the wealthy users that have the most significant influence through their votes
and those that essentially control the direction of the network.

As in PoS, the fact that the algorithm is not bound by a physical means or network’s
rules on block rate improves the capacity for scaling. But, opposite to PoS, the nodes
don’t have to be online all the time to participate and don’t need to have the full chain.
Additionally, the fact that minting power is concentrated in a few users significantly im-
proves the rate at which blocks are added. Indeed, networks that select fewer witnesses
will be the fastest, but this improvement in scalability will come at the direct cost of
decentralization, and, by extension, security.

The fact that the age of coins is not taken into account is beneficial, as it removes the
incentive for not moving wealth or trying to hack old, unused accounts that are poorly
secured. Furthermore, the fact that voting power is proportional to wealth means that it
would be extremely costly to get so much of it. Interestingly, while the “nothing at stake”
problem is still present with this algorithm, if a user participates in multiple chains si-
multaneously, it will harm his or her reputation, essentially socially penalizing this user
for the behavior.

D. Estevez58

For the entire system to work correctly, there needs to be an active, unorganized
base of stakeholders that votes for the witnesses and delegates in the network’s best
interest. However, there is no guarantee of this. In fact, the tendency of the network to-
wards centralization risks security, as it incentivizes the creation of cartels or groups to
conspire together. For witnesses and delegates, this would be much more viable as there
are few of them, and, by conspiring together, they could get away with malicious acts
like double-spending. Networks that have a lower requirement of delegates to validate
a block are especially vulnerable to one of these attacks, as it would be easier to meet
that number. This phenomenon can also be extended to voters, who could conspire or be
bribed to elect specific delegates and witnesses. There’s certainly nothing that assures
that the witnesses and delegates will never act maliciously.

4.3.1. Solution as a Layer 2
DPoS scales much better than PoS or PoW and can allow many applications that require
several transactions per minute, such as blockchain video games (i.e., Crypto Kitties)
or social networks (i.e., Steemit). However, DPoS should only be used for applications
that can sacrifice security and decentralization for scalability. DPoS should not be the
foundational consensus algorithm for systems that need very significant security and
that must be trustless between nodes, such as those that manage financial transactions or
health certificates.

An advantageous approach is to use DPoS as a Layer 2. In this scheme, a founda-
tional blockchain runs a consensus algorithm like PoS or PoW and another blockchain
linked to it, such as DPoS, serves to give scalability. Since PoW and PoS are relatively
safe algorithms, there’s reasonable level of integrity and security offered by the base
chain. If the blockchain is attacked, the base chain can be used to revert to the last
healthy block.

In my opinion, the community will inevitably have to resort to a Layer 2 solution in
the long-run for many applications. Through hybrid protocols like this one, a stable net-
work is achieved, where we can enjoy the benefits of the ultra scalability of DPoS while
maintaining a sensible security level.

5. Conclusion

In my opinion, these algorithms serve different purposes, which, in large part, make it
difficult to replace one by another.

Proof of Work is an algorithm that maximizes security to the point that is impos-
sible with another consensus algorithm, and it is the easiest to maintain and implement.
However, it becomes inefficient in the long run and cannot support a network like Bit-
coin if the rate at which the number of users grows is maintained. Thus, I see PoW as
an alternative that can serve to back financial systems and cryptocurrencies in the short/
medium run, but it is a system limited by its own nature. Additionally, while it generates
decentralization in the short term, it ultimately leads to centralization. By rewarding

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains 59

clusters of high-performing computers, the system creates an incentive for the formation
of cartels and groups that centralize block mining and validation.

Proof of Stake allows for long-term scalability by sacrificing some decentralization
and security. There’s likely to be less mobility of the tokens between the nodes as they
are incentivized to freeze funds for as long as possible. The fact that wealthy nodes are
likely to become wealthier is a risk for many cryptocurrencies, especially those that
have a small market capitalization. For these blockchains, it would be cheap to buy a
high percentage of the supply.

The Ethereum network, a blockchain for hosting decentralized applications (Dapps),
is moving from PoW to Casper, their own implementation of PoS. Their objective is to
increase the scalability of the network, which currently consists of 11,000 nodes and a
$21 billion market capitalization; with PoW, the system is unable to sustain the Dapp
ecosystem in the long run. Thus, the developers are willing to sacrifice some of the net-
work’s security and decentralization to achieve the project’s purpose.

Delegated Proof of Stake is too risky for networks like Ethereum and Bitcoin that
store so much value and still seek to maintain a general degree of decentralization. Nev-
ertheless, DPoS can improve the scalability of blockchains by orders of magnitude,
thereby enabling crucial applications for the growth of the blockchain ecosystem. Using
a hybrid protocol that combines DPoS and PoW could be a very promising option for
applications that still need security and scalability.

Indeed, each algorithm has its trade-offs and advantages and lies somewhere in a
spectrum where there’s no absolute “best.” While more variations and new protocols
will emerge, PoW will likely continue being the most popular option for its simplicity
and security. On the other hand, PoS has more use-cases and seems to provide the most
reasonable balance between decentralization, scalability, and security. It would not gen-
erate bottlenecks in the medium/short run, and security is usually not at high risk in
most medium or small scale projects. Still, since it can’t be used to generate the initial
supply of the currency, another system like PoW will have to be used at the beginning.

With the information in this paper, students with a background in programming
should have a clear picture of the state of the art of blockchain technologies and an un-
derstanding of the theory, implementation, and applications of these technologies.

In the future, problems related to blockchain architecture and algorithms could serve
as an inspiration and a training resource for Olympiads because of their potential to be
intellectually stimulating and to contribute to our knowledge and society.

References

De Quénetain, S. (2017). Delegated Proof of Stake: The crypto-democracy. Retrieved June 25, 2020, from
http://www.blockchains-expert.com/en/delegated-proof-of-stake-the-crypto-democracy-2

Ferdous, M. S., Chowdhury, M. J. M., Hoque, M. A., & Colman, A. (2020). Blockchain consensus algorithms:
A survey. ArXiv:2001.07091 [Cs]. Retrieved from http://arxiv.org/abs/2001.07091

Konstantopoulos, G. (2020). Understanding Blockchain Fundamentals, Part 2: Proof of Work & Proof of Stake.
Retrieved June 25, 2020, from https://medium.com/loom-network/understanding-blockchain-
fundamentals-part-2-proof-of-work-proof-of-stake-b6ae907c7edb

D. Estevez60

Kore, A. (2018). Building a blockchain. Retrieved June 25, 2020, from
https://medium.com/@akshaykore/building-a-blockchain-7579c53962dd

Kumar, A. (2018). Fig. 2. Proof of Work in Bitcoin Blockchain [Digital image]. Retrieved June 26, 2020, from
www.vitalflux.com/bitcoin-blockchain-proof-work

Larimer, D. (2017). DPOS Consensus Algorithm - The Missing White Paper. Retrieved June 25, 2020, from
http://www.steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-

white-paper

Li, C., & Palanisamy, B. (2020). Comparison of decentralization in dpos and pow blockchains. ArXiv:2002.02082
[Cs]. Retrieved from http://arxiv.org/abs/2002.02082

Panda, S. S., Mohanta, B. K., Satapathy, U., Jena, D., Gountia, D., & Patra, T. K. (2019). Study of Blockchain
Based Decentralized Consensus Algorithms. TENCON 2019 - 2019 IEEE Region 10 Conference (TEN-
CON). DOI:10.1109/tencon.2019.8929439

Poelstra, A. (2015). On Stake and Consensus.
Thin, W. Y., Dong, N., Bai, G., & Dong, J. S. (2018). Formal Analysis of a Proof-of-Stake Blockchain. 2018

23rd International Conference on Engineering of Complex Computer Systems (ICECCS). DOI:10.1109/
iceccs2018.2018.00031

Van Flymen, D. (2017). Learn Blockchains by Building One. Retrieved June 26, 2020, from
https://medium.com/@vanflymen/learn-blockchains-by-building-one-117428612f46

Vashchuk, O., & Shuwar, R. (2018). Pros and cons of consensus algorithm proof of stake. Difference in the net-
work safety in proof of work and proof of stake. Electronics and Information Technologies, 9. DOI:10.30970/
eli.9.106

Wagner, K., Keller, T., & Seiler, R. (2019). A Comparative Analysis Of Cryptocurrency Consensus Algo-
rithms. Proceedings of the 16th International Conference on Applied Computing 2019. DOI:10.33965/
ac2019_201912l026

Wahab, A., & Mehmood, W. (2018). Survey of consensus protocols. ArXiv:1810.03357 [Cs]. Retrieved from
http://arxiv.org/abs/1810.03357

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved from
https://bitcoin.org/bitcoin.pdf

D. Estevez is a 19-year-old Mathematical Physics student at the Uni-
versity of Waterloo. In the past, he founded a social network for citizen
journalism, an NGO that was funded by Microsoft, Uber, and Dell, and
sent capsules to the stratosphere that broke several records. He’s also
doing research at Democracy Mars into blockchain governance.

Olympiads in Informatics, 2020, Vol. 14, 61–76
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.05

61

Recommending Tasks in Online Judges
using Autoencoder Neural Networks

Paolo FANTOZZI1,2, Luigi LAURA1,3

1Italian Association for Informatics and Automatic Calculus (AICA), Italy
2Sapienza University of Rome, Italy
3International Telematic University Uninettuno, Italy
e-mail: fantozzi@diag.uniroma1.it, luigi.laura@uninettunouniversity.net

Abstract. Programming contests such as International Olympiads in Informatics (IOI) and ACM
International Collegiate Programming Contest (ICPC) are becoming increasingly popular in re-
cent years. To train for these contests, there are several Online Judges available, in which users can
test their skills against a usually large set of programming tasks.

In the literature, so far few papers have addressed the problem of recommending tasks in online
judges. Most notably, as opposed with traditional Recommender Systems, since the learners im-
prove their skills as they solve more problems, there is an intrinsic dynamic dimension that has to
be considered: when recommending movies or books, it is likely that the preferences of the users
are more or less stable, whilst in recommending tasks this does not hold true.

In order to help the learners, it is crucial to recommend them tasks that are challenging but
not unsolvable compared with their current set of skills. In this paper we present a Recommender
System (RS) for Online Judges based on an Autoencoder (Artificial) Neural Network (ANN).

We also discuss the results of an experimental evaluation of our approach in both the scenarios
in which we consider, or not, the intrinsic dynamic dimension of the problem. The ANNs are
trained with the dataset of all the submissions in the Italian National Online Judge, used to train
students for the Italian Olympiads in Informatics.

Keywords: autoencoder neural networks, recommender systems, programming contests.

1. Introduction

Programming Contests (PCs) are competitions in which participants are faced a set of
tasks that require writing computer programs. Recent literature have emphasized the
importance and the effectiveness of PCs in the process of learning computer program-
ming (Audrito et al., 2012; Astrachan, 2004; Blumenstein et al., 2008; Dagienė, 2010;
Garcia-Mateos and Fernandez-Aleman, 2009; Wang et al., 2011).

In order to train for PCs, learners use Online Judges (OJs), also known as Program-
ming Online Judges, i.e., web based e-learning tools where a user can submit solutions

P. Fantozzi, L. Laura62

to a programming task. The user chooses a task from the many available; after reading
its statement, that includes the required formatting of input and output or the use of a
programming interface, the user writes a code to solve the task. The code is submitted to
the OJ, that verifies both the correctness, usually by testing it against a certain number of
test cases, and the efficiency, by checking that the running time and/or the memory usage
is under some limit. In Fig. 2 is shown an example of a programming task.

However, choosing the right task is becoming a complex problem, and an example
of an information overloading scenario, as observed in Yera Toledo et al. (2018): an
unexperienced user has to choose from thousands programming tasks, many of which
are probably beyond his current abilities. For example, University of Valladolid Online
Judge has more than 200k users and 2k tasks, whilst SPOJ accounts approximately 600k
users and 6k (public) tasks; in Fig. 1 we can see the list of available problems in the
Peking University Online Judge http://poj.org.

With so many available tasks, it is important to help users selecting their next task
by using a Recommender System (RS). Traditionally, RS are broadly divided into two
categories: Content Based ones, in which the recommendations derive from features of
the items to be suggested, and Collaborative Filtering approaches, in which the sugges-
tion is based on the items chosen by users similar to the current one.

As observed in (Audrito et al., 2019), there are some peculiarities of Online Judges
that prevent the use of a general Recommender System:

Users slowly improve their abilities, one task after the other, so the general con-●●
cept of user preferences does not apply: recommending a movie or a novel differs
significantly from recommending a task; a user will probably still like a novel af-
ter one year, whilst he might find a task too easy after the same amount of time.
Users with ●● similar skills, i.e. users to whom we might want to suggest the same
set of tasks, might behave very differently in OJs, thus preventing us from consid-
ering them similar. For example, one might solve all the tasks involving a given

Fig. 1. The list of available problems in the Peking University OJ.

Recommending Tasks in Online Judges using Autoencoder Neural Networks 63

Olimpiadi Italiane di Informatica 2014
Fisciano, 18 – 20 settembre 2014 taglialegna • IT

Taglialegna (taglialegna)
Limite di tempo: 1.0 secondi

Limite di memoria: 256 MiB

La Abbatti S.p.A. è una grossa azienda che lavora nel settore del disboscamento. In particolare, nel tempo

si è specializzata nel taglio degli alberi cortecciosi, una tipologia di alberi estremamente alti, robusti e

ostinati. Si tratta di una specie molto ordinata: i boschi formati da questi alberi consistono in una

lunghissima fila di tronchi disposti lungo una fila orizzontale a esattamente un decametro l’uno dall’altro.

Ogni albero ha una altezza, espressa da un numero (positivo) di decametri.

1

2

3

4

3 2 2 1 4 2 3 2 3

(i valori rappresentano le altezze in decametri)

Il taglio di un albero corteccioso è un compito delicato e, nonostante l’uso delle più avanzate tecnologie

di abbattimento, richiede comunque molto tempo, data la loro cortecciosità. Gli operai sono in grado di

segare i tronchi in modo che l’albero cada a destra o a sinistra, secondo la loro scelta.

Quando un albero corteccioso viene tagliato e cade, si abbatte sugli eventuali alberi non ancora tagliati

che si trovano nella traiettoria della caduta, ovvero tutti quegli alberi non ancora tagliati che si trovano

ad una distanza strettamente minore dell’altezza dell’albero appena segato, nella direzione della caduta.

Data la mole degli alberi cortecciosi, gli alberi colpiti dalla caduta vengono a lora volta spezzati alla base,

cadendo nella direzione dell’urto, innescando un effetto domino.

Per assicurarsi il primato nel settore, la Abbatti S.p.A. ha deciso di installare un sistema in grado di

analizzare il bosco, determinando quali alberi gli operai dovranno segare, nonchè la direzione della loro

caduta, affinchè tutti gli alberi cortecciosi risultino abbattuti alla fine del processo. Naturalmente, il

numero di alberi da far tagliare agli operai deve essere il minore possibile, per contenere i costi. In

quanto consulente informatico della società, sei incaricato di implementare il sistema.

Assegnazione del punteggio
Il tuo programma verrà testato su diversi test case raggruppati in subtask. Per ottenere il punteggio

relativo ad un subtask, è necessario risolvere correttamente tutti i test relativi ad esso.

• Subtask 1 [5 punti]: Casi d’esempio.

• Subtask 2 [9 punti]: Gli alberi possono essere alti solo 1 o 2 decametri.

• Subtask 3 [20 punti]: N ≤ 50.

• Subtask 4 [19 punti]: N ≤ 400.

• Subtask 5 [22 punti]: N ≤ 5000.

• Subtask 6 [14 punti]: N ≤ 100 000.

• Subtask 7 [11 punti]: Nessuna limitazione specifica (vedi la sezione Assunzioni).

taglialegna Pagina 1 di 3

Abbatti S.p.A. (which is the Italian brand of tearDown INC) is a big enterprise that
works in the field of tree felling. In particular, it’s been a few years since it started im-
proving in tearing down barky trees, a peculiar kind of trees which is very tall and thick.
This particular species grow in a very tidy way: the woods made of these trees are actu-
ally a long horizontal line of trunks, placed at one decameter (32 8 feet) one another.
Each one of the trees has a particular height, which is expressed by a positive number
(decameters).

1

2

3

4

2 3 2 1 4 2 1

Tearing down one of these trees is a very hard thing to do and, although tearDown INC
employes the most andnced technologies on the market, it is a very time consuming activ-
ity, since barky trees’ bark is incredibly thick. The workers have the opportunity to chose
in which direction (left or right) the tree should fall after the cut.

Each time a barky tree falls down it hits the trees that haven’t been torn down which
are placed on its falling trajectory; in other words, it tears down each tree which is closer
than its height in the direction of the fall. Since the number of barky trees in this woods is
huge this dynamic of the fall creates a domino effect.

In order to be the best enterprise in barky tree felling tearDown INC developed a sys-
tem which is able to scan the whole wood, choosing which trees should be cut by workers
and in which directions they should fall with the aim of cutting all the trees. It’s important
to recall that it’s in the best interest of the enterprise to minimize the number of trees that
need to be torn down by workers directly. Your role in this situation is to implement the
system for tearDown INC.

Below we can see an example of a solution of the instance shown in the picture above:
it is enough to cut two trees:

OII 2014 – Finale nazionale
Fisciano, 19 settembre 2014 taglialegna • IT

– Al termine della chiamata a Pianifica non tutti gli alberi sono caduti.

– Viene fatta una chiamata ad Abbatti con un indice o una direzione non validi.

– Viene fatta una chiamata ad Abbatti con l’indice di un albero già caduto, direttamente ad

opera degli operai o indirettamente a seguito dell’urto con un altro albero.

Esempi di input/output
input.txt output.txt

7
2 3 2 1 4 2 1

4 0
5 1

6
3 1 4 1 2 1

0 1

Spiegazione
Nel primo caso d’esempio è possibile abbattere tutti gli alberi segando il quinto albero (alto 4 deca-

metri) facendolo cadere a sinistra, e il sesto albero (alto 2 decametri) facendolo cadere a destra. Il primo

albero tagliato innesca un effetto domino che abbatte tutti gli alberi alla sua sinistra, mentre il secondo

abbatte l’ultimo albero nella caduta.

1

2

3

4

2 3 2 1 4 2 1

1

2

3

4

2 3 2 1 4 2 1

←

1

2

3

4

2 3 2 1 4 2 1

1

2

3

4

2 3 2 1 4 2 1

→
1

2

3

4

2 3 2 1 4 2 1

1

2

3

4

2 3 2 1 4 2 1

Nel secondo caso d’esempio tagliando il primo albero in modo che cada verso destra vengono abbattuti

anche tutti gli alberi rimanenti.

1

2

3

4

3 1 4 1 2 1

1

2

3

4

3 1 4 1 2 1

→

1

2

3

4

3 1 4 1 2 1

1

2

3

4

3 1 4 1 2 1

taglialegna Pagina 19 di 24

Fig. 2. An example of a problem from a programming contest; this task is taken from the final
contest of the 2014 edition of the Italian Olympiads in Informatics (OII).

P. Fantozzi, L. Laura64

skill, while the other might just solve one task, related to that skill, and then move
on to tasks involving different skills.

Most notably, as opposed with traditional Recommender Systems, since the learners
improve their skills as they solve more problems, there is an intrinsic dynamic dimen-
sion that has to be considered: when recommending movies or books, it is likely that
the preferences of the users are more or less stable, whilst in recommending tasks this
does not hold true. In this paper we propose a task recommender system based on an
Autoencoder Neural Network (ANN); in particular, we address both the static case, in
which the user is represented by the task he solved, and the dynamic case, where we
try to represent the growth of a user by the sequence of the problems he solved. For
both cases we present a Recommender System (RS) for Online Judges based on an
Autoencoder (Artificial) Neural Network (ANN). We trained and tested the ANN using
data from the Online Judge used in the Italian Olympiads in Informatics (Olimpiadi
Italiane di Informatica – OII) (Di Luigi et al., 2016), targeted at secondary school
students training. We compared our approaches against state of the art more classical
recommender systems built using the Simple Python Recommendation System Engine
(SurPRISE – http://surpriselib.com). The experimental results confirm the ef-
fectiveness of our approach.

Preliminary versions of this paper appeared in the Proceedings of the 17th Interna-
tional Conference on Distributed Computing and Artificial Intelligence (DCAI 2020)
(Fantozzi and Laura, 2020a) (the static case), and in the Proceedings 13th International
Workshop on Social and Personal Computing for Web-Supported Learning Commu-
nities (SPeL 2020) (Fantozzi and Laura, 2020b) (the dynamic case); the comparison
against state of the art more classical recommender systems has not appeared before.

This paper is organized as follows: the next section provides the necessary back-
ground related to programming contests, online judges, and recommender systems,
whilst our approach is detailed in Section 3. In Section 4 we detail our experimental
findings and concluding remarks are addressed in Section 5.

2. Related Works and Background

In this section we discuss related work and the necessary background concerning pro-
gramming contests, online judges, and recommender systems.

2.1. Programming Contests and Online Judges

A programming contest is a competition in which contestants are faced with a set of
programming tasks, also called problems, to be solved in a limited amount of time and/
or with a limited amount of memory usage.

A single task can be broken into different subtasks of increasing complexity: basic
techniques might be enough to solve, within the given time and/or space limits, some of

Recommending Tasks in Online Judges using Autoencoder Neural Networks 65

the subtasks whilst the most difficult ones might require very specific algorithmic tech-
niques and data structures. Popular programming contests are:

The International Olympiads in Informatics (IOI), that are an annual programming ●●
competition for secondary school students patronized by UNESCO. http://
www.ioinformatics.org/

The ACM International Collegiate Programming Contest (ICPC) is a multitier, ●●
team-based, programming competition operating under the auspices of ACM.
https://icpc.baylor.edu/

The very recent International Olympiads in Informatics in Team (IOIT), that start-●●
ed in 2017, that are a team competition, like ACM ICPC, differently from IOI
(individual competition). Currently there are only four nations involved: Italy,
Romania, Russia, and Sweden. https://ioi.team/
Google Code Jam, that is based on multiple online rounds that concludes in the-●●
World Finals. https://code.google.com/codejam/
Facebook Hacker Cup, that is (citing from their site) “●● an annual worldwide pro-
gramming competition where hackers compete against each other for fame, for-
tune, glory and a shot at the coveted Hacker Cup”. https://www.facebook.
com/hackercup/

The Online Judges are, usually, web based platforms that provide a large number of
programming tasks to be solved. There are several popular OJ platform, we cite the al-
ready mentioned University of Valladolid Online Judge https://uva.onlinejudge.
org, Sphere Online Judge (SPOJ) https://www.spoj.com/, CodeChef https://
www.codechef.com/, and Peking University Online Judge http://poj.org.

Yera and Toledo (Yera Toledo et al., 2018) present a brief survey on OJs, whilst more
information on tools and techniques for automatic evaluation of solutions submitted to
OJs can be found in (Ala-Mutka, 2005; Caiza and Del Alamo, 2013).

2.2. Recommender Systems in OJs

As already observed in the introduction, despite the large amount of literature devoted
to RS, the peculiarities of recommendation in OJs, where the relation user-item is way
more complex than the typical RS cases, prevent from using standard techniques and
forces the development of ad-hoc methods. This aspect is detailed in the paper of Audri-
to et al. (2012), where the authors propose a first approach on building a RS by tackling
the problem of ranking tasks in Online Judges.

Indeed, so far few research focused in the recommendation of tasks in OJs: we men-
tion the traditional collaborative filtering method with a new similarity measure adapted
to the case (Toledo and Mota, 2014), and an approach based on fuzzy logic (Yera Toledo
et al., 2018). Caro and Jimenez considered user-based and similarity-based approaches
In (Caro-Martinez and Jimenez-Diaz, 2017). Di Mascio et al. proposed a framework
that can allow recommendations and that can foster motivation in students by means of
a lightweight, badge-based, gamified approach (Di Mascio et al., 2018).

P. Fantozzi, L. Laura66

There is an online tool, developed by Stephen and Felix Halim, authors of the book
Competitive Programming (Halim and Halim, 2013), called uHunt, that helps its users to
choose the next problem to be solved, as shown in Fig. 3: their very practical (and effec-
tive approach) is to rank the problems according to their dacu, i.e. the distinct accepted
users. Indeed, as they state, “The bigger the dacu the easier the problem should be and
the more probable it will appear in the UVa discussion board”.

The “classical approaches” that use counting to estimate the grade of difficulty have
a well known drawback: the items suggested to the users will be always the popular ones
that will become even more popular, and so even more recommended. This means that a
new item will never be suggested.

2.3. Recommender Systems and Artificial Neural Networks

The use of deep learning techniques for recommender systems is divided in two catego-
ries that we call classical and hybrid.

The classical approach uses the standard architectures of neural networks, applying
them to this task. So, in this case, the most important part consists in the formulation of
the problem, since that, if the input data are not suitable to be the input of that specific
deep learning technique, then the result will be totally inaccurate.

The other approach is the hybrid one, that consists in using more than one type of
architecture at the same time. This kind of approach is useful when the input data are

Fig. 3. The Next Problem to Solve section in the uHunt .

Recommending Tasks in Online Judges using Autoencoder Neural Networks 67

not easily representable as a standard structure, like a user-item matrix. In (Zhang et al.,
2016) the authors use a Convolutional Neural Network to extract features from images
and then an Autoencoder to build the recommender system on the features.

In (Zhang et al., 2017a), in order to build a recommender system for hashtag in
tweets, the authors use at the same time some CNNs and some Recurrent Neural Net-
works (RNNs). In this work they use the CNNs to extract features from the image and
then the RNNs to extract information from the text, combining them using different
weights based on co-attention.

Since that a recommendation task is similar to a dimensionality reduction task, many
of the state-of-the-art techniques use some kind of Autoencoder to map the input in a
smaller space, that will be the representation of the correlations in the recommender sys-
tem. In particular, Sedhain et al. (2015) introduce the using of a vanilla Autoencoder to
build a recommender system. They use a partial masked input (the same techniques we
use in this work) and try to reconstruct it in output, the elements added in the output will
be the recommended elements. Strub and Mary (2015) extend the work of Sedain et al.
(2015): they use a denoising Autoencoder instead of the vanilla Autoencoder to build a
more robust system.

Chen and de Rijke (Chen and de Rijke, 2018) follow a similar approach, but they
use a Variational Autoencoder to perform top-N recommendation. They encode both
the user ratings and some side information in the compact space in the Autoencoder.
Zhang et al. (Zhang et al., 2017b) generalize the Contractive Autoencoder paradigm
into matrix factorization framework. Li et al. (Li et al., 2015) combine a probabilistic
matrix factorization with Marginalized Denoising Stacked Autoencoders to perform
collaborative filtering. This work can be considered as a general framework to use
these kinds of techniques; in this context, several works, including (Van den Oord et al.,
2013; Wang et al., 2015; Wang and Wang, 2014), can be viewed as special cases of this
framework.

3. Recommending Tasks Using Autoencoder Neural Network

Our goal is to provide recommendations to the users regarding the next task to deal with
among all the tasks in a system. To build this kind of system we assume that:

If a user obtains a score for a task it means that it is the max score possible for that ●●
user in that task.
A user should solve the problems sorted by their grade of difficulty for the user; ●●
thus, a user should never try to solve a problem that is much harder than the last
one he solved.
It is possible to deduce the score for a new problem based on the scores the user ●●
obtained in other problems.

Note that there is one more assumption that is valid for the static case but not for the
dynamic: given a snapshot of the scores for the users it is not important the order fol-
lowed by the user to solve the tasks to foresee the score for another task.

P. Fantozzi, L. Laura68

Based on the above assumptions, we decided to build a model that takes as input the
current scores of a user and provides probable scores for the same user for other tasks.
Then we can choose between the forecasted scores and suggest the task with the highest
score between them.

If we consider the score as a judgment of the user for the item (i.e, the programming
task), then we can just exploit the already known techniques for recommending items.
We chose to use an Autoencoder to build the model. Since that we want to use just the
scores of the users, without any information from other sources, we take as input the
scores for all the tasks and we differentiate between static and dynamic:

Static: we mask a fraction of the scores in input as a non-solved task and we per-●●
form back- propagation from the complete scores.
Dynamic: we use the scores of a fixed moment in time as input and we perform ●●
backpropagation from the next moment.

In this way, in the bottleneck layer, there should be a compact representation of the
similarities of the tasks.

4. Experimental Evaluation

In this section we describe the results of our experimental evaluation. We distinguish
the two approaches, i.e. static and dynamic, in the next sections, and then compare the
results against the ones obtained using a state of the art more classical recommender
system built using the Simple Python RecommendatIon System Engine (SurPRISE –
http://surpriselib.com).

4.1. Autoencoder Neural Networks: Static Case

To test the method we have designed, we have taken the submission to the OII Training
platform (Di Luigi et al., 2016) in a defined time range. The submissions were in the
form:

< user_id, task_id, datetime, score >

where each submission corresponds to a possible solution to a task from a user that per-
forms a certain score, based on many test cases. We filtered out all the scores equal to
zero because we can't know if they were just users testing the behaviour of the platform.
Then we considered only the best score for each task, for each user, to ignore all the at-
tempts to solve the problem before the user found the solution.

We performed a preliminary set of experiments with the original data: we built a user
x task matrix where each cell contains the best score of the user for the task. The result
is a 3148 x 409 matrix with 43051 non-empty cells. The matrix has an average of 105
submissions for each task and 13 for each user. The max number of users which have

Recommending Tasks in Online Judges using Autoencoder Neural Networks 69

submitted to the same task is 1070 and the max number of tasks with submissions from
the same user is 336. We consider the zero valued cells as a problem with no submission
from the user.

To use this matrix as a training set for this model, we duplicated the matrix and then
we have randomly masked some positive scores with zero. The masked matrix will be
the input to the model and the original matrix will be the output to reconstruct. The num-
ber of tasks masked for each user is a random number between 3 and 7, with the con-
straint that it should be anyway equal at most to the half of the submission for the user.

After the preliminary experiments, it was clear that data was too small, thus we per-
formed an operation of data augmentation. in particular, we have repeated many times
the same rows of the matrix with the result of a matrix with 8 times the rows of the
original. Then each row has been randomly masked independently, so we unlikely had
duplicated rows in the matrix. We have load all the data on a Google Colab instance
with an available GPU. Then we have splitted the data on train and test set with a ratio
of 0.8/0.2. We used Tensorow to build several models; the smallest was a Sequential
model with 5 layers: the input layer, a dense 64 neurons layer, a dense 16 neurons layer,
a dense 64 neurons layer, and an output layer with dimension equal to the input layer.
All the activations for the layers are ReLU with a constraint of a max value of 1.0 (the
max value of the score). We used an Adam optimizer with a learning rate of 0.001 and a
mean squared error loss function.

We trained the model for 500 epochs with a batch size of 128, and we have imposed
a validation split of 0.2. The resulting learning curve is the shown in Fig. 4, whilst the
accuracy curve measured is depicted in Fig. 5.

The standard accuracy might be not fully representative of the error of the model
(since that we have a sparse matrix), thus we computed a sum of the squared errors on
each samples in the test set. The resulting values follow the distribution shown in Fig. 6;
in Table 1 we report some stats of the SSE distribution.

Fig. 4. Model loss – static case.

P. Fantozzi, L. Laura70

Fig. 5. Model accuracy – static case.

Fig. 6. Distribution of sum of squared errors (SSE) – static case.

Table 1
Statistics of the distribution of SSE (Fig. 9) – static case

mean 2.27
std deviation 6.07
min 0.00
25% (1st quartile) 0.00
50% (2nd quartile) 0.05
75% (3rd quartile) 1.38
max 66.19

Recommending Tasks in Online Judges using Autoencoder Neural Networks 71

4.2. Autoencoder Neural Networks: Dynamic Case

In the dynamic case, our interest was in the evolution of the users, so the dataset that
we used was derived from the one, described in the previous section, for the static case.
Indeed, from the baseline dataset, we built a user x task matrix where each cell contains
the best score of the user for the task. The result is a 42155 x 409 matrix with 2035447
non-empty cells (we had to drop few submissions from the baseline dataset). As before,
the dataset has an average of 105 submissions for each task and 13 for each user. The
max number of users which have submitted to the same task is 1070 and the max number
of tasks with submissions from the same user is 336. As before, we consider the zero
cells as a problem with no submission from the user.

Since that the resulting matrix has many rows for each user (one row for each prob-
lem solved) that contains all the scores of the users until that moment, we use a row as in-
put and we impose the next row for the same user as output. This means that we consider
 – 1 samples for each user , where  is the number of problems solved by the user .

As for the static case, we load all the data on a Google Colab instance with an avail-
able GPU and the data was split into train and test set with a ratio of 0.8/0.2. We used
Tensorow to build several models; the smallest was a Sequential model with 11 layers:
the input layer, two dense 128 neurons layer, two dense 64 neurons layers, a dense 32
neurons layer, two dense 64 neurons layer, two dense 128 neurons layers, and an output
layer with dimension equal to the input layer. Also in this dynamic case, all the activa-
tions for the layers are ReLU with a constraint of a max value of 10, and we used an
Adam optimizer with a learning rate of 0001 and a mean squared error loss function.
We trained this model for 100 epochs with a batch size of 128, and we have imposed a
validation split of 02.

The resulting learning curve is the shown in Fig. 7, whilst the accuracy curve mea-
sured is depicted in Fig. 8.

Fig. 7. Model loss – dynamic case.

P. Fantozzi, L. Laura72

Since that the standard accuracy doesn't represent well the error of the model (i.e.,
we have a sparse matrix) we computed a sum of the squared errors on each samples in
the test set.

The resulting values follow the distribution shown in Fig. 9; in Table 2 we report
some stats of the SSE distribution.

Overall, from the results shown above, it seems that the static approach, described in
the previous section, seems to perform better than the dynamic one; this might be due to
the way the dataset has been built, and we plan to compare the two approaches against
other different datasets.

Fig. 8. Model accuracy – dynamic case.

Fig. 9. Distribution of sum of squared errors (SSE) – dynamic case.

Recommending Tasks in Online Judges using Autoencoder Neural Networks 73

4.3. Comparison Against Classical Recommender Systems

In this section we compare our approaches against state of the art Recommender Sys-
tems built using the python SurPRISE library: we used 11 models from this library. We
trained these models using the static dataset, i.e. the original dataset; the dynamic dataset
derives from this one and the dynamic ANNs, as seen in the previous section, performed
not as well as the ones trained on the static dataset.

Indeed, we experimented with 32 different ANNs for the static case and, after evalu-
ating the best performers, we experimented with 8 different ANNs for the dynamic
case. In Table 3 we can see the mean square error (MSE) for all 11 SurPRISE models,

Table 2
Statistics of the distribution of SSE (Fig. 9) – dynamic case

mean 4.40
std deviation 3.10
min 0.00
25% (1st quartile) 2.12
50% (2nd quartile) 3.86
75% (3rd quartile) 5.98
max 28.56

Table 3
The Mean Square Error of all the tested model, sorted from the biggest (worst) to the small-
est (best). Here we compare all the models from the SurPRISE library against the three best
performers of the several Autoencoder Neural Network we tested

Model MSE

NormalPredictor 0.1004863793
CoClustering 0.0903564508
SlopeOne 0.0599415086
NMF 0.0545891728
KNNBasic 0.0544956720
KNNWithZScore 0.0528847039
KNNWithMeans 0.0526918100
SVD 0.0512103173
BaselineOnly 0.0484940726
SVDpp 0.0479013953
KNNBaseline 0.0478215959
(dynamic) autoencoder-plus-time-512-128-Dropout(0.1)-512-lr0.001 0.0031555248
(dynamic) autoencoder-plus-time-2048-512-Dropout(0.1)-2048-lr0.001 0.0025685430
(dynamic) autoencoder-plus-time-1024-256-Dropout(0.1)-1024-lr0.001 0.0025619145
(static) autoencoder-2048-512-Dropout(0.1)-2048-lr0.0005 0.0000349358
(static) autoencoder-1024-256-Dropout(0.1)-1024-lr0.0001 0.0000281454
(static) autoencoder-2048-512-Dropout(0.1)-2048-lr0.0001 0.0000191324

P. Fantozzi, L. Laura74

and for the three best ANNs for both the static and the dynamic case. The results shown
in the table are sorted from the biggest (worst) to the smallest (best). It seems that, at
least for this dataset, the ANNs outperform each model from the SurPRISE library. In
the table, the three best results belong to ANNs trained for the static case, but in all our
experiments, i.e. 40 different ANNs (32 for the static case and 8 for the dynamic case),
we did not observe such a clear separation between the ANNs trained with the two dif-
ferent datasets.

5. Conclusions

In this paper we proposed the design of a recommender system for tasks suggestions in
Online Judges, based on a Autoencoder Neural Network. We trained the ANN with the
data from the OJ used by the secondary school students training for the Italian Olym-
piads in Informatics (Olimpiadi Italiane di Informatica – OII) (Di Luigi et al., 2016; Di
Luigi et al., 2018).

We tested two different approaches: a static one, that is more typical of a recom-
mender system, and a dynamic one, in which the dataset has been modified in order to
explicitly represent the evolution of a user. We also compared our approaches against
more traditional Recommender Systems model built using the python SurPRISE li-
brary.

We definitely think that Online Judges deserve their specific recommender systems,
and we hope that our one is a first step to the development of such systems. We plan to
implement our approach inside the italian OJ, and we are available to collaborate with
the developers of other Online Judge systems, by either implementing RS into those
systems or by testing our models against other datasets.

References

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for programming assignments. Com-
puter Science Education, 15(2), 83–102.

Astrachan, O. (2004). Non-competitive programming contest problems as the basis for just-in-time teaching.
In: Frontiers in Education, 2004. FIE 2004. 34th Annual, pages T3H/20–T3H/24 Vol. 1.

Audrito, G., Demo, G. B., and Giovannetti, E. (2012). The role of contests in changing informatics education:
A local view. Olympiads in Informatics, 6.

Audrito, G., Mascio, T. D., Fantozzi, P., Laura, L., Martini, G., Nanni, U., and Temperini, M. (2019). Rec-
ommending tasks in online judges. In: Methodologies and Intelligent Systems for Technology Enhanced
Learning, 9th International Conference, MIS4TEL 2019, Avila, Spain, 26–28 June, 2019, volume 1007 of
Advances in Intelligent Systems and Computing, pages 129–136. Springer.

Blumenstein, M., Green, S., Fogelman, S., Nguyen, A., and Muthukkumarasamy, V. (2008). Performance
analysis of game: a generic automated marking environment. Computers and Education, 50, 1203–1216.

Caiza, J. and Del Alamo, J. (2013). Programming assignments automatic grading: Review of tools and imple-
mentations. In: INTED2013 Proceedings, 7th International Technology, Education and Development Con-
ference, pages 5691–5700. IATED.

Recommending Tasks in Online Judges using Autoencoder Neural Networks 75

Caro-Martinez, M. and Jimenez-Diaz, G. (2017). Similar Users or Similar Items? Comparing Similarity-Based
Approaches for Recommender Systems in Online Judges. In: Aha, D. W. and Lieber, J., editors, Case-
Based Reasoning Research and Development, volume 10339, pages 92–107. Springer International Pub-
lishing, Cham.

Chen, Y. and de Rijke, M. (2018). A collective variational autoencoder for top-n recommendation with side in-
formation. In: Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems, pages 3–9.

Dagienė, V. (2010). Sustaining informatics education by contests. In: International Conference on Informatics
in Secondary Schools-Evolution and Perspectives, pages 1–12. Springer.

Di Luigi, W., Fantozzi, P., Laura, L., Martini, G., Morassutto, E., Ostuni, D., Piccardo, G., and Versari, L.
(2018). Learning analytics in competitive programming training systems. In: 2018 22nd International Con-
ference Information Visualisation (IV), pages 321–325.

Di Luigi, W., Farina, G., Laura, L., Nanni, U., Temperini, M., and Versari, L. (2016). oii-web: an interactive
online programming contest training system. Olympiads in Informatics, 10, 195–205.

Di Mascio, T., Laura, L., and Temperini, M. (2018). A framework for personalized competitive programming
training. In: 2018 17th International Conference on Information Technology Based Higher Education and
Training (ITHET), pages 1–8.

Fantozzi, P. and Laura, L. (2020a). Collaborative recommendations in online judges using autoencoder neural
networks. In: Proceedings of the 17th International Conference on Distributed Computing and Artificial
Intelligence (DCAI 2020).

Fantozzi, P. and Laura, L. (2020b). A dynamic recommender system for online judges based on autoencoder
neural networks. In: 13th International Workshop on Social and Personal Computing for Web-Supported
Learning Communities (SPeL 2020).

Garcia-Mateos, G. and Fernandez-Aleman, J. L. (2009). Make learning fun with programming contests. In:
Transactions on Edutainment II, pages 246–257. Springer.

Halim, S. and Halim, F. (2013). Competitive Programming, Third Edition. Lulu. com.
Li, S., Kawale, J., and Fu, Y. (2015). Deep collaborative filtering via marginalized denoising auto-encoder. In:

Proceedings of the 24th ACM International on Conference on Information and Knowledge Management,
pages 811–820.

Sedhain, S., Menon, A. K., Sanner, S., and Xie, L. (2015). Autorec: Autoencoders meet collaborative filtering.
In: Proceedings of the 24th International Conference on World Wide Web, pages 111–112.

Strub, F. and Mary, J. (2015). Collaborative filtering with stacked denoising autoencoders and sparse inputs.
Toledo, R. Y. and Mota, Y. C. (2014). An e-learning collaborative filtering approach to suggest problems to

solve in programming online judges. Int. J. Distance Educ. Technol., 12(2), 51–65.
Van den Oord, A., Dieleman, S., and Schrauwen, B. (2013). Deep content-based music recommendation. In:

Advances in Neural Information Processing Systems, pages 2643–2651.
Wang, H., Wang, N., and Yeung, D.-Y. (2015). Collaborative deep learning for recommender systems. In:

Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 1235–1244.

Wang, T., Su, X.and Ma, P., Wang, Y., and Wang, K. (2011). Ability-training-oriented automated assessment in
introductory programming course. Computers and Education, 56, 220–226.

Wang, X. and Wang, Y. (2014). Improving content-based and hybrid music recommendation using deep learn-
ing. In: Proceedings of the 22nd ACM International Conference on Multimedia, pages 627–636.

Yera Toledo, R., Caballero Mota, Y., and Martínez, L. (2018). A Recommender System for Programming On-
line Judges Using Fuzzy Information Modeling. Informatics, 5(2), 17.

Zhang, F., Yuan, N. J., Lian, D., Xie, X., and Ma, W.-Y. (2016). Collaborative knowledge base embedding for
recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 353–362.

Zhang, Q., Wang, J., Huang, H., Huang, X., and Gong, Y. (2017a). Hashtag recommendation for multimodal
microblog using co-attention network. In: IJCAI, pages 3420–3426.

Zhang, S., Yao, L., and Xu, X. (2017b). Autosvd++: An efficient hybrid collaborative filtering model via
contractive auto-encoders. In: Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ‘17, page 957–960, New York, NY, USA. Association
for Computing Machinery.

P. Fantozzi, L. Laura76

P. Fantozzi is involved in the training of the Italian team for the IOI
since 2018. He is a Ph.D. student in Engineering in Computer Science
at “Sapienza” University of Rome. He is lecturer at LUISS University
for the courses: Lab of computer skills, Customer intelligence and big
data analysis logics, Introduction to network science.

L. Laura is Associate Professor at Uninettuno university; he is in-
volved in the training of the Italian team for the IOI since 2007, and
since 2012 is in the organizing committee of the Italian Olympiads in
Informatics. He got a Ph.D. in Computer Science in the “Sapienza”
University of Rome.

Olympiads in Informatics, 2020, Vol. 14, 77–85
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.06

77

Operator Utilization and Abstract Conceptions

David GINAT
Tel-Aviv University, Science Education Department
Ramat Aviv, Tel-Aviv, Israel 69978
e-mail: ginat@post.tau.ac.il

Abstract. Algorithmic challenges occasionally embed the utilization of specified operators. Suit-
able operator utilization is tied to recognition and capitalization on its characteristics, which
should be unfolded and comprehended. In seeking comprehension, one may invoke abstraction
perspectives with which to view the operators’ concrete features. We display invocations of such
perspectives in problem solving of several “unplugged” challenges, and mention our experience
with students. Problem solving of such challenges elaborates on comprehension and verification.
It enhances conceptual practice, without programming considerations. Practice of the interplay
between the abstract and the concrete elevates problem solving competence and confidence.

Keywords: abstraction, problem solving.

1. Introduction

Abstraction is a primary notion in computer science (CS). Common themes of abstrac-
tion include top down, design patterns, abstract data types, divide & conquer, recursion,
and more. They are related to design, problem solving, and the mixture of both. Prob-
lem solving abstractions are relevant at various levels in solving algorithmic challenges
(Wing, 2006; Ginat and Blau, 2017). Problem solvers may need to think concurrently
at multiple levels of abstraction and “move” back and forth between the concrete and
the conceptual. The concrete involves direct consideration of the givens of a problem
to solve. The conceptual may encapsulate a perspective of hiding, or ignoring details
and a perspective of relating to properties of recognizable parts (Frorer et al., 1997).
Algorithmic problem solvers, including IOI contestants, should invoke perspectives of
both kinds.

One element in various IOI tasks is that of operator utilization. An operation or func-
tion is specified, and contestants are requested to repeatedly use it, in a suitable and ef-
ficient way. Some examples are the task Sorting a Three-Valued Sequence in IOI 1996;
the task Median Strength in IOI 2000; and the task XOR in IOI 2002. In the 1996 task,
the given operator was a simple exchange operation; in the 2000 task, the given operator

D. Ginat78

was a function that finds the median of three different values; and in the 2002 task, the
given operator was an invert operation (called xor) on a rectangle of black/white pixels
in a matrix. In all the three tasks, problem solvers had to relate to properties of the given
operator, and capitalize on its characteristics. They also had to ignore details, while fo-
cusing on particular parts (e.g., focusing on “imagecorners” in the 2002 task).

All the three operators in the above tasks are simple operators. In addition, the task
goals are simply defined (though not easily reached). The solutions require significant
insight, but do not require complex computational structures. Correctness verification is
fundamental; and efficiency consideration appear in various forms – optimality (in the
1996 task), various time-complexity levels (in the 2000 task), (Horváth and Verhoeff,
2002), and lower bound measures (in the 2002 task).

Operator utilization may be practiced. Suitable practice may enhance experience and
familiarity with recognizing, and capitalizing on operator characteristics. Such prac-
tice may reduce gaps between abstract perspectives and concrete implementations, and
strengthen operator utilization conceptions. The reduction of gaps between one and
her object of thought may be a means for enhancing abstraction capabilities (Hazzan,
2002).

Practice of operator utilization may be offered with programming, as in the above
IOI tasks. It may also be conducted “unplugged” (Fellows et al., 2005). The former
involves conceptual notions combined with applied implementation. The latter may
exclude implementation considerations, while solely focusing on relevant abstraction
conceptions. This may occur with exploration of hidden patterns and properties of op-
erators, as well as with proof considerations. The tasks may be of various levels of diffi-
culty. A tutor may conduct gradual practice and examination of her students’ conceptual
competencies, elaborate on abstraction perspectives, and develop student awareness and
capabilities.

In this paper we demonstrate “unplugged” practices of operator utilization, with sev-
eral examples that involve simple operators – skip, reverse, and xor. The opera-
tors’ utilizations are requested in tasks that involve both algorithmic design and proof
consideration. The tasks and their solutions are displayed in the next section. We embed-
ded these tasks in-between programming challenges, at the beginning of the training
of our top 30 students (before reaching the IOI level). In the last section we relate to
abstraction facets of these tasks, elaborate on their role, and indicate our experience with
students.

2. Unplugged Operator Utilizations

The tasks in this section involve rather simple algorithmic schemes, but not necessar-
ily trivial algorithmic properties. In some of the tasks the goal may not be achieved for
every input, or initial state. The problem solver should recognize the initial states for
which the goal is attainable and the initial states for which it is unattainable. For the
former case, an algorithm should be developed, and for the latter case verification of

Operator Utilization and Abstract Conceptions 79

unattainability should be devised. In another task the goal may always be reached, but a
minimal number of operator invocations is required. An argument of minimality should
be formulated. Both of the algorithmic schemes and the sound argumentations are based
on recognized properties, and involve the abstraction perspectives of relating to proper-
ties of recognizable parts and ignoring subordinate details.

Some tasks are rather simple, and some are more challenging. The tasks are short,
and different from the IOI tasks mentioned above. Yet, the considerations necessary
in their solutions contribute to the practice of abstract conceptions. The first two tasks
involve sorting.

Skipping pairs. The operator skip(i,j), 0<i,j<N, skips the two adjacent inte-
gers, in the locations i, i+1 in a list of integers, into the locations j, j+1 (respec-
tively). Given a random permutation of the integers 1..N, N>10, sort the permutation
using the given operator, or output “Sorting is impossible”.

The task specification hints that there may be inputs for which sorting may not be ob-
tained. One sorting scheme may be based on the following: skip the integer 1, together
with the integer next to it to the beginning of the permutation; then skip the integer 2;
then – the integer 3; and so on. If at the end of this process the rightmost two integers are
ordered, then we are done. But what if they are not in order? Can we correct this situation
by additional invocations of skip? Perhaps there is a better algorithmic scheme? We
relate to relevant ordering properties.

The situation in which two integers are not in order is called inversion (Knuth,
1973). The sorting goal – an ordered permutation – involves 0 inversions. Two proper-
ties that are relevant to examine are: 1. The number of inversions in the initial permuta-
tion; and 2. The change in the number of inversions by the operator. In examining the
latter, we examine “what happens” when we skip a pair of integers over a third integer,
say from right to left. If both of the integers are greater than the third, then the change
in the number of inversions is +2; if they are smaller than the third, then the change is
-2; if one is smaller and one is greater, then the change is 0. This yields the following
parity property:

In every invocation of skip, the change in the number of inversions
is an even number (regardless of the skip length). Thus, the initial par-
ity of the number of inversions never changes.

The above observation implies that if the initial number of inversions is odd, then
the goal cannot be obtained, since the number of inversions may never reach 0. Thus, if
the rightmost pair of integers is unordered at the end of the skipping process, then sort-
ing cannot be attained. All in all, the recognition of the unattainable cases involved the
operator’s property – no change in the parity of the number of inversions. The next task
involves sorting with a different operator.

Reversing 3 and 4 tuples.
A. The operator reverse3(i), 1≤i≤N-2, reverses the order of three adjacent in-
tegers in a list, the left one of them being in location i. Given a random permutation

D. Ginat80

of the integers 1..N, N>100, sort the permutation using the given operator, or output
“Sorting is impossible”.
B. Answer part-A when the operator is reverse4(i), 1≤i≤N-3, which reverses
the order of four adjacent integers.

In part-A, we may immediately notice that the middle element serves as an “axis”, and
its location does not change in an application of the operator. The two end elements are
swapped. This implies that the operator does not change the parity of the locations of the
three elements. Therefore, elements in the odd locations will always remain in the odd
locations, and so is the case with elements in the even locations. The operator will yield
sorting if and only if all the odd integers are initially in the odd locations.

In part-B no element serves as an axis, and each of the four elements changes the
parity of its location. In seeking relevant properties on which to capitalize, it may be
beneficial to simplify the task and initially focus on a particular subset of the input.
One such subset may be that of reversed permutations that should be inverted. Upon
examining short cases of such permutations, one may notice that the cases of N=4,5,8,9
may be sorted (inverted), and the cases of N=6,7.10,11 are problematic. In the cases of
N=8,9 one may use N=4,5 as generic templates that will be repeatedly used, in a roll-
ing scheme, in which integers will be rolled to their desired destinations. This may be
extended for larger values of N for which sorting is possible.

Why do some cases pose difficulties? We may seek the solution by relating to the
notion of the number of inversions, as in the first task. In the reversed permutations of
lengths N=6,7,10,11, the number of inversions is odd, while in N=4,5,8,9 it is even. This
leads us to the change in the parity of the number of inversions of the operator. Indeed,
as in the first task, here too, the parity of the number of inversions is not changed by the
operator. This property of the operator paves the way for explaining unattainability of
half of the initially-inverted cases.

At this stage we may widen the range of cases, and examine the general case. As in
part-A, rolling may be a useful scheme for “bringing” each of the permutation elements
to its final destination. However, as in the previous task, some rightmost elements may
not be in order at the end of rolling. If the parity of the number of inversions is initially
odd, then obviously sorting may not be attained.

But what if that parity is even among the last four integers, and they are still not or-
dered? Does this mean unattainability? Perhaps not. Perhaps a more involved ordering
scheme is needed? Further abstract conceptions of ordering may shed additional light.
We leave the answers to the interested reader.

At this stage we turn to two different tasks with the operator xor. In the first task, the
focus is on optimality, with respect to the number of operator invocations. In the second
task unattainability is relevant again.

Uniform color 1.
A. The cells in an N-cell row (N>100) are randomly colored black and white. The
operator xor1D(i,j), 1≤I,j≤N, inverts the color of each of the cells between the
i-th and the j-th cells (including i and j). Transform the whole row into white with
a minimal number of operator invocations.

Operator Utilization and Abstract Conceptions 81

B. An additional operator is provided – xor2D(i,j), 1≤I,j≤N, which inverts
the color of each of the cells between the i-th and the j-th cells in both of the rows.
Transform the whole matrix into white with a minimal number of invocations.

In part-A, the elements on which to focus are the vertical sides that separate between
black and white cells, and between black end-cells and the “out”. We name the total
number of these sides S. Notice that S is always even. The goal is to reduce it to 0. A
single employment of xor1D may reduce S by at most 2, since the relevant impact of
xor1D is only on the end sides of a given rectangle, and not on the inner sides. An
observation of ignoring details is that the lengths and locations of chosen rectangles are
unimportant, as long as the two ends of each rectangle are sides that separate between
black and white. The total number of invocations is S/2. It is the minimum.

In part-B, rectangles’ dimensions may be 1D or 2D. Below is an example matrix.

Should we consider not only vertical sides, but also horizontal sides? Not quite. The
change in the horizontal sides derives from the change in the vertical sides. The horizon-
tal sides may be ignored. We may view xor2D as reducing S by at most 4 vertical sides
that separate between black and white.

The algorithmic solution will be divided into two stages – a stage of employing
xor2D and a stage of employing xor1D. The operator xor2D will be applied as long
as it can reduce S by exactly 4 in each invocation. Then xor1D will be applied on the
remaining sides that separate vertically between black and white.

Can S be reduced by 3? In addition, should we specify how we choose a rectangle
for an application of the operator xor2D, among several choices? The answers to
these questions should be part of an argument for minimality of the number of operator
invocations. If the answers to these questions are “no”, then we may argue for mini-
mality, as each stage of the two stages of the algorithmic solution above would involve
a minimal number of steps

Uniform color 2.
A. The cells in an N×M matrix (N,M>100) are randomly colored black and white.
The operator xor2(i,j,d), 1≤i≤N, 1≤j≤M, inverts the colors of the cell <i,j>
and its adjacent cell in direction d, where d is one of four values – l, r, u, d (left,
right, up, down). Transform the whole matrix into white, or output “Transformation
is impossible”.
B. Answer part-A when the operator xorL is provided instead of xor2.
XorL(i,j,d1,d2) inverts the colors of 3 cells in an Γ or

Γ

 shape – the cell
<i,j>, and its adjacent cells in the directions d1 and d2.
C. Answer part-A when the operator xor3 is provided instead of the previous two.
Xor3(i,j,d), 1≤i≤N, 1≤j≤M, inverts the colors of: cell <i,j>, its adjacent cell
in direction d, and the next cell in direction d.

D. Ginat82

In part-A We start by trying to whiten the matrix in a “snake-like” path, starting in the
top-left cell and ending in one of the bottom corners, while repeatedly applying the
operator on a cell in the path and on the next, adjacent one. All the cells in the path,
apart from the last one will become white. There are initial states for which the last
cell will become white, and initial states for which it will not. This is justified by the
following invariant property.

The parity of the number of white cells (as well as back cells) never
changes.

If the initial parity of the number of white cells is different from the total number of
cells in the matrix, then the goal may not be achieved.

Part-B is subtler. Since the operator operates on three cells at a time, parity of the
total number of cells of a particular color is not preserved. We start by trying to whiten
the matrix in a “snake-like” path, and progress slightly different in the bottom two lines.
Progression in these two lines may be done concurrently, from left to right, until two
cells remain – the right-bottom cell and an adjacent one. If all the matrix becomes white,
then we are done. But, one or both of the last two cells may be black.

At this point we may seek an illuminating property, or pattern. The operator is ap-
plied on three adjacent cells in every application. It may be useful to divide the matrix
cells into three groups, so that during the “snake like” process, the operator will be ap-
plied on one cell from each group. One way of doing so is by adding an auxiliary number
to each cell in a “diagonal manner” as follows.

1 2 3 1 2 3 1

3 1 2 3 1 2 3

2 3 1 2 3 1 2

1 2 3 1 2 3 1

Each cell belongs to group1, group2, or group3. It is always possible to apply xorL
on three cells, such that each is from a different group. In the above diagram, the size of
group1 is 10 (cells), the size of group2 is 9 and the size of group3 is 9. It may be proved
(possibly by induction), that the difference between the sizes of every two groups is at
most 1. This will help us later.

If we implement the “snake like” scheme (with special progress in the two bottom
lines) on the above example matrix, we will end up with an all-white matrix, accept for
the cell numbered 2 in the right column (which will be black).

Why is that? When we count the initial number of black cells in each group, we
notice that that there are three black 1’s, four black 2’s, and five black 3’s. The parity
of the number of black 2’s is different from that of black 1’s and black 3’s. When xorL
is applied, it inverts the color of one cell in each group. This implies the following
invariant property.

Operator Utilization and Abstract Conceptions 83

Every application of xorL maintains the difference of the parities of
the number of black cells between two groups.

The above invariant implies that if there is a parity difference between the initial
number of black cells of two groups, then this difference will remain; and there will
never be a point in which the number of black cells in both groups will be concur-
rently zero. This explains the result of trying to whiten the matrix of the above ex-
ample. All the cells of group1 and all the cells of group3 may be white, but one cell
of group2 may remain black.

We mentioned earlier that in the numbering of cells, the differences between the
amounts of 1’s, 2’s and 3’s are at most 1. This implies that if the parities of the amounts
of black cells are initially equal in the groups, then the matrix can be whitened. If the
amounts of 1’s, 2’s, and 3’s could be larger than 1, then the condition of equal parities
would be an insufficient condition for whitening the matrix, since the amount of black
cells could be 0 in one group and 2 in the other.

In Part-C, it is possible to whiten the whole matrix with the operator Xor3, except
for a 2×2 structure of cells that will remain. In this structure, two groups (out of 1, 2, 3)
will have one representative, and one group will have two representatives. While the
cells of the two groups with one representative may both be white, the two cells of the
third group may be both white or both black. What is a property of the initial number of
black cells that guarantees that these two cells will be white in the end of the whitening
process? We leave this question to the interested reader.

All in all, the key element that paved the way to the solution of part-B was the ab-
stract view of looking at the matrix cells as cells that belong to three interleaved groups
of similar sizes, such that xorL may be applied each time on one cell of each group.
The resulting invariant property yielded the recognition of the cases in which the matrix
may be whitened and the cases in which it may not.

3. Discussion

The abstract perspectives of ignoring details and relating to particular properties of
recognizable parts are relevant in problem solving. The task solutions presented here
encapsulate them in computations with repeated utilizations of operators. Two opera-
tors were used for sorting and one was used for transforming binary matrix values.

The recognizable parts in the sorting tasks were pairs of integers. Unlike various
sorting schemes, the focus here was not on pair adjacencies, but on pair inversions. The
central element was the invariant property of the parity of the number of inversions.
This property was the key for understanding the operators’ characteristics and their
limitations.

The recognizable parts in the matrix transformation tasks were borders between ma-
trix cells. In the first matrix task, the natural tendency is to look at cell values, which are
colors of areas. But the important recognizable parts are borders between areas; more

D. Ginat84

specifically – borders between cells of different colors. The focus here was on the metric
property that relates the initial number of these borders to the amount that can be de-
creased in a single invocation of the operator. Borders between cells inside a given rect-
angle were ignored. So were possible selections between alternative choices of lengths
and locations of rectangles that kept the desired property.

In the second matrix task, the recognizable parts were adjacent cells in a matrix,
which were viewed in a way that suited a single operator application. Two properties
led to the solution of part-B of the task: 1. The partition of the matrix cells into three
groups of near sizes, so that an application of the operator on any cell of one group may
also be on representatives of the other two groups; and 2. The parity differences between
the number of black cells in the groups are preserved. The layout of the black and white
cells in the matrix was ignored. So was the number of white cells. Only the number of
black cells counted.

In our experience with students, the more challenging element during problem solv-
ing is the decision of what to focus on and what to ignore, as well as the kind of proper-
ties to look for. Novices tend to focus on the explicit data in a given problem, and try to
associate it with their familiar cognitive schemes. However, a primary theme in solving
non-routine problems is the recognition of hidden patterns and capitalization on these
patterns (Schoenfeld, 1992). Such recognition should be practiced.

One relevant practice involves problems like the tasks presented here. Although these
tasks may be posed as programming problems, their asset is in focusing on abstraction
perspectives and verification of recognized patterns. Programming may “bypass” the
latter. One may provide a suitable programming solution without sufficient insight into
the problem at hand, when only input/output outcomes are examined. An “unplugged”
experience is more thorough, and elaborates on the importance of comprehension and
verification. The focus is primarily on the conceptual practice. No considerations of
computer implementation are involved, and one focuses on exercising exploration and
recognition of hidden patterns.

Learners learn definitions, theorems, and methods, but their primary mean for prog-
ress is learning from examples and practicing examples (Sinclair et al., 2011). Problem
solving with examples like those presented here enhances the practice of relating ab-
stract perspectives to concrete, explicit givens. Repeated practice of relating abstraction
perspectives to the concrete develops problem solving competence and enhances one’s
confidence in her abilities.

We embedded the tasks displayed here in the activities of our top 30 students during
the beginning of their advanced training. Although the primary focus of the training was
on solving IOI-like tasks, the practice of the tasks displayed here, in-between program-
ming tasks, widened the students’ viewpoint and encouraged their verification tenden-
cies. At first, they struggled with the more challenging tasks, and were unsure about the
verification of properties; but with further practice they felt more confident, realized the
relevance of such tasks, and related observations in these tasks to later programming
tasks. This was particularly apparent with the more competent students.

Operator Utilization and Abstract Conceptions 85

References

Fellows, M., Witten, I., Bell, T. (2005). Computer Science Unplugged, LuLu Pub.
Frorer, P., Hazzan, O., Manes, M. (1997). Revealing the facets of abstraction, International Journal of Com-

puters in Mathematical Learning, 2, 217–228.
Ginat, D., Blau, Y. (2017). Multiple levels of abstraction in algorithmic problem solving, SIGCSE’48, ACM

Press, 237–242.
Hazzan, O. (2002). Reducing abstraction level when learning computability theory concepts, ITiCSE’02, ACM

Press, 156–160.
Horváth, G., Verhoeff, T. (2002). Finding the median under IOI conditions, Informatics in Education, 1,

73–92.
Knuth, D. (1973). The Art of Computer Programming, Vol. 3, Addison Wesley Pub.
Schoenfeld, A. H. (1992). Learning to think mathematically: problem solving, metacognition, and sense mak-

ing in mathematics, in Grouws D. A. (Ed.), Handbook of Research on Mathematics Teaching and Learning,
334–370.

Sinclair, N., Watson, A., Zazkis, R., Mason, J. (2011). The structuring of personal spaces, Journal of Math-
ematical Behavior, 30, 291–303.

Wing, J. (2006). Computational thinking, Communications of the ACM, 49(3), 33–35.

D. Ginat – headed the Israel IOI project during the years 1997–2019.
He is the head of the Computer Science Group in the Science Educa-
tion Department at Tel-Aviv University. His PhD is in the Computer
Science domains of distributed algorithms and amortized analysis.
His current research is in Computer Science and Mathematics Educa-
tion, with particular focus on various aspects of problem solving and
learning from mistakes.

Olympiads in Informatics, 2020, Vol. 14, 87–104
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.07

87

Introduction of “Honorable Mention“ Award
at the International Olympiad in Informatics

Mile JOVANOV, Emil STANKOV
Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University
st. Rugjer Boshkovikj 16 Skopje, Macedonia
e-mail: mile.jovanov@gmail.com, emil.stankov@gmail.com

Abstract. In 2020, there are 14 International Science Olympiads for secondary school students,
which aim to gather teams from all the countries around the world, with the brightest young eli-
gible students from each country. These Olympiads are not just a science competition but a means
to care for talent in the particular scientific field. International Olympiad in Informatics (IOI) is
one of the first five Olympiads that arose, after Mathematics, Physics and Chemistry, and before
Biology Olympiad. Being the “summit” of the brightest students, they generously award recogni-
tions to contestants in the form of gold, silver and bronze medals, and additionally – the so called
“honorable mention” award. IOI is the only Olympiad that up until 2019 has not introduced the
fourth-degree award – “honorable mention”. In this paper we explore the rules of the other four
scientific Olympiads in order to compare their methods of awarding contestants to the current one
used by IOI, and to use that analysis for proposing a rule change that will introduce “honorable
mention” category at IOI. Furthermore, a set of possible approaches are considered, and for each
one, the “retroactive” impact of the rule to the results of the last five IOI issues is presented. At
the end, as a conclusion, the most appropriate approach is proposed.

Keywords: science competitions, programming, International Olympiad in Informatics, medals,
awards, honorable mention.

1. Introduction

The International Science Olympiads are a group of worldwide annual competitions
in various areas of science. In 2020, there are 14 International Science Olympiads for
secondary school students, which aim to gather teams from all the countries around the
world, with the brightest young eligible students from each country. These Olympiads
are not just a science competition but means to care for talent in the particular scientific
field. The competitions are designed for the 4–6 best high school students from each
participating country selected through internal National Science Olympiads. Further in
this section we present more information on the first five of these Olympiads, in chrono-
logical order of their appearance.

M. Jovanov, E. Stankov 88

1.1. International Mathematical Olympiad

The International Mathematical Olympiad (IMO) is an annual mathematics com-
petition for high school students. The first IMO was held in Romania in 1959. The
problems come from various areas of mathematics, which are included in math cur-
ricula in secondary schools. Finding the solutions of these problems, however, requires
exceptional mathematical ability and excellent mathematical knowledge on the part of
the contestants.

The country delegation to an IMO consists of up to six student competitors and
(a maximum of) two leaders. Awards are determined as follows (IMO regulations,
clause 5):

Gold medal: the top 1/12 of scores receive gold medals.●●
Silver medal: the next 2/12 of scores receive silver medals.●●
Bronze medal: the next 3/12 of scores receive bronze medals.●●
Honorable mention: any competitor who receives a perfect score of 7 on any one ●●
question, but who does not receive a medal, is awarded an honorable mention.

1.2. International Physics Olympiad

The International Physics Olympiad (IPhO) is an annual physics competition for high
school students. The first IPhO was held in Warsaw, Poland, in 1967.

Each national delegation is made up of at most five student competitors plus two
leaders, selected on a national level. The students compete as individuals and are put to
hard theoretical and laboratory examinations. According to the results, the students can
be awarded gold, silver or bronze medals, or an honorable mention. The minimal scores
required for Olympiad medals and honorable mentions are chosen by the organizers, ac-
cording to the following rules (IPhO statutes, clause 6):

A gold medal should be awarded to 8% of the contestants (rounded to a nearest ●●
integer).
A silver medal or better should be awarded to 25% of the contestants (rounded to ●●
a nearest integer).
A bronze medal or better should be awarded to 50% of the contestants (rounded ●●
to a nearest integer).
An honorable mention or better should be awarded to 67% of the contestants ●●
(rounded to a nearest integer).
All other participants receive certificates of participation. The participant with ●●
the highest score (absolute winner) receives a special prize, in addition to a gold
medal.

Introduction of “Honorable Mention“ Award at the International Olympiad in Informatics 89

1.3. International Chemistry Olympiad

The International Chemistry Olympiad (IChO) is an annual academic competition
for high school students. It is also one of the International Science Olympiads. The first
IChO was held in Prague, Czechoslovakia, in 1968.

Each delegation consists of up to four students and two mentors (one of them is des-
ignated as the head of the delegation or “head mentor”). A delegation may also include
a handful of guests and scientific observers. Students must be under the age of 20 and
must not be enrolled as regular students in any post-secondary education institution.
All participants are ranked based on their individual scores and no official team scores
are given.

Rules for awarding medals at IChO (IChO regulations, clause 15):
The best 10% to 12% of all competitors receive gold medal.●●
The next 20% to 22% receive silver medal.●●
The following 30% to 32% receive bronze medals.●●
An honorable mention is received by non-medalists who are in the best 70 to 71% ●●
of all competitors.
The exact number of recipients for each award is determined automatically to ●●
yield the largest possible difference in the marks of students receiving different
honors. In the case of identical differences, the one resulting in more medals will
be selected.
Each medalist must receive the medal and a corresponding certificate from the ●●
organizer.
Other prizes may be awarded in addition to the medals.●●
Each competitor receives a certificate of participation.●●
In the awarding ceremony, the non-medalists are called alphabetically.●●

1.4. International Olympiad in Informatics

The International Olympiad in Informatics (IOI) is an annual competitive program-
ming competition for high school students. It is the second largest science Olympiad, af-
ter the International Mathematical Olympiad, in terms of number of participating coun-
tries (87 at IOI 2019). The first IOI was held in 1989, in Pravetz, Bulgaria.

Students at the IOI compete on an individual basis, with up to four students compet-
ing from each participating country. Students in the national teams are selected through
national computing contests, and they are led by one or two team leaders from the coun-
try. The contest consists of two days of computer programming/coding and problem-
solving of algorithmic nature. The knowledge and skills necessary to solve the tasks are
on very high level, often compared to the content of the most competitive algorithmic
courses at the universities.

M. Jovanov, E. Stankov 90

The scores from the two competition days and all problems are summed up sepa-
rately for each contestant. At the awarding ceremony, contestants are awarded medals
depending on their relative total score (IOI regulations, clause S6.11). No more than half
of the contestants are to receive medals on the basis that:

About one twelfth of all contestants receive a gold medal.●●
About one sixth of all contestants receive a silver medal.●●
About one quarter of all contestants receive a bronze medal.●●

More exact algorithm is given in the E6.11 of the IOI regulations, which states:
Medal boundaries are allocated by the following rules:

The score necessary to achieve a gold medal is the largest score such that at least ●●
one twelfth of all contestants receive a gold medal.
The score necessary to achieve a silver medal is the largest score such that at least ●●
one quarter of all contestants receive a gold or silver medal.
The score necessary to achieve a bronze medal is the smallest score such that at ●●
most one half of all contestants receive a medal.

1.5. International Biology Olympiad

The International Biology Olympiad (IBO) is an annual science Olympiad for high
school students under the age of 20. All participating countries send the four winners of
their National Biology Olympiad to the IBO, usually accompanied by two adults who
are members of the international jury for the duration of the competition. The first IBO
was held in Czechoslovakia in 1990, with 6 participating countries. Nowadays, there are
up to 78 participating countries (at IBO 2019).

The awards are determined according to the cutoffs below, where n is the number
of competitors, and ⌈n⌉ is the ceiling function (e.g. ⌈4.1⌉ = 5, ⌈4.9⌉ = 5). The maximum
number of awards equals 0.7 ⌈n⌉ + 2 (IBO guidelines).

Gold
medal

w = ⌈0.1 n⌉ The last gold medal winner is the one preceding the
largest gap out of the three following the top w competitors

Silver
medal

x = ⌈0.3 n⌉ The last silver medal winner is the one preceding the
largest gap out of the three following the top x competitors

Bronze
medal

y = ⌈0.6 n⌉ The last bronze medal winner is the one preceding the
largest gap out of the three following the top y competitors

Certificate
of merit

z = ⌈0.7 n⌉ The last certificate of merit winner is the one preceding the
largest gap out of the three following the top z competitors

In the following section we will provide statistics regarding the number of medals
awarded at the year 2019’s issues of the Physics, Chemistry and Biology Olympiads,
since they all have “steady” principles for awarding medals and Honorable mentions/

Introduction of “Honorable Mention“ Award at the International Olympiad in Informatics 91

Certificates of merit. We will look into the results from IMO more deeply, considering
more of the last issues, since there is a specific condition for awarding the Honorable
mention awards. Further in the paper we will list several different proposals/approaches
for introducing the Honorable mention at IOI, and for each one, the “retroactive” im-
pact of the approach to the results of the last five IOI issues will be analyzed. At the
end, as a conclusion, based on the conducted analysis, the most appropriate approach
will be proposed.

2. Awards Presented at Other Science Olympiads

Science Olympiads are not just a science competition but a means to care for talent in
the particular scientific field. International Olympiad in Informatics (IOI) is one of the
first five Olympiads that arose, after Mathematics, Physics and Chemistry, and before
Biology Olympiad. Being the “summit” of the brightest students, at all Olympiads con-
testants are generously awarded with recognitions in the form of gold, silver and bronze
medals, and additionally, the so called “Honorable mention“ award.

Here we provide statistics regarding the number of medals gained at the year 2019’s
issues of the Physics, Chemistry and Biology Olympiads, since they all have “steady”
principles for awarding medals and Honorable mentions/Certificates of merit.

According to their official statistics sites / official published documents, in Table 1,
Table 2 and Table 3 we may see the number of awards presented at each Olympiad.

Table 1
Awards presented at IPhO 2019

Total # of contestants
363 from 78 countries

% Cumula-
tive %

Gold medal 34 9.37%
Silver medal 66 18.18%
Bronze medal 101 27.82% 55.37%
Honorable mention 50 13.77% 69.15%

Table 2
Awards presented at IChO 2019

Total # of contestants
309 from 80 countries

% Cumula-
tive %

Gold medal 37 12.33%
Silver medal 64 21.33%
Bronze medal 95 31.67% 63.43%
Honorable mention 23 7.67% 71.10%

M. Jovanov, E. Stankov 92

As a general conclusion, all three Olympiads award more than 50% medals (55.4% –
63.4%) which is more generous than the IOI rule of awarding no more than 50% of the
contestants with medal. Even more, if we include the contestants awarded with Honor-
able mention (or Certificate of Merit at IBO), we may see that the total number of awards
is around 70% of all participants (69.2% – 71.1%). Since IOI did not award Honorable
mention award until IOI 2019, obviously the percentage of awards given at IOI is 20
percent points smaller than other Olympiads, or in percentages, 29% less awards.

2.1. Awards at IMO in the Last 4 Years

We will look into the results from IMO more deeply, considering more of the last issues,
since there is a specific condition for awarding the Honorable mention awards.

Table 4 shows the number of awarded contestants from IMO in the years 2016 to
2019, according to IMO statistics (IMO 2017). At IMO, any competitor who receives
a perfect score of 7 on any one question, but who does not receive a medal, is awarded

Table 3
Awards presented at IBO 2019

Total # of contestants
285

% Cumula-
tive %

Gold medal 31 10.88%
Silver medal 55 19.30%
Bronze medal 87 30.53% 60.70%
Honorable mention 27 9.47% 70.18%

Table 4
Awarded contestants at IMO in the years 2016–2019

2016 year 2017 year 2018 year 2019 year

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s

Aw
ar

de
d

co
nt

es
ta

nt
s (

%
)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s

Aw
ar

de
d

co
nt

es
ta

nt
s (

%
)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s

Aw
ar

de
d

co
nt

es
ta

nt
s (

%
)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s

Aw
ar

de
d

co
nt

es
ta

nt
s (

%
)

Gold medal 44 7.31 48 7.80 48 8.08 52 8.37
Silver medal 101 16.78 90 14.63 98 16.50 94 15.14
Bronze medal 135 22.43 153 24.88 143 24.07 156 25.12
Honorable mention 162 26.91 222 36.10 138 23.23 144 23.19
Total awards 442 73.43 513 83.41 427 71.88 446 71.82
Total participants 602 615 594 621

Introduction of “Honorable Mention“ Award at the International Olympiad in Informatics 93

an honorable mention. From the table we can see that the number of students who are
awarded with honorable mention is approximately 23% – 37%. In total, IMO awards
almost same percentage of medals as IOI, but more total awards (71.8% – 83.4%) com-
pared to 50% at IOI.

As a conclusion, it is obvious that IOI should introduce an additional, fourth level
award, in order to equalize the possibility of wining an award for its contestants, com-
pared to other Olympiads.

3. Different Approaches for Introduction of Honorable Mention at IOI

During the IOI 2019, on the initiative of the authors of this paper, a discussion on the
introduction of Honorable mention (HM) award was held for the interested team leaders.
Different approaches for awarding this fourth level award were proposed and discussed.
In this paper we are analyzing five different approaches/scenarios that are based mainly
on the experiences from the other science Olympiads, as well as ideas from the leaders
based on the experiences of regional Olympiads like the Balkan Olympiad in Informat-
ics, for example.

For every approach, we provide different tables and accompanying graphic that show
the important characteristics of the approach, such as:

Number and percentage of awarded contestants, that will show how many contes-1.	
tants gain additionally award, on top of the ones awarded with medals.
Range of points that qualify the contestant to score a medal or HM, in order to 2.	
see if some approach awards HM for some students with rather small number of
points, for example, or average points for the contestants that gain a particular
award.
Number of countries that haven’t won a medal for the particular year, but would 3.	
have won one or more HM awards, etc.

The data in the tables that follow originate from the last five International Olympi-
ads in Informatics (years 2015–2019), according to the IOI statistics pages (IOI 2015,
IOI 2016, IOI 2017, IOI 2018, IOI 2019). We consider a hypothetical situation in which
we apply the proposed approach for HM over the already scored points of the contes-
tants. Analyzed scenarios are:

Honorable mention for the following 15% of contestants who did not win a me-●●
dal.
Honorable mention for contestants who have correctly solved at least one task ●●
(received 100 points), but did not win a medal.
Honorable mention for contestants who have won at least 50% of the points won ●●
by the last bronze medalist.
Honorable mention for the following 20% of contestants who did not win a me-●●
dal.
Honorable mention for the following 20% of contestants who did not win a medal ●●
but have also won at least 50% of the points won by the last bronze medalist.

M. Jovanov, E. Stankov 94

3.1. Honorable Mention for the Following 15% of Contestants
Who did not Win a Medal

The data in Table 5, Table 6 and Fig. 1 show that if this approach is used, then all contes-
tants awarded with HM will have rather close scores among each other, i.e. the contes-
tant who will receive the last HM will still have a significant number of points, compared
to the one with HM who is the first non-medalist.

Table 5
Honorable mention for the following 15% of contestants who did not win a medal
(GM = Gold medal, SM = Silver m., BM = Bronze m., HM = Honorable mention,

TA = Total awards, TP = Total partic.)

2015 year 2016 year 2017 year 2018 year 2019 year

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s
(%

)

Po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s
(%

)

Po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s
(%

)

Po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s
(%

)

Po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s
(%

)

Po
in

ts
 (%

)

GM 27 8.4 73.4 -
100

 26 8.4 69.3 -
99.5

 26 8.4 58.8 -
98.2

 29 8.7 56.0 -
83.2

 28 8.6 69.1 -
91.2

SM 55 17.1 54.3 -
72.9

 51 16.6 54.7 -
68.8

 52 16.9 41.6 -
58.5

 55 16.4 45.3 -
55.7

 54 16.6 54.9 -
68.6

BM 79 24.5 30.9 -
53.9

 77 25.0 40.0 -
53.3

 78 25.3 22.9 -
41.5

 83 24.8 31.2 -
45.2

 81 24.8 41.7 -
54.8

HM 48 14.9 20.7 -
30.8

 47 15.3 30.2 -
39.8

 46 14.9 16.5 -
22.6

 50 14.9 24.3 -
30.8

 49 15.0 34.2 -
41.6

TA 209 64.9 201 65.3 202 65.6 217 64.8 212 65.0
TP 322 308 308 335 326

Fig. 1. Awarded contestants at IOI (HM 15%).

Introduction of “Honorable Mention“ Award at the International Olympiad in Informatics 95

In Table 7, we analyze the number of countries that would have been included in the
“awarded” countries, i.e., countries that don’t have a contestant who has won a medal,
but would have had contestant with HM.

With this approach additional 11 countries in each year would have entered in the
group of “awarded” countries. Table 8 further shows that using this approach we de-
crease the number of “non-awarded” countries from approx. 26 to approx. 15.

Table 6
Honorable mention for the following 15% of contestants who did not win a medal –

average points

2015 year 2016 year 2017 year 2018 year 2019 year

Po
in

ts
 (%

)

Av
er

ag
e

po
in

ts
 (%

)

Po
in

ts
 (%

)

Av
er

ag
e

po
in

ts
 (%

)

Po
in

ts
 (%

)

Av
er

ag
e

po
in

ts
 (%

)

Po
in

ts
 (%

)

Av
er

ag
e

po
in

ts
 (%

)

Po
in

ts
 (%

)

Av
er

ag
e

po
in

ts
 (%

)

Gold
medal

73.40 -
100.00

86.7 69.33 -
99.50

84.42 58.84 -
98.25

78.55 56.00 -
83.17

69.59 69.12 -
91.18

80.15

Silver
medal

54.26 -
72.92

63.59 54.67 -
68.83

61.75 41.57 -
58.50

50.34 45.33 -
55.67

50.5 54.86 -
68.58

61.72

Bronze
medal

30.91 -
53.92

42.42 40.00 -
53.33

46.67 22.86 -
41.50

32.18 31.17 -
45.17

38.17 41.70 -
54.77

48.24

Honorable
mention

20.67 -
30.85

25.76 30.17 -
39.83

35.00 16.48 -
22.63

19.56 24.33 -
30.83

27.58 34.18 -
41.60

37.89

Mean 54.62 56.96 45.16 46.46 57.00
Deviation 22.87 18.47 22.17 15.62 15.81

Table 7
Analysis of the number of gained honorable mentions and medals with honorable

mentions by countries, if honorable mention is given to the following 15% of
contestants who did not win a medal (HM = Honorable mention)

2015
year

2016
year

2017
year

2018
year

2019
year

Number of countries that won only HM 7 11 9 4 6
Number of countries that won more than one HM 4 / 2 7 5
Number of countries that
won a medal and one or more HM

 6 12 12 9 8

Number of countries that
won more than one medal and one or more HM

15 18 11 16 12

Total 32 41 34 36 31

M. Jovanov, E. Stankov 96

3.2. Honorable Mention for Contestants Who Have Correctly Solved
at Least One Task (Received 100 Points), but did not Win a Medal

The data in Table 9 show that if this approach is used, there would be great discrepan-
cies among the number of participants that would win HM in each year. We furthermore
explore additional characteristics in Table 10.

Table 10 shows the number of contestants who would win an honorable mention,
their average points in %, lowest points of contestant who would win an honorable men-
tion, the percentile of that contestant, and the number of contestants that would have a
higher score than the lowest ranked contestant with honorable mention, but would not
win an honorable mention.

Table 8
Analysis of the number of countries that did not receive a medal but would receive

an honorable mention if an honorable mention is given to the following 15% of
contestants who did not win a medal (HM = Honorable mention)

2015
year

2016
year

2017
year

2018
year

2019
year

Number of countries that won one HM 7 11 9 4 6
Number of countries that won more than one HM 4 / 2 7 5
Number of countries that did not win a HM 15 16 12 15 17

Total 25 27 23 26 28

Table 9
Honorable mention for contestants who have correctly solved at least one task (received

100 points), but did not win a medal (GM = Gold medal, SM = Silver medal, BM = Bronze
medal, HM = Honorable mention, TA = Total awards, TP = Total participants)

2015 year 2016 year 2017 year 2018 year 2019 year

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s

Aw
ar

de
d

co
nt

es
ta

nt
s (

%
)

Av
er

ag
e

po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s (
%

)

Av
er

ag
e

po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s (
%

)

Av
er

ag
e

po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s (
%

)

Av
er

ag
e

po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s

Aw
ar

de
d

co
nt

es
ta

nt
s (

%
)

Av
er

ag
e

po
in

ts
 (%

)

GM 27 8.4 86.7 26 8.4 84.4 26 8.4 78.6 29 8.7 69.6 28 8.6 80.1
SM 55 17.1 63.6 51 16.6 61.7 52 16.9 50.0 55 16.4 50.5 54 16.6 61.7
BM 79 24.5 42.4 77 25.0 46.7 78 25.3 32.2 83 24.8 38.2 81 24.8 48.2
HM 5 1.6 23.2 31 10.1 32.6 3 1.0 20.4 47 14.0 24.5 37 11.3 35.4
TA 166 51.6 185 60.1 159 51.6 214 63.9 200 61.3
TP 322 308 308 335 326

Introduction of “Honorable Mention“ Award at the International Olympiad in Informatics 97

The provided data present many negative characteristics of this approach. For ex-
ample: unpredictable number of contestants that gain HM, usually rather small number
of them; rather low total points for some contestants that will gain a HM award; rather
big number of participants that will have more points than someone with HM, but won’t
get an award. Thus, this approach, based on the IMO approach for HM awarding, is not
suitable for the Informatics Olympiad. We may further analyze the results of the Olym-
piad from year 2019. There are 37 students who have correctly solved at least one task
(received 100 points) and haven’t gained any medal. However, there is a big difference
in the points and places in the scoreboard. For example, the best of these participants has
a total of 249.58 points or 41.60%, while the last participant with at least one correctly
solved task has 130.39 points or 21.73%, which represents a big difference in the points
and places of the awarded participants.

3.3. Honorable Mention for Contestants Who Have Won at Least
50% of the Points Won by the Last Bronze Medalist

Another interesting approach is to award with HM the contestants who have won at least
50% of the points won by the last bronze medalist. This approach guaranties that every
contestant that will win HM, will still have a significant number of points – not less than
half of the points scored by the last bronze medalist. With this approach, the number of
HM winners fluctuates, but, as seen in Table 11 and Fig. 2, is rather stabilized around
25% of the total number of participants, with the exception in 2019. Table 12 presents
some additional characteristics for the approach.

In Table 13 and Table 14, we analyze the number of countries that would have been
included in the “awarded” countries, that is, countries that don’t have a contestant that
has won a medal, but would have had contestant with HM. In Table 14 we may see that
with this approach we decrease the number of “non-awarded” countries to only 8 in
years 2015 and 2019, and up to only 11 in 2016.

Table 10
Honorable mention for contestants who have correctly solved at least one task

 (received 100 points), but did not win a medal – additional characteristics
(HM = Honorable mention)

2015
year

2016
year

2017
year

2018
year

2019
year

Number of awarded contestants with HM 5 31 3 47 37
Average Points (%) 23.17 32.57 20.42 24.54 35.38
Lowest points 117 115 113 102 130.39
Percentile 19.50 19.17 18.83 17.00 21.73
Number of contestants who scored higher than
the lowest ranked HM and did not win HM

 55 52 25 34 75

M. Jovanov, E. Stankov 98

Table 11
Honorable mention for contestants who have won at least 50% of the points won by the last
bronze medalist (GM = Gold medal, SM = Silver medal, BM = Bronze medal, HM = Honor-

able mention, TA = Total awards, TP = Total participants)

2015 year 2016 year 2017 year 2018 year 2019 year

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s (
%

)

Po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s (
%

)

Po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s (
%

)

Po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s (
%

)

Po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s (
%

)

Po
in

ts
 (%

)

GM 27 8.4 73.4 -
100

 26 8.4 69.3 -
99.5

 26 8.4 58.8 -
98.2

 29 8.7 56.0 -
83.2

 28 8.6 69.1 -
91.2

SM 55 17.1 54.3 -
72.9

 51 16.6 54.7 -
68.8

 52 16.9 41.6 -
58.5

 55 16.4 45.3 -
55.7

 54 16.6 54.9 -
68.6

BM 79 24.5 30.9 -
53.9

 77 25.0 40.0 -
53.3

 78 25.3 22.9 -
41.5

 83 24.8 31.2 -
45.2

 81 24.8 41.7 -
54.8

HM 80 24.8 15.5 -
30.8

 79 25.6 21.2 -
39.8

 80 26.0 11.5 -
22.6

 84 25.1 16.2 -
30.8

115 35.3 20.9 -
41.6

TA 241 74.8 233 75.6 236 76.6 251 74.9 278 85.3
TP 322 308 308 335 326

Fig. 2. Awarded contestants at IOI (HM for at least 50% of the points won by the last bronze medalist).

Introduction of “Honorable Mention“ Award at the International Olympiad in Informatics 99

Table 12
Honorable mention for contestants who have won at least 50% of the points won by the last

bronze medalist – additional characteristics

2015 year 2016 year 2017 year 2018 year 2019 year

Po
in

ts
 (%

)

Av
er

ag
e

po
in

ts
 (%

)

Po
in

ts
 (%

)

Av
er

ag
e

po
in

ts
 (%

)

Po
in

ts
 (%

)

Av
er

ag
e

po
in

ts
 (%

)

Po
in

ts
 (%

)

Av
er

ag
e

po
in

ts
 (%

)

Po
in

ts
 (%

)

Av
er

ag
e

po
in

ts
 (%

)

Gold
medal

73.40 -
100.00

86.7 69.33 -
99.50

84.42 58.84 -
98.25

78.55 56.00 -
83.17

69.59 69.12 -
91.18

80.15

Silver
medal

54.26 -
72.92

63.59 54.67 -
68.83

61.75 41.57 -
58.50

50.34 45.33 -
55.67

50.5 54.86 -
68.58

61.72

Bronze
medal

30.91 -
53.92

42.42 40.00 -
53.33

46.67 22.86 -
41.50

32.18 31.17 -
45.17

38.17 41.70 -
54.77

48.24

Honorable
mention

15.46 -
30.85

23.16 21.17 -
39.83

30.50 11.46 -
22.63

17.05 16.17 -
30.83

28.08 20.91 -
41.60

31.26

Mean 53.97 55.84 44.53 46.59 55.34
Deviation 23.70 19.86 22.91 15.47 17.93

Table 13
Analysis of the number of gained honorable mentions and medals with honorable mentions
by countries, if HM is given to contestants who have won at least 50% of the points won by

the last bronze medalist (HM = Honorable mention)

2015
year

2016
year

2017
year

2018
year

2019
year

Number of countries that won only HM 10 11 6 6 5
Number of countries that won more than one HM 7 5 8 10 17
Number of countries that won a medal and one or
more HM

 9 13 14 13 11

Number of countries that won more than one medal
and one or more HM

17 24 17 22 25

Total 43 53 45 51 58

Table 14
Analysis of the number of countries that did not receive a medal but would receive an hon-
orable mention, if HM is given to contestants who have won at least 50% of the points won

by the last bronze medalist (HM = Honorable mention)

2015
year

2016
year

2017
year

2018
year

2019
year

Number of countries that won one HM 10 11 6 6 5
Number of countries that won more than one HM 7 5 8 10 15
Number of countries that did not win a HM 8 11 9 10 8

Total 25 27 23 26 28

M. Jovanov, E. Stankov 100

3.4. Honorable Mention for the Following 20% of Contestants
Who did not Win a Medal

This approach is in the same spirit as the one analyzed in section 3.1 (HM for follow-
ing 15% of the contestants), but with a different percentage. The corresponding data are
given in Table 15, Table 16 and Table 17.

This percentage leads to rather similar number of awards, compared to other Scien-
tific Olympiads (analyzed in Section 2), and as seen in Table 17, it manages to decrease
the number of “non-awarded” countries from approx. 26 to only 12 to 14 countries.

Table 15
Honorable mention for the following 20% of contestants who did not win a medal

(GM = Gold medal, SM = Silver medal, BM = Bronze medal, HM = Honorable mention,
TA = Total awards, TP = Total participants)

2015 year 2016 year 2017 year 2018 year 2019 year

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s

Aw
ar

de
d

co
nt

es
ta

nt
s (

%
)

Po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s (
%

)

Po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s (
%

)

Po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s
Aw

ar
de

d
co

nt
es

ta
nt

s (
%

)

Po
in

ts
 (%

)

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s

Aw
ar

de
d

co
nt

es
ta

nt
s (

%
)

Po
in

ts
 (%

)

GM 27 8.4 73.4 -
100

 26 8.4 69.3 -
99.5

 26 8.4 58.8 -
98.2

 29 8.7 56.0 -
83.2

 28 8.6 69.1 -
91.2

SM 55 17.1 54.3 -
72.9

 51 16.6 54.7 -
68.8

 52 16.9 41.6 -
58.5

 55 16.4 45.3 -
55.7

 54 16.6 54.9 -
68.6

BM 79 24.5 30.9 -
53.9

 77 25.0 40.0 -
53.3

 78 25.3 22.9 -
41.5

 83 24.8 31.2 -
45.2

 81 24.8 41.7 -
54.8

HM 64 19.9 18.6 -
30.8

 64 20.8 25.7 -
39.8

 62 20.1 13.7 -
22.6

 67 20.0 19.0 -
30.8

 66 20.2 32.0 -
41.6

TA 225 69.9 216 70.8 218 70.8 234 69.9 229 70.2
TP 322 308 308 335 326

Table 16
Analysis of the number of gained honorable mentions and medals with honorable
mentions by countries, if HM is given to the following 20% of contestants who

did not win a medal (HM = Honorable mention)

2015
year

2016
year

2017
year

2018
year

2019
year

Number of countries that won only HM 7 12 7 3 7
Number of countries that won more than one HM 6 1 4 9 7
Number of countries that
won a medal and one or more HM

 7 14 12 10 10

Number of countries that
won more than one medal and one or more HM

17 19 15 18 19

Total 37 46 38 40 43

Introduction of “Honorable Mention“ Award at the International Olympiad in Informatics 101

3.5. Honorable Mention for the Following 20% of Contestants
Who did not Win a Medal but also Have Won at Least 50% of
the Points Won by the Last Bronze Medalist

This approach builds on the idea to award Honorable mention for the following 20% of
contestants who will not win a medal, but with a second condition that the contestants
must win at least 50% of the points won by the last bronze medalist. The approach
guaranties that every contestant that will win HM, will still have a significant number
of points – not less than half of the points scored by the last bronze medalist, and that
only up to 70% (50+20) of the total contestants will win an award. In theory, this is a
better approach than the clear one with only 20% additional contestants, but if we look
at Table 15, we will see that in each of the last 5 years, every contestant in the range
satisfies this additional condition. This is not a guarantee that it will hold always in the
future, but an irregularity is highly unexpected.

4. Conclusion

In this paper we explored the possibility of introducing a fourth level award for the IOI
contestants called Honorable mention. Firstly, we presented the rules for awarding rec-
ognitions of other four scientific Olympiads (in Mathematics, Physics, Chemistry and
Biology) as the oldest five Olympiads including the IOI. Then, we presented data from
the last issues of IMO, IPhO, IChO and IBO, in order to show how they implement their
rules in practice. After that, we analyzed five different approaches for introducing Honor-
able Mention at IOI. The results of the analysis were given in series of Tables, as well
as Figures. Main results are summarized in Table 18. According to the analysis, the best
approach, most similar to other Olympiads, with most clear wording is the one analyzed
in the subsection 3.4., i.e., Honorable mention to be awarded to the following 20% of con-
testants who did not win a medal, getting to the cumulative 70% of awarded contestants.

Based on the data in this paper IC decided to propose to GA introduction of HM at
IOI according to the above rule. We believe that this paper will give the rationale behind
that decision of the IOI community.

Table 17
Analysis of the number of countries that did not receive a medal but would receive an hon-
orable mention if an honorable mention is given to the following 20% of contestants who

did not win a medal (HM = Honorable mention)

2015
year

2016
year

2017
year

2018
year

2019
year

Number of countries that won one HM 7 12 7 3 7
Number of countries that won more than one HM 6 1 4 9 7
Number of countries that did not win a HM 12 14 12 14 14

Total 25 27 23 26 28

M. Jovanov, E. Stankov 102

Ta
bl

e
18

N
um

be
r o

f a
w

ar
de

d
co

nt
es

ta
nt

s w
ith

 h
on

or
ab

le
 m

en
tio

n
fr

om
 a

ll
an

al
yz

ed
 sc

en
ar

io
s (

H
M

 1
5%

 =
 H

on
or

ab
le

 m
en

tio
n

fo
r 1

5%
, H

M
 1

 =
 H

on
or

ab
le

 m
en

tio
n

fo
r c

or
re

ct
ly

 so
lv

ed
 a

t l
ea

st
 o

ne
 ta

sk
, H

M
 5

0%
 =

 H
on

or
ab

le
 m

en
tio

n
fo

r a
t l

ea
st

 5
0%

 o
f t

he
 p

oi
nt

s w
on

 b
y

th
e

la
st

 b
ro

nz
e

m
ed

al
is

t,
H

M
 2

0%
 –

 H
on

or
ab

le

m
en

tio
n

fo
r 2

0%
, B

M
 =

 B
ro

nz
e

m
ed

al
is

t,
TP

 =
 T

ot
al

 p
ar

tic
ip

an
ts

)

20
15

 y
ea

r
20

16
 y

ea
r

20
17

 y
ea

r
20

18
 y

ea
r

20
19

 y
ea

r

Number of awarded
contestants

Awarded contestants (%)

Points (%)

Points of the last HM winner
vs points of the last BM

Number of awarded
contestants
Awarded contestants (%)

Points (%)

Points of the last HM winner
vs points of the last BM

Number of awarded
contestants

Awarded contestants (%)

Points (%)

Points of the last HM winner
vs points of the last BM

Number of awarded
contestants

Awarded contestants (%)

Points (%)

Points of the last HM winner
vs points of the last BM

Number of awarded
contestants

Awarded contestants (%)

Points (%)

Points of the last HM winner
vs points of the last BM

H
M

15

%
 4

8
14

,9
0

20
,6

7
-

30
,8

5
20

,6
7

30
,9

1
 4

7
15

,2
6

30
,1

7
-

39
,8

3
30

,1
7

40
,0

0
 4

6
14

,9
4

16
,4

8
-

22
,6

3
16

,4
8

22
,8

6
 5

0
14

,9
3

24
,3

3
-

30
,8

3
24

,3
3

31
,1

7
 4

9
15

,0
3

34
,1

8
-

41
,6

0
34

,1
8

41
,7

0
H

M

50
%

 8
0

24
,8

4
15

,4
6

-
30

,8
5

15
,4

6
30

,9
1

 7
9

25
,6

5
21

,1
7

-
39

,8
3

21
,1

7
40

,0
0

 8
0

25
,9

7
11

,4
6

-
22

,6
3

11
,4

6
22

,8
6

 8
4

25
,0

7
16

,1
7

-
30

,8
3

13
,1

7
31

,1
7

11
5

35
,2

8
20

,9
1

-
41

,6
0

20
,9

1
41

,7
0

H
M

 1

 5
 1

,5
5

23
,1

7
19

,5
0

30
,9

1
 3

1
10

.0
6

32
,5

7
19

,1
7

40
,0

0

 3
 0

,9
7

20
,4

2
18

,8
3

22
,8

6
 4

7
14

,0
3

24
,5

4
17

,0
0

31
,1

7
 3

7
11

,3
5

35
,3

8
21

,7
3

41
,7

0
H

M

20
%

 6
4

19
,8

6
18

,5
8

-
30

,8
5

18
,5

8
30

,9
1

 6
4

20
,7

8
25

,6
7

-
39

,8
3

25
,6

7
40

,0
0

 6
2

20
,1

3
13

,7
0

-
22

,6
3

13
,7

0
22

,8
6

 6
7

20
19

,0
0

-
30

,8
3

19
,0

0
31

,1
7

 6
6

20
,2

5
32

,0
0

-
41

,6
0

32
,0

0
41

,7
0

TP
32

2
30

8
30

8
33

5
32

6

Introduction of “Honorable Mention“ Award at the International Olympiad in Informatics 103

Acknowledgement

The research presented in this paper is partly supported by the Faculty of Computer
Science and Engineering, at the Ss. Cyril and Methodius University in Skopje. Authors
wish to thank post graduate student Aleksandra Kizova for her contribution into analysis
of the data from previous IOIs.

References

IBO – International Biology Olympiad (1990–2020).
https://www.ibo-info.org (accessed 26/7/2020).

IBO guidelines – Operational Guidelines of the International Biology Olympiad.
https://www.ibo-info.org/en/info/rules-guidelines.html (accessed 26/7/2020).

IChO – International Chemistry Olympiad (1968–2020).
http://www.ichosc.org (accessed 26/7/2020).

IChO regulations – Regulations of the International Chemistry Olympiad.
http://www.ichosc.org/regulations (accessed 26/7/2020).

IMO – International Mathematical Olympiad (1959–2020).
http://www.imo-official.org (accessed 26/7/2020).

IMO regulations – Regulations of the International Mathematical Olympiad.
http://www.imo-official.org/documents/RegulationsIMO.pdf (accessed 26/7/2020).

IMO 2017 – Statistics page of the International Mathematical Olympiad 2017.
http://www.imo-official.org/year_statistics.aspx?year=2017 (accessed 26/7/2020).

IOI – International Olympiad in Informatics (1989–2020).
http://ioinformatics.org (accessed 26/7/2020).

IOI regulations – Regulations of the International Olympiad in Informatics.
http://ioinformatics.org/files/regulations19.pdf (accessed 26/7/2020).

IOI 2015 – Statistics page of the International Olympiad in Informatics 2015.
http://stats.ioinformatics.org/results/2015 (accessed 26/7/2020).

IOI 2016 – Statistics page of the International Olympiad in Informatics 2016.
http://stats.ioinformatics.org/results/2016 (accessed 26/7/2020).

IOI 2017 – Statistics page of the International Olympiad in Informatics 2017.
http://stats.ioinformatics.org/results/2017 (accessed 26/7/2020).

IOI 2018 – Statistics page of the International Olympiad in Informatics 2018.
http://stats.ioinformatics.org/results/2018 (accessed 26/7/2020).

IOI 2019 – Statistics page of the International Olympiad in Informatics 2019.
http://stats.ioinformatics.org/results/2019 (accessed 26/7/2020).

IPhO – International Physics Olympiad (1967–2020).
http://www.ipho-new.org (accessed 26/7/2020).

IPhO statutes – Statutes of the International Physics Olympiad.
http://www.ipho-new.org/statutes-syllabus (accessed 26/7/2020).

M. Jovanov, E. Stankov 104

M. Jovanov is an associate professor at the Faculty of Computer Sci-
ence and Engineering, Ss. Cyril and Methodius University, in Skopje.
As the President of the Computer Society of Macedonia, he has ac-
tively participated in the organization and realization of the Macedo-
nian national competitions and Olympiads in informatics since 2001.
He has been a team leader for the Macedonian team at International
Olympiads in Informatics since 2006. His research interests include
development of new algorithms, future web, and e-education.

E. Stankov is a teaching and research assistant at the Faculty of Com-
puter Science and Engineering, Ss. Cyril and Methodius University,
in Skopje. He is a member of the Executive Board of the Computer
Society of Macedonia and has actively participated in the organization
and realization of the Macedonian national competitions and Olym-
piads in informatics since 2009. Currently he is a Ph.D. student at the
Faculty of Computer Science and Engineering. His research includes
analysis of program code correctness using different techniques, and
its application to e-learning.

Olympiads in Informatics, 2020, Vol. 14, 105–111
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.08

105

CSES – Yet Another Online Judge

Antti LAAKSONEN, Topi TALVITIE
University of Helsinki, Department of Computer Science
e-mail: antti.laaksonen@helsinki.fi, topi.talvitie@helsinki.fi

Abstract. This paper describes the current state and future plans of the Code Submission Evalu-
ation System (CSES) online judge project. Since 2013, CSES has been used to organize several
online programming courses and contests in Finland, including algorithm courses at the Univer-
sity of Helsinki, the yearly Finnish Olympiad in Informatics (Datatähti), and the Baltic Olympiad
in Informatics 2016. CSES is also known for the CSES Problem Set project whose purpose is to
create a high quality problem collection for learning algorithmic problem solving, and also to
document the history of programming problems.

Keywords: online judge, problem set, problem solving, competitive programming.

1. Introduction

The Code Submission Evaluation System (CSES) project started in 2013, and an
early version of the system was used in a competitive programming camp organized
at the University of Helsinki in summer 2013. The initial goal of the project was to
establish a small system that could be used in local contests and training – in fact,
many parts of the original system were implemented just the night before the first day
of the camp.

In 2015, CSES was re-implemented from scratch and the domain cses.fi was
registered. The new system was first used to organize an algorithm programming
course at the University of Helsinki and the final round of the Finnish Olympiad
in Informatics. However, the real ordeal for CSES occurred a year later when the
Baltic Olympiad in Informatics 2016 was hosted by Finland and CSES was used to
organize the contest.

During the first years, CSES was only used in Finland, but the situation changed
in 2017 when the first version of the CSES Problem Set problem collection was pub-
lished. Today CSES is an international system and most users come outside Finland.
At the time of writing, the ten most active countries (in terms of the number of submis-
sions) are Finland, India, United States, Russia, Vietnam, Croatia, Brazil, Morocco,
Argentina and Bangladesh.

A. Laaksonen, T. Talvitie106

Recently, after releasing an updated version of the problem set, CSES has become
a quite popular system in the competitive programming world. At the time of writing,
the total number of submissions is about 700,000 and there are 5,000 new submissions
every day.

2. System Overview

2.1. Features and Design

The two main features of CSES are courses and contests. A course consists of program-
ming problems with automatic evaluation and text pages that can be used as online learn-
ing material. The most important course in the system is the CSES Problem Set; Fig. 1
shows an example problem statement in the course.

CSES supports both IOI style contests, where problems can have subtasks and partial
scores, and ICPC style contests, where a submission is either accepted or not. CSES is

Fig. 1. A problem in the CSES Problem Set.

CSES – Yet Another Online Judge 107

used to organize the Finnish Olympiad in Informatics (Datatähti), and in recent years
there have also been international versions of final rounds in the Datatähti Open contest
series. As an example, Fig. 2 shows the scoreboard of Datatähti Open 2019.

While most problems in CSES are standard input/output tasks, CSES also supports
other problem types, such as output only tasks, interactive tasks, library tasks and en-
coder/decoder tasks. CSES can also be used to organize virtual contests where each
contestant has an individual time window. At the moment, CSES provides two virtual
contest archives that contain all BOI and CEOI problems from 2005–2019.

Another feature, used in the CSES Problem Set, is hacking: after solving a problem,
it is possible to view submissions from other users and try to find a test that breaks
them. Fig. 3 shows the interface used in hacking. After a successful hacking attempt,
the new test is automatically added to the test data and all submissions to the problem
are re-evaluated.

To make sure that problems have correct test data and can be hacked, each problem
has a validator that automatically checks the input format. In IOI style contests, valida-
tors are also used to determine which subtasks a test input belongs to.

Fig. 2. An IOI style scoreboard in the Datatähti Open 2019 contest.

A. Laaksonen, T. Talvitie108

2.2. Technical Details

CSES consists of two separate parts: the website and the judge servers. The website is
implemented using PHP and PostgreSQL. The submissions are evaluated by a distrib-
uted cluster of judge servers. The judging environment is implemented in Rust, and to
run the user-supplied code in a sandbox where it cannot harm the rest of the system,
it uses the Isolate sandboxing utility (Mare , Blackham, 2012), which in turn uses the
namespace and control group features of the Linux kernel.

To avoid timing interference between jobs, each judge server runs at most one job
at a time. Because of this, a large number of servers is required, however they need not
to be powerful in the parallel processing sense. The Intel NUC7i3 Mini-PC was found
to be a cost-effective choice of hardware for this use case. To keep the cost down, the
servers do not have internal mass storage drives; instead, the root filesystem is loaded
into memory from a USB stick. The servers are upgraded by updating the filesystem
images over the network.

Fig. 3. In hacking, you can view other people’s submissions
and try to send a new test input that breaks the code.

CSES – Yet Another Online Judge 109

3. CSES Problem Set

The CSES Problem Set is an ongoing project whose purpose is to create a high quality
collection of educational algorithm programming problems. At the time of writing the
problem set consists of 200 problems, and the final goal is to reach 1,000 problems.

Many problems in the problem set are introductory problems that teach problem
solving techniques, such as how to use a certain data structure or how to apply an algo-
rithm design idea. Here are examples of such problems:

Given a set of coins, count the number of distinct ways you can create a sum when ●●
you can use each coin any number of times. (topic: dynamic programming).
Create a data structure that efficiently supports the following operations: (1) up-●●
date an array value, (2) calculate the sum of values in a range. (topic: segment
tree).
Count the number of permutations of 1, 2, …, ●● n where each position i has some
other value than i. (topic: combinatorics).

In addition, there are advanced problems that are more difficult and require more
thinking. For example, such problems are:

Given a grid whose each square is either black or white, efficiently find the largest ●●
rectangle where each square is white.
Given a directed graph, add the minimum number of edges after which the graph ●●
is strongly connected.

There are some challenges in creating a large problem set: how to ensure the qual-
ity of the problems, how to classify the problems, and how to even keep track of which
problems have already been added to the problem set. So far, we have mainly added
problems that have been used in our courses and training camps over the years, but we
expect that new tools will be needed for managing the problems in the future.

Another goal in the project is to document the history of programming problems:
what were the first occasions when a technique was used, how it has evolved since then
and how it is used now. For example, in the context of competitive programming, some
techniques have become popular after appearing at an IOI, such as the centroid decom-
position technique in 2011 and the two-dimensional segment tree in 2013.

4. Other Systems

There are a large number of online judge systems available that have various features
and goals (Wasik, Antczak, Badura, Laskowski, Sternal, 2018). In this section we dis-
cuss other systems that have influenced our project.

The USACO training system (Kolstad, Piele, 2007) consists of programming prob-
lems and text pages, and it can be seen as a model for the CSES course feature. An
important difference is that in USACO training, only a small number of problems is
available at a time and you have to solve them all to proceed, while in CSES you can

A. Laaksonen, T. Talvitie110

solve any problems. The USACO approach clearly has pedagogical benefits, but it also
restricts the use of the problems.

The UVa online judge (Revilla, Manzoor, Liu, 2008) is a pioneering system that pro-
vides a large number of problems from ICPC contests and other sources. The problems
are divided into volumes and can be solved in any order. The UVa online judge problems
can be used when reading the book Programming Challenges (Skiena, Revilla, 2003);
in a similar way, the CSES Problem Set can be used when reading the book Guide to
Competitive Programming (Laaksonen, 2017).

The CMS system (Maggiolo, Mascellani, 2012) has been used to organize recent IOI
contests, and the Kattis system (Enström, Kreitz, Niemelä, Söderman, Kann, 2011) has
been used to organize the ICPC World Finals and some regional contests. The goal in the
development of CSES has been to support the features of those systems (problem types
and scoring) and also to implement authentic scoreboards, so that both IOI and ICPC
style contests can be practiced as virtual contests.

Codeforces (2020) is a popular competitive programming platform that features
weekly programming contests and a problem set that consists of all problems used in
contests. The hacking feature of CSES resembles that used in Codeforces contests. An-
other online judge that provides problem archives from IOI style contests is oj.uz (Prob-
lems, 2020). At the moment, it contains more problems than CSES; however, not all
problem types are supported.

Why are there so many online judges? A natural reason is that everyone wants to
have full control of their systems and make sure they can fix them and add new fea-
tures when needed. Thus, it does not seem probable that the situation would change.
Still, some more collaboration would be beneficial for the competitive programming
community: at the moment it is difficult to move content from one system to another,
because there are no common practices on how to represent problem statements, test
cases, validators, etc.

5. Acknowledgements

Mikko Sysikaski created many parts of the original CSES system. Roope Salmi has
designed the current layout of CSES. Other contributors in the project are Matias Lahti
and Henrik Lievonen.

6. References

Codeforces (2020). Access 2020-04. https://codeforces.com/
Enström, E., Kreitz, G., Niemelä, F., Söderman, P., Kann, V. (2011). Five years with Kattis – using an auto-

mated assessment system in teaching. IEEE Frontiers in Education Conference 2011.
Kolstad, R., Piele, D. (2007). USA Computing Olympiad (USACO). Olympiads in Informatics, 1, 105–111.
Laaksonen, A. (2017). Guide to Competitive Programming: Learning and Improving Algorithms Through

Contests. Springer.

CSES – Yet Another Online Judge 111

Maggiolo, S., Mascellani, G. (2012). Introducing CMS: A contest management system. Olympiads in Infor-
matics, 6, 86–99.

Mare, M., Blackham, B. (2012). A new contest sandbox. Olympiads in Informatics, 6, 100–109.
Problems (2020). Access 2020-04. https://oj.uz/
Revilla, M.A., Manzoor, S., Liu, R. (2008). Competitive learning in informatics: The UVa online judge experi-

ence. Olympiads in Informatics, 2, 131–148.
Skiena, S.S., Revilla, M.A. (2003). Programming Challenges: The Programming Contest Training Manual.

Springer
Wasik, S., Antczak, M., Badura, J., Laskowski, A., Sternal, T. (2018). A survey on online judge systems and

their applications. ACM Computing Surveys, 51(1), Article 3, 34 pages.

A. Laaksonen works as a university lecturer at the Department of
Computer Science of the University of Helsinki. He is one of the
organizers of the Finnish Olympiad in Informatics and has written
a book on competitive programming. His role in the CSES project
has been to implement the website and lead the creation of the CSES
Problem Set.

T. Talvitie works as a postdoctoral researcher at the Department of
Computer Science of the University of Helsinki. His main research
interest is in optimizing algorithms to run efficiently on modern hard-
ware. In the CSES project, his role is the implementation of the judg-
ing system and the

Olympiads in Informatics, 2020, Vol. 14, 113–132
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.09

113

Informatical Thinking

Michael LODI
Department of Computer Science and Engineering, INRIA Focus, Lab. CINI Informatica e Scuola
Alma Mater Studiorum – Università di Bologna, Bologna, Italy
e-mail: michael.lodi@unibo.it

Abstract. In this paper, we reviewed many definitions of computational thinking, finding they
share a lot of common elements, of very different nature. We classified them in mental processes,
methods, practices, and transversal skills. Many of these elements seem to be shared with other
disciplines and resonate with the current narrative on the importance of 21st-century skills. Our
classification helps on shedding light on the misconceptions related to each of the four categories,
showing that, not to dilute the concept, elements of computational thinking should be intended
inside the discipline of Informatics, being its “disciplinary way of thinking”.

Keywords: computational thinking, informatics, misconceptions, definition, disciplinary way of
thinking, informatical thinking.

1. Introduction1

The expression computational thinking (CT, from now on) seems to have been firstly
used in print by Seymour Papert (1980) and then was brought to the attention of the
informatics community by Jeannette Wing (2006).

From 2006, a considerable body of literature has been produced to search for a better
definition of this concept, to provide tools and frameworks, to introduce and assess CT
in K-12 education.

Even if there is no agreement between authors, a lot of proposed definitions stress
the fact that CT is not only about technical methods and practices, but also about mental
processes and transversal competences2 like creativity, collaboration, tolerance for am-
biguity, resilience, and more. However, educational and psychological research warns
about optimistic claims on the transfer of competences from a discipline to other far
domains and to general skills.

1	 This paper is based on material from author’s PhD thesis (Lodi, 2020).
2	 Often referred also as transversal skills, soft skills or key competences, in the context of EU documents, in

particular in the “Personal, social and learning competence,” see for example
http://data.consilium.europa.eu/doc/document/ST-5464-2018-ADD-2/EN/pdf

M. Lodi114

In this paper, we review some of the most important definitions emerged in the last
years and propose a classification of the common elements that can be useful to better
frame the misinterpretations of the concepts.

We will argue that CT must maintain its bond with informatics, representing its “dis-
ciplinary way of thinking”.

2. Definitions of Computational Thinking3

The expression “computational thinking” was brought back to the informatics commu-
nity by Wing (2006), gaining massive attention4. In that seminal article, Wing did not
give a definition, but related the concept to informatics, stating “Computational think-
ing involves solving problems, designing systems, and understanding human behavior,
by drawing on the concepts fundamental to computer science”, arguing that “thinking
like computer scientists” would be a benefit for everyone, not just for professionals or
scientists.

In these years, many definitions have been proposed. In Corradini et al. (2017b)
authors started from five of the most important definitions to find out constituting el-
ements of CT. Juškevičienė & Dagienė (2018) schematized many of the definitions
proposed from Papert’s views up to 2017. We review all of them in the following table.
In the third column, we provide pointers to the classification that we will propose in
Section 3.

Paper Description Elements
(Sec. 3)

Wing (2006) In her seminal article, Wing informally defines CT as “thinking like computer
scientists”.

1)

Wing
(2008, 2011)

Wing defines more formally CT as “the thought processes involved in formulating
problems and their solutions so that the solutions are represented in a form that can
be effectively carried out by an information-processing agent”.

This definition is attributed to Jan Cuny, Larry Snyder, and Jeannette M. Wing,
in an unpublished work from 2010: “Demystifying Computational Thinking for Non-
Computer Scientists,” referenced by Wing (2011) herself. Moreover, Wing says it
was originated by a discussion with Alfred Aho.

Wing also identifies characteristic elements of CT. In particular, she states
the most important elements are abstraction (the “mental” tool of computing)
and automation (by using a computer, the “metal” tool of computer scientists):
“computing is the automation of our abstractions” (Wing, 2008).

Wing (2011) recognises significant overlapping or inclusions between CT and
other types of thinking: logical thinking, algorithmic thinking, parallel thinking,
compositional reasoning, pattern matching, procedural thinking, and recursive
thinking.

1) d)
2) a)

1) a) b)
2) c)
e) f)

Continued on next page

3	 This section and the following one (Sec. 3) is an expansion of part of the work presented in Corradini et al.
(2017b).

4	 Currently (July 2020), the paper has more than 6300 citations, according to Google Scholar.

Informatical Thinking 115

Table – continued from previous page

Paper Description Elements
(Sec. 3)

Aho (2011) Alfred Aho provides a definition very similar to the Cuny-Snyder-Wing one, more
focused on “algorithmic thinking”: “We consider computational thinking to be
the thought processes involved in formulating problems so their solutions can be
represented as computational steps and algorithms.”

It is worth noticing that Aho stresses, in particular, the role played in this
definition by the information processing agent, and that computational thinking
should be based on clearly defined models of computation.

1) a)

ISTE&CSTA
(2011a,b)

ISTE & CSTA proposed an operational definition, targeting specifically K-12
educators. They define CT as a problem-solving process that includes (but is not
limited to) the following characteristics:

Formulating problems in a way that enables us to use a computer and other tools •	
to help solve them
Logically organizing and analyzing data•	
Representing data through abstractions such as models and simulations•	
Automating solutions through algorithmic thinking (a series of ordered steps)•	
Identifying, analyzing, and implementing possible solutions with the goal of •	
achieving the most efficient and effective combination of steps and resources
Generalizing and transferring this problem-solving process to a wide variety of •	
problems

Moreover, they state that CT is “supported and enhanced by a number of dispositions
or attitudes” that include:

Confidence in dealing with complexity•	
Persistence in working with difficult problems•	
Tolerance for ambiguity•	
The ability to deal with open ended problems•	
The ability to communicate and work with others to achieve a common goal or •	
solution

Finally they propose a CT vocabulary (ISTE & CSTA, 2011a), listing a set of CT
terms with a brief definition or explanation:

Data Collection•	
Data Analysis•	
Data Representation•	
Problem Decomposition•	
Abstraction•	
Algorithms and Procedures•	
Automation•	
Simulation•	
Parallelization•	

1) a) c)
d) f)

2) a) b)
c) d) e)

4) b)
d) e)

Google (n.d.) Google assumes the same ISTE/CSTA definition but – instead of a vocabulary – lists
and (re)defines a series of CT concepts, pointing out that they are mental processes
or tangible outcomes:

Abstraction•	
Algorithm Design•	
Automation•	
Data Analysis•	
Data Collection•	
Data Representation•	
Decomposition•	
Parallelization•	
Pattern Generalization•	
Pattern Recognition•	
Simulation•	

1) a) c)
d) e) f)

2) a) b)
c) d)

Continued on next page

M. Lodi116

Table – continued from previous page

Paper Description Elements
(Sec. 3)

Brennan
& Resnick
(2012)

Brennan and Resnick present a computational thinking framework to describe learning
and development that take place when designing and programming interactive media
with Scratch platform. They state CT involves three dimensions:

Computational concepts•	 designers employ as they program:
Sequences◦◦
Loops◦◦
Parallelism◦◦
Events◦◦
Conditionals◦◦
Operators◦◦
Data ◦◦

Computational practices•	 designers develop as they program:
Being incremental and iterative, ◦◦
Testing and debugging, ◦◦
Reusing and remixing◦◦
Abstracting and modularizing◦◦

Computational perspectives•	 designers form about the world around them and
about themselves:

Expressing◦◦
Connecting◦◦
Questioning◦◦

1) a) c)
d)

2) b)
c) f)

3) a) b)
c)

4) a) b)
c)

Csizmadia
et al. (2015)

Computing at school assume a Wing-like definition: CT is “learning to think in ways
which allow us, as humans, to solve problems more effectively and, when appropriate,
use computers to help us do so” and then state it involves

Six concepts •	
Logic◦◦
Algorithms◦◦
Decomposition◦◦
Patterns◦◦
Abstraction◦◦
Evaluation ◦◦

Five approaches •	
Tinkering◦◦
Creating◦◦
Debugging◦◦
Persevering◦◦
Collaborating◦◦

1) a) b)
c) d)
e) f)

2) e)

3) a) b)

4) a) b)
e)

Grover and
Pea (2013)

After a literature review, assumed the Aho-Cuny-Snyder-Wing definition and agreed
that the following elements are accepted:

Abstractions and pattern generalizations (including models and simulations)•	
Systematic processing of information•	
Symbol systems and representations•	
Algorithmic notions of flow of control•	
Structured problem decomposition (modularizing)•	
Iterative, recursive, and parallel thinking•	
Conditional logic•	
Efficiency and performance constraints•	
Debugging and systematic error detection•	

1) a) b)
c) d) f)

2) b) c)
d) e) f)

3) b)

Continued on next page

Informatical Thinking 117

Table – continued from previous page

Paper Description Elements
(Sec. 3)

Selby and
Woollard
(2013)

In a widely referenced Technical Report, Selby and Woollard examined a number of
CT definitions, and argued that the most relevant and useful elements are:

Thought process•	
Abstraction•	
Decomposition•	
Algorithmic thinking•	
Evaluation•	
Generalization•	

1) a) c)
d) f)

2) e)

Weintrop
et al. (2016)

They propose a definition of CT for mathematics and science. From a literature
review, they start with an initial set of activities:

Ability to deal with open-ended problems•	
Persistence in working through challenging problems•	
Confidence in dealing with complexity•	
Representing ideas in computationally meaningful ways•	
Breaking down large problems into smaller problems•	
Creating abstractions for aspects of problem at hand•	
Reframing problem into a recognizable problem•	
Assessing strengths/weaknesses of a representation of data/representational •	
system
Generating algorithmic solutions•	
Recognizing and addressing ambiguity in algorithms•	

After that, by analyzing CT activities for math and science, propose the “Computational
thinking in mathematics and science taxonomy”.

Data practices:•	
Collecting Data◦◦
Creating Data◦◦
Manipulating Data◦◦
Analyzing Data◦◦
Visualiging Data◦◦

Modeling and simulation practices:•	
Using Computational Models to Understand a Concept◦◦
Using Computational Models to Find and Test solutions◦◦
Assessing Computational Models◦◦
Designing Computational Models◦◦
Constructing Computational Models◦◦

Computational problem solving practices:•	
Preparing Problems for Computational Solutions◦◦
Programming◦◦
Choosing Effective Computational Tools◦◦
Assessing Different Approaches/Solutions to a Problem◦◦
Developing Modular Computational Solutions◦◦
Creating Computational Abstractions◦◦
Troubleshooting and Debugging◦◦

Systems thinking practices:•	
Investigating a Complex System as a Whole◦◦
Understanding the Relationships within a System◦◦
Thinking in levels◦◦
Communicating Informations about a System◦◦
Defining Systems and Managing Complexity◦◦

1) a) d)
e) f)

2) b) d)
e) f)

3) b)

4) a) d)
e)

Continued on next page

M. Lodi118

Table – continued from previous page

Paper Description Elements
(Sec. 3)

Kalelioğlu
et al. (2016)

They view CT as a “complex higher-order thinking, skills may require to use the
power of human cognitive ability and embrace the support of machines to think
and solve problems.” They propose a “Framework for Computational Thinking as
a Problem Solving Process” in five steps.

Identify the problem•	
Abstraction◦◦
Decomposition◦◦

Gathering, representing and analysing data•	
Data collection◦◦
Data analysis◦◦
Pattern recognition◦◦
Conceptualising◦◦
Data representation◦◦

Generate, select and plan solutions•	
Mathematical reasoning◦◦
Building algorithms and procedures◦◦
Parallelisation◦◦

Implement solutions•	
Automation◦◦
Modelling and simulations◦◦

Assessing solutions and continue for improvement•	
Testing◦◦
Debugging◦◦
Generalisation◦◦

1) c) d)
e) f)

2) a) b)
c) d) e)

3) b)

4) a)

Krauss and
Prottsman
(2016)

Krauss and Prottsman define5 CT as using thinking patterns and processes to pose
and solve problems or prepare programs for computation.
Lessons plans are given for the following categories:

Decomposition (data analysis)•	
Pattern matching (data visualization)•	
Abstraction (data modelling, pattern generalization)•	
Automation (algorithm design, parallelization, simulation)•	

1) a) c)
d) e)

2) a) b)
c) d)

4) a)

Shute et al.
(2017)

After an extensive literature review, they provide a very general definition of CT:
“the conceptual foundation required to solve problems effectively and efficiently
(i.e., algorithmically, with or without the assistance of computers) with solutions
that are reusable in different contexts.”. They then recognize the following
categories and subcategories, giving however explanations that are quite general
and far from Informatics.

Decomposition•	
Abstraction (data collection and analysis, pattern recognition, modelling)•	
Algorithms (algorithm design, parallelism, efficiency, automation)•	
Debugging•	
Iteration•	
Generalization•	

1) a) c)
d) e) f)

2) a) b)
c) d) e)

3) a) b)

4) a)

Continued on next page

5	 As cited in Juškevičienė and Dagienė (2018, p. 270).

Informatical Thinking 119

Table – continued from previous page

Paper Description Elements
(Sec. 3)

College
Board (2017)

Proposes a CT framework for the AP CS Principles course, made of six practices.
Connecting Computing•	

Identify impacts of computing.◦◦
Describe connections between people and computing.◦◦
Explain connections between computing concepts.◦◦

Creating Computational Artifacts•	
Create a computational artifact with a practical, personal, or societal ◦◦
intent.
Select appropriate techniques to develop a computational artifact.◦◦
Use appropriate algorithmic and information management principles.◦◦

Abstracting•	
Explain how data, information, or knowledge is represented for computational ◦◦
use.
Explain how abstractions are used in computation or modeling.◦◦
Identify abstractions.◦◦
Describe modeling in a computational context.◦◦

Analyzing Problems and Artifacts•	
Evaluate a proposed solution to a problem.◦◦
Locate and correct errors.◦◦
Explain how an artifact functions.◦◦
Justify appropriateness and correctness of a solution, model, or artifact.◦◦

Communicating•	
Explain the meaning of a result in context.◦◦
Describe computation with accurate and precise language, notations, or ◦◦
visualizations.
Summarize the purpose of a computational artifact.◦◦

Collaborating•	
Collaborate with another student in solving a computational problem.◦◦
Collaborate with another student in producing an artifact.◦◦
Share the workload by providing individual contributions to an overall ◦◦
collaborative effort.
Foster a constructive, collaborative climate by resolving conflicts and ◦◦
facilitating the contributions of a partner or team member.
Exchange knowledge and feedback with a partner or team member.◦◦
Review and revise their work as needed to create a high-quality artifact.◦◦

1) a) d)

2) b)
d) e)

3) b)

4) a) b)
c)

Denning and
Tedre (2019)

Denning and Tedre, in their book about CT, proposed the following definition:
Computational thinking is the mental skills and practices for

Designing computations that get computers to do jobs for us, and•	
Explaining and interpreting the world as a complex of information processes•	

Moreover, they distinguish between “CT for beginners” (the one that is spreading
in K-12 education, teaching basic computational problem solving) with “CT for
professionals” (the one used by cutting-edge engineers and scientists in all fields as
a powerful professional tool).
They recognize CT has six important dimensions, “windows” looking at CT:

Methods•	
Machines•	
Computing Education•	
Software Engineering•	
Design•	
Computational Science•	

4) a) c)

2) a) d)

Continued on next page

M. Lodi120

Table – continued from previous page

Paper Description Elements
(Sec. 3)

Juškevičienė
& Dagienė
(2018)

After reviewing many definitions, Juškevičienė & Dagienė found eight CT
components groups.

Data analysis & representation•	
Data collection◦◦
Data analysis◦◦
Data representation◦◦
Generalisation◦◦
Patterns finding◦◦
Drawing conclusions◦◦

Computing Artefacts•	
Artefact development◦◦
Artefact designing◦◦

Decomposition•	
Breaking into parts◦◦

Abstraction•	
Details suppression◦◦
Modelling◦◦
Information filtering◦◦

Algorithms•	
Sequence of steps◦◦
Procedures◦◦
Set of instructions◦◦
Automation◦◦

Communication & collaboration•	
Communication◦◦
Collaboration◦◦
Computational analysis◦◦

Computing & Society•	
Computing influence◦◦
Computing implication◦◦
Computing concepts◦◦

Evaluation•	
Evaluation◦◦
Correction◦◦

1) a) b)
c) d)
e) f)

2) a) b)
d) e)

3) b)

4) a) b)
c)

3. Comparison

We compared the CT elements found in the analysed definitions.
Those who give a precise definition agree on the fact that CT is a way of thinking

(thought process) for problem solving. They all somehow specify that it is a compu-
tational (rather than general) problem solving: the formulation and the solution of the
problem must be expressed in a way that allows an “external” processing agent (a human
or a machine) to carry it out.

Apart from the general statement, all definitions list some constitutive elements of
CT. These elements are of very different kinds (from thinking habits to specific program-

Informatical Thinking 121

ming concepts), and many authors group them in categories, but there is no universal
agreement on the classification.

We classified all the elements into four categories. For each category, we list the
elements, trying to summarise all aspects stated in the analysed definitions. Instead of
an “intersection approach”, keeping only the elements that had a wider consensus (like
what was done by Selby & Woollard (2013)), we used a “union approach”, trying to
build a comprehensive list of all the characteristics proposed by different authors.

 1)	 Mental/thought processes: mental strategies useful to solve problems.
 a)	 Algorithmic thinking: use algorithmic/procedural thinking (ISTE & CSTA,
2011b; Wing, 2008, 2011) to design a sequence of ordered step (instructions)
to solve a problem, achieve a goal or perform a task (Brennan & Resnick,
2012; Csizmadia et al., 2015; Google, n.d.; ISTE & CSTA, 2011a). Also
recognised by (College Board, 2017; Grover & Pea, 2013; Juškevičienė &
Dagienė, 2018; Krauss & Prottsman, 2016; Selby & Woollard, 2013; Shute
et al., 2017; Weintrop et al., 2016).
 b)	 Logical thinking: use logical thinking (Wing, 2011) and reasoning to make
sense of things, establish and check facts (Csizmadia et al., 2015). Also rec-
ognised by (Grover & Pea, 2013; Juškevičienė & Dagienė, 2018).
 c)	 Problem decomposition and modularisation: split a complex problem into
simpler subproblems to solve it more easily (Csizmadia et al., 2015; Google,
n.d.; ISTE & CSTA, 2011a); modularise (Brennan & Resnick, 2012); use com-
positional reasoning (Wing, 2008). Also recognised by (Grover & Pea, 2013;
Juškevičienė & Dagienė, 2018; Kalelioğlu et al., 2016; Krauss & Prottsman,
2016; Selby & Woollard, 2013; Shute et al., 2017).
 d)	 Abstraction: get rid of useless details to focus on relevant information or ideas
(Brennan & Resnick, 2012; Csizmadia et al., 2015; Google, n.d.; ISTE & CSTA,
2011a; Wing, 2011). Also recognised by (College Board, 2017; Grover & Pea,
2013; Juškevičienė & Dagienė, 2018; Kalelioğlu et al., 2016; Krauss & Protts-
man, 2016; Selby & Woollard, 2013; Shute et al., 2017; Weintrop et al., 2016).
 e)	 Pattern recognition: discover and use regularities in data and problems
(Csizmadia et al., 2015; Google, n.d.; Wing, 2011). Also recognised by
(Juškevičienė & Dagienė, 2018; Kalelioğlu et al., 2016; Krauss & Prottsman,
2016; Shute et al., 2017; Weintrop et al., 2016).
 f)	 Generalisation: use discovered similarities to make predictions or to solve
more general problems (Csizmadia et al., 2015; Google, n.d.; ISTE & CSTA,
2011b). Also recognised by (Grover & Pea, 2013; Juškevičienė & Dagienė,
2018; Kalelioğlu et al., 2016; Selby & Woollard, 2013; Shute et al., 2017;
Weintrop et al., 2016).

 2)	 Methods: operational approaches widely used by computer scientists.
 a)	 Automation: automate the solutions (ISTE & CSTA, 2011b; Wing, 2008);
use a computer or a machine to do repetitive tasks (Google, n.d.; ISTE &
CSTA, 2011a). Also recognised by (Denning & Tedre, 2019; Juškevičienė

M. Lodi122

& Dagienė, 2018; Kalelioğlu et al., 2016; Krauss & Prottsman, 2016; Shute
et al., 2017).
 b)	 Data collection, analysis and representation: gather information/data, make
sense of them by finding patterns, represent them properly (Google, n.d.; ISTE
& CSTA, 2011a); store, retrieve and update values (Brennan & Resnick, 2012).
Also recognised by (College Board, 2017; Grover & Pea, 2013; Juškevičienė
& Dagienė, 2018; Kalelioğlu et al., 2016; Krauss & Prottsman, 2016; Shute
et al., 2017; Weintrop et al., 2016).
 c)	 Parallelisation: carry out tasks simultaneously to reach a common goal
(Brennan & Resnick, 2012; Google, n.d.; ISTE & CSTA, 2011a), use parallel
thinking (Wing, 2011). Also recognised by (Grover & Pea, 2013; Kalelioğlu
et al., 2016; Krauss & Prottsman, 2016; Shute et al., 2017).
 d)	 Modelling and simulation: represent data and (real world) processes through
models (Google, n.d.; ISTE & CSTA, 2011b), run experiments on models
(ISTE & CSTA, 2011a). Also recognised by (College Board, 2017; Den-
ning & Tedre, 2019; Grover & Pea, 2013; Juškevičienė & Dagienė, 2018;
Kalelioğlu et al., 2016; Krauss & Prottsman, 2016; Shute et al., 2017; Wein-
trop et al., 2016).
 e)	 Analysis and evaluation: implement and analyse solutions (ISTE & CSTA,
2011a) to judge them (Csizmadia et al., 2015), in particular for what concerns
effectiveness, and efficiency in terms of time and resources. Also recognised
by (College Board, 2017; Grover & Pea, 2013; Juškevičienė & Dagienė,
2018; Kalelioğlu et al., 2016; Selby & Woollard, 2013; Shute et al., 2017;
Weintrop et al., 2016).
 f)	 Programming: use some common concepts in programming (e.g. loops,
events, conditionals, mathematical and logical operators (Brennan & Resnick,
2012), recursion (Wing, 2011)). Also recognised by (Grover & Pea, 2013;
Weintrop et al., 2016).

 3)	 Practices: typical practices used in the implementation of computing machinery
based solutions.

 a)	 Experimenting, iterating, tinkering: in iterative and incremental software de-
velopment, one develops a project with repeated iterations of a design-build-
test cycle, incrementally building the final result (Brennan & Resnick, 2012);
tinkering means trying things out using a trial and error process, learning by
playing, exploring, and experimenting (Csizmadia et al., 2015). Also recogn-
ised by (Shute et al., 2017).
 b)	 Test and debug: verify that solutions work by trying them out (Brennan &
Resnick, 2012); find and solve problems (bugs) in a solution/ program (Csiz-
madia et al., 2015). Also recognised by (College Board, 2017; Grover & Pea,
2013; Juškevičienė & Dagienė, 2018; Kalelioğlu et al., 2016; Shute et al.,
2017; Weintrop et al., 2016).
 c)	 Reuse and remix: build your solution on existing code, projects, ideas (Bren-
nan & Resnick, 2012).

Informatical Thinking 123

 4)	 Transversal skills: general ways of seeing and operating in the world fostered by
thinking like computer scientists; useful life skills that can enhance thinking like
a computer scientist.

 a)	 Design and create: design and build things (Csizmadia et al., 2015) and
computational artifacts, use computation to be creative and express yourself
(Brennan & Resnick, 2012). Also recognised by (College Board, 2017; Den-
ning & Tedre, 2019; Juškevičienė & Dagienė, 2018; Kalelioğlu et al., 2016;
Krauss & Prottsman, 2016; Shute et al., 2017; Weintrop et al., 2016).
 b)	 Communicate and collaborate: connect with others and work together to cre-
ate something with a common goal and to ensure a better solution (Brennan
& Resnick, 2012; Csizmadia et al., 2015; ISTE & CSTA, 2011b). Also recog-
nised by (College Board, 2017; Juškevičienė & Dagienė, 2018).
 c)	 Reflect, learn, meta-reflect, understand the world computationally: use com-
putation to reflect and understand computational aspects of the world (Bren-
nan & Resnick, 2012), identify impacts of computing on society (College
Board, 2017). Also recognised by (Denning & Tedre, 2019; Juškevičienė &
Dagienė, 2018).
 d)	 Be tolerant for ambiguity: deal with non-well specified and open-ended, real-
world problems(ISTE & CSTA, 2011b). Also recognised by (Weintrop et al.,
2016).
 e)	 Be persistent when dealing with complex problems: be confident in working
with difficult or complex problems (ISTE & CSTA, 2011a), persevering, be-
ing determined, resilient and tenacious (Csizmadia et al., 2015). Also recog-
nized by (Weintrop et al., 2016).

4. CT as Informatics “Disciplinary Way of Thinking”

Note that many of the cited elements in the previous classification are broad and general.
This led to some critiques (for an overview, see Martins-Pacheco et al. (2020)): some of
these concepts are not exclusively associated with Informatics, but taught in other disci-
plines (e.g., Math and Sciences) or are general skills that children have been learning for
a long time before the birth of Informatics. Cansu & Cansu (2019), summarising critics
from Hemmendinger (2010), stated for example that:

Reformulating hard problems is typical of all domains of problem solving.●●
Philosophers have been thinking about thinking – recursively – for a long time.●●
Mathematics surely uses abstraction, and so do all disciplines that build models.●●
Separation of concerns and using heuristics also characterizes problem-solving ●●
in general.

By contrast, other authors argue that computing features extend and differentiate
these elements from other domains (Grover & Pea, 2013), and provide some character-
istic problem-solving methods (e.g., the possibility to effectively execute a solution, a
model, an abstraction by running an implementation of its algorithm (Martini, 2012)).

M. Lodi124

We agree, arguing that Informatics is what needs to be taught in schools, and CT is,
at most, the conceptual sediment of that teaching, what remains even when the technical
aspects have been forgotten (Lodi et al., 2017).

In other disciplines, like Math, it is recurrent to talk about mathematical thinking
(Sternberg & Ben-Zeev, 1996), or mathematical reasoning (English, 1997), or math-
ematical problem solving (Schoenfeld, 1985).

Like what mathematical thinking is for Math, CT is Informatics “disciplinary way of
thinking” (Pace & Middendorf, 2004) (and this explains the provocative title “Informati-
cal thinking”).

Chick et al. (2009), talking about signature pedagogies (pedagogies to “engage stu-
dents in the ways of knowing, the habits of mind, and the values shared by experts in [a]
field” (Gurung et al., 2009, p. xvii)), affirms that “effective teaching results from core
values and principles of our courses and of our disciplines, rather than from generic
views of learning. […] higher-level thinking is inhibited by such generic conceptions
and lays the groundwork for questions about the central values, habits, and ways of
thinking within their disciplines” (Chick et al., 2009, p. 4).

According to Li et al. (2019, p. 8)

[…] domain-specific thinking and domain-general thinking are not
dichotomous, as thinking itself is a complex process involving many
different components. Domain-general thinking is often derived
from human’s thinking performance across different knowledge-
lean (e.g., solving a puzzle) or -rich task domains (e.g., solving al-
gebraic equations). Domain-specific thinking is often characterized
in terms of its disciplinary content but also involves more general
cognitive components. In other words, domain-specific thinking
should contain both domain-specific and -general aspects of cogni-
tive activities. For example, a mathematician’s thinking is scarcely
only mathematics (the knowledge component). It can share possible
common elements with a biologist’s thinking (e.g., certain aspects
of metacognition and meta-representation). The same reasoning ap-
plies to students’ thinking in specific disciplines. […] some aspects
of mathematical problem solving are largely discipline specific (e.g.,
the knowledge base), some heavily discipline-oriented (e.g., strate-
gies and beliefs), some much like discipline domain-general (e.g.,
metacognition).

While we agree disciplinary thinking contains both specific and general aspects, we
keep spotting the tendency of educators and policymakers to focus, for what concerns
CT, only on the more general ones.

Voogt et al. (2015) recognise, in some of the abovementioned definitions of CT, a
tension between “the ‘core’ qualities of CT versus certain more ‘peripheral’ qualities”.
The latter highly overlap with what we called “transversal skills,” and we agree with

Informatical Thinking 125

Voogt that this “runs the risk of diluting the idea of CT, blurring and making it indistinct
from other 21st century skills”.

As CT movement has grown in educational contexts, many unverified claims about
the effects of learning CT/Informatics has emerged (e.g., that it will automatically
transfer to thinking logically, better problem solving in every aspect of life, develop-
ing perseverance, getting better results in math and science, and so on (Lewis, 2017)).
Most of these claims are not supported by research, and “appear in blog posts, opinion
pieces, and other ‘grey literature’” (Duncan, 2019, p. 32). As Denning & Tedre (2019,
p.xiii) put it:

[CT] is sometimes portrayed as a universal approach to problem solv-
ing. Take a few programming courses, the story in the popular media
goes, and you will be able to solve problems in any field. Would that
this were true! Your ability to solve a problem for someone depends
on your understanding of their context in which the problem exists.
For instance, you cannot build simulations of aircraft in flight without
understanding fluid dynamics. You cannot program searches through
genome databases without understanding the biology of the genome
and the methods of collecting the data. Computational thinking is
powerful, but not universal.

As we will see, non-specialist teachers that most probably never studied Informatics
in their schooling or training may tend to stick to some “general versions” of the listed
characteristics (and especially on the peripheral qualities), not necessarily related to
Informatics.

We believe, by contrast, CT must be understood inside Informatics: while many
characteristics are (more or less apparently) shared with other disciplines, we need to
focus on their specific “informatical” instantiation.

We believe that the classification we proposed in the previous section is a good tool
to frame the misconceptions about CT and Informatics in K-12 education (Denning,
2017; Denning et al., 2017). In the next four subsections, we will discuss in this light the
four main categories we recognised.

4.1. Mental Processes

Mental processes are, on the surface, shared with other disciplines, but should be un-
derstood and experienced as Informatics specific. “CT draws on a rich legacy of related
frameworks as it extends previous thinking skills” (Lee et al., 2011, p. 32).

First of all, analysed definitions are clear in stressing on the computational (rath-
er than general) nature of problem solving. In facts, many authors (recall for example
Aho’s position) agree that what differentiates algorithmic thinking (which has been used
for centuries, firstly by mathematicians) and computational thinking is the automation
of the algorithm (Stephens & Kadijevich, 2020).

M. Lodi126

Next, as diSessa points out, abstraction, one of the core CT concepts according to
Wing and many others, has different nuances in different disciplines:

Mathematical abstraction (let’s call it, inferential abstraction) occurs
in order to build conceptual worlds where a small set of attributes
fully define entities, resulting in a substantial inferential fabric – a
family of basic ideas and secure inferences (proofs) from them to oth-
er ideas (theorems). Abstraction in physics (empirical abstraction) is
taking a look at the world and finding in it new things that cut away
certain details, but build on others that might initially be completely
ignored, in order to create core models that apply across a very wide
range of circumstances. Mathematicians do not, in general, need or
use the skill of “peeling away” from the world as it exists, nor dig-
ging through the difficulties of finding out how the world is in the first
place, nor do they have the constraint of confirming empirically that
the world admits in a certain abstraction, usually within prescribed
limits. Abstraction in computer science (practical abstraction) resides
substantially in peeling away the irrelevant particulars of an imple-
mentation so that one only need think about the features of a piece of
it that are essential for a given use – its “contract” with the rest of the
program. (diSessa, 2018, p. 21)

Moreover, it is hugely debated if general skills (like general problem solving, critical
thinking, creative thinking, decision making, and so on) exist, are transferrable or even
teachable (for a comprehensive review, see (Lodi, 2020, ch. 4)). For example, Gick &
Holyoak (1980) found that problem decomposition, one of the most highlighted aspects
of CT (Guzdial, 2019), is not easily transferrable. They described to students a situation
where an army had to be divided into small groups to successfully attack a fortress;
immediately after they asked the students how to attack a tumour with a laser without
damaging healthy tissues. The vast majority of the students were not able to use the same
approach (divide the laser in multiple weaker beams). They only managed to do so when
explicitly prompted to think at the army example.

That is why these skills should be taught in an Informatics-specific context.

4.2. Informatics Methods

Many methods are, again, shared with other disciplines, but we believe they must be
experienced in the context of automatic elaboration of information.

Emblematic examples are unplugged activities, teaching activities not using a com-
puter or tablet or smartphone to teach informatics concepts and methods. After experi-
encing the activities without computers, it is essential to relate what students have done
to the specific informatics context, to understand what happens on physical devices. Bell
& Vahrenhold (2018) suggest that Unplugged activities offer best results when used

Informatical Thinking 127

in combination with “plugged approaches” (i.e. programming tasks). Using unplugged
activities before the plugged one seems to foster even more effective results than the
programming activities alone.

Two early studies discovered that, without this explicit connection, “the program
[based on CS Unplugged] had no statistically significant impact on student attitudes
toward computer science or perceived content understanding” (Feaster et al., 2011) and
that “the students’ attitudes and intentions regarding CS did not change in the desired
direction” (Taub et al., 2012).

4.3. Informatics Practices

Listed practices are, of course, shared with other disciplines and activities. As we will
also discuss for transversal competences, we should not justify the introduction of In-
formatics in K-12 education mainly for teaching this kind of general approaches (which
have been used and taught for centuries before the advent of Informatics).

However, we agree that computers are powerful tools to “concretely experiment
with”. This is one aspect of the constructionist learning theory from Seymour Papert
(see Lodi (2020, chapters 3, 6)).

Already in 1970, Papert and colleagues, while designing and experimenting with
the LOGO programming language, noted (Feurzeig et al., 1970) that the peculiarities of
computer programming make it a privileged tool for learning problem solving with an
experimental approach. In fact, children have to impose on themselves rigour and preci-
sion in instructing the computer – being explicit and precise is not imposed (incompre-
hensibly) by enforcement of the teacher, but naturally emerges from the need of being
understood by an automated executor with a limited instruction set, which is unable to
perform any “human” inference. Briefly: the computer creates an intrinsic motivation to
learn by trial, error and debug.

4.4. Transversal Competences

Transversal competences like perseverance and tolerance for ambiguity are useful for
learning a difficult topic like Informatics, but including it in the definition may cause
people to think CT is mainly about these competences.

For example, Corradini et al. (2017a) found that teachers saw the value of Pro-
gramma il Futuro project (the Italian version of Code.org) more in fostering transver-
sal competences or domain-general skills (like promotion of awareness and compre-
hension of problem solving, logical thinking, creativity, attention, planning ability,
motivation for learning, students interest, cooperation) than in teaching Informatics
core concepts.

The same sample (Corradini et al., 2017b) struggled to give a sound and complete
definition of CT, focusing on some crucial aspects like problem solving, mental pro-

M. Lodi128

cesses, logic, but often forgetting to refer in any way to an information-processing agent,
giving a very partial view of Informatics. Moreover, many of them mentioned transver-
sal competences, which hints the view of Informatics as an instrumental discipline, not
valuable in itself. This is possibly deriving from attempts to convince teachers of the
importance of CT by focusing mainly on its value for other disciplines and as a general
learning tool.

Moreover, non-specialists may get the wrong direction of the implication: while re-
searchers agree that competences like perseverance, dealing with complexity, and col-
laboration are essential to succeed in Informatics, which is a challenging subject (Mur-
phy & Thomas, 2008), the opposite implication (CT fostered by these skills) is far from
being proved.

For example, Lewis (2017, p. 18) states that “programming has been speculated to
be uniquely qualified to help normalize failure and thus encourage productive learning
strategies”. However, research in education tells us that transfer is difficult and unlikely
to happen, especially between knowledge domains far from one another, and especially
when treating domain-general skills (Guzdial, 2015; Lewis, 2017).

At the moment, there is no proof that transversal skills like perseverance are au-
tomatically fostered by learning CT (for examples, we found no difference in stu-
dents’ mindset, with respect of studying or not studying Informatics at school (Lodi,
2019)).

5. Conclusions

The expression “computational thinking” has become a buzzword related to the in-
troduction of CS in K-12 education. Although it had already been used in the 80s by
Papert, it started to be massively used in Informatics education after being re-proposed
by Wing.

Many authors tried to define CT: despite being quite different, the most famous defini-
tions share many characteristics. All agree CT is a form of thinking for solving problems
by expressing the solution in a way that can be automatically carried out by an (external)
processing agent. We identified four categories of CT constitutive elements proposed by
authors: mental processes, methods, practices, and transversal skills. We argued that this
classification could be useful to frame misconceptions about CT.

Mental processes (e.g., problem solving, problem decomposition, abstraction, logi-
cal thinking) and transversal competences (e.g., tolerance for ambiguity, perseverance)
resonate with the current narrative on the importance of the 21st-century skills, and are
probably even one of the reasons of the widespread of CT in education. This is con-
firmed by large scale qualitative studies (Corradini et al., 2017a), showing that general-
ist teachers mainly find value in introducing CT in schools for promoting general skills
rather than Informatics core concepts.

However, educational research warns about the transferability of this kind of general
skills between disciplines, and some even doubt their teachability.

Informatical Thinking 129

Moreover, putting too much focus on this aspects risks to dilute the fundamental con-
cepts that distinguish CS from other disciplines (e.g., the presence of a precise external
executor that solves problems following provided algorithms, the possibility to describe
and execute abstractions through specific languages, the possibility to simulate worlds,
and so on). The definitions of CT contain many elements directly linked to CS methods
(e.g., automation, data analysis, evaluation) and programming practices (e.g., iterating,
debugging). However, educators may fail to include references to these CS specific as-
pects in their definition of CT.

Since even more specific concepts appear to be shared with other disciplines, the
message that teaching separately some of these concepts (often in an informatics-unre-
lated way) – or simply recognising them inside other disciplines (like math for problem
solving, geography for giving precise directions, and so on) – will automatically foster
CT is spreading between educators.

We therefore argued that all the characteristics, especially the “core” ones, should be
read, understood, and taught inside the discipline of Informatics. A lot of “thinking” are
worth being taught, CT “is often a welcome addition to other fields, but not a replace-
ment for their ways of thinking and not a meta-skill for all fields” (Denning & Tedre,
2019, p. 213).

CT should represent the “disciplinary way of thinking” of Informatics: Informatical
thinking.

Acknowledgements

I would like to thank Simone Martini for supporting my research, and Isabella Corradini
and Enrico Nardelli for the preliminary work on CT definitions.

References

Aho, A. V. (2011). Ubiquity Symposium: Computation and Computational Thinking. Ubiquity, 2011(January).
https://doi.org/10.1145/1922681.1922682

Bell, T., & Vahrenhold, J. (2018). CS Unplugged – How Is It Used, and Does It Work? In H.-J. Böckenhauer,
D. Komm, & W. Unger (Eds.), Adventures Between Lower Bounds and Higher Altitudes: Essays Dedi-
cated to Juraj Hromkovič on the Occasion of His 60th Birthday (pp. 497–521). Springer International Pub-
lishing. https://doi.org/10.1007/978-3-319-98355-4_29

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of compu-
tational thinking (Using artifact-based interviews to study the development of computational thinking in
interactive media design). Proceedings of the 2012 Annual Meeting of the American Educational Research
Association. http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

Cansu, S. K., & Cansu, F. K. (2019). An Overview of Computational Thinking. International Journal of Com-
puter Science Education in Schools, 3(1). https://eric.ed.gov/?id=EJ1214682

Chick, N. L., Haynie, A., Gurung, R. A., & Regan, A. (2009). From generic to signature pedagogies: Teaching
disciplinary understandings. In R. A. R. Gurung, N. L. Chick, & A. Haynie (Eds.), Exploring signature
pedagogies: Approaches to disciplinary habits of mind. (pp. 1–16). Stylus publishing.
https://books.google.co.il/books?id=0SWec-nwL4EC

M. Lodi130

College Board. (2017). AP Computer Science Principles. College Board. https://apcentral.college-
board.org/pdf/ap-computer-science-principles-course-and-exam-description.pdf

Corradini, I., Lodi, M., & Nardelli, E. (2017a). Computational Thinking in Italian Schools: Quantitative Data
and Teachers’ Sentiment Analysis after Two Years of “Programma Il Futuro”. Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education, 224–229.
https://doi.org/10.1145/3059009.3059040

Corradini, I., Lodi, M., & Nardelli, E. (2017b). Conceptions and Misconceptions about Computational Think-
ing among Italian Primary School Teachers. Proceedings of the 2017 ACM Conference on International
Computing Education Research, 136–144. https://doi.org/10.1145/3105726.3106194

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J. (2015). Computation-
al thinking – A guide for teachers. Computing at School. https://eprints.soton.ac.uk/424545/

Denning, P. J. (2017). Remaining Trouble Spots with Computational Thinking. Commun. ACM, 60(6), 33–39.
https://doi.org/10.1145/2998438

Denning, P. J., & Tedre, M. (2019). Computational Thinking. MIT Press.
Denning, P. J., Tedre, M., & Yongpradit, P. (2017). Misconceptions about Computer Science. Commun. ACM,

60(3), 31–33. https://doi.org/10.1145/3041047
diSessa, A. A. (2018). Computational Literacy and “The Big Picture” Concerning Computers in Mathematics

Education. Mathematical Thinking and Learning, 20(1), 3–31.
https://doi.org/10.1080/10986065.2018.1403544

Duncan, C. (2019). Computer science and computational thinking in primary schools. [PhD Thesis, University
of Canterbury]. http://hdl.handle.net/10092/17160

English, L. D. (1997). Mathematical Reasoning: Analogies, Metaphors, and Images. L. Erlbaum Associates.
Feaster, Y., Segars, L., Wahba, S. K., & Hallstrom, J. O. (2011). Teaching CS Unplugged in the High School

(with Limited Success). Proceedings of the 16th Annual Joint Conference on Innovation and Technology in
Computer Science Education, 248–252. https://doi.org/10.1145/1999747.1999817

Feurzeig, W., Papert, S., Bloom, M., Grant, R., & Solomon, C. (1970). Programming-Languages as a Concep-
tual Framework for Teaching Mathematics. SIGCUE Outlook, 4(2), 13–17.
https://doi.org/10.1145/965754.965757

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 306–355.
https://doi.org/10.1016/0010-0285(80)90013-4

Google. (n.d.). Exploring Computational Thinking. http://g.co/exploringct – The page has now been
removed, but can be found in the “CT overview” tab here:
https://web.archive.org/web/20181001115843/https://edu.google.com/resources/pro-

grams/ exploring-computational-thinking/

Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State of the Field. Educational
Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051

Gurung, R. A. R., Chick, N. L., & Haynie, A. (Eds.). (2009). Exploring Signature Pedagogies: Approaches to
Teaching Disciplinary Habits of Mind. Stylus Publishing, LLC.

Guzdial, M. (2015). Learner-Centered Design of Computing Education: Research on Computing for Every-
one. Synthesis Lectures on Human-Centered Informatics, 8(6), 1–165.
https://doi.org/10.2200/s00684ed1v01y201511hci033

Guzdial, M. (2019, April). A new definition of Computational Thinking: It’s the Friction that we want to Mini-
mize unless it’s Generative,. Computing Education Research Blog.
https://computinged.wordpress.com/2019/04/29/what-is-computational-thinking-its-

the-friction-that-we-want-to-minimize/

Hemmendinger, D. (2010). A Plea for Modesty. ACM Inroads, 1(2), 4–7.
https://doi.org/10.1145/1805724.1805725

ISTE, & CSTA. (2011a). Computational Thinking teacher resources.
https://id.iste.org/docs/ct-documents/ct-teacher-resources_2ed-pdf.pdf?sfvrsn=2

ISTE, & CSTA. (2011b). Operational Definition of Computational Thinking for K-12 Education.
https://id.iste.org/docs/ct-documents/computational-thinking-operational-defini-

tion-flyer.pdf?sfvrsn=2

Juškevičienė, A., & Dagienė, V. (2018). Computational Thinking Relationship with Digital Competence. In-
formatics in Education, 17(2), 265–284. https://doi.org/10.15388/infedu.2018.14

Kalelioğlu, F., Gülbahar, Y., & Kukul, V. (2016). A Framework for Computational Thinking Based on a Sys-
tematic Research Review. Baltic Journal of Modern Computing, 4(3), 583–596.

Informatical Thinking 131

Krauss, J., & Prottsman, K. (2016). Computational Thinking and Coding for Every Student: The Teacher’s
Getting-Started Guide. Corwin Press.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011). Com-
putational thinking for youth in practice. ACM Inroads, 2(1), 32–37.
https://doi.org/10.1145/1929887.1929902

Lewis, C. M. (2017). Good (and Bad) Reasons to Teach All Students Computer Science. In S. B. Fee, A. M.
Holland-Minkley, & T. E. Lombardi (Eds.), New Directions for Computing Education: Embedding Com-
puting Across Disciplines (pp. 15–34). Springer International Publishing.
https://doi.org/10.1007/978-3-319-54226-3_2

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A.
(2019). On Thinking and STEM Education. Journal for STEM Education Research, 2(1), 1–13.
https://doi.org/10.1007/s41979-019-00014-x

Lodi, M. (2020). Introducing Computational Thinking in K-12 Education: Historical, Epistemological, Peda-
gogical, Cognitive, and Affective Aspects [PhD Thesis, Alma Mater Studiorum – Università di Bologna].
http://amsdottorato.unibo.it/9188/

Lodi, M. (2019). Does Studying CS Automatically Foster a Growth Mindset? Proceedings of the 2019 ACM
Conference on Innovation and Technology in Computer Science Education, 147–153.
https://doi.org/10.1145/3304221.3319750

Lodi, M., Martini, S., & Nardelli, E. (2017). Do we really need computational thinking? Mondo Digitale, 72.
http://mondodigitale.aicanet.net/2017-5/articoli/MD72_02_abbiamo_davvero_bisogno_

del_pensiero_computazionale.pdf

Martini, S. (2012). Lingua Universalis. Annali della Pubblica Istruzione, 4–5, 65–70.
Martins-Pacheco, L., von Wangenheim, C., & Alves, N. (2020). Polemics about Computational Thinking:

Digital Competence in Digital Zeitgeist – Continued Search for Answers: Proceedings of the 12th Interna-
tional Conference on Computer Supported Education, 499–506.
https://doi.org/10.5220/0009797104990506

Murphy, L., & Thomas, L. (2008). Dangers of a Fixed Mindset: Implications of Self-Theories Research for Comput-
er Science Education. SIGCSE Bull., 40(3), 271–275. https://doi.org/10.1145/1597849.1384344

Pace, D., & Middendorf, J. (2004). Decoding the Disciplines: Helping Students Learn Disciplinary Ways of
Thinking: New Directions for Teaching and Learning, Number 98. Wiley.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc.
Schoenfeld, A. H. (1985). Mathematical Problem Solving. Elsevier.

https://doi.org/10.1016/c2013-0-05012-8

Selby, C., & Woollard, J. (2013). Computational thinking: The developing definition [Project Report]. Univer-
sity of Southampton (E-prints). https://eprints.soton.ac.uk/356481/

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research
Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Stephens, M., & Kadijevich, D. M. (2020). Computational/Algorithmic Thinking. In S. Lerman (Ed.), Ency-
clopedia of Mathematics Education (pp. 117–123). Springer International Publishing.
https://doi.org/10.1007/978-3-030-15789-0_100044

Sternberg, R. J., & Ben-Zeev, T. (Eds.). (1996). The Nature of Mathematical Thinking. Routledge.
Taub, R., Armoni, M., & Ben-Ari, M. (2012). CS Unplugged and Middle-School Students’ Views, Attitudes,

and Intentions Regarding CS. ACM Trans. Comput. Educ., 12(2).
https://doi.org/10.1145/2160547.2160551

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education:
Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715–728.
https://doi.org/10.1007/s10639-015-9412-6

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Com-
putational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technol-
ogy, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33.
https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.
https://doi.org/10.1098/rsta.2008.0118

Wing, J. M. (2011). Research notebook: Computational thinking – What and why. The Link Magazine,
20–23.

M. Lodi132

M. Lodi is B.S., M.S., and Ph.D. in Computer Science. He is currently
Post-doc research fellow and Adjunct Professor of Computer Science
Education at Alma Mater Studiorum – Università di Bologna, Italy.
His research interest is in Computer Science Education – especially
on computational thinking with a constructivist and constructionist ap-
proach, teacher training, transfer of learning, computer science mind-
set, and epistemological aspects of Computer Science as a discipline.
He is author of more than ten publications in conferences and journals
on Computer Science Education, and a book in Italian for primary
school teachers. He is actively involved in nation-wide initiatives to
introduce CS in Italian K-12 curriculum. https://lodi.ml

Olympiads in Informatics, 2020, Vol. 14, 133–142
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.10

133

Codeforces as an Educational Platform for
Learning Programming in Digitalization

Mike MIRZAYANOV, Oksana PAVLOVA, Pavel MAVRIN,
Roman MELNIKOV, Andrew PLOTNIKOV, Vladimir. PARFENOV,
Andrew STANKEVICH
ITMO University, Saint-Petersburg, Russia
e-mail: mrmirzaianov@itmo.ru, onpavlova@itmo.ru, mavrin@itmo.ru, rvembox@gmail.com,
shemplo@outlook.com, parfenov@mail.ifmo.ru, stankev@gmail.com

Abstract. Digitalization imposes ways of development and influences the process of Codeforces
development. Codeforces’ infrastructure provides a solid open ecosystem for building a program-
ming learning process. Functionality covers the entire process, from the Polygon system for devis-
ing problems to mashup contests and private groups on Codeforces. A beta test of the educational
subsystem with a pilot educational course was launched. The paper describes all the aspects and
relationships of the ecosystem, typical flows of use, examples of successful integration into edu-
cational processes in the age of digitalization.

Keywords: educational platforms, competitive programming platforms, sports programming, e-
learning, Olympiads and hackathons in Informatics, education digitalization.

1. Introduction

Digitalization becomes possible when there is the development of digital infrastructures
and communication standards, information security, the expansion of online learning
(e-learning), access and ability to use online-services and a lot of qualified IT-special-
ists who can create and develop information technologies, on-line services and others.
Nowadays there is a shortage of IT-specialists all over the world. Their need in Russian
IT- industry is 62400 people and their need in other industries of Russia is 82600 people.
Enrollment in higher education institutions for IT majors in 2024 in Russian universi-
ties should be 120 thousand applicants. To ensure this number, it is necessary to train,
motivate and attract more schoolchildren interested in IT and reform educational system,
making it possible to teach a vast number of students.

M. Mirzayanov et al.134

2. Codeforces as a Platform for Programming Contests

In the world there are several mostly used contest’s platforms such as American Top-
coder, Indian CodeChef, Japanese AtCoder, European CSAcademy and Russian Code-
forces. Codeforces is an international platform that hosts the largest regular Internet
programming and Informatics competitions (Olympiads and hackathons), posts articles
in IT-field, organizes programming trainings, discusses competitions & training tasks,
and various news from IT-community. This is the largest training resource in the world,
which provides an open infrastructure for preparing and conducting programming com-
petitions, as well as automation of programming training courses.

Codeforces provides a wide range of services for those who are interested in al-
gorithmic tasks and programming competitions. The main goal of Codeforces as a
platform for competitions is to provide an opportunity to unite all those interested in
programming contests, providing a wide list of services for this area of interest. The
platform supports Russian and English languages and most of the materials are pre-
sented in two languages.

For many years Codeforces has provided three services:
Social network (with various classic social network services and some specialized ●●
solutions).
Subsystem of the competitions.●●
Subsystem of hosting training●● s.

Since December 2019 Codeforces has become the educational platform as well.

2.1. Testlib

Testlib library for C++ has been developed since 2005 as a replacement for an outdated
similar library for the Pascal language. Currently, Testlib for C++ includes significantly
more functionality compared to Testlib for Pascal. The new library has become the de
facto standard for developing C++ tasks and programming tasks.
The library is widely used in the jury’s work of various Olympiads and competitions:

All the stages of All-Russian Olympiad of schoolchildren in Informatics (com-●●
puter science).
All the stages of All-Russian Team Olympiad of schoolchildren in programming.●●
Repeatedly used in the development of tasks for the International Olympiad in ●●
Informatics (IOI).
Dozens of regional competitions of the world student programming championship ●●
(ICPC).
Many University competitions in Russia and abroad.●●
Most stages of training camps (schools) in Russia and abroad.●●
All rounds●● of open Codeforces competitions.

Codeforces as an Educational Platform for Learning Programming in Digitalization 135

2.2. Polygon System

Polygon is a system for developing problems (task). Work on the Polygon system was
started in 2008. Since March 2009, the system has been available online for everyone.
Polygon simplifies and unifies the work of authors of programming problems and jury
members of computer science and programming Olympiads. This is the only system of its
kind with advanced functionality and accessibility to a wide range of problem authors.

Key features of Polygon that are an advantage of using it over other ways of develop-
ing problems are below:

The Polygon system protects against errors.●●
A lot of automation and self-checking tools are built into the Polygon:●●

The system protects against typos in tests from the condition and from the fact ○○
that they are not updated after changing the tests, since tests from the condition
are inserted automatically, and responses to them are generated by the system
by the author’s decision.
All source texts in the problem archive (solutions, generators, checker, valida-○○
tor, etc.) will be compiled and correspond to the current versions.
The system displays a warning that the first test is not a test from the condi-○○
tion.
If the system checks that the non-deterministic generator (which is initialized ○○
from the current system time) is not being used, it will run the generator twice
at intervals of a second and make sure that the tests match.

The Polygon system implements dozens of similar checks that effectively pre-●●
vents errors or ignoring good practices in problem development.
Archives (packages) of Polygon tasks are uniform and machine-readable.●●
Polygon provides long-term storage and availability of issues and competitions.●●
Polygon reduces the threshold for entering the task preparation process.●●
The system helps you manage access.●●
Polygon has built-in issue-tracking.●●
Polygon provides easy integration with automated testing systems.●●
There are no special software requirements for the task developer.●●
Polygon is attentive to security issues and data leaks.●●
Polygon has built-in tools for classifying, indexing, and searching for issues. ●●

According to Google Analytics, Codeforces is ahead of its competitors in terms of the
number of competitions per month, the number of participants. Codeforces has an open
registration system. The number of registered users is constantly growing. At the end of
2019, the main metrics according to web analytics system “Google Analytics” were:

472 158 users.●●
29 138 871 page views.●●
Average session duration: 15 minutes.●●

Judging by the metrics Codeforces has a huge potential for creating on its basis an
educational subsystem for participants of Olympiad programming.

M. Mirzayanov et al.136

3. Codeforces as a Platform for Education

3.1. The Concept of Educational Platforms

The debate rages in impact and effectiveness of e-learning, its benefits and drawbacks,
motivations, performance and barriers (Alias et al., 2012), (Zakariah, et al., 2012),
(Khan et al., 2019), (Shapiro et al., 2017), (Al-Rahm et al., 2015) (Shoufan, 2019),
(Shin et al., 2019), (Magalhães et al., 2020). This topic is becoming very actual in the
time of Covid-19 pandemic. The significance of e-learning possibilities has changed
and grown.

3.2. Existing Educational Solutions

Nowadays many online learning resources exist all over the world – Coursera, edX,
YouTube, Udemy, Khan Academy. But only some of them have courses on competitive
programming. The main metrics are presented in Table 1.

However existing educational platforms such as Coursera, Stepik, Universarium,
EdX and others do not offer programming competitions. Moreover, the courses pre-
sented by these platforms do not meet the requirements of courses on Olympiad pro-
gramming.

To conduct a comparative analysis of existing courses, the most closely related
courses were selected, which are also considered the most popular in IT-community:

The course “Sports programming” is available on the Stepik and Coursera plat-●●
forms. It is the closest course in the subject
https://ru.coursera.org/learn/sportivnoe-programmirovanie

The course "How to Win Coding Competition: Secrets of Champions” on the ●●
Edx platform. It is a similar course in English https://www.edx.org/course/
how-to-win-coding-competitions-secrets-of-champions-4

The course "Algorithms and data structures” on the Stepik platform●● https://
stepik.org/course/63

The comparison is shown below in Table 2.

Table 1
The main metrics of similar courses.

Platform Stepik & Coursera Edx Stepik

Name of the course Sports programming How to Win Coding Competitions:
Secrets of Champions

Algorithms and data
structures

Мetrics
registed 2430 78015 16286
Issued certificates 129 191 542

Codeforces as an Educational Platform for Learning Programming in Digitalization 137

Table 2
Comparison of algorithms and data structure courses

Platform Stepik &
Coursera

Edx Stepik

Name of the course “Sports
programming”

“How to Win Coding Competitions:
Secrets of Champions”

“Algorithms and
data structures”

Course contents (main topics that should be covered in competitive programming)

Bactracking +
Stack, queue +
Segment tree +
Union-Find +
Greedy algorithms +
Dynamic programming + +
String algorithms
DFS, Topological sorting + +
Shortest paths + +
Binary search +
Binary climbing
Graph games
Combinatorics
Bitmasks +
Numbers theory algorithms
Network flows
Matchings

Number and level of practical tasks in the form of problems

Number of practical tasks in
the form of problems on prog-
ramming for each topic

not presented on the average 10 problems for each
topic

on the average
5 problems for
each topic

Level of offered task in the
form of problems on prog-
ramming

not presented mainly training problems + one-two
problems similar to Olympiad prob-
lems

almost all the prob-
lems are training
ones

Possibility to choose separate
lectures, topics and problems

not presented not presented not presented

Access to the solutions of par-
ticipants

not presented not presented not presented

Possibility to write comments not presented not presented not presented
Availability of social networks
for discussions

not presented not presented not presented

Possibility to get personal
recommendations from tea-
cher or coaches

not presented not presented not presented

Comparative analysis showed that the existing courses have a number of disadvan-
tages, including:

The material is presented in a difficult language, that is the material is intended for ●●
a more adult audience.

M. Mirzayanov et al.138

Theoretical orientation (not practical). ●●
Basic (not advanced) level.●●
They cover only a small part of the topics required for successful participation in ●●
computer science and programming Olympiads.

The authors of the paper claim that similar courses have three significant draw-
backs:

They are isolated from the competitors’ community on third-party educational ●●
platforms.
The presence of a community on Codeforces not only provides a database of par-●●
ticipants interested in the course, but also creates a social environment for partici-
pant’s communication, discussion, mutual assistance, etc.
They use an insufficiently developed testing automation infrastructure. Support ●●
for programming tasks even of the largest educational platforms lags far behind
the support for similar tasks on Codeforces.

3.3. Codeforces – a Platform for Education

Codeforces is well-known all over the world as a platform for contests, but lately Co-
deforces became the educational platform as well. The edu system has been running for
three months. During this time three lessons were introduced to the users. Each lesson
consists of 4-5 steps, each step includes:

Lecture video of the algorithm (whiteboard or presentation).●●
Lecture text notes.●●
Coding video, explaining how to implement the algorithm.●●
Programming tasks for practice.●●

These elements can be used in any order and independently as well as the lessons
themselves. Everything is at the discretion of the learner – the pace, the order, the speed
of the video, the number of problems.

The lessons were studied by approximately 3000 users. Three-month experience
shows that e-learning is of great demand and the combination of platform for contests
and education is very popular with IT-community. Especially it is popular with under-
graduate students and schoolchildren – future IT-specialists. One can participate in co-
decups, learn and have talks with like-minded people at one place which is comfortable
and convenient. 47 users left the feedback about edu system on Codeforces and it turned
out to be highly positive. The feedback is presented in Table 3.

The feedback shows that users themselves like the idea of the educational project on
the contest platform and edu project is in great demand among teens who are interested
in hi-tech, Informatics and programming.

Codeforces as an Educational Platform for Learning Programming in Digitalization 139

4. Conclusion

The development of a new format opens up a number of opportunities and has a huge
practical significance. The combination of platform for contests and education give possi-
bility to train and study at one place. Distant format provides teens with the possibility to
learn for those who live in remote regions where there are no teachers and possibility for
children and teenagers with a disability. Learning and contest participation is highly ben-
eficial pastime especially during epidemics. Such approach can be used as a supplemen-
tary means in teaching because such platforms attract young people to competitions and
in-depth programming studies, they facilitate to cover a wide range of topics and enlarge
the number of learners, helping to nurture and form intellectual capital of any country.

Table 3
How students express their praise or critics in relation to a new format

Aspect Users’ feedback

Praise from users

Cool! Continue to do such courses! Helps a lot.
COOL!!! Good Job and Good Luck. Thanks for such an opportunity!!!
This can help us to improve our programming skills and our knowledge. Good Job!
Yeah that is right ! thanks a lot.
Super! Thank you for such excellent courses! This helps not only beginners, but also advanced
users. Excellent lectures, theory and practice! By the way, you are very cool to explain!) P.S. I
would Really like more of these courses)
Keep doing this great job! Thanks a lot!
Interesting form of presentation. This option must clearly exist! Thank you for the quality
courses!
Good new system. It would be great to study more different strong algorithms.
I have always dreamed of such a course, thank you very much!
Just what was missing!!! Well done!!
It is very cool in codeforces not only to solve problems but also to learn. It has become the
main advantage of the platform and soon everything will be better
Thank you so. Please don’t stop. Your lectures are very useful and I really want to watch that
more.

Critics and Recommendations from users

It would have been good to see solutions of other users if you solved the problem yourself.
Thanks! The only thing I would like is open tests for detecting errors.
I suggest increasing the scale of the lecturer by 2-2.5 times.
It would be cool if you added moving (rewinding) through the video with the help of the
keyboard (the same arrows)
Can you make so that the video continues where it is left off after you switch to practice?
Good lectures. The problems are interesting. It may be worth making the player’s buttons
bigger so that you could watch it via smartphones.
A good course, and most importantly in demand. It is definitely worth developing further. I
didn’t find any special disadvantages for myself, so continue in the same way!
When will be the continuation?

M. Mirzayanov et al.140

References

Alias, N., Zakariah, Z., Ismail, N. Z., & Aziz, M. N. A. (2012). E-Learning successful elements for higher
learning institution in Malaysia. Procedia-Social and Behavioral Sciences, 67, 484–489. DOI: 10.1016/j.
sbspro.2012.11.353.

Al-Rahmi, W. M., Othman, M. S., & Yusuf, L. M. (2015). The effectiveness of using e-learning in Malaysian
higher education: A case study Universiti Teknologi Malaysia. Mediterranean Journal of Social Sciences,
6(5), 625–625. DOI: 10.5901/mjss.2015.v6n5s2p625.

Khan, M. L. H., & Setiawan, A. (2019). The impact of E-learning on higher education perception, skills, criti-
cal thinking and satisfaction. Journal of Physics: Conference Series, 1375(1), 012084. DOI:10.1088/1742-
6596/1375/1/012084.

Magalhães, P., Ferreira, D., Cunha, J., & Rosário, P. (2020). Online vs traditional homework: A systemat-
ic review on the benefits to students’ performance. Computers & Education, 103869. DOI: 10.1016/j.
compedu.2020.103869.

Shapiro, H. B., Lee, C. H., Roth, N. E. W., Li, K., Çetinkaya-Rundel, M., & Canelas, D. A. (2017). Under-
standing the massive open online course (MOOC) student experience: An examination of attitudes, motiva-
tions, and barriers. Computers & Education, 110, 35–50. DOI: 10.1016/j.compedu.2017.03.003.

Shin, J., Gruenberg, K., & Brock, T. (2019). A novel online platform promotes asynchronous class prepara-
tion and thought transparency. Currents in Pharmacy Teaching and Learning, 11(10), 1069–1076. DOI:
10.1016/j.cptl.2019.06.015.

Shoufan, A. (2019). What motivates university students to like or dislike an educational online video? A senti-
mental framework. Computers & Education, 134, 132–144. DOI:10.1016/j.compedu.2019.02.008.

Zakariah, Z., Alias, N., Aziz, M. N., & Ismail, N. Z. (2012). E-Learning awareness in a higher learning institution
in Malaysia. Procedia-Social and Behavioral Sciences, 67, 621–625. DOI: 10.1016/j.sbspro.2012.11.368.

M.Mirzayanov is a founder and CEO of Codeforces and a teacher
of the Faculty of Information Technologies and Programming (FITP)
of ITMO University. In 2009 he coached ICPC World Champions
team of Saratov University and in 2008 he coached ICPC NEERC
Champions team of Saratov University. Since 2009 he has been the
head of the jury of ICPC Southern Subregional NEERC. From 2008
to 2012 he was a jury member of final stage of Russian Olympiad in
Informatics. In 2009 he founded Polygon – service to prepare pro-
gramming problems and contests. In 2010 he founded Codeforces –
programming contests community and regular Internet competitions.
He was a chairman of the jury and the organizing committee of nu-
merous championships held on Codeforces.

Codeforces as an Educational Platform for Learning Programming in Digitalization 141

O. Pavlova is an assistant dean for university-business cooperation &
students’ well-being of the Faculty of Information Technologies and
Programming (FITP) of ITMO University. Her main research interest
and main professional focus is ways & mechanisms of higher educa-
tion development, the creation of university and business ecosystem
and ways of their cooperation.

P. Mavrin is a teacher of FITP of ITMO University. From 2014 to
2017, he was a member of the International Scientific Committee of
the International Olympiad in Informatics (IOI). In 2016 he was a
chairman of the Host Scientific Committee of the IOI. In 2018 he
was a chairman of the Scientific Committee of the European Junior
Olympiad in Informatics (eJOI). Since 2019 he has been a chairman
of the Scientific Committee for the “British Programming Challenge”
in London. He was given the President Award for success in the IOI
(2003), St. Petersburg Youth Award in the field of information technol-
ogy (2005), Saint Petersburg Government Award to teachers-mentors
for preparation of winners and prize-winners of all-Russian Olympi-
ads (2009, 2015, 2016, 2017, 2018).

R.Melnikov is a master student with major in Applied Maths and In-
formatics. He graduated with a bachelor’s degree of ITMO University
in 2019. Currently he is studying at FITP, working as a software en-
gineer in Serokell OU, doing research for optimization problems in
nanophotonics along with Physics department at ITMO University,
assisting with Computer architecture and Functional programming
courses at ITMO University.

A.Plotnikov is a master student with major in Applied Maths and
Informatics. He graduated with a bachelor’s degree of ITMO Univer-
sity in 2019. He leads the hobby group “Paradigms of programming”
for 1st year undergraduate students; works as a senior programmer
in the company “Omnics, Inc.”. From 2015 to the present, he has
been participating as a volunteer and coordinator of volunteers at
the regional final “NERC” of the sports programming competition.
Since 2015 he has been a teacher at the summer mathematical school
“Spectrum”, Kazan.

V. Parfenov is a professor and dean of the Faculty of Information
Technologies and Programming of ITMO University, a member of
international organizing committee of ICPC, the director of ICPC
Northern Eurasia Finals. He is one of the main organizers and cre-
ators of national and international competitions in computer science
and programming for students in Russia. He has contributed a lot to
the formation of educational system of search and training gifted stu-
dents in mathematics, physics, computer science and programming.

M. Mirzayanov et al.142

A. Stankevich is an associate professor at ITMO University. He is the
Chief Judge at Russian Olympiad in Informatics (since 2019), St Pe-
tersburg Olympiad in Informatics (since 1999), Russian High School
Team Olympiad in Informatics (since 2000), Individual Olympiad in
Informatics (since 2009). He has been the head of Russian Central
Methodical Committee in Informatics (since 2019). Judge at NERC
(since 2003), Russian Olympiad in Informatics (2000-2018). Russian
Delegation at IOI leader (2016, 2018, 2019). Projects: PCMS Judg-
ing System (pcms.itmo.ru), School Olympiads in Russia (nerc.itmo.
ru/school), Summer Informatics School (lksh.ru). Awards: President
Award in Education (2003), St Petersburg Youth Award in IT (2009),
ICPC Silver and Gold Medals (2000, 2001), Seven times ICPC World
Champions as Coach (2004, 2008, 2009, 2012, 2013, 2015, 2017),
ACM ICPC Founder’s Award (2008), ACM ICPC Senior Coach
Award (2018), De Blasi Award (2013).

Olympiads in Informatics, 2020, Vol. 14, 143–150
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.11

143

Pattern Recognition and Related Topics
of Olympiad Tasks

Pavel S. PANKOV, Azret A. KENZHALIEV
Institute of Mathematics, Kyrgyzstan
Korea Advanced Institute of Science and Technology (KAIST).
e-mail: pps5050@mail.ru, azret.kenzhaliev@gmail.com

Abstract. In most of tasks proposed for olympiads in informatics inital data are taken arbitrary
from any ranges such that a “brute force” solution (close to immediate translation of condition of
the task into an algorithmical one) can pass tests with initial data from narrow ranges, and the task
itself is to improve that solution. We make a survey of types of tasks where inital data are too vast
to use a “brute force” but they are announced to be connected and the task itself is to extract neces-
sary information in an optimal way. We consider tasks on recognition and on restoration of data
from a unified point of view. We also make an attempt to describe various types of tasks formally.

Keywords: Olympiad, informatics, tasks on recognition, reactive tasks.

Introduction

In most of tasks proposed for olympiads in informatics inital data are taken arbitrary
from any ranges such that a “brute force” solution (close to immediate translation of
condition of the task into an algorithmical one) can pass tests with initial data from nar-
row ranges, and the task itself is to improve that solution. We make a survey of types of
tasks where inital data are too vast to use a “brute force” but they are announced to be
connected because they are images of certain virtual objects. The task itself is to extract
necessary information about these objects in an relatively optimal way. We consider
tasks on recognition and on restoration of data from a unified point of view. We also
make an attempt to describe various types of tasks formally.

1. Definitions

A common reactive task can be presented as follows. All sets are meant to be finite.

Definition 1. Two computer-presentable sets (large) X and Y and a computable function
F : X → Y are described (preferably, verbally). Write a program P : X → Y which imple-

P.S. Pankov, A.A. Kenzhaliev 144

ments the function F during a prescribed time (traditionally 1 second), also with restric-
tion on memory used. Total amount of points is announced. Usually, some subtasks are
given too in the following form: some sets X1 ⊂ X2 ⊂ … ⊂ Xk ⊂ X are described and
amounts of points (in increasing order) for corresponding programs Pj : Xj → Y are also
announced.

If the function F is defined by means of any virtual objects of a set U not belonging
to X and X itself contains images of these objects we propose the following construction
for some types of tasks:

Definition 2. Three computer-presentable sets (large) U, (large) X and Y, a computable
function G : U → Y (“extraction of information”) and a computable dyadic predicate
Q : U × X → {true, false} are described.

Conditions of correctness:
 (*) Either (∀x ∈ X)(∃u ∈ U)Q(u, x) or output “No solution” is also permitted.
(**) (Q(u1, x1) ∧ Q(u2, x2) ∧ (G(u1) ≠ G(u2))) ⇒ (x1 ≠ x2).
Write a program P : X → Y such that Q(u, x) ⇒ (G(u) = P(x)), working during a

prescribed time, also with restriction on memory used. Total amount of points is an-
nounced.

Some subtasks are given too in the following form: some sets U1 ⊂ U2 ⊂ … ⊂ Uk ⊂ U
(also, Y1 ⊂ Y2 ⊂ … ⊂ Yk ⊂ Y) are described and amounts of points (in increasing order)
for corresponding programs Pj : X → Y (or Pj : X → Yj) are also announced.

The sense of such tasks is that the evident algorithm

P0(x) := (for all u ∈ U) (if Q(u, x) then output G(u))

is obviously too slow.

Remark 1. Restoration of u by x is impossible sometimes while value of some function
(G) of u can be found by x.
The simplest example is the following:

Task 1. Let U be the set of binary 2 × 2 -matrices u = {uij : i, j = 1, 2}. Given four sums
S4(u) := {u11 + u12; u21 + u22; u11 + u21; u12 + u22}, found G(u) := abs(det(u)).
Here X is the set of tuples of four integer numbers x = {x1; x2; x3; x4} less than 3;

Q(u, x) := (u11 + u12 = x1) ∧ (u21 + u22 = x2) ∧ (u11 + u21 = x3) ∧ (u12 + u22 = x4).

Consider two elements of U : u1 = {δij : i, j = 1, 2} and u2 = {1 − δij : i, j = 1, 2} where
δij is the Kronecker symbol. As S4(u1) = S4(u2), u cannot be found. Nevertheless G(u) = 1
can be found uniquely.

Remark 2. From the standpoint of Definitions 1 and 2 all tasks are divided into
“common” (Y is as large as X), “classification” (Y is small) and “alternative”
(Y = {YES, NO}).

Pattern Recognition and Related Topics of Olympiad Tasks 145

2. Examples of Tasks on Extraction of Information

The following task is the utterly simplified Task Character Recognition, IOI-1997.

Task 2. The file FONT.DAT contains of 26 ideal character images (a b c d e f g h i j k l m 
n o p q r s t u v w x y z) as 20 × 20 binary arrays. “Corruption” is an inverting of no more
than 50 of signs in an image.
Write a program that restores corrupted images.

Input: a 20 × 20 binary array being one of 26 images corrupted.
Output: one of a b c d e f g h i j k l m n o p q r s t u v w x y z.
The set U contains 26 elements {u1, …, u26}.

Condition (**): the Hamming distance H-dist between each two different ideal character
images is greater than 100.

(The mentioned task permits some kinds of “Corruption” which seem difficult to be
expressed by any “distance”).

Develop a task due to Definition 2:

Task 2a. … Input: a 40 × 40 binary array being one of 26 images corrupted and shifted
…

(easy)

Task 2b. … Input: a 40 × 40 binary array being one of 26 images shifted and corrupted
…

(difficult)

Condition (**): the H-dist between each shifts into 40 × 40 binary array of two different
ideal character images is greater than 100.

By Definition 2: The set U consists of all shifts of 26 elements {u1, … , u26} into
40 × 40 binary array. The set X contains 40 × 40 binary arrays;

X := {x : (∃u ∈ U)(H-dist(u, x) ≤ 50)}.
Q(u, x) := “H-dist(u, x) ≤ 50”. The function G transforms an image to a letter.
The following simple task (the Kyrgyzstan quarterfinal of the ICPC administered by

the ACM, Bishkek, November 2015):

Task 3. Given a sequence of four triples of natural numbers less than 100 (four distinct
integer points) in space presenting a broken line of three unit links and the following flat
broken lines denoted with letters:

I L U Z

P.S. Pankov, A.A. Kenzhaliev 146

If a given broken line can be superposed with one of these then output one the cor-
responding letter, else output Unknown.

This task has many solutions (calculate the square of distance between the first and
the last points …; calculate overall dimensions of four points …; compare the second
vector-link with the first one …) nevertheless all they demand any resourcefulness and
cannot be reduced to “brute force”.

This task demonstrates the following features.
Given points are connected (the differences of the second and the first etc. have the

length one) a proiri.
The estimation “less than 100” is not sufficient in order to search for a solution in

contrast to other tasks where such estimations define their difficulty.
The set of such sequences is subdivided into five subsets (five elements of Y) defined

non-formally.
We found an only mention of tomography in Olympiad tasks:

Task 4. Problem Giza (FARIO 2007), a brief description after (Burton et al., 2008).
“This task is a discrete 2-dimensional version of the general tomography problem.” To
recover a secret image formed from grid cells, given only the cell counts in each of 10
rows, 10 columns and 19 diagonals parallel to the main one.

Task 5 (National Olympiad in Kyrgyzstan, March 2019).
Let us call the letter T a symmetrical figure consisting of two contiguous narrow strips
(width is not less than 3, height is not less than 2).

In a 8 × 9 binary array one, two or three (non-touching) letters T were depicted. The
numbers of ‘1’ bits in each of the 8 vertical columns [v-sums] and in each of the 9 hori-
zontal lines (bottom to top) [h-sums] were detected using X-rays. For given data, find
the number N of letters T and the width and height of each letter. If this is not possible,
output zero.

Input: two lines of words of decimal digits; the length of the first is 8, the length of
the second is 9.

Output: In the first line: the number N in 0 … 3.
If N > 0, then in each of the next N lines: two natural numbers (width and height) of

the letter T, separated by a space. If N > 1 then output the data in lexicographical order:
by greater width; by greater height (if there are the same, then output each one).

Example (pulled in line). Input: 01141261; 011112415 Output: 2; 5 4; 3 6
The peculiarity of this task (as well as Task 1) is that two different arrangements

can yield a same input, for instance: 01411410; 111301113. Nevertheless, the answer is
unique: 2; 3 4; 3 4

By Definition 2: The set U consists of all possible positions of 1 ... 3 “T”s on 8×9
binary array. The set X contains tuples of 8- and 9- words of digits; Q(u, x) := ”х contains
v-sums and h-sums of u”. X := {x: Q(u, x)}.

The function G transforms an image to the list of “T”s that generated it.
Beginning of a possible algorithm for Task 5.

Subdivide (mentally) each “T” into the horizontal cap (its width is odd and not less
than 3) and the vertical leg (height is not less than 1).

Pattern Recognition and Related Topics of Olympiad Tasks 147

Lemma. There are no traces of three T in an h-sum (because “8” is too narrow).
Аррlying Algorithm-5 “If (h-sum = 5) or ((h-sum = 6) and (next h-sum > 0)) then

there is a 5-cap in this line otherwise there is not” to all lines we distinguish all 5-caps.
Аррlying Algorithm-3 “If (h-sum = 6) then there are two 3-caps; if ((h-sum = 3 or 4)

then there is one 3-cap in this line otherwise there is not” to the rest of lines we distin-
guish all 3-caps.

Sketch of proof of (**). Within the initial data, there are the numbers of 3-caps and 5-caps
and at most three lines for them. Changing lengths of legs causes changings in v-sums
necessarily.

(The jury is to write down such a proof. The contestant thinks it swiftly, together with
writing a program).

Ending of the algorithm for Task 5.
As there are only a few possible positions for caps, a “brute force” search for lengths

of legs from each of such positions ends the solution.

Task 6 (National Olympiad in Kyrgyzstan, March 2019, improved).
By integer numbers A, B, C, D in 0 ... 9, for the function F(X) = ((AX + B)X + C)X + D
the numbers F(1), F(2), F(3), F(4) were calculated and one of them was changed by less
than 3. By these four numbers find F(5).

3. Types of Metrical and Kinematic Spaces to Be Used in Tasks

Many of Olympiad tasks involve metrics (or distances between objects as its equivalent)
or motion, evidently or latently. By our experience, changing Euclidean space to any
other type of space (Borubaev et al., 2003) can be made in many tasks, transforms a
simple task into a complicated one (although its formal complexity does not increase)
and is interesting and difficult for contestants.

Usually in tasks, 2D-Euclidean space (plane) is modified by means of “teleportation”
(some given pairs of points are glued). We survey more regular constructions below.

By the way, most of spaces mentioned below were patented as variations of chess.
We will consider only integer points and metrics and motion of Manhattan type.
As a base, we take Square(s) 0 ≤ X ≤ 19, 0 ≤ Y ≤ 19 and Cube(s) 0 ≤ X ≤ 19,

0 ≤ Y ≤ 19, 0 ≤ Z ≤ 19.
2D-cylinder: glue the side X = 0 of Square with the side X = 19 of Square. For ex-

ample, the points (0; 5) and (19; 5) coincide; dist((17; 6), (2; 5)) = 5.
Many programmers invented the following space independently but we could not

find tasks in informatics with it:
2D-torus: glue the side X = 0 of Square with the side X = 19 of Square and the side

Y = 0 of Square with the side Y = 19 of Square. For example, the points (5; 19) and (5; 0)
coincide; dist((17; 16), (2; 3)) = 10.

2D-Moebius band: glue the side X = 0 of Square with the reversed side X = 19 of
Square as follows: (0; 0) coincides with (19; 19); (0; 1) coincides with (19; 18) etc.

2D-Riemann surface of square root:

P.S. Pankov, A.A. Kenzhaliev 148

Task 7 (National Olympiad in Kyrgyzstan, March 2019).
Wizard put Square1 and Square2 together, cut section on both ones from the center till
the point (9.5; 0) and glued the left side of the section of Square1 with the right side of
the section of Square2 and the right side of the section of Square1 with the left side of
the section of Square2. For example, dist((9; 5) − 1, (10; 5) − 2) = 1…. Find the distance
between given two points on these Squares.

3D-torus is made of Cube by means of gluing all opposite facets.
There also exists the 3D-space “Multistory” of some floors (Cube1, Cube2, …, Cubek)

connected by a (prompt) elevator (Cube0) only with Cube-Door0 (X = 0) matching with
all Cube-Doorj j = 1 ... k (X = 19).

Metrics in this space is presented as follows. If two points P1 and P2 belong to a same
Cubej then dist(P1, P2) is defined as usually; if P1 ∈ Cube0 and P2 ∈ Cubej,j > 0, then
dist(P1, P2) is defined in the gluing them; if P1 ∈ Cubei and P2 ∈ Cubej (0 < i < j ≤ k)
then

dist(P1, P2) := min{dist(P1, P) + dist(P, P2) : P ∈ Door}.

3. Ways to Generate Tasks on Extraction of Information

In this section we shall not consider the full procedure of creating a task. It was consid-
ered in details in Kemkes et al. (2007), Diks et al. (2008), Burton et al. (2008) and other
publications. We propose some schemas being generations of examples in Section 2.

Remark 3. Each such task can be formulated in two ways: with “structured” and “non-
structured” initial data. For instance, a complicated version of Task 3:

Task 8. Given a set of four triples of natural numbers less than 100 (four distinct integer
points) in space such that after some permutation they form a broken line of three unit
links …

(A proper solution is not necessarily to find such permutation: the method “calculate
overall dimensions of four points …” can be applied without permutation).

Remark 4. Relatively simple tasks in multidimensional spaces are preferred because
they demand imagination and practically exclude “exhaustive search”.

The following task generates Task 2 and Task 6.

General task 9. There are defined a metric dist and a family of k connected subsets
V1, ..., Vk of the set X. It is guaranteed that dist(Vi, Vj) > 2Mδij, M > 0. Given x ∈ X, find
i ∈ 1 ... k: dist(Vi, x) ≤ M.

Idea of solution: using connectivity, organize effective search of such vj ∈ Vj that
dist(vi, x) is as small as possible.

The idea of detecting compact objects by their integral indexes was proposed by
A.N. Tikhonov in 1943 for detecting ore bodies underground and further was developed
for medicine (tomography). We adapt it to “integer data” and, due to Remark 1, change
detection of object itself to detection of some its indexes, as in Task 5.

Pattern Recognition and Related Topics of Olympiad Tasks 149

General task 10. Withih frames of Definition 2, elements u ∈ U are presented as sets of
integer numbers. Elements x ∈ X consist of certian sums of these numbers for all u ∈ U.
Conditions on U are such that (**) takes place.

Example of task of Yes/No type where given information yields an effective solu-
tion.

Task 11. Given a sequence of K ∈ 4 ... 104 pairs of even integer numbers presenting
a non-self-crossing circular broken line of links of length 2 and a pair of odd integer
numbers presenting a point on a plane. Is this point within the domain bounded with this
broken line? [It cannot be on the line].

The first step of the solution is detecting overall dimensions of the domain (O(K)
operations).

The main constituent of any algorithm of the solution is detecting whether given
“odd” segment of length 2 crosses the broken line (O(K) operations).

Solution 1 is the common search in depth for the growing graph of “odd” segments of
length 2 beginning from the given point until either the growth stops or the graph reaches
one of the overall dimensions (O(K4) operations).

But Solution 2 is the following: move along a straight line to one of the overall di-
mensions and count a crossing of the broken line (O(K2) operations). If the total number
of crossings is odd then the point is within the domain else it is without.

General interactive task 12. A class of images is described and a procedure for queries
is accessible. There is a hidden image in this class. By sequence of queries (or of limited
number of queries) detect the image.

This general task also splits into two: all images are transformations of a “basic” one;
images are sufficiently different.

Task 13. Given a finite set S of integer points on a plane (in a space, in 4D-space…).
Do they belong to one straight line? Do they belong to two straight lines?

Possible solution.
Denote D[I, J] := {Z ∈ S: points Z, ZI, ZJ are collinear}.

Take two different points Z1 and Z2 in S. 1)	
If 2)	 D[1, 2] = S then output “one straight line”; end
else
Let 3)	 Z3 be no collinear with Z1 and Z2.
If 4)	 D[1, 2] ∪ D[1, 3] = S or D[1, 2] ∪ D[2, 3] = S or D[1, 3] ∪ D[2, 3] = S then
output “two straight lines”; end
else output “NO”; end.

Mention two popular tasks:

General task 14. Given a word of brackets (or: brackets and square brackets). Is such
arrangement of brackets correct (can be obtained from any correct arithmetical expres-
sion)?

General Task 15. Given an expression containing digits, signs “+”, “−”, brackets. Is it
written correctly? If it is written correctly then what is its value?

P.S. Pankov, A.A. Kenzhaliev 150

4. Conclusion

We hope that successful application of mathematical schemes and “general tasks”
proposed above would clarify distinctions between warious types of tasks yield new
tasks with “short and elegant formulation” (Dagienė et al., 2007), and being interesting
to solve. This would enlarge the scope of tasks involved into olympiads in informatics.

References

Borubaev, A.A., Pankov, P.S., Chekeev, A.A. (2003). Spaces Uniformed by Coverings. Hungarian-Kyrgyz
Friendship Society, Budapest (Chapter 4. Constructive and Computer Presentations of Uniform Spaces).

Burton, B.A. Heron, M. (2008). Creating Informatics Olympiad Tasks: Exploring the Black Art. Olympiads in
Informatics: Country Experiences and Developments, 2, 16–36.

Dagienė, V., Skupienė, J. (2007). Contests in programming: quarter century of Lithuanian experience. Olym-
piads in Informatics: Country Experiences and Developments, 1, 37–49.

Diks, K., Kubica, M., Radoszewski, J., Stencel, K. (2008). A proposal for a task preparation process. Olympi-
ads in Informatics: Tasks and Training, 2, 64–74.

Kemkes, G., Cormack, G., Munro, I., Vasiga, T. (2007). New task types at the Canadian computing competi-
tion. Olympiads in Informatics: Country Experiences and Developments, 1, 79–89.

P.S. Pankov (1950), doctor of physical-math. sciences, prof., corr.
member of Kyrgyzstani National Academy of Sciences (KR NAS),
was the chairman of jury of Bishkek City OIs, 1985–2013, of Re-
publican OIs, 1987–2012, the leader of Kyrgyzstani teams at IOIs,
2002–2013, 2018–2019. Graduated from the Kyrgyz State Univer-
sity in 1969, is a head of laboratory of Institute of mathematics of
KR NAS.

A.A. Kenzhaliev (1999). Bronze medal at IOI’2016. Student of Korea
Advanced Institute of Science and Technology (KAIST).

Olympiads in Informatics, 2020, Vol. 14, 151–167
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.12

151

Top 10 Key Skills in Olympiad in Informatics

Marina S. TSVETKOVA1 , Vladimir M. KIRYUKHIN2
1Academy of Natural History, Russian Federation Russia, Moscow, 105037, box 47
2Dept. of Informatics and Control Processes, National Research Nuclear University ”MEPhI”
 31 Kashirskoe Shosse, Moscow 115409, Russian Federation
e-mail: ms-tsv@mail.ru , vkiryukh@gmail.com

Abstract. This article presents the methodological experience of 30 years of work on the prepa-
ration of International Olympiad in Informatics (IOI) medalists from Russia, based on the great
contribution of the IOI community to the development of the syllabus IOI, criteria for the suc-
cess of students and the collection of IOI tasks for 30 years of its implementation. Based on the
experience of the authors of the article on the preparation in Russia of gold medalists IOI and the
curriculum of school informatics are presented 10 IOI key skills as criteria for the medal success
of students at IOI.

Keywords: school informatics, International Olympiad in Informatics, computer science curricu-
lum, Olympiad training, Olympiad skills, General school competences.

1. Introduction

The support of talents in Informatics is an important vector of the development of the
education system in the 21st century, which is the beginning of the digital era, the digi-
talization of professions, when Informatics becomes the third literacy in the education
of children and requires scientific and methodological study by the efforts of all IOI
countries. This is so, since IOI in 1989 was start with the support of UNESCO as a main
point for the promotion of school Informatics in all educational systems of the world as
a fundamental knowledge.

Over the 30 years of its development, IOI has made a huge contribution to the de-
velopment of the curriculum of school Informatics, preserving the fundamental core of
the subject as computer science. The formation of syllabus IOI in the 90s allowed to
form a modern view of computer science in school as a science-intensive discipline, did
not allow to rebuild school computer science as a course with computer applications.
Currently, there is a digitalization of professions, more and more highly qualified it
professionals are required, but the core of their training is the computer science. And the
development of the school course of Informatics with the preservation of the fundamen-
tal core – as its basis – has become the norm for the education systems of the world. But

M.S. Tsvetkova, V.M. Kiryukhin152

it requires highly qualified teachers at school (Kiryukhin and Tsvetkova, 2010), and also
because of the role of computer science as a literacy program-mandatory inclusion of
the course continuously from primary school. This will create an accessible environment
for the formation of common competencies for all children of the country in step with
the times, as well as provide an opportunity to integrate into any training and vocational
education digital component at the current level.

2. The Role of IOI in the Development of School Informatics Course
for the World

The role of IOI and was manifested in the methodological direction: creating an ac-
cessible Olympic Lift in Informatics (Kiryukhin and Tsvetkova, 2014), for support of
talented children on Informatics in countries. Since the establishment of the IOI confer-
ence and the formation of the open scientific electronic library Olympiad of Informatics
in the form of a scientific journal IOI allows all countries to focus on the experience of
other, not to waste time on opening a methodological path taken already by other coun-
tries, and actively transform the existing collective expertise in each country, taking into
account the specifics of educational systems in them. It is the availability of scientific
and methodological achievements in the IOI environment that allows countries to focus
on the level of achievements that the country needs, not only on individual achieve-
ments in the medal series of the highest dignity, but in the training system, that:

Allows the country to form an annual team of 4 members.●●
Show good result by all team members.●●
To have leaders in the team with a Medal result.●●
To go to the best students of the school Olympiad on professional competitions of ●●
programmers from universities, and then from the leading it companies.

This Olympic Lift is the actual engine of the development of school programs in
Infiormatics in all countries of the world, IOI has become a real environment for the
career growth of talented computer scientists and forms a global human potential for the
development of digital civilization, and the contribution of IOI is invaluable and leading
in this career lift for hundreds of IOI participants who have become an international top
community of professionals ensuring the success of it companies. For 30 years, more
than 6,000 children from countries from all continents of the world have received the
highest experience of preparation and participation in IOI, the community of organizers
has launched the Olympiad movement in Informatics in their countries, starting from
primary school, motivating children in the it field.

In addition, the IOI community of trainers from countries around the world has
collectively formed the content. IOI is the best in the world and is the benchmark for
national computer science Olympiads, being an open live textbook for children and
mentors.

Now IOI is already a world leader in the development of accessible sports environ-
ment for the children of the world, opening content tasks, including its open cloud sys-

Top 10 Key Skills in Olympiad in Informatics 153

tem events, projecting IOI experience in the world, which opened the Internet contest
as training for the IOI, creating a continental Olympics for the staging controversial
practices children and engages in Olympiad movement more talented kids around the
world! The contribution of IOI is also the contribution of each participating country,
which directs forces within the country to the development of school Informatics and is
included in the partnership with countries for various events: summer camps, distance
training, internships for coaches and mentors of Olympiad Informatics.

All these achievements of IOI show that IOI is a global educational and social move-
ment of children, coaches, scientists and mentors in the field of it, which promotes the
international community of scientists and methodologists, teachers and specialists of
educational systems of the world, IOI remains out of politics, demonstrates the highest
level of political correctness and has established itself as a public scientific movement,
where the countries conducting IOI-provide a serious financial contribution to its imple-
mentation and dissemination of new achievements in Informatics.

Of course, each country has its own specifics of the education system, but it is IOI
that unites countries to identify common scientific approaches to identify new methods
of Olympiad Informatics and systematic approaches to the development of talents in the
field of Informatics.

3. IOI Skills as Important Life Skills in the Professional Future of the Kids

The school Informatics course as IT-literacy is the basis for the Olympic lift (Kiryukhin,
2010). The sooner a child gets access to school Informatics the sooner he will be able to
choose for himself the Olympic track . The basis of the Olympic lift is Olympic syllabus
(Kiryukhin, 2007), it forms the profile skills, and is the Foundation of intellectual train-
ing. It is important that the first start-up in Informatics was given to every children by
school, a primary school course in Informatics in 6–12 years old (Tsvetkova, 2016), mo-
tivating children in the subject, forming primary informatics literacy, based on the for-
mation of the child’s algorithmic, logical, analytical, critical, modeling, heuristic think-
ing, computer and computational skills, and structural memory, involving in children’s
competitions in Informatics in School. The development of these types of thinking and
structural memory can provide Olympiad Informatics, the Foundation of which is the
Syllabus IOI as profile skills in informatics literacy.

Thus it is necessary to allocate three stages of development of children in the Olym-
pic Informatics: start-up for younger 6–12 years old, basic level for juniors 13–15 years
old and advanced level for children 15–18 years old, organically to build preparation
according to age and needs of children.

For each stage, a development benchmark is proposed – the development horizon, as
the highest bar of achievement for each age. And the IOI community has formed all three
landmarks: start up tasks (Kiryukhin and Tsvetkova, 2016), Olympiad Beavers, Junior
EJOI and profile level IOI. Many National, local and regional Olympiads have become
stations to test the potential of Olympians in their preparation for IOI as the world’s most
important Informatics Olympiad for schoolchildren.

M.S. Tsvetkova, V.M. Kiryukhin154

The Olympiad track will become a portal to the it profession for all participants of the
Olympiad in Informatics, regardless of the result. It is important for children to under-
stand that their training and participation in IOI is their baggage, experience that gives
them a high potential for further realization of themselves in the it profession. When we
talk about the key skills in Olympiad Informatics, we mean first of all life experience
and skills for the future of each child, his self-realization as a strong personality, ready
to develop in the it sphere continuously.

Therefore, the top 10 skills of Olympiad training in computer science is the way to
the adult future of children, some of which can show a medal result. The higher the in-
dependence of the child in preparation, commitment to the horizon of its development,
perseverance and hard work, the higher its result IOI. In fact, 10 skills is a guarantee of
success in training. It is important that children know about this, as the entire method-
ological base and practical environment of Olympiad Informatics with online tours and
competitions of different levels is formed in the world and is open to children thanks to
the community of IOI countries.

What skills need to be formed in the Olympiad training in computer science to maxi-
mize the child’s professional growth and performance? Attention, all these skills are based
on the motivation of children, their desire to work independently. If at the stage of start-
up the main role in training is played by the teacher of Informatics and coaches, then for
juniors this balance is 50%–50%, and for the senior group, the profile training coach per-
forms a consulting function, the main work should be carried out by the student himself,
and regularly, without failures in training, it is better every day, as do people of art and
sports.

Consider the model categories of competences in the school education system and
how to integrate children ‘s creative development into them. There are three categories
of competences: to know, to be able and to apply (in practice, in life). Different accents
in this system triad allow you to form different training techniques.

The knowledge approach relies on theoretical knowledge, analytical thinking, the
development of intelligence, memory (to know). The practical approach relies on func-
tionality, practical skills based on samples, encouraging productive experience (to be
able). The activity approach is based on the development of self-reliance in the appli-
cation of acquired knowledge and skills in life, encourages self-study and emphasizes
creative initiatives of the child (to apply in practice, in life).

In the context of an information society based on dynamically changing knowledge,
all three categories of competence in school education have received a new view of
teachers. Thus, functional literacy (to know, to be able) based on knowledge and skills
in industrial society has been replaced by a paradigm developmental teaching based on
creativity and on the development of the capabilities of each child (to know, to be able
and to apply in practice, in life).

The success of a person in the profession is largely laid down by school life. In
developmental teaching it is necessary to reveal the creative personality, from early
childhood to develop it and give an opportunity to self-realization in the zone of inter-
ests of the child. That is, the school of developmental teaching relies on the creativity

Top 10 Key Skills in Olympiad in Informatics 155

of the child, as much as possible contributes to his creative development. (Kiryukhin
and Tsvetkova, 2011).

Methods of realization of creative potential of children traditionally are various com-
petitions and Olympiads. Undoubtedly, for children motivated in informatics, one of
such spheres of realization of creative potential is the national Olympiad in informatics
and its highest manifestation – IOI.

It should be taken into account that in addition to general school education, the de-
velopment of creativity is based on the development of the talent of the child in a certain
sphere of creativity and requires the reflection of the specifics of creativity. It is possible
to see that the main categories of child developmental teaching in Olympic preparation
also are to know, to be able, to apply. However, in this training it is necessary to know the
theoretical component of the sphere of creativity, to be able and to possess in perfection
the instruments of creativity, to have practical experience of self-realization in the sphere
of creativity in the public environment in open competition for recognition and search for
ways of improvement. The methodologies developmental teaching these competencies
vary. The trainer ‘s technique of Olympic preparation depends on how the trainer places
emphasis in development of these competences, as their combination will provide.

Since each creative environment has its own specificity, in Olympic preparation for
IOI it is necessary to take into account this specificity. In the general usual categories
of competences to know, to be able, to apply independently it is possible to distinguish
10 key competences taking into account the specifics of IOI. At the same time, 10 key
competences reflect the specifics of IOI for the development of creative activity and, as
a result, the realization of children in IOI.

Can be considered 10 key skills IOI – steps of development, which will allow the
child to become strong in IT, his important life experience relevant Informatics as a stu-
dent, but this experience – a motor for future training and professional development. We
understand that IOI despite the high level of complexity – learning environment for chil-
dren’s growth in science. And ahead – the real ore in the IT sphere, the innovative way of
our planet in the digital environment of its development, where you need a lot of highly
professional in IT. And that’s the mission of IOI and everyone who works with kids in
Informatics, from the school teacher to the coaches and the IOI science community.

Category of the general
competences

Specifics of IOI IOI key skill

To know IOI syllabus 1/Subject-specialized competencies
2/Algorithmic competence
3/Learning competencies (the ability to learn)

To be able IOI tasks archive 4/Practical competences (qualification)
5/Instrumental competencies (Programming tools)
6/Digital competencies

To apply independently Experience of realization
of personal potential in the
Olympiad in Informatics
National OI, IOI, ets

7/Technological competence
8/Communicative competence
9/Technical competence
10/Creative competencies

M.S. Tsvetkova, V.M. Kiryukhin156

4. Top 10 Key Skills for the Success of Students in IOI Preparation

What you need to know, and be able to apply in their practice the child in Olympiad
Informatics?

10 key skills
in Olympiad
in Informatics

Know, understand, think Be able to do, plan, evaluate Apply in their practice,
creativity, analyze the results

Subject-
specialized
competencies

To know IOI syllabus, including,
what topics and sections are
included in the IOI syllabus, to
understand the reflection of the
IOI Syllabus in the tasks of the
Olympiads, to think about the
level of your mastery of the IOI
Syllabus topics

To study the theory of sec-
tions of the IOI syllabus, to
compare the problems of the
Olympiad and the topics of
the IOI Syllabus, plan your
theoretical training, identify
and eliminate deficiencies in
theoretical training

To analyze the completeness
of knowledge of the IOI
Syllabus, to apply the theory
comprehensively in solving the
problems of the Olympiad

Algorithmic
competence

To know the specifics of IOI
problems, own various aspects
of algorithmic approaches to
the specifics of IOI problems on
the example of the collection of
IOI problems

To be able to solve IOI prob-
lems, to be able to analyze
the problem and compare it
with the IOI syllabus

Conduct analysis of tasks, to
speak to the audience with the
analysis, in practice to assess
the complexity of the algorithm
for solving the problem,
subtasks

Practical
competences
(qualification)

Know about the Collection of
IOI tasks, know about online
resources where you can solve
IOI tasks from the collection
online

Be able to plan your daily
workout using the IOI
task collection as a basic
workout for mastering the
IOI syllabus

To cultivate the will to win, to
achieve the solution of each
problem by 100 points, to train
for the speed of solving the
problem

Learning
competencies
(the ability to
learn)

To know about mass open
online courses on Olympiad
Informatics, distance learning
systems on algorithms and
programming,

Be able to learn online
courses algorithms and
programming, to develop
erudition in the choice of
MOOCs on the topics of
Syllabus IOI

To plan in the preparation
movement forward (positive
dynamics of development), to
cover new and more difficult
courses, critically to estimate
experience of continuous deve-
lopment, training and the growth
in the Olympic preparation

Instrumental
competencies
(Programm-
ing tools)

Deeply know the tools of
his creativity in Olympiad
Informatics-know the techno-
logy of programming, under-
stand the semantics of the
programming language

The most complete know-
ledge of the fundamental tool
of Olympiad Informatics-
programming language C++
and additional programming
languages (for IOI)

To develop skills and practice
in different programming
languages and software envi-
ronments, to develop erudition
in programming languages,
their purpose and distinction, to
follow the innovations

Digital
competencies

To know the features of com-
puter configuration, to know
the requirements for memory
and time limits for the program,
to understand and understand
the information structures and
methods of their processing
on the computer, taking into
account its configuration

Own a computer, operating
system and software without
barriers, be able to freely
navigate and work in an
online environment, in a
network based on analogues
of the IOI competition
system

Apply digital competencies
in the workplace in any envi-
ronment of computer support of
the Olympiad, show motivation
in their technical training, taking
into account new computer and
network technologies

Continued on next page

Top 10 Key Skills in Olympiad in Informatics 157

Table continued from previous page

10 key skills
in Olympiad
in Informatics

Know, understand, think Be able to do, plan, evaluate Apply in their practice,
creativity, analyze the results

Technological
competence
(experience
of realization
of personal
potential
in the
Olympiad in
Informatics)

Know about international and
national local competitions:
for example, EJOI, IAITI,
USACO, APIO, Top Coder,
etc., methods of self-assessment
of training results, think about
and critically evaluate their
results, understand and evaluate
their deficiencies in training
and think about, plan ways to
eliminate them

To be able to analyze the
results of each participation
in the competitions for com-
pleteness of the decision,
the speed of the decision,
to identify the results of
the competition deficits
in training on the topics
of the IOI syllabus, to be
able to design the results of
performances and perform
individual short-and long-
term self-training plans

On experience to form tech-
nological skills of participation
in the international, national,
local competitions, to form
psychological stability to the
stressful competitive environ-
ment, to form confidence in the
competitive ability

Communica-
tive
competence

Know the basics of communi-
cation technologies, informa-
tion security requirements in the
communication environment

Be able to work in English
with texts, in communication,
in online courses
Be able to speak on the topic
of Olympiad Informatics,
formulate questions

To put into practice commu-
nicative literacy in independent
work with sources, online
courses, in the collective en-
vironment of partners and
colleagues

Technical
competence

Know the technical resources
to equip the Olympiad envi-
ronment in Informatics, the
specifics of the information sys-
tem of competitions, methods
of work in these environments

Be able to develop high-
speed and high-quality as-
pects of working with devi-
ces on the computer and
with software,
Be able to independently use
and configure the necessary
software

In practice, continuous moni-
toring of new versions of
software, to analyze their
differences and features in
operation

Creative
competencies

Full understanding of the
structure of the Olympiad task,
the features of the formulation
of the problem in the task and
its formalization, restrictions
for subtasks, the specifics
of the development of tests
and debugging, methods of
formation of the evaluation
system

The ability to independently
solve problems for a full
score, the ability to inde-
pendently compose Olym-
piad tasks and their full
preparation for the tour (IOI
analogues)

Practice self-development tasks
(composed of tasks) based on the
composition of skills: selection
of algorithmic problems
in IOI syllabus , essay text
tasks in problem formulation,
development of tests for this
problem, the installation
problem in the system events
tour on the author’s task for
other students, participation
in and development of the
assessment system, conducting
analysis tasks.

M.S. Tsvetkova, V.M. Kiryukhin158

5. Indicators of Achievement of 10 Key Skills in IOI

Indicators for10 key
skills in IOI

Indicator for stage-start up
(7–12 years old)

Indicator for stage juniors
(13–15 years old)

Indicator for stage 2-profile
level (15–18 years old)

Subject-specialized
competencies

Proficiency in IOI Syllabus
topics based on the quality
of tasks from the IOI
collection by training level
with achievement of a
critical score:
At least 30 points for each
task for 2 hours per task

Proficiency in IOI Syllabus
topics based on the quality
of tasks from the IOI
collection by training level
with achievement of a
critical score:
At least 60 points on avera-
ge for three tasks in 2 hours
per task

Proficiency in IOI Syllabus
topics based on the quality
of tasks from the IOI
collection by training level
with achievement of a
critical score:
At least 75 points on avera-
ge for three tasks in 2 hours
per task

Algorithmic
competence

The number of tasks
from the IOI collection
(performed on a critical
score) per year is not less
than 10

The number of tasks
from the IOI collection
(performed on a critical
score) per year is not less
than 20

The number of tasks
from the IOI collection
(performed on a critical
score) per year is not less
than 30

Practical competences
(qualification in IOI)

The number of tasks solved
in a year, modified to a full
score – at least 10

The number of tasks solved
in a year, modified to a full
score – at least 20

The number of tasks solved
in a year, modified to a full
score – at least 25

Learning
competencies (the
ability to learn)

Number of online courses
for this training group per
year is 1–2

Number of online courses
for this training group per
year is 3

Number of online courses
for this training group per
year is 3–5

Instrumental
competencies
(programming tools)

Number of courses in C++
programming language at
least 1

Number of courses in pro-
gramming languages at
least 2
Number of courses in C++
programming language at
least 1

Number of courses in pro-
gramming languages at
least 3
Number of courses in C++
programming language at
least 1

Speed of solving IOI collection problems in C++ per critical score no more than
1 hour per 1 task

Digital competencies Assessment of software
proficiency under Linux OS
(mastered common tools in
Linux OS)

Assessment ownership
software under OS Linux
(not fully, can work on
Olympics under OS Linux)

Evaluation software owner-
ship under Linux OS (Yes,
full ownership)

Technological
competence

Number of online tours or
competitions-1 each month

Number of online tours or
competitions-2 each month

Number of online tours or
competitions-3 each month

The average score for tours and competitions per month is not less than the critical
score for the preparation group

Communicative
competence

The level of understanding
of the interface of the sys-
tem of competitions in
English: “I Understand
partially”

The level of understanding
of the interface of the sys-
tem of competitions in
English: “I Understand,
there may be questions»
Level of understanding of
the text of tasks in English,
online courses in English (I
understand partially)

The level of understanding
of the interface of the sys-
tem of competitions in
English: “I Understand
freely»
Level of understanding of
the text of tasks in English,
online courses in English
(full)

Continued on next page

Top 10 Key Skills in Olympiad in Informatics 159

Table continued from previous page

Indicators for10 key
skills in IOI

Indicator for stage-start up
(7–12 years old)

Indicator for stage juniors
(13–15 years old)

Indicator for stage 2-profile
level (15–18 years old)

Technical competence The level of knowledge of
the technical capabilities
of the competition system:
training, work with external
technical support and advice
of the coach

The level of ownership
of the system of the
competition: possess, can
be issues when moving to a
new system of competition
takes time to adapt

The level of ownership sys-
tem contest: possess freely,
can on their own quickly
adapt to any system contest
for negligible time

Creative competencies Participation in the task
development group with
a coach, experience of
participation-at least 1 task
per year

The Number of tasks fully
developed in a group with a
coach like IOI for training
tours in their training
team – at least 2 tasks per
year

The number of tasks fully
developed in a group
without a coach like
IOI for training tours or
competitions-at least 2
tasks per year

6. Role of Head Coach for the IOI National Team’s Olympic Training

Personal experience as the head coaches of the Russian national team from 1989 to
2018 allowed us to find ways to guarantee the success of children participating in IOI
in practice.

First, let’s list what the head coach is responsible for:
The final result.●●
The organization of the training process.●●
Potential growth in the preparation of participants (together with teachers, men-●●
tors and coaching staff).
Building a long-term plan for each stage of training (for 3 years) for each par-●●
ticipant.
The team’s psychological readiness to perform successfully.●●
Basic IOI-specific training (i.e. the minimum IOI-specific qualification level is ●●
the individual training plan of each participant and the quality of its implementa-
tion by the participant).
Long-term planning in the framework of new trends in Olympiad Informatics.●●
The team selection methods based on objective results (indicators) of the par-●●
ticipant’s preparation, taking into account the achievement of the qualification
minimum according to IOI specifics.
The formation of basic training for juniors as a shift to the senior team.●●

Often coaches, especially those who are unfamiliar with pedagogy and school work,
focusing on the professionalism of students, do not take into account the full readiness
of the participant for the specifics of the competition, believing that any competition will
have an effect. This is not only wrong, but also harmful for children, since the spread in
different competitions takes a lot of effort from the participant and does not allow them
to prepare for medals based on the specific specifics of the target competition.

M.S. Tsvetkova, V.M. Kiryukhin160

In order for participants to grow, they must first be taught to train well, and it is the
Junior stage that is aimed at this task.

You need to start in a timely manner, since entering the Olympiad qualification as a
training base from the age of 16 will not give the desired effect due to lack of time, since
the qualification is specific to a specific Olympiad. A Junior progresses only when he
goes through a well-thought-out, well-targeted training within a well-organized training
process. Target training, or qualification training – is a painstaking daily work, training
on the IOI tasks archive (IOI, 2019) as is customary for musicians, artists, and daily
sport training or art etudes. The IOI archive is such mandatory etudes or daily training
sessions for preparing for IOI.

There is a common misconception that participants allegedly grow during participa-
tion in various competitions. This is not true. In the competition, they only demonstrate
what they have accumulated over many days during hard training. And if there is no
good training process, or if the participant himself for some reason does not work well
or is not motivated to succeed, then he does not show high results in the competition.
Frequent participation in competitions indiscriminately, mixing of specifics in competi-
tions without targeted training leads to fixing the participant’s incomplete result on the
tasks of the competition, no higher than 50 percent of points and lack of perseverance in
training. As a result, the opposite effect is fixed – the inability to work for a full score, the
highest result and the unwillingness to hone it in independent constant work. You need
to learn how to get a high result, and most importantly, do it at the Junior stage, so that
there is time to improve the participant at the peak of his capabilities, that is, to open the
child to take off to his own capabilities.

Talent plus every day work is the key to the success of any participant. The pres-
ence of talent can be recognized by an expert look and the first performances in national
Olympiads of children.

But, unfortunately, many gifted participants believe, or have been given the wrong
installation by their personal trainers, that it is enough for them to perform on one talent,
watch and listen to others, but not necessarily do something themselves. They expect
enlightenment by training irregularly and not full strength.

You can achieve real success only through colossal, regular, daily work and a deep
passion for the subject of the Olympiad. All those who become IOI stars work hard on
themselves for a long time. We can say that the key to improving talent is the balance
of coaching and independent work 50–50. If you do not teach the child to organize their
own regular work to improve their talent, they will show the same 50 percent of the re-
sult. And if at the Junior stage the coach’s participation prevails, then at the Junior stage
this balance must be clearly carried out, then at the stage of the senior group motivated
independent work prevails and this is the key to full results.

Take examples of IOI participants who were at the peak for 3–5 years, at the top
of IOI, who became absolute Champions twice or more times. Behind these achieve-
ments is a daily, passionate, correct training work. In teams where the medal result
of all team members in each IOI year is shown, such work is built. It is important to
analyze the statistics of such achievements of countries and take into account their
experience.

Top 10 Key Skills in Olympiad in Informatics 161

Concentration of attention, discipline of the training mode, high motivation, deep
training, independence and perseverance-all this should be brought up in the participant
from an early age and taken into the work of the head coach, then you can plan the
growth of the success of talented children to the level of their potential opportunities for
everyone, and this should be a guideline for the medal result. With these opportunities
and important experience, children will go further into professional life.

7. Methodology of the Basic Qualification Olympiad Preparation
of the IOI National Team

How to plan regular, daily work-basic (qualification) training of the Olympiad prepara-
tion? The difference between the basic qualifications is that it is an invariant core of
training that is common to all participants, in addition to its variable individual trainings
that take into account the child’s personality and potential.

Basic training as a qualification, mandatory for all participants in preparation for the
international Olympiad, can be represented by a three-level system.

The training is conducted on the tasks of the archive of the Olympiad that the partici-
pant is preparing for. We will look at the IOI goal. Basic training for IOI is conducted in
two-week cycles, each cycle includes thematic training sessions and tours on IOI tasks
on the topic.

The basic training curriculum for each age group of training is designed based on the
IOI syllabus topics.

Cycle tours have different specifics, but are intended for all age groups: primary
group 7–12 years old, junior group (13–15 years old)? Senior group (16–18 years old).
For all age groups:

Thematic tour 1.	 with a selection of problems on a specific topic from Syllabus IOI
with a preliminary lecture on this topic.
A validating tour2.	 for knowledge of the specifics of tasks from different topics,
using a ready-made tour of the year from the Olympiad archive (IOI or at the
choice of the coach from similar competitions) with a preliminary overview lec-
ture on the topics in the tasks of the tour.
A control tour3.	 , such as a type 1 and type 2 tour with a final lecture after the
tour.

Children should not be divided into classes based on age. The complexity of the task
of tours is regulated for the groups, but all classes are held together.

Cycle for 2 weeks of training. For 2 hours a day, the day of the tour for the allotted
number of hours is recommended to be spent on an extra-curricular day at school.

First week, 6 days.
Days 1–2, (2 days) 4 hours. Lecture on the theory, on the topics of IOI syllabus, ●●
for which the tasks for the tour are selected from the archive of IOI (or other
Olympiads).

M.S. Tsvetkova, V.M. Kiryukhin162

Day 3, (one day). Conducting a tour on 2–3 tasks for 3–4 hours, respectively. For ●●
different age groups, tasks are selected from the corresponding difficulty tour,
and the achievement of a critical score for the age group is recorded. Primary
group have one task for 2 hours, junior group have two tasks for 3–4 hours, and
senior group have 3 tasks for 4 or 5 hours.
Day 4 (one day), 2 hours. Selection of algorithms for solving problems of the ●●
tour. The analysis is carried out in two stages. First, the participants with the best
results come forward and explain their solution. Then the trainer shows the refer-
ence solutions for the full score . only then- explanation or final lecture of the
theory of Syllabus IOI on the example of a reference solution of the task.
Day 5 (one day), 2 hours. Repeat the tour on the same tasks for 1 hour for juniors ●●
and for seniors groups. The participant must not see their decisions and repeats
the tour again, but for what time. This will show the effects of absorption of the
solutions at the critical point and above, speed and quality. Often this tour re-
veals the technical and instrumental, fault intellectual deficits of the participant's
training.
Day 6, (one day). Individual consultation with the coach. 1 hour. Filling in the ●●
individual plan by a student with a self-assessment of all indicators for the week.
Assignment of 3 tasks from the Olympiad collection by the coach for independent
study and trial solution in 6 days. Tasks are selected either by the passed topic
(for any age group) or as a tour of the year from the archive with self-analysis of
the Syllabus IOI topics of these tasks (for juniors and seniors).

It is not necessary to select separate tasks for the Primary and Junior age groups.
All IOI tasks have different solution levels, separated by subtasks and provided with
points. For each age group on the same tasks in the allotted time, it is necessary to
achieve bringing the solution of the problem from the IOI archive to the critical score
for the age group. As a result, according to the basic training (IOI qualification), each
participant at the Junior and senior group level must already demonstrate the solution
of problems to the full score (even with repeated approaches to the solution). It is very
important that the participant has sufficient experience in solution tasks from the IOI
archive for a full score and demonstrates the analysis skills these tasks and solve them
again in a very short time at speed.

Group consultation with the coach. 1 hour. General discussion of tasks, identifica-
tion of Syllabus topics for these tasks, and distribution of IOI tasks (subtasks to them)
by age groups.

The second week, 6 days.
Days 1–4, 10 hours. Home / independent work. Self-completion mode for the full ●●
score of the tour tasks and thinning out the selected 3 tasks from the Olympiad
archive. Filling in the final table of indicators. Preparation of the analysis of 3
problems on the topics of the syllabus. The tasks analysis card includes: which
topic of the Syllabus IOI is the task, what algorithm use for this task , and estima-
tion of the complexity of the algorithm.

Top 10 Key Skills in Olympiad in Informatics 163

Day 5, 2 hours. Seminar on the results of the week of homework. Analysis of home ●●
independent work. Presentations of students on tasks with independent analysis.
Group consultation with the coach.
Day 6, 2 hours. English language training, reading and analysis of task texts in ●●
English from the IOI tasks archive and other Olympiads with the participation of
a coach. Brainstorming on approaches to solving these problems.

8. Starting and Planning Competence of the Participants
of the National Olympic Reserve School

Trainings can be organized in the country in the form of winter and summer schools and
distance sessions between them.

The focus-group of training is juniors (13–15 years old) include 3 training cycles
within three years to achieve planned competencies based on the formation of a cul-
ture of independent work. Seniors group (16–18 years old) select at result of working
with juniors after 3 years sessions, training with seniors is carried out on an indi-
vidual route with a personal trainer and a serious training plan for the results of higher
achievements.

The selection of successful juniors is made from the primary group. It is important
to conduct for this selection a mass school stage of the national Olympiad in Informat-
ics, where successful children of 12–13 years old are identified, and a national team of
juniors is formed for training sessions for them of the national Olympic reserve school
and their promotion to higher achievements.

With young students (7–12 years old), the work is carried out in primary groups in
schools in their places of study with the involvement of children in online competitions.
For younger students, it is important to master the course in Informatics and introduce
syllabus topics based on problems in logic, combinatorics, graphs, as well as to master
the programming of simple algorithms in C++ at the user level. Summer and winter
sessions for primary groups are held in their schools. For this purpose, teachers of these
primary students must have an Olympiad mentor, with whom they can consult at any
time, including Internet communication line, and have methodological materials and
sets of tasks for younger students about Olympiad training.

Training camp of the national Olympic reserve school for juniors and seniors are best
conducted together.

This School for junior and senior students is held as an Olympiad Informatics camp
for national teams. Age of participants is supposed 13, but to be not older than 16 years
by the end of the year. The student can choose the level of training: advanced (A) or base
(B). The content of classes of the school of winter and summer schools is based on the
thematic sections of the Syllabus IOI “6.2 Algorithms and Complexity (AL)”.

IT clubs on the use of IT in various fields of science and technology is to form a space
of formation of profile interests at the junction of science and information technology.
The School program provides Robot-club.

M.S. Tsvetkova, V.M. Kiryukhin164

Coach-group of the national Olympic reserve school:
Trainers of the national Olympiad in Informatics, coaches in Algorithms, IOI – ●●
tasks coaches, C++ programming teacher, specialist in the competition system.
MOOC-tutor, consultant on new digital professions and it development pros-●●
pects, General digital literacy coach or digital curator (Tsvetkova and Kiryukhin,
2019).
Robot-club coaches (samples of application of programming in engineering). ●●
additional coaches in chess algorithmic games (origami, Rubik's cube, Go game, ●●
etc),
Sports coach, educational psychologist for the junior and senior teams. ●●

Start-competence of new participants of the national Olympic reserve school (ju-
niors 12–14 years old):

Knowledge of the subject of Olympiad tasks at the level of the National Olym-●●
piad in Informatics, high results at the school stage Of the National Olympiad in
Informatics.
Primary experience in solving simple problems of Olympiad Informatics (nation-●●
al Olympiad level, or levels of simple problems in the IOI task collection). Select
a simple task from the collection can be based on the statistics of its solutions to
the full score, in the Statistics section on the IOI website (IOI , 2019).
Introduction to the themes of Algorithms.●●
Availability of primary experience of participation in online Olympiads in Infor-●●
matics.
Ability to use the system of competitions, to send the decision for check, to test ●●
the decision.
Primary C++programming skills. ●●
Ability to speed input on the keyboard Planned personal Junior skills on ISIJ The ●●
individual plan of the Olympiad training (for the period of 2–3 years) is focused
on the independent work of the Junior with the resources of the Olympiad Infor-
matics taking into account the specific tasks of IOI and syllabus IOI.

Planned competence of participants of the national Olympic reserve school (15–16
years old):

Knowledge of the IOI Syllabus.●●
Ability to analyze the problem and determine the theme of the Syllabus IOI for ●●
the tasks.
Experience in solving problems of increased difficulty theme. ●●
Knowledge of the criteria of self-assessment of achievements based on solving ●●
problems of increased difficulty, the ability to conduct self-analysis on the results
of training, to set tasks to eliminate the identified deficiencies.
The use of MOOC for development of the Olympiad in Informatics, Algorithms, ●●
data Structures, Programming.
Readiness to solve the tasks of summer and winter school for daily training the ●●
practice on a full score.

Top 10 Key Skills in Olympiad in Informatics 165

Ability to identify difficulties in solving the problem in the first approach to it, ●●
the ability to find and study the theoretical material and analysis of solutions on
the basis of the first approach to eliminate deficiencies, the ability to bring the
solution of the problem after the second/subsequent approaches to a full score.
The ability to build the personal training plan for the 2–3 years (a daily 2 – hour ●●
lesson on the tasks, in a remote environment, the ability to implement your plan
without missing).
The ability to work out high-speed problem solving skills ●● (Yandex. Contest,2018)
repeated solution of one problem after its solution and analysis for a full score
not more than 1 hour.
Regular participation in a MOOC to improve the skill of programming in C++ ●●
(for example Cursere , Cisco Networking Academy).
Regular participant in online Olympiads.●●
Elimination of difficulties in the English-speaking environment of the competi-●●
tion system and Olympiad tasks.
The ability to analyze the text of the problem, the ability to analyze in the group ●●
solutions for subtasks and complete solutions.
Fluency in work with systems of competitions in Informatics. ●●
The experience of creativity to develop algorithmic problem and legend-text of ●●
task and tests-set for the tour (work in a group with a coach), its full preparation
for inclusion in the tour.
The communication culture skills with colleagues.●●
Understanding the value of active rest and sports for the programmer, compli-●●
ance with the time for recreation and creativity in the application environment.
Knowledge in perspective professions in the IT sector.●●

9. Conclusion

10 top skill is a key tool for solving the coaching tasks described above and a guaranteed
path to the success of purposeful talented children in Olympiad in Informatics.

As leaders of the Russian team at the IOI from 1989 to 2018, we offer coaches of
countries to use the methodology of Olympic training received in Russia, modified and
issued as a coaching technology for the years 2002–2018. Since 2017, we have imple-
mented in Russia the selection of the Junior team for training as an Olympic reserve
for the selection of teams for IOI and opened this experience to all countries at the
international school of Informatics for juniors ISIJ (ISIJ, 2019), described the starting
and planned competencies of juniors to prepare for IOI. ISIJ takes place every year in
Russia, Kazan in the summer, but in the winter – in countries by request.

This method was implemented in the preparation of Russian teams, the coaching
goals were achieved, Russian teams always took 4 medals at all IOI and had gold. Now
when preparing juniors, in addition to the strong training of the senior team, a ground-
work is laid for success for several years to come: the succession of medalists. The
guarantee of success in the stable preparation of the country’s team with the formation

M.S. Tsvetkova, V.M. Kiryukhin166

of a change of teams from juniors-gives a start for 3 years ahead, as demonstrated by the
Russian team, consisting of former juniors since 2018, the result of gold medals in 2018
and in 2019 confirms the success of the methodology developed by us. All participants
of the Russian team of the last years started their training as juniors from 12–13 years
old using the method described above. It is important to keep the best experience, enrich
it, and rely on the methodological achievements and experience of the older generation
when changing team coaches in the country, which is inevitable for decades.

The result of this method is the current national system of preparation for IOI
in Russia, which can be used by any IOI member country. We are open to sharing
this experience, which can be implemented in the work of coaches for all IOI teams.
Training in this method for Junior teams and coaching groups from the country can be
held at the annual international school of Informatics ISIJ in Russia (Tsvetkova and
Kiryukhin, 2018).

The authors want to thank the entire IOI community for this huge contribution that
IOI has made over 30 years of work, and wish the new generation of team leaders-head
coaches-not to lose valuable techniques created during this period of formation and de-
velopment of IOI and national computer science Olympiads for schoolchildren in the
world. I suggest using this experience and going forward with it, looking for new trips
to maximize the creative potential of the participants of the Olympiad. The main thing is
that participation in IOI on the basis of talent and hard work will become their important
life competence for further creativity and professional success.

Reference

Kiryukhin, V.M. (2007). The modern contents of the Russian national olympiads in informatics. Olympiads in
Informatics, 1, 90–104.

Kiryukhin, V., (2010) Mutual Influence of the National Educational Standard and Olympiad in Informatics
Contents. Olympiads in Informatics, 2010, Vol. 4, 15–29.

Kiryukhin, V.M., Tsvetkova, M.S. (2010). Strategy for ICT skills teachers and informatics olympiad coaches
development. Olympiads in Informatics, 4, 30–51.

Kiryukhin, V., Tsvetkova, M. (2011). Preparing for the IOI trough developmental teaching. Olympiads in In-
formatics, 5, 44−57.

Kiryukhin, V.M., Tsvetkova, M.S. (2014). The approach of early olympiad preparation “Olympic Lift”. Olym-
piads in Informatics, 8, 111–122.

Tsvetkova, M. , Kiryukhin, V., (2016) Concept of Algorithmic Problems for Younger Students Olympiads in
Informatics. Olympiads in Informatics, Vol. 10, Special Issue, 67–78.

Tsvetkova, M., (2016) Informatics at Russian Primary School. Olympiads in Informatics, 2016, Vol. 10, Special
Issue, 3–6.

Tsvetkova, M. , Kiryukhin, V., (2018) International School in Informatics “Junior” for IOI Training. Olympiads
in Informatics, Vol. 12, 187–193.

Tsvetkova, M. , Kiryukhin, V., (2019) Digital curator. Olympiads in Informatics, Vol. 13, 237–240.
Yandex. Contest (2018) IOI Archive. https://contest.yandex.ru/ioi/?lang=en
ISIJ (2019). International school in informatics “Junior”. http://www.isi-junior.com
IOI (2019). International Olympiad in Informatics. Statistics. http://stats.ioinformatics.org/tasks/

Top 10 Key Skills in Olympiad in Informatics 167

M.S. Tsvetkova, professor of the Russian Academy of Natural Sci-
ences, PhD in pedagogic science, prize-winner of competition “The
Teacher of Year of Moscow” (1998). Since 2002 she is a member
of the Central methodical commission of the Russian Olympiad in
informatics, the pedagogic coach of the Russian team on the IOI. She
is the author of many papers and books in Russia on the informatiza-
tion of education and methods of development of talented students.
She is the author official textbooks and copybooks in Russia for pri-
mary school in Informatics. She is author and director International
school in Informatic ISIJ (since 2017). She is the Russian team leader
(2013–2017). She was awarded the President of Russia Gratitude for
the success organizing the training of IOI medalists (2016). Expert
of Committee on Education and Science State Duma of the Russian
Federation (since 2017).

V.M. Kiryukhin is professor of the Russian Academy of Natural Sci-
ences. He is the author of many papers and books in Russia on devel-
opment of Olympiad movements in informatics and preparations for
the Olympiads in informatics. He is the exclusive representative who
took part at all IOI from 1989 to 2017 as a member of the IOI Inter-
national Committee (1989–1992, 1999–2002, 2013–2017) and as the
Russian team leader (1989, 1993–1998, 2003–2012). He received the
IOI Distinguished Service Award at IOI 2003, the IOI Distinguished
Service Award at IOI 2008 as one of the founders of the IOI making
his long term distinguished service to the IOI from 1989 to 2008 and
the medal “20 Years since the First International Olympiad in Infor-
matics” at the IOI 2009. He was chairmen IOI 2016 in Russia, and has
the award medal of the President of Russia (2016) for organizing the
Olympiad in Informatics in Russia and training IOI medalists since
1989. President of the international organizing Committee ISIJ.

Olympiads in Informatics, 2020, Vol. 14, 169–176
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.13

169

REPORTS

Argentine Olympiad in Informatics

Agustín Santiago GUTIÉRREZ
Universidad de Buenos Aires, FCEN, Argentina
e-mail: asgutierrez@dc.uba.ar

Abstract. This article describes Argentina’s selection and training process for the International
Olympiad in Informatics, to identify and prepare the Argentine team members participating in the
international olympiad. Additionally, recently developed online resources that have proved very
useful for student preparation are presented.

Keywords: olympiads, programming contest, selection, training, grading systems.

Introduction

In the year 1990, Argentina started to participate in the International Olympiad in In-
formatics (IOI) (Kalinicenko, 2020). However, the Argentine Olympiad was under a
different administration at that time, and it was suspended after the 1994 IOI. Argentina
did not participate in the IOI 1995 and 1996 editions. Very few contacts, statistics and
records are available from this period.

In 1996, OIA (“Olimpíada Informática Argentina”, that is, the Argentine Olympiad
in Informatics) was started once again (OIA, 2020c), now based at General San Martín
National University (UNSAM) in the Buenos Aires Province. Since then, the olympiad
has been running continuously at UNSAM, selecting and sending delegations to IOI
every year. OIA is part of a general National Program of Olympiads (Argentina.gob.ar,
2020), in which the Ministry of Education assigns the task of organizing the different
Science Olympiads in Argentina to National Universities.

Up to and excluding 2020, Argentina has participated in 28 IOIs, obtaining 3 gold
medals (1990, 2003, 2018), 9 silver medals, and 23 bronze medals.

A.S. Gutiérrez170

IOI Selection Process

General Contest Environment

In all of OIA contests, each task is graded from 0 to 100 points, similar to IOI.
All contest up to and including year 2013 were run either by manually collecting and

testing all the contestants’ code at the contest’s end, or by using custom OIA Contest
Management Software.

From 2014 onwards, CMS (Maggiolo and Mascellani, 2012; Maggiolo et al., 2014)
has always been used for the National Contest and the Selection Contest. This has been
an enormous improvement in term of Contest Management quality, and has also allowed
students to be already familiar with the IOI Contest Environment before actually arriv-
ing at IOI.

Except for the Selection Contest (last round), only Batch-type tasks have been used
so far in the olympiad.

First round: Jurisdictional Contest

The Jurisdictional Contest is open to any high-school student in Argentina. It is divided
into three levels, based on school-year (counted from first grade, that is, the first year of
primary education):

Level 1: 8th and 9th grade.●●
Level 2: 10th and 11th grade.●●
Level 3: 12th and 13th grade.●●

The country is divided by OIA into jurisdictions, a term chosen to encompass at the
same time provinces, Buenos Aires City, and regions of large provinces. Each jurisdic-
tion has a Jurisdiction Coordinator appointed by OIA. The country is divided into 25–30
jurisdictions, with the precise number varying in recent years.

In 2019, the Jurisdictional Contest was coordinated nationally by OIA for the first
time (OIA, 2020d). It is now a single contest across the whole country: students gather
at schools designated by their jurisdiction’s coordinator, and log into an online running
CMS server in order to compete.

Previously, the jurisdiction coordinators were in charge of selecting its contestants
for the National Contest however they judged appropriate, being required only to present
a final list of students of at most 3 per level per jurisdiction. Since 2019, a single national
contest is prepared by the national judges (aided by helping judges from the different
jurisdictions) and the whole country has to compete using this same contest on the same
day of competition. This has been a significant improvement in terms of statistics gath-
ered by OIA about its student base.

The contest has a length of four hours, and consists of four tasks per level. It is the
judges intention that the first of the four tasks in each level is very easy: it should take

Argentine Olympiad in Informatics 171

experienced, well-prepared contestants in the corresponding levels no more than 5–10
minutes to read and fully solve these tasks. This decision, as well as the total of four
tasks, helps in successfully using a single contest throughout the whole country, accom-
modating large differences in level among the different jurisdictions.

232 students submitted solutions in this round in 2019: 36 in level 1, 104 in level 2,
and 92 in level 3.

Top students advance to National Contest. The previous rule of selecting always 3
students per level per jurisdiction has been changed in 2019 (OIA, 2020e; OIA, 2020f).
Now, only the best two students (as determined by their scores in this unified round) per
level per jurisdiction are selected. Based on the available budget for the National Con-
test, additional wildcard slots are added for the next best scoring students, regardless of
their jurisdiction.

Second Round: National Contest

This is an onsite contest. All of the students are gathered in the same city, with expenses
covered by OIA.

The National Contest is divided into three levels, exactly the same as the Jurisdic-
tional Contest. In the last decade, about 60 to 100 students have partipated in the Na-
tional Contest each year.

The contest has a duration of four hours, and consists of three tasks per level. After a
single contest day, medals are awarded to the top contestants in each level.

Traditionally, exactly three medals per level were given: Gold for the best contestant,
silver for the second best, and bronze for the third place. Since 2019, the medal alloca-
tion algorithm was changed based on the number N of contestants achieving at least 25%
of the total possible score:

Gold: ●● �
�� = 2�

2�

3�
2�

�
� = 4�

2�

 medals.
Silver: ●●

�
�� = 2�

2�

3�
2�

�
� = 4�

2�

 medals.
Bronze: ●●

�
�� = 2�

2�

3�
2�

�
� = 4�

2�

 medals.
This was done both to allow more medals in cases where many good contestants ap-

pear in the same level, and to prevent bronze medals from having extremely low scores.
The number of medals in recent years would not have changed much if the rule had been
in place, except when these special cases occurred. The jury is allowed to decide on the
precise cutoffs in the case of ties and near ties.

The top students in the National Contest are allowed to advance to both the Selec-
tion Contest and the Iberoamerican Olympiad in Informatics (CIIC) (OEI, 2020; OIA,
2020a). As stated in OIA rules (OIA, 2020e), the advancing contestants are the top three
students of level 1, the top four students of level 2, and the top six students of level 3.
The jury is allowed to make additional students advance based on their performance in
the National Contest.

A.S. Gutiérrez172

Third Round: Selection Contest

The final round is the Selection Contest. The goal is for it to be as similar to the IOI con-
test as possible: that is why it is organized in two days of competition, having a duration
of five hours and three tasks per day, and separated by a free day without competition.
Traditionally, Batch-type tasks were used exclusively from 2000 to 2015, but in recent
years other type of tasks have been included, in alignment with typical IOI tasks types:

Interactive tasks: The first interactive task ever used in OIA was ●● Iluminando el
árbol de Navidad (Lighting up the Christmas Tree), used in 2016 (OIA, 2020b).
A total of four interactive tasks have been used in the Selection Contest, exactly
one per year:

Iluminando el árbol de Navidad (2016).○○
Encontrando el Tiranic (2017).○○
Secuenciando el ADN (2018).○○
Cultivando bacterias (2019).○○

Output-Only tasks: The first output-only task ever used in OIA was ●● Contando
Subredes (Counting subnetworks), used in 2018 (OIA, 2020b). A second output-
only task, Recuperando distancias (Recovering distances), was used en 2019.
These remain the only two output-only tasks to have ever been used, before and
excluding 2020.

The top four contestants, by total score after adding together both competition days,
are selected for the IOI Team.

Number of Participants

The total number of contestants per round and year for recent editions of the olympiad
is shown in Fig. 1.

Student Preparation

Dedicated Training by OIA

Once the IOI Team is selected, it is invited to attend an onsite-training, typically lasting
about a week. This is an intensive, focused training event where the four students are
lectured in different topics during the morning by an instructor, and are given time to
solve and code homework problems during the afternoon.

Apart from the onsite training, the team is also in contact with an instructor for re-
mote training up to the time of the IOI itself. This training consists mainly of the assign-
ment of reading material and homework problems by the instructor, as well as asking
and answering questions by email or messaging.

Argentine Olympiad in Informatics 173

OIA Online Resources

In order to help students and teachers to prepare for the olympiad, OIA has several on-
line resources focused on high school informatics olympiads in Spanish. Except for the
webpage itself, all of these resources were launched in 2017, and have already been very
well received by teachers and students in Argentina.

Website●● : http://www.oia.unsam.edu.ar

YouTube Channel: (Olimpíada Informática Argentina)●●
http://www.youtube.com/channel/UChUJZDER53wT7VNT_UwCJyw

There is not much video material by OIA yet, but that which has already been
published is available via this channel.
Wiki: ●● http://wiki.oia.unsam.edu.ar

This is a website aimed at providing trusted, high quality reference material about
programming competitions in Spanish, mainly focused on high-school level com-
petitions like OIA. It is not an open wiki, but only OIA’s instructor’s and trusted
ex-competitors are allowed to write articles. An important ongoing effort consists
in completing and improving this site.
Forum: ●● http://foro.oia.unsam.edu.ar

This official OIA forum has proved quite helpful in creating a sense of online
community around OIA.
Judge (OIAJ): ●● http://juez.oia.unsam.edu.ar

An online judge dedicated to hosting OIA’s problems. It is directly based on
cmsocial (GitHub, 2020), the direct sucesor of oii-web (Di Luigi et al., 2016)

Fig. 1. Number of participants (2013–2019).

A.S. Gutiérrez174

The judge has improved student preparation enormously, as it gives access to
an easy to use online judge very similar to the real CMS used during OIA’s con-
tests, with an interface and competition tasks in Spanish. Many workshops and
training sessions have used OIAJ as its main online judge. Users from various
countries in Latin America have used OIAJ as a source of competition problems
in Spanish.

OIA Additional Resources

Booklets (“Solucionarios”): Starting since 2017, an official booklet is published con-
taining solutions and explanations to all the problems used that year in the olympiad
(12 + 9 + 6 = 27 problems per year). The 2017 booklet was completed and published
(OIA, 2020g) in the beginning of 2019. The 2018 booklet was completed in december
2019, and is expected to be released in early 2020. The 2019 booklet is being written and
is expected to be released sometime during 2020.

Talks: Since 2014, talks have been given during the National Contest event. These ●●
are typically lectures by ex-competitors focused on some competitive program-
ming topic. Also, a lecture for beginners has been given many times, and is quite
well received by teachers and students. This is a lecture explaining how to solve
simple problems using for loops, how to understand statements, and such funda-
mental skills.
Many of these talks are filmed and have been published in OIA’s Youtube Chan-
nel. Most of them have slides available in OIA’s webpage (OIA, 2020h).

Future work

It is motivating to see that many of these new resources launched by OIA in recent years
have been very well received by teachers and students. There is however a lot of room
for improvement. Some important goals for the coming years are listed:

Upload to OIAJ all problems having a statement published in OIA’s webpage so ●●
that they can be submitted there.
Improve the wiki so that it covers material easily available in English (C.P. Hand-●●
book (Laaksonen, 2017), cp-algorithms.com, etc)
Increase participation in the forum.●●
Make it easier to start participating. Some ideas: visual tasks, visual program-●●
ming, paper-and-pencil exams.
Increase the total number of participanting students and schools.●●
Create OIA training camps, and more generally, increase the availability of train-●●
ing courses.

Argentine Olympiad in Informatics 175

References

GitHub (2020). CMSocial. A web application that builds a social coding platform upon cms.
https://github.com/algorithm-ninja/cmsocial. Accessed: 2020-02-08.

Argentina.gob.ar (2020). Ministry of Education. National Olympics Program.
https://www.argentina.gob.ar/educacion/programa-nacional-de-olimpiadas. Accessed:
2020-01-18.

OIA* (2020a). CIIC : Competencia Iberoamericana de Informática y Computación.
http://www.oia.unsam.edu.ar/ciic-reglamento. Accessed: 2020-01-18.

OIA (2020b). Competition Tasks.
http://www.oia.unsam.edu.ar/problemas-categoria-programacion/#seleccion. Ac-
cessed: 2020-01-24.

OIA (2020c). History. http://www.oia.unsam.edu.ar/antecedentes. Accessed: 2020-01-18.
OIA (2020d). Nationally Coordinated Jurisdictional Contest. http://www.oia.unsam.edu.ar/instan-

cia-jurisdiccional-oia-2019. Accessed: 2020-01-18.
OIA (2020e). Rules. http://www.oia.unsam.edu.ar/reglamento. Accessed: 2020-01-18.
OIA (2020f). Rules – Structure. http://www.oia.unsam.edu.ar/estructura. Accessed: 2020-01-18.
OIA (2020g). Solucionario OIA (problemas 2017). http://www.oia.unsam.edu.ar/oia-programa-

cion/. Accessed: 2020-02-08.
OIA (2020h). Talks. http://www.oia.unsam.edu.ar/charlas/. Accessed: 2020-02-08.
OEI (2020). Organization of iberoam erican states – ciic. https://www.oei.es/historico/ciic.htm.

Accessed: 2020-01-18.
Di Luigi, W., Farina, G., Laura, L., Nanni, U., Temperini, M., Versari, L. (2016). oii-web: an interactive online

programming contest training system. Olympiads in Informatics, 10, 207–222.
Kalinicenko, E. (2020). International Olympiad in Informatics – statistics. http://stats.ioinformatics.

org/results/ARG. Accessed: 2020-01-18.
Laaksonen, A. Competitive programmer’s handbook. 2017.
Maggiolo, S., Mascellani, G. (2012). Introducing cms: A contest management system. Olympiads in Informat-

ics, 6.
Maggiolo, S., Mascellani, G., Wehrstedt, L. (2014). Cms: a growing grading system. Olympiads in Informat-

ics, 8.

*	 OIA – Argentine Computer Olympiad

A.S. Gutiérrez176

A.S. Gutiérrez. MS in Computer Science at FCEN-UBA (Buenos
Aires University). Two times IOI contestant (2006 and 2007), win-
ning a Silver Medal in 2007. Two times World Finalist and Latin
American Champion at ICPC (2009 and 2011), and seven times world
finalist as a coach (2010, 2013, 2014, 2015, 2016, 2017 and 2020),
coaching the Latin American Champion team in 2015. Actively in-
volved in helping with the organization and running of the Argentine
Olympiad in Informatics (OIA) contests since 2011. Since 2015, of-
ficial National Jury and IOI team trainer at OIA, and Deputy Leader
of Argentina at IOI. Organizer in 2019 and 2020 of the Iberoameri-
can Olympiad in Informatics (CIIC), a regional contest spanning
Latin America, Spain and Portugal. More than ten times organizer
and lecturer at more than five different ICPC Training Camps in Ar-
gentina and other Latin American countries. Teaching fellow from
2013 to 2018 at FCEN-UBA, teaching the course “Algorithms and
Data Structures 3” (Algorithmic techniques and graphs). More than
five year experience as a software engineer developing customized
search engines and algorithms for an online retail business at Bright-
sector Algorithms. Assisted Topcoder as local organizer of the TCO
2018 Argentina Regional Event. Native Spanish speaker, fluent in
English, studying Russian (approaching A2 level).

Olympiads in Informatics, 2020, Vol. 14, 177–180
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.14

177

Competitive Programming 4:
The New Lower Bound of Programming Contests
in the 2020s

Steven HALIM
School of Computing, National University of Singapore
Computing 1, 13 Computing Drive, Singapore 117417
e-mail: dcssh@nus.edu.sg

Abstract. Seven years have passed since me and my brother Felix Halim released the 3rd edition
of our Competitive Programming book (CP3) on 24 May 2013 that had influenced the competitive
programming field in the past decade: 2010s. We have just released the 4th edition of our book
(CP4) on 19 July 2020 – the original IOI 2020 arrival day where free preview copies should have
been given to all invited delegations. In this short report, we address two groups of readers: those
who have read/heard about CP3 and those who are new with this book.

Keywords: competitive programming, book, IOI, ICPC.

1. The Impact of the Earlier Editions of Competitive Programming Book

We first released Competitive Programming 1 (CP1) before IOI 2010 in Waterloo, Can-
ada, and updated it one year later with the 2nd edition (CP2) after IOI 2011 in Pattaya,
Thailand. However, the most impactful and long-lasting edition so far was the 3rd edi-
tion (CP3), released in 2013 before IOI 2013 in Brisbane, Australia (Halim and Halim,
2013). Before we wrote CP1, there is only one other existing English book in competi-
tive programming: Programming Challenges (Skiena and Revilla, 2003).

We write Competitive Programming book with the main objective of improving the
lower bound of the typical long tail of the distribution of worldwide (pre-)competitive
programmers, i.e., secondary/high school students or freshmen in University who have
just started basic programming and want to improve their data structures, algorithms,
(competitive) programming techniques, and problem-solving skills.

In these past seven years (2013–2020), we have received numerous thank you emails
(see selected testimonials at https://cpbook.net/) and also the annual requests for
autographs and/or wefie whenever we met young CP3 readers in the recent IOIs or ICPC
Regionals/World Finals. Many of these young readers found CP3 as a “catalyst” for

S. Halim178

their personal competitive programming growth. By reading CP3, these young readers
can quickly learn about the knowledge needed to compete decently in the IOIs, e.g., the
IOI syllabus (Forišek, 2019) and in the ICPC regionals. While not the original intention,
many readers have also expressed gratitude that studying the material in CP3 helped
them to secure lucrative jobs at top IT companies. The generally positive feedback from
the readers motivated us to continue studying the recent trends in this fast-evolving
competitive programming world, including to read the Guide to Competitive Program-
ming book (Antii Laksonen, 2017 and 2020), and to continue this book writing project
with a third author: Suhendry Effendy. Now in the year 2020, we are ready to release our
latest/4th edition (CP4).

In the next section, we highlight the main differences between this impactful CP3
with the new CP4 for the new decade: 2020s.

2. Comparison with CP3 (2013)

This section is for the benefit of the reader who has read CP3 sometime in the past seven
years and possibly a current active IOI/ICPC coach, a high school teacher in informatics,
or a University lecturer that can influence future young CP4 readers.

The major change is the split of CP4 into two volumes: Book 1 is mostly for IOI
(most content of the IOI syllabus (Forišek, 2019) are discussed here) + basic ICPC level
and Book 2 is mostly for medium ICPC level. Secondary or high school students can
start from CP4 Book 1 first and only move to Book 2 when they enter University.

Other major update is the addition of Kattis online judge (https://open.kattis.
com). Kattis has growing problem bank that includes IOI-related tasks, e.g., Croatian
Open Competition in Informatics (COCI) tasks 2006–2017, including some newer prob-
lem types: interactive and constructive problems.

Features CP3 CP4

Number of Books 1 Split into two books
Number of Chapters 9 1–4 + 5–9 = 9
Number of Pages 447 329 + 352 = 681 (> 1.5x)
Authors Steven, Felix Steven, Felix, Suhendry (+1)
Authors combined
experiences

ex IOI/ICPC Regionals+
World Finals Contestants,
active coaches and problem
authors of recent programm-
ing contests

+ ICPC Asia Singapore Regional Contest Director
(2015+2018), ten ICPC Asia Regional wins (as
coach), many more IOI gold+ silver+bronze
medals for team Singapore, IOI Deputy Director+
International Committee member (2020+2021)

Programming Languages C++ (11), Java (7) C++ (17), Java (11), and
+2 more: Python (3), OCaml

Programming Exercises UVa: 1675 UVa+Kattis (n: 3458 (> 2x)
Figures generated using PowerPoint + older

visualization tool
Mostly VisuAlgo
(Halim, 2015) screenshots

Competitive Programming 4: The New Lower Bound of Programming ... 179

Albeit not included in the IOI yet (but available in the ICPC), we have integrat-
ed discussion on when it is appropriate to use Python (3) programming language to
solve competitive programming problems whenever it is allowed. Sample implemen-
tation code discussed in CP4 are available at https://github.com/stevenhalim/
cpbook-code

We also rewrite most sections and update many figures with the latest screenshots
of our Visualization tool: VisuAlgo: https://visualgo.net (Halim, 2015), thus CP4
readers can further deepen their understanding of the data structure/algorithm being dis-
cussed by trying their input data at VisuAlgo together when reading CP4.

The major additions are the topics that were previously not written yet in CP3 but
are now written in CP4 (many are outside the IOI syllabus (Forišek, 2019) and more
appropriate for ICPC): Modular Multiplicative Inverse, String Hashing, Square Root
Decomposition, Heavy-Light Decomposition, Tree Isomorphism, De Bruijn Sequence,
Fast Fourier Transform, Chinese Remainder Theorem, Lucas' Theorem, Combinatorial
Game Theory, Egg Dropping Puzzle, Dynamic Programming Optimization, Push-Rela-
bel algorithm, Kuhn-Munkres algorithm, Edmonds' Matching algorithm, Constructive
Problem, Interactive Problem, Linear Programming, Gradient Descent.

3. For New CP4 Readers in 2020s

The 2020s decade has just started (albeit with a global COVID-19 pandemic). We
believe that CP4 Book 1 provides the necessary (but not necessarily sufficient) condi-
tions needed to prepare the many young readers for their National Olympiad in Infor-
matics (NOI) preparation leading to the IOI. Similarly, we also believe that CP4 Book
1+2 provides the same necessary (but not necessarily sufficient) conditions needed to
prepare many new University students for their ICPC Regionals leading to the ICPC
World Finals.

The details on how to get a copy of this book via its various distribution channels can
be found at the book’s companion website: https://cpbook.net.

References

Forišek, M. (2019), http://people.ksp.sk/~misof/ioi-syllabus/
Halim, S., Halim, F. (2013). Competitive Programming 3: The New Lower Bound of Programming Contests.

Lulu
Halim, S. (2015). VisuAlgo – Visualising Data Structures and Algorithms Through Animation. Olympiads in

Informatics, 9, 243–245
Laaksonen, A. (2017). A new book on competitive programming. Olympiads in Informatics, 11, 167–170
Laaksonen, A. (2020). Guide to Competitive Programming: Learning and Improving Algorithms Through

Contests. Second Edition. Springer
Skiena, S.S., Revilla, M.A. (2003). Programming Challenges : The Programming Contest Training Manual.

Springer

S. Halim180

S. Halim is a senior lecturer in the School of Computing, National
University of Singapore (SoC, NUS). He teaches several programming
courses in NUS, ranging from basic programming methodology, in-
termediate to hard data structures and algorithms, web programming,
and Competitive Programming. He is the coach of both the NUS ICPC
teams and the Singapore IOI team. So far (2009–2019), he and other
trainers at NUS have successfully groomed various ICPC teams that
won ten different ICPC Regionals, advanced to ICPC World Finals
eleven times with the current best result of Joint-14th in ICPC World
Finals Phuket 2016, as well as seven gold, nineteen silver, and fifteen
bronze IOI medalists. He is also the Regional Contest Director of ICPC
Asia Singapore 2015+2018 and is the Deputy Director+International
Committee member for the IOI 2020+2021 in Singapore.

Olympiads in Informatics, 2020, Vol. 14, 181–184
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.15

181

IOI Talks:
New Initiative for Publishing Presentations,
Events, Interviews, Book Recommendations
and Videos of Interest to the IOI Community

Bojan KOSTADINOV1, Mile Jovanov2

1University American College Skopje
 III Makedonska Brigada, 60, 1000 Skopje, Macedonia
2Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University
 st. Rugjer Boshkovikj 16 Skopje, Macedonia
e-mail: bojan.kostadinov@gmail.com, mile.jovanov@gmail.com

Abstract. Most of the activity of the IOI community occurs during the International Olympiad
in Informatics (and a couple of weeks around the event). In this report we present “IOI Talks”
which is a new initiative to occasionally publish presentations, events, book recommendations,
interviews and videos that can be of interest to the broader IOI community. Additionally, we will
give an overview of the content for the first event.

Keywords: IOI, IOI talks, competitive programming, IOI event.

1. The Motivation for “IOI Talks”

For the most part, the activity of the IOI community occurs during the International
Olympiad in Informatics. This was the main parameter that we had in mind when we
proposed a project on the IOI Call for Projects 2019/2020, to organize an online event
(codename “IOI Weekend”, which was later updated to “IOI Talks”). The key idea was
to organize one or more events for the IOI community that will feature presentations,
interviews, tasks, videos, book and site recommendations and more. This event (or
events), timewise, will not be tied to the IOI and will be organized during a completely
different period of the year – i.e. the idea is to keep the community active outside the
actual IOI competition.

B. Kostadinov, M. Jovanov182

The Initial Format of “IOI Talks”

Originally, the plan was to stream the events on YouTube, and feature video interviews
(and presentations) with past successful IOI participants, talks with other people that
will be interesting to the IOI community (like, for example, people who can present
how to move from competitive programming into a successful software development
job), presentations by book authors, talks on what IOI Hall of Famers are doing at the
moment (or how they are involved with the IOI), videos with highlights from previous
IOI Olympiads, notes about the next Olympiad (locations, photos, how the organization
is going, etc), then presentations on how to get started with competitive programming
and the International Olympiad in Informatics (i.e. where to learn programming, with
some examples of easier IOI subtasks), and more. The plan also featured Q&A sessions
and gathering feedback from participants via an online form.

As part of the application for the IOI Call for Projects 2019/2020, it was indicated
that the resulting content will be of very high quality, and highly interesting and engag-
ing for the community involved with the International Olympiad in Informatics. The
plan outlined that we will be targeting and preparing videos that are interesting to both
competitors, teachers, and team leaders. Everything outlined above, including contact-
ing content editors, past contestants, and interviewees, as well as video production and
hosting, was to be delivered as part of this project.

Clearly, it is possible to organize even more presentations (for example, gathering
questions, presenting discussions and answers to those questions by IC members or the
IOI president), as well as other content, topics or features depending on interest and
availability.

Finally, as mentioned in the previous sections, one of the main goals of the project
is to engage the competitive programming community (and especially people interested
in the IOI) outside the Olympiad itself – so that there are discussions, surveys, talks
and buzz around the International Olympiad in Informatics outside the month when the
actual competition takes place.

The Final Format of “IOI Talks” and its 2020 Edition

After the acceptance of this project, as well as the positive feedback and response from
the IC committee and other parties who were contacted to gather their early thoughts, we
decided on a slightly different format than initially proposed.

Currently, the content of the first IOI talks is reachable by registering on the IOI website
by following this link: https://ioinformatics.org/event/july-2020/signup,
and some of the interviews are directly available on the homepage of the International
Olympiad in Informatics.

IOI Talks:New Initiative for Publishing Presentations, Events, Interviews, ... 183

The final implementation aims to give team leaders and other members of the IOI
community as much freedom as possible, so after registering, they get a link that allows
them to view the content themselves, share the link with their team or friends so they
can view the talks and presentations on their own time, or (what we recommended in
the announcement of the project) is to use the content and videos during other contest/
camp activities and events to stimulate interest in the IOI, or to create an online event
where people watch or go through the content together (we didn't want to stream every-
thing at a specific time/day, because of all the different countries and time zones – and
instead wanted to give everyone an opportunity to organize things themselves, and to
be able to watch any of the videos/interviews in any order they want). We might recon-
sider a different approach/strategy in the future.

In the first edition of IOI Talks, we featured interviews and presentations with Ben-
jamin Qi – the winner of IOI 2018 and 2019, Martin Mares – the chair of the ITC, Petr
Mitrichev – one of the best competitive programmers, IC members, various discus-
sions on topics such as introducing Honorable mentions at the IOI, a booklet featuring
solutions to past IOI problems (IOI 2018), and more. We would like to thank everyone
who participated.

In the registration form and on the event page, participants are allowed to share any
feedback or comments they might have. We would highly appreciate input from the
readers. The initial feedback from the other participants is very encouraging.

Finally, we can proudly announce that although the IC of IOI approved funding
for this project, we have implemented the first edition of IOI Talks for free, using our
personal funding. Similarly, the work that was done as part of this project will help
the actual website of the International Olympiad in Informatics in the near future, as it
now supports publishing interviews, videos, streaming, event content with feedback,
and a lot more. If you like to be featured in an interview, prepare a video presentation
or share anything else you believe would be interesting to the IOI community, feel free
to send us an email.

References

IOI Call for Projects 2019/2020. (2019),
https://ioinformatics.org/news/call-for-projects/17

Official website of the IOI,
https://ioinformatics.org

Signup form for IOI Talks #1 (2020).
https://ioinformatics.org/event/july-2020/signup

B. Kostadinov, M. Jovanov184

B. Kostadinov is the founder of Cloud Solutions, an author, and a
former competitive programmer. In 2014, he defended his MSc thesis
in Intelligent information systems at the Faculty of Computer Science
and Engineering, University “Ss. Cyril and Methodius”, in Skopje. He
is one of the organizers of the national competitions in informatics in
Macedonia, and the Beaver event.

M. Jovanov is an associate professor at the Faculty of Computer Sci-
ence and Engineering, Ss. Cyril and Methodius University, in Skopje.
As the President of the Computer Society of Macedonia, he has ac-
tively participated in the organization and realization of the Macedo-
nian national competitions and Olympiads in informatics since 2001.
He has been a team leader for the Macedonian team at International
Olympiads in Informatics since 2006, and an IC member at IOI since
2015. His research interests include development of new algorithms,
future web, and informatics education.

Olympiads in Informatics, 2020, Vol. 14, 185–197
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.16

185

National Programming Competitions,
Team Selection and Training in Hungary

László NikHázy1, László ZSAKÓ2

1Doctoral School, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
2Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
e-mail: nikhazy@inf.elte.hu, zsako@caesar.elte.hu

Abstract. Programming competitions for middle and high school students have a long tradition in
Hungary, the first national competition dates back to 1985, and our country has been participating
in the International Olympiad in Informatics (IOI) from the very beginning. This paper presents
the current situation and challenges of Hungarian nationwide programming contests, national
team selection, and training system.

Keywords: programming competition, informatics education, training, IOI, Hungary.

1. Introduction

In Hungary, already in the early eighties, regional programming competitions were or-
ganized for middle and high school students. As a result of the school computer program
and the evolving microcomputer clubs, the Nemes Tihamér Competition was established
in 1985, being the first national programming competition. In the first year, approxi-
mately 1000 students entered the competition. The number of participants then gradually
increased, in recent years there have been around 2500–3000 students taking part, from
200–250 schools regularly.

Since then, numerous other informatics competitions have come into existence. Not
only in competitive programming, but also in robotics, application development, appli-
cation usage, and computational thinking. We provide an overview of them in the next
chapter of this article. We describe the details of the programming category of the Nemes
Tihamér Informatics Competition (NT) and the National High School Competition in
Informatics (OKTV) in the third chapter.

Hungary has participated in the IOI every year since its start and won 13 gold, 31
silver and 44 bronze medals in total. Our country hosted the competition already once
in 1996 and we are going to host it for the second time in 2023. It will be a special year
for the Hungarian computer science community, we celebrate the 120th birth anniver-

L. Nikházy, L. Zsakó186

sary of John von Neumann, the greatest Hungarian figure in the theory of computing,
who is often regarded as the foremost mathematician of his time.

Hungary was one of the initiators of the Central European Olympiad in Informatics
(CEOI), and our team participated every year since the start of the competition in 1994.
The CEOI was held in Hungary four times already (1995, 2001, 2005, 2012), and we
are hosting the competition this year, in 2020, in the city of Nagykanizsa. Hungarian
contestants have also achieved excellent results at the CEOI, they have won 2 gold, 14
silver and 42 bronze medals in total. Our country took part in all three editions of the
European Junior Olympiad in Informatics (EJOI) (Manev & Yovcheva, 2017) so far, and
we are also going to participate in the European Girls’ Olympiad in Informatics (EGOI)
starting from its kick-off in 2021.

The IOI and CEOI team selection process have long traditions, the students qualify
through an extensive competition, which we describe in the fourth chapter. In recent
years, a similar, but shorter competition has been organized for the EJOI team selection.
In the fourth chapter, we also provide an overview of the training and team preparation
system currently in Hungary. Finally, in the fifth chapter, we write about the challenges
we are facing at present and our plans for the future.

2. National Competitions in Informatics

There are several national competitions in informatics for primary, middle, and high
school students, not limited to computer programming. We categorize them in the table
below. Their websites are listed at the end of the article.

We would like to mention that in some cases the categorization is not straightforward.
For example, a couple of application development competitions have some algorithmic
challenges and similar input-output testing as the IOI-style competitions, which focus
on algorithms and data structures. Furthermore, many of the first rounds of IOI-style
competitions test algorithmic thinking with tasks on paper, so we put the first rounds
separately to the corresponding category. In the next chapter, we focus on IOI style
national competitions, which are the first steps towards the national team selection. We
provide a very short description of the other competitions here.

The Nemes Tihamér Online Programming Competition is a five-round online contest
which is a practice and preparation opportunity for the onsite competition.

The Programming Contest of the University of Debrecen is a team competition
for high school students similar to the International Collegiate Programming Contest
(ACM ICPC).

The Izsák Imre Gyula Complex Science Competition is a multi-discipline contest
in mathematics, physics, and informatics. It involves a programming contest and the
winner of that category is invited to the IOI Qualification Competition.

The Logo National Informatics Competition is organized in five age groups for
elementary, middle, and high school students. The main topic is turtle graphics, except
for category 0, which is a robot programming contest for elementary school pupils.

National Programming Competitions, Team Selection and Training in Hungary 187

The Bebras challenge is called e-Hód Competition in Hungary. It is gaining huge
popularity, in 2019 there were more than 27 thousand participants from 202 schools
across all age groups.

There are regional and national rounds in Hungary of the well-known international
robot programming competitions, the First® LEGO® League (FLL), and the World
Robot Olympiad™ (WRO). The FLL is held since 2004, while the WRO was first
organized in Hungary in 2014, and our country hosted the WRO 2019 Final in the city
of Győr.

In the Robot Sumo Competition, two-person teams have to build LEGO® robots
that fight against each other like the sumo sport. In the Robot Programming National
Team Contest, teams of two or three middle school students compete in designing and
programming a LEGO® robot to solve challenges on a field.

In the Neumann János Talent Search Software Product Competition there is no task,
but contestants can present their work to the jury, and get prizes in multiple categories:
applications, games, hardware control, computer graphics, animations, and computer-
aided design.

Table 1
National informatics competitions in Hungary

IOI-style Nemes Tihamér Informatics Competition (programming category)
National High School Competition in Informatics (programming category)
Nemes Tihamér Online Programming Competition
Programming Contest of the University of Debrecen
Programming category of the Izsák Imre Gyula Complex Science Competition

Algorithmic
thinking

Logo National Informatics Competition
First round of the Nemes Tihamér Informatics Competition
First round of the National High School Competition in Informatics

Computational
thinking

e-Hód Competition (Bebras)

Robotics First® LEGO® League
World Robot Olympiad™
Category 0 of the Logo National Informatics Competition
Robot Sumo Competition
Robot Programming National Team Contest

Application
development

Neumann János Talent Search Software Product Competition
Programmers’ National Dusza Árpád Memorial Competition
ProgRace Programming Contest
PENDroid High School Competition
B3 – Bakonyi Bitfaragó Championship

Application usage Nemes Tihamér Informatics Competition (application category)
National High School Competition in Informatics (application category)
Kozma László National Informatics Competition

L. Nikházy, L. Zsakó188

In the Programmers’ National Dusza Árpád Memorial Competition every team has
to write an application solving the same problem. It has a regular PC software develop-
ment, web development, and mobile application development category as well.

The ProgRace Programming Contest is organized by the University of Pécs for both
high school and university students. Teams of two or three contestants can enter using
any programming language. They have to solve an open-ended challenge from different
topics each year.

The PENDroid High School Competition is an Android app development competition
organized by the Nagykanizsa Campus of the University of Pannonia. There is a quali-
fication round that has educational purposes, and a final round, where the teams should
bring an Android game written by them and they also have to solve a task onsite.

The B3 – Bakonyi Bitfaragó Championship is hosted by the Faculty of Information
Technology of the University of Pannonia. Teams of high school students compete in
several categories, and the tasks usually involve web programming.

The Nemes Tihamér Informatics Competition and the National High School Compe-
tition in Informatics have an application usage category, where contestants need to solve
tasks in office applications. Tasks involve documents, spreadsheets, presentations, static
web pages, database management, and image editing.

The Kozma László National Informatics Competition is a team contest for middle
and high school students, where participants create solutions to project-based tasks in
office applications.

3. The Nemes Tihamér Programming Competition

The NT competition and the OKTV are the most prestigious programming contests in
Hungary, which also serve as the primary entrance to the qualification competitions of
all the international Olympiads. NT is organized by the cooperation of the John von
Neumann Computer Society (NJSzT) and the Eötvös Loránd University (ELTE), and the
OKTV is organized by the Education Office of Hungary together with ELTE. They have
the same format, same submission system, and most���������������������������������� members of the scientific commit-
tee work on both competitions.

As mentioned above, the NT competition was first organized in 1985. It had two
rounds for 9 years, the first round was written on paper in schools, and the second round
held at ELTE, where competitors usually had to write a program for a single major task,
in BASIC, Pascal, or possibly C of their choice. From 1990, the 9–10th grade (15–16
years old) students are given a different set of tasks than the 11–12th graders (17–18 years
old). From 1994, the competition was expanded with another category, students from
the 5–8th grade (11–14 years old). In 2003, the third age group (11–12th grade) of the
NT competition has got the official status of the National High School Competition in
Informatics (OKTV). A few years ago, a parallel category was introduced for the 11–12th
grade students, the age group 3 of the NT competition, where students can compete who
are not eligible to enter the OKTV, together with the contestants who do not meet the
very strict limit for advancing in the OKTV.

National Programming Competitions, Team Selection and Training in Hungary 189

An online judge system has been used at the competition in recent years, which
was developed for CEOI 2012. Before that, contestants had to hand in their solution
programs at the end of the contest (through the local network, or floppy disks), and they
were evaluated afterward with testing scripts.

At present, there are three stages of the competition, a school round, a regional round,
and a final. All rounds are held at the same time for all contestants, with the same, cen-
trally composed task sheet. In the first round, everyone writes the contest at their own
school, the second round is organized by selected schools in each region. The final takes
place in 3–5 cities in Hungary since the online judging makes it easy to organize the
contest in different locations. A few years ago, everyone had to travel to the capital. It is
still the case for the OKTV category, as it is regulated by the ministry.

3.1. School Round

The first round usually takes place in early November. No computers are used at this
stage, students have to solve 4–8 tasks on paper. (More precisely, the children in the
lowest age group can choose to solve one task on the computer, but the rest of them
are on paper.) The tasks are designed to test algorithmic thinking and understanding
topics in computer science, particularly, but not limited to algorithms, data structures,
and programming. The algorithms are described with a Hungarian pseudocode syntax
close to natural language. There can be problems from other areas of computer science,
like formal grammars, automatons, logical circuits, functional and logical programming
languages, etc. In this case, the task description contains enough information about the
topic to solve the problem, since these areas are not taught in the school. These problems
test understanding new concepts, besides analytical thinking.

Fig. 1. Number of participants yearly in the Nemes Tihamér Competition.

L. Nikházy, L. Zsakó190

We find it beneficial to have such a round, because (1) it promotes computational
thinking, (2) students can enter without knowing a programming language, and (3) it
provides the same circumstances for everyone, no matter how equipped their school is.
We can reach out to a lot more students allowing them to enter without experience in
computer programming, and thus their talent in this field can be discovered.

3.2. Regional Round

The second round is typically held in January with around 600 competitors altogether
in the three age groups. Students have to solve IOI-style tasks on the computer. Tasks
are assembled by the jury in a way that the best contestants can be selected based on
the results, while everyone should have some sense of achievement. In the second and
third age group (grades 9–12) there are 5–7 tasks for 5 hours, while in the first age group
(grades 5–8) there are 3–4 tasks for 3 hours.

Contestants can submit their code multiple times in the online judging system, and
it gets scored instantly using input-output testing. The submission with the maximum
score is considered. The score for a task is calculated as the sum of the scores for the
test cases passed, similarly as the IOIs before 2005 (Verhoeff, 2009). Each test case has
an assigned score that can vary. If there are multiple expected outputs (e.g. the optimum
value and the way to achieve it) the solution to them can be scored separately. We create
subtasks by indicating the number of points that can be achieved with smaller limits or
more specific constraints than the general ones in the task description. The time limit
varies depending on the task, the most typical values are between 0.2–0.6 seconds.

There is a wide variety of programming languages allowed: C/C++, Java, C#, Py-
thon, Pascal, and Visual Basic. It remains a challenge for the task writers to achieve
that the expected solutions meet the same time limit in all languages, while less optimal
solutions should not pass in any language. But even like this, every language has its
advantages or disadvantages for certain tasks. Contestants need to be aware of this issue
when choosing the programming language. In fact, they can choose different languages
for each task.

3.3. Final Round

The final regularly takes place in March. There are 40–60 participants in the first age
group, 80–100 in the second age group, and 50 in the OKTV category plus 30–50 in the
third age group. The final has the same format as the second round, but the problems
are more difficult, more advanced topics are included. The tasks are designed to make a
difference between the very best students as well. The contest duration is 6 hours for the
second and third age group, and 3 hours for the first age group. The number of tasks is
about the same as the second round.

The first 10–15 students of each age group of the NT competition are awarded a
book. Contestants in the first 3 places of the OKTV get awards, and a so-called Tal-

National Programming Competitions, Team Selection and Training in Hungary 191

ent Passport that provides entrance to talent education programs during their university
studies, and the first 30 students get extra points for their application to universities.
The best contestants in each category get invitations to the Qualification Competition
for International Olympiads.

3.4. Topics of the Competition

The topics of the problems in the regional and final round are a subset of the IOI Syl-
labus (Verhoeff, Horváth, Diks, & Cormack, 2006). We are in the process of creat-
ing a similar document called NT Syllabus (Nikházy, 2019) to specify exactly what
contestants need to know and thus help them and their teachers in preparing for the
contest. Another goal of the syllabus is to provide guidelines for task setters in creating
appropriate tasks. It contains the required knowledge for each age group of the national
competition. For the IOI team selection competition, the IOI Syllabus fills this role.
To create the syllabus, we examined problems of the last 5 years and created statistics
about the topics appearing in problems of the regional and final round. In the following,
we provide a brief overview of the topics by age group.

The problems for 5–8th grade students essentially do not include complex “textbook”
algorithms to be mastered in advance. About 65% of the tasks can be solved using the
so-called patterns of algorithms (Szlávi & Zsakó, 2008). These are simple algorithm
templates that students can use in many cases without their awareness, for example,
maximum selection, linear search, counting, filtering. Roughly 35% of the tasks require
the use of some more advanced algorithmic strategy, for example, greedy algorithms,
dynamic programming, and the two pointers technique.

In addition to the above-mentioned topics, graph algorithms appear in tasks for
9–10th grade students and this is a major change compared to the first age group. Accord-
ing to the statistics, about 30% of the problems include graphs, which means that there
is usually at least one such task in the regional round and two in the final. There is much
more emphasis on dynamic programming (DP) than for the younger students. Problems
in enumerative combinatorics frequently appear in the competition because students
acquire the necessary mathematics knowledge at this age. Simulation is an important
technique, the difficulty of such tasks lies in the complex implementation.

There are some significant enhancements in the topics for the 11–12th grade students
compared to younger ones. More advanced graph algorithms are required, like strongly
connected components, articulation points and bridges, Eulerian path, shortest paths,
and minimum spanning tree in weighted graphs. (Weighted graphs are included for the
second age group, too, but they appear less frequently.) There is a completely new do-
main, geometric algorithms, which often provide the most difficult problems. Utilizing
advanced data structures like the priority queue (heap), the set and map from the stan-
dard library are required to perform successfully in this age group. In conclusion, we can
say that the topics of the OKTV are a subset of the IOI Syllabus with only some of the
hardest algorithms and data structures excluded.

L. Nikházy, L. Zsakó192

4. Team Selection and Training for the IOI, CEOI, and EJOI

4.1. Qualification Competition

There is an intensive and comprehensive Qualification Competition (QC) to select the
Hungarian team for the IOI and CEOI. There are 6 rounds, each round has 3 problems
for 3 hours, which means there are 18 problems in total. Usually, two rounds are held
on one day, so there are 3 competition days. The topics of the competition are the same
as at the IOI, the IOI Syllabus is used as the definitive guide to propose tasks. In each
round, there is one problem that tests knowledge of some standard algorithm or a typical
problem-solving strategy, one intermediate, and one hard task which are similar to CEOI

Fig. 2. Appearance of the most significant topics in the last 50 tasks of each age group.

National Programming Competitions, Team Selection and Training in Hungary 193

and IOI tasks. For evaluation, the same system is used as the national competition, but
we try to put emphasis on subtasks by creating more subtasks for one problem and also
grouping more test cases into one test file when we find it necessary.

The 4 students of the IOI team and the 4 students of the CEOI team are selected based
on their total points in the 6 rounds of the QC. Students in the 10–11th grade can be mem-
bers of both the IOI and CEOI team, younger students are only included in the CEOI
team, and 12th-grade students only in the IOI team. This is to provide more opportunities
for younger students for participating in international contests.

Students are invited to enter the contest based on their results in the national competi-
tion (OKTV and NT). In total, the competition is started with approximately 25–30 stu-
dents in both the IOI and CEOI categories, about 70% of the participants are common.
After the first two rounds, around 15 contestants advance in each category and after the
second two rounds, only about 10 students per category compete in the last two rounds
for the 4–4 places.

For the EJOI, we have a separate, shorter qualification contest, because we need to
test different knowledge of the younger children. There are 2 rounds in this contest, each
round has 3 problems for 3 hours. About 12–16 students are invited to the first round,
and 6–12 participants advance to the second round, after which the 4 students of the
EJOI team are selected based on their total score.

The Fig. 3 shows an overview of the system of competitions presented in this article.
We included the trainings that help students in preparing for these contests. The next
chapter provides more details about them.

Fig. 3. Training and competitions in Hungary on the way to International Olympiads.

L. Nikházy, L. Zsakó194

4.2. Training

After the IOI and CEOI teams are selected, there is twice a one-week long training
for team members. These are usually held in May and June, at ELTE, Budapest. We
cover advanced topics of the IOI Syllabus and interesting tasks from past IOI and CEOI
competitions. The training material is changing each year, customized to the skills and
knowledge of the team members. The work is very intensive, 8 hours a day with a lunch
break. Other students, who are not team members but have a good chance to qualify next
year, are also welcomed to join the training.

The EJOI team has a separate one-week training, usually organized in July. The
format is the same as above, but the topics are naturally different: graph algorithms, dy-
namic programming, greedy algorithms, recursion, backtrack, basic combinatorics. We
also teach best practices and little tricks of every subject matter.

Hungarian students have been very successful in international competitions consid-
ering that we are a small country of 10 million people. The Fig. 4 shows the medals won
at the IOI: a total of 13 gold, 31 silver and 44 bronze medals (data from IOI Statistics
website).

Above we described the training specifically for the teams going to international Olym-
piads. There is also a countrywide system of talent education in Hungary, coordinated
by the Talent Education Department of NJSzT and ELTE. The first stage is organized lo-
cally by volunteering schools in 20–30 cities across the country. They give extra courses
to middle and high school children, who are interested in computer programming. The
topics are flexible, teachers can conduct these classes according to their knowledge and
interests. They are not limited to competitive programming, for example, there are some
classes about robotics, application development, and a lot of introductory programming
courses with block-based coding. ELTE and NJSzT provide education materials. The
topics of the education materials include basic algorithmic patterns (sum, count, search,
filter, maximum selection, sorting, merging, intersection, union, recursion) and introduc-
tory algorithmic strategies (greedy algorithms, backtracking, divide and conquer).

Fig. 4. Medal distribution of Hungarian students at the IOI yearly (1989–2019).

National Programming Competitions, Team Selection and Training in Hungary 195

As a continuation, there are 5 training sessions yearly for the most talented students
of the country, held in Budapest by one of the authors, László Zsakó. Students can apply
based on their teachers’ recommendations. In these training sessions, the following top-
ics repeat every two years: greedy algorithms, recursion, dynamic programming, trees
and binary trees, graph algorithms, combinatoric algorithms, geometric algorithms, and
simulation.

Additionally, there are some extra courses held by university students in selected
schools in Budapest. The first author of the article is currently involved in one of them.
The classes are bi-weekly and open for all talented students from the capital and other
cities, too. We solve former IOI tasks and learn advanced algorithms and data structures,
according to the level of the participants.

There are few cities apart from Budapest where some prominent teacher leads a self-
developed talent education system. The results of the programming competitions show
the existence of such places. For example, the city of Nagykanizsa is providing numer-
ous good contestants every year, due to the excellent work of Ágnes Erdősné Németh,
who thereby became vice president of NJSzT recently. Other notable places of good
programming education include Debrecen, Zalaegerszeg, Szatmárnémeti, and there are
several individual teachers scattered in the country.

5. Current Challenges and Plans

Although there is a talent education network established in Hungary, on the highest
level, the achievements of students rely on a local excellent teacher in very few places,
or completely on their individual efforts. We would like to start a program focused on
the most talented students countrywide, forming groups that stay together for years,
organizing weekend camps, and online workshops for them. The bases of this program
were outlined in (Nikházy, 2020). A similar system (Győri & Juhász, 2017) was built in
mathematics by The Joy of Thinking Foundation that we consider as a model. We want
to put emphasis on creating a community. Currently, gifted students mostly meet only at
the competitions. In our experience with the mathematics camps, personal connections
play a big part in the engagement of learning at this very high level.

We also plan to start talent training programs focused on girls. The underrepresenta-
tion of women in IT is a well-studied topic worldwide. Unfortunately, Hungarian pro-
gramming contests also show this phenomenon. With Hungary participating in the EGOI
from its start in 2021, we are committed to encouraging girls to master programming.
While we include girls in the above-mentioned talent programs, we would like to orga-
nize training specifically for girls, where more than half of participants are young ladies,
and the rest of them are boys with similar knowledge level.

There is room for improvement in the competitions as well. The top contestants’
knowledge level is getting higher year by year, and we, the scientific committee of the
NT competition, try to keep up with it while maintaining the spirit and fairness of the
contest. Since there are a wide variety of languages allowed, it is a challenge to cre-
ate language-independent tasks, where the evaluation makes it possible to differentiate

L. Nikházy, L. Zsakó196

between the solutions according to their computational complexity with the same time
limit for every language. It is not only our problem, but many other systems also face
this issue. We are looking into solutions, we might consider language-dependent time
limits. The current scoring system, which is based on individual test cases, also makes
it hard to rate solutions according to their complexity, because sometimes only specially
constructed tests detect the slowness of an algorithm. With a lot of other tests in place, a
suboptimal solution can get almost full points. Scoring based on test groups is an option
that we are looking into currently, but we also find it unfair to give no score to a solution
that is correct for most of the test cases (Erdősné Németh & Zsakó, 2018).

Finally, it is always our goal is to make programming competitions more popular in
Hungary. We hope that our current and future work in talent education and community
building will encourage more and more students to learn programming and participate
in contests.

References

Erdősné Németh, Á., & Zsakó, L. (2018). Grading Systems for Algorithmic Contests. Olympiads in Informatics,
12, 159–166. DOI:10.15388/ioi.2018.13

Győri, J., & Juhász, P. (2017). An extra-curricular gifted support programme in Hungary for exceptional stu-
dents in mathematics. In Teaching Gifted Learners in STEM Subjects (pp. 89–106). Routledge.

Manev, K., & Yovcheva, B. (2017). First European Junior Olympiad in Informatics. Olympiads in Informatics,
11, 171–173. DOI:10.15388/ioi.2017.15

Nikházy, L. (2019). A Nemes Tihamér Programozási verseny témaköreiről készült syllabus. InfoDidact2019.
Zamárdi, Hungary: Webdidaktika Alapítvány.

Nikházy, L. (2020). A Problem-based Curriculum for Algorithmic Programming. Central-European Journal of
New Technologies in Research, Education and Practice, 2(1), 76–96. DOI:10.36427/CEJNTREP.2.1.399

Szlávi, P., & Zsakó, L. (2008). Módszeres programozás: programozási tételek. Budapest: ELTE Informatikai
Kar.

Verhoeff, T. (2009). 20 Years of IOI Competition Tasks. Olympiads in Informatics, 3, 149–166.
Verhoeff, T., Horváth, G., Diks, K., & Cormack, G. (2006). A proposal for an IOI Syllabus. Teaching Mathemat-

ics and Computer Science, 4(1), 193–216.

Websites

B3 – Bakonyi Bitfaragó Championship: https://verseny.mik.uni-pannon.hu/
EGOI: https://egoi.org/
EJOI: http://ejoi.org/
e-Hód Competition: http://e-hod.elte.hu/
First® LEGO® League: https://www.firstlegoleague.org/
IOI Statistics: https://stats.ioinformatics.org/
IOI Syllabus: https://ioinformatics.org/page/syllabus/12
Izsák Imre Gyula Complex Science Competition: http://www.zmgzeg.sulinet.hu/izsak/
Kozma László National Informatics Competition: https://isze.hu/kozma-laszlo-orszagos-informa-

tika-alkalmazoi-tanulmanyi-verseny/

LOGO National Informatics Competition: http://logo.inf.elte.hu/
Nemes Tihamér Informatics Competition: http://nemes.inf.elte.hu/
Neumann János Talent Search Software Product Competition: https://neumann.ibela.sulinet.hu/
NT Syllabus: https://github.com/niklaci/NT-Syllabus

National Programming Competitions, Team Selection and Training in Hungary 197

PENDroid High School Competition: https://pendroid.uni-pen.hu/
ProgRace Programming Contest: https://prograce.hu/
Programmers’ National Dusza Árpád Memorial Competition: https://isze.hu/dusza-arpad-orszagos-

programozoi-emlekverseny/

Robot Programming National Team Contest: http://www.banyai-kkt.sulinet.hu/robotika/Robo-
tverseny/robotverseny.html

Robot Sumo Competition: http://sagv.gyakg.u-szeged.hu/szumo/
Talent Education Department of NJSzT: http://tehetseg.inf.elte.hu/
The Joy of Thinking Foundation: https://agondolkodasorome.hu/en/
World Robot Olympiad ™: https://wro-association.org/

L. Nikházy is a Ph.D. student at the Department of Media & Educa-
tional Informatics, Faculty of Informatics, Eötvös Loránd University
in Hungary. His current research interest is computer programming
talent education. He has been teaching mathematics in camps for
gifted students since his early university years. After graduating from
the Budapest University of Technology and Economics, and the Eöt-
vös Loránd University, he started his career as a software engineer at
Google. He gradually shifted to computer science education, and now
devotes all his time to teaching talented children. He has been actively
involved in organizing programming competitions and team coaching
in Hungary in the past 3 years.

L. Zsakó Dr. is a professor at the Department of Media & Educa-
tional Informatics, Faculty of Informatics, Eötvös Loránd University
in Hungary. Since 1990 he has been involved in organizing program-
ming competitions in Hungary, including the CEOI. He has been the
deputy leader of the Hungarian team at International Olympiads in
Informatics since 1989. His research interest includes teaching algo-
rithms and data structures; didactics of informatics; methodology of
programming in education; teaching programming languages; talent
management. He has authored more than 68 vocational and textbooks,
some 200 technical papers and conference presentations.

About Journal and Instructions to Authors

OLYMPIADS IN INFORMATICS is a peer-reviewed scholarly journal that provides
an international forum for presenting research and developments in the specific scope
of teaching and learning informatics through olympiads and other competitions. The
journal is focused on the research and practice of professionals who are working in the
field of teaching informatics to talented student. OLYMPIADS IN INFORMATICS is
published annually (in the summer).

The journal consists of two sections: the main part is devoted to research papers
and only original high-quality scientific papers are accepted; the second section is for
countries reports on national olympiads or contests, book reviews, comments on tasks
solutions and other initiatives in connection with teaching informatics in schools.

The journal is closely connected to the scientific conference annually organized dur-
ing the International Olympiad in Informatics (IOI).

Abstracting/Indexing

OLYMPIADS IN INFORMATICS is abstracted/indexed by:
Cabell Publishing●●
Central and Eastern European Online Library (CEEOL)●●
EBSCO●●
Educational Research Abstracts (ERA)●●
ERIC●●
INSPEC●●
SCOPUS ●● – Elsevier Bibliographic Databases

Submission of Manuscripts

All research papers submitted for publication in this journal must contain original un-
published work and must not have been submitted for publication elsewhere. Any manu-
script which does not conform to the requirements will be returned.

The journal language is English. No formal limit is placed on the length of a paper,
but the editors may recommend the shortening of a long paper.

Each paper submitted for the journal should be prepared according to the following
structure:

concise and informative title●●
full names and affiliations of all authors, including e-mail addresses●●
informative abstract of 70–150 words●●

list of relevant keywords●●
full text of the paper●●
list of references●●
biographic information about the author(s) including photography●●

All illustrations should be numbered consecutively and supplied with captions. They
must fit on a 124 × 194 mm sheet of paper, including the title.

The references cited in the text should be indicated in brackets:
for one author – (Johnson, 1999)●●
for two authors – (Johnson and Peterson, 2002)●●
for three or more authors – (Johnson ●● et al., 2002)
the page number can be indicated as (Hubwieser, 2001, p. 25)●●

The list of references should be presented at the end of the paper in alphabetic order.
Papers by the same author(s) in the same year should be distinguished by the letters a, b,
etc. Only Latin characters should be used in references.

Please adhere closely to the following format in the list of references:
For books:

Hubwieser, P. (2001). Didaktik der Informatik. Springer-Verlag, Berlin.
Schwartz, J.E., Beichner, R.J. (1999). Essentials of Educational Technology. Allyn

and Bacon, Boston.
For contribution to collective works:

Batissta, M.T., Clements, D.H. (2000). Mathematics curriculum development as a
scientific endeavor. In: Kelly, A.E., Lesh, R.A. (Eds.), Handbook of Research De-
sign in Mathematics and Science Education. Lawrence Erlbaum Associates Pub.,
London, 737–760.

Plomp, T., Reinen, I.J. (1996). Computer literacy. In: Plomp, T., Ely, A.D. (Eds.), In-
ternational Encyclopedia for Educational Technology. Pergamon Press, London,
626–630.

For journal papers:
McCormick, R. (1992). Curriculum development and new information technolo-

gy. Journal of Information Technology for Teacher Education, 1(1), 23–49.
http://rice.edn.deakin.edu.au/archives/JITTE/j113.htm

Burton, B.A. (2010). Encouraging algorithmic thinking without a computer. Olympi-
ads in Informatics, 4, 3–14.

For documents on Internet:
International Olympiads in Informatics (2008).

http://www.IOInformatics.org/

Hassinen, P., Elomaa, J., Ronkko, J., Halme, J., Hodju, P. (1999). Neural Networks
Tool – Nenet (Version 1.1).
http://koti.mbnet.fi/~phodju/nenet/Nenet/General.html

Authors must submit electronic versions of manuscripts in PDF to the editors. The
manuscripts should conform all the requirements above.

If a paper is accepted for publication, the authors will be asked for a computerpro-
cessed text of the final version of the paper, supplemented with illustrations and tables,
prepared as a Microsoft Word or LaTeX document. The illustrations are to be presented
in TIF, WMF, BMP, PCX or PNG formats (the resolution of point graphics pictures is
300 dots per inch).

Contacts for communication

Valentina Dagienė
Vilnius University
Akademijos str. 4, LT-08663 Vilnius, Lithuania
Phone: +370 5 2109 732
Fax: +370 52 729 209
E-mail: valentina.dagiene@mif.vu.lt

Internet Address

All the information about the journal can be found at:

https://ioinformatics.org/page/ioi-journal

Publisher office: Vilnius University
 Akademijos str. 4, LT-08663 Vilnius, Lithuania
 September, 2020

Olympiads
in Informatics
Volume 14, 2020

A. ALNAHHAS, N. MOURTADA
Predicting the Performance of Contestants in Competitive Programming Using Machine
Learning Techniques

3

P.T. DO, B.T. PHAM, V.C. THAN
Latest Algorithms on Particular Graph Classes

21

M. DOLINSKY, M. DOLINSKAYA
The Technology of Differentiated Instruction in Text Programming in Elementary School
Based on the Website dl.gsu.by

37
D.I. ESTEVEZ

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains

47
P. FANTOZZI, L. LAURA

Recommending Tasks in Online Judges using Autoencoder Neural Networks

61
D. GINAT

Operator Utilization and Abstract Conceptions

77
M. JOVANOV, E. STANKOV

Introduction of “Honorable Mention” Award at the International Olympiad in Informatics

87
A. LAAKSONEN, T. TALVITIE

CSES – Yet Another Online Judge

105
M. LODI

Informatical Thinking

113

M. MIRZAYANOV, O. PAVLOVA, P. MAVRIN, R. MELNIKOV, A. PLOTNIKOV,
V. PARFENOV, A. STANKEVICH

Codeforces as an Educational Platform for Learning Programming in Digitalization

133
P.S. PANKOV, A.A. KENZHALIEV

Pattern Recognition and Related Topics of Olympiad Tasks

143
M.S. TSVETKOVA, V.M. KIRYUKHIN

Top 10 Key Skills in Olympiad in Informatics

151

REPORTS
A.S. GUTIÉRREZ.  Argentine Olympiad in Informatics 169
S. HALIM.  Competitive Programming 4: The New Lower Bound of Programming

Contests in the 2020s

177
B. KOSTADINOV, M. JOVANOV.  IOI Talks: New Initiative for Publishing Presenta-

tions, Events, Interviews, Book Recommendations and Videos of Interest to the IOI
Community

181
L. NIKHÁZY, L. ZSAKÓ.  National Programming Competitions, Team Selection and

Training in Hungary

185

ISSN 1822-7732

Olympiads Olympiads
in Informaticsin Informatics14

IOI
International Olympiad in Informatics

I S S N 1 8 2 2 - 7 7 3 2

Olympiads
in Informatics
Volume 14, 2020

O
lym

p
iad

s in
 In

form
atics V

olu
m

e 14, 2020

Olympiads
in Informatics
Volume 14, 2020

A. ALNAHHAS, N. MOURTADA
Predicting the Performance of Contestants in Competitive Programming Using Machine
Learning Techniques

3

P.T. DO, B.T. PHAM, V.C. THAN
Latest Algorithms on Particular Graph Classes

21

M. DOLINSKY, M. DOLINSKAYA
The Technology of Differentiated Instruction in Text Programming in Elementary School
Based on the Website dl.gsu.by

37
D.I. ESTEVEZ

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains

47
P. FANTOZZI, L. LAURA

Recommending Tasks in Online Judges using Autoencoder Neural Networks

61
D. GINAT

Operator Utilization and Abstract Conceptions

77
M. JOVANOV, E. STANKOV

Introduction of “Honorable Mention” Award at the International Olympiad in Informatics

87
A. LAAKSONEN, T. TALVITIE

CSES – Yet Another Online Judge

105
M. LODI

Informatical Thinking

113

M. MIRZAYANOV, O. PAVLOVA, P. MAVRIN, R. MELNIKOV, A. PLOTNIKOV,
V. PARFENOV, A. STANKEVICH

Codeforces as an Educational Platform for Learning Programming in Digitalization

133
P.S. PANKOV, A.A. KENZHALIEV

Pattern Recognition and Related Topics of Olympiad Tasks

143
M.S. TSVETKOVA, V.M. KIRYUKHIN

Top 10 Key Skills in Olympiad in Informatics

151

REPORTS
A.S. GUTIÉRREZ. Argentine Olympiad in Informatics 169
S. HALIM. Competitive Programming 4: The New Lower Bound of Programming

Contests in the 2020s

177
B. KOSTADINOV, M. JOVANOV. IOI Talks: New Initiative for Publishing Presenta-

tions, Events, Interviews, Book Recommendations and Videos of Interest to the IOI
Community

181
L. NIKHÁZY, L. ZSAKÓ. National Programming Competitions, Team Selection and

Training in Hungary

185

ISSN 1822-7732

