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The Perşani volcanic field is a low-volume flux monogenetic volcanic field in the Carpathian–Pannonian region,
eastern-central Europe. Volcanic activity occurred intermittently from 1200 ka to 600 ka, forming lava flow fields,
scoria cones andmaars. Selected basalts from the initial and younger active phaseswere investigated formajor and
trace element contents and mineral compositions. Bulk compositions are close to those of the primitive magmas;
only 5–12% olivine andminor spinel fractionation occurred at 1300–1350 °C, followed by clinopyroxenes at about
1250 °C and 0.8–1.2 GPa. Melt generation occurred in the depth range from 85–90 km to 60 km. The estimated
mantle potential temperature, 1350–1420 °C, is the lowest in the Pannonian Basin. It suggests that no thermal
anomaly exists in the upper mantle beneath the Perşani area and that the mafic magmas were formed by decom-
pression melting under relatively thin continental lithosphere. The mantle source of the magmas could be slightly
heterogeneous, but is dominantly variously depleted MORB-source peridotite, as suggested by the olivine and
spinel composition. Based on the Cr-numbers of the spinels, two coherent compositional groups (0.38–0.45 and
0.23–0.32, respectively) can be distinguished that correspond to the older and younger volcanic products. This in-
dicates a change in the mantle source region during the volcanic activity as also inferred from the bulk rockmajor
and trace element data. The younger basaltic magmas were generated by lower degree of melting, from a deeper
and compositionally slightly different mantle source compared to the older ones. The mantle source character of
the Perşani magmas is akin to that of many other alkaline basalt volcanic fields in the Mediterranean close to oro-
genic areas. The magma ascent rate is estimated based on compositional traverses across olivine xenocrysts using
variations of Ca content. Two heating events are recognized; the first one lasted about 1.3 years implying heating
of the lower lithosphere by the uprisingmagma,whereas the second one lasted only 4–5 days, which corresponds
to the time of magma ascent through the continental crust. The alkaline mafic volcanism in the Perşani volcanic
field could have occurred as a response to the formation of a narrow rupture in the lower lithosphere, possibly
as a far-field effect of the dripping of dense continental lithospheric material beneath the Vrancea zone. Upper
crustal extensional stress-field with reactivation of normal faults at the eastern margin of the Transylvanian
basin could enhance the rapid ascent of the mafic magmas.

© 2013 Elsevier B.V. All rights reserved.
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N1. Introduction

Monogenetic volcanic fields are clusters of individual small-volume,
short-lived volcanic centers, which are the manifestation of the arrival
of discrete magma batches from the upper mantle (Brenna et al.,
2012; Németh, 2010). Magmas are thought to pass through the crust
rapidly (Jankovics et al., 2013; Mattsson, 2012), often without signifi-
cant modification of their geochemical composition; thus they provide
invaluable information about their mantle sources andmelt generation.

Basaltic monogenetic volcanic fields occur throughout the Mediter-
ranean and surrounding regions (Beccaluva et al., 2011; Harangi et al.,
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2006; Lustrino and Wilson, 2007; Lustrino et al., 2011; Wilson and
Bianchini, 1999). The composition of the basaltic rocks sharemany com-
mon features, yet their origin is still a subject of debate. Many of these
volcanic fields occur spatially and temporallywith calc-alkaline volcanic
provinces (Lustrino et al., 2011) such as in the Betic–Rif–Tell system,
Valencia trough, Sardinia, Provence, Southern Tyrrhenian area, Veneto,
Carpathian–Pannonian region, Western Anatolia and the Aegean sys-
tem. In spite of this, most of the basalts have similar compositional fea-
tures to those found inwestern and central Europe and donot show any
subduction-related signature (Lustrino and Wilson, 2007; Wilson and
Downes, 1991). This indicates that the metasomatized mantle domain
was successively replaced by upwelling freshmantlematerial. Recently,
Beccaluva et al. (2011) suggested that the alkaline basaltic volcanism in
the Betics and Sardinia could be attributed to the far-field effect of slab
şani volcanic field, Romania: A combinedwhole rock andmineral scale
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2 S. Harangi et al. / Lithos xxx (2013) xxx–xxx
roll-back and the associated remobilization of deepmantle components.
Using principally whole rock isotope and trace element data, they
inferred that the primary magmas were formed in different parts of
the lithospheric mantle, metasomatized by various fluids. In contrast,
other authors have emphasized the sublithospheric origin of the basaltic
magmas (e.g., Harangi and Lenkey, 2007; Lustrino and Wilson, 2007;
Seghedi et al., 2004b).

In this paper we present the results of a combined whole-rock and
mineral-scale study of the Quaternary (1.2–0.6 Ma; Panaiotu et al.,
2013) alkali basalts in the Perşani Mts., SE-Carpathians, in order to con-
strain the origin of the basalticmagmas. This approach has been success-
fully applied to other volcanic centers of the Pannonian Basin (e.g., Ali
andNtaflos, 2011; Ali et al., 2013; Jankovics et al., 2012, 2013) and results
in a better understanding of the magma plumbing systems beneath
monogenetic volcanic fields, involving the nature of the mantle source
region,melt generation and processes duringmagma ascent. The Perşani
volcanic field is a low eruptive volume flux area (Valentine and Perry,
2007) and is the youngest volcanic area in the Carpathian–Pannonian
region during the Late Miocene–Quaternary alkaline basalt volcanism
(Downes et al., 1995; Embey-Isztin et al., 1993; Harangi, 2001a; Harangi
and Lenkey, 2007; Seghedi and Szakács, 1994; Seghedi et al., 2004b).
Eruption of basaltic magmas postdated the calc-alkaline volcanism in
the Harghita Mts. (5.3–1.6 Ma; Pécskay et al., 1995) and was partly
coeval with high-K calc-alkalic magmatism south of Harghita Mts.
(Malnas–Bixad; 1–1.6 Ma) and predated the high-K calc-alkaline volca-
nism at Ciomadul (0.6–0.03 Ma; Pécskay et al., 1995; Harangi et al.,
2010). The principal questions are what was the driving mechanism
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Fig. 1. A. Location of the Perşani Volcanic Field (PVF) in the southeastern Carpathian area of the
volcanic complex, CV = Ciomadul volcano; BB = Braşov basin. Inset: simplified map of the C
Basin; B = Burgenland; LP = Little Hungarian Plain; BB = Bakony–Balaton Upland; S = Št
map of the Perşani Volcanic Field after Szakács and Seghedi (1994) and Panaiotu et al. (2004, 2
Geological map after Cloetingh et al. (2004) and Martin et al. (2006).
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and the condition of the melt generation that lead to the formation of
this localized, small-volume magmatic system, and how the alkali
basaltic magmas could have formed close to a calc-alkaline to high-K
calc-alkaline volcanic chain. These new results could also be significant
in evaluating the present state of this volcanic field in an area that is still
geodynamically active and could contribute to the understanding of the
origin of such complex magmatic systems in the Mediterranean.

2. Geological setting

In the Carpathian–Pannonian region, a wide range of volcanic activ-
ity has taken place during the last 20 Ma (Harangi, 2001a; Harangi and
Lenkey, 2007; Konečný et al., 2002; Seghedi andDownes, 2011; Seghedi
et al., 2004a; Szabó et al., 1992). Alkaline basaltic volcanism occurred
from 11 Ma to 0.1 Ma, forming monogenetic volcanic fields as well as
scattered volcanic centers (Fig. 1A; Martin and Németh, 2004; Seghedi
et al., 2004b; Harangi and Lenkey, 2007). The Bakony–Balaton Upland
and the Nógrád–Gemer volcanic fields are characterized by a long last-
ing and intermittent volcanic activity from 8 Ma to 2.3 Ma and 6.5 Ma
to 0.4 Ma, respectively (Pécskay et al., 2006; Wijbrans et al., 2007).
Smaller basaltic volcanic fields are found in thewestern and southeastern
part of this regionwith shorter lifetime (Styria, Little Hungarian Plain and
Perşani, respectively; Balogh et al., 1994; Harangi et al., 1995; Panaiotu
et al., 2004, 2013; Ali et al., 2013). Scattered volcanic centers are found
in Burgenland (Ali and Ntaflos, 2011), around Stiavnica (Dobosi et al.,
1995) and Lucareţ (Downes et al., 1995; Tschegg et al., 2010). Although
this volcanic activity was fed dominantly by basaltic magmas, a huge
E
D

Carpathian–Pannonian Region. CG = Călimani–Gurghiu volcanic complex, H = Harghita
arpathian–Pannonian Region with the monogenetic basalt volcanic fields: SB = Styrian
iavnica; NG = Nógrád–Gemer; L = Lucareţ; PV = Perşani. B. Simplified volcanological
013) showing also the sample locations (black squares).

şani volcanic field, Romania: A combinedwhole rock andmineral scale
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11–12 Ma old trachyandesite–alkaline trachyte volcano has been re-
vealed at 2000 m depth in the basement of the Little Hungarian Plain
that is genetically related to the basaltic volcanism (Harangi, 2001b;
Harangi et al., 1995). The geodynamic relationships of the alkaline basaltic
volcanism are still debated (Embey-Isztin et al., 1993; Harangi and
Lenkey, 2007; Seghedi et al., 2004b). It took place during the post-
extensional, thermal subsidence and partly the subsequent tectonic
inversion stages (Horváth et al., 2006). In general, this kind of volcanic
activity followed a widespread silicic and calc-alkaline volcanism in the
Carpathian–Pannonian region; however, in detail the picture is more
complex. The alkaline basaltic volcanism in the Styrian Basin followed
potassic volcanism after a major time gap (1.9–3.9 Ma and 15–18 Ma,
respectively; Pécskay et al., 2006). In the Nógrád–Gemer, the long-
lasting alkaline basaltic volcanic activity spatially overlapped the calc-
alkaline volcanic area and developed with continuous transition. In con-
trast, the Little Hungarian Plain and Bakony–Balaton Upland volcanic
fields were formed without any connection to pre-existing calc-alkaline
volcanism. In the southeastern part of this region, there is again a closer
spatial–temporal relationship between the alkaline basaltic volcanic
activity in Perşani and the calc-alkaline to high-K calc-alkalic volcanism
(Seghedi et al., 2011). Here, eruptions of different magmas occurred
partially contemporaneously.

The Perşani volcanic field is located at the southeastern part of the
Carpathian–Pannonian Region (Fig. 1), just at the boundary between
the Perşani Mts. and the Transylvanian basin, at the northwestern
periphery of the intramontane Braşov basin (Fig. 1; Seghedi and
Szakács, 1994; Gîrbacea et al., 1998; Ciulavu et al., 2000; Seghedi et al.,
2011). This area is characterized by NE–SW trending normal faults,
resulting from a NW–SE extensional regime (Gîrbacea et al., 1998). The
eruptive centers appear to be structurally controlled and show a rough
NE–SW trending alignment. The volcanism was coeval with post-
collisional uplift in the Carpathian orogen and subsidence in the foreland
area (Gîrbacea et al., 1998; Maţenco et al., 2007). Uplift of the Eastern
Carpathians is still ongoing (1.5–2 mm/year; Cornea et al., 1979) accom-
panied with seismicity along the Trotuş and the Intramoesian faults
(Fig. 1B). Extension and subsidence of the Braşov–Gheogheni basin
system occurred contemporaneously with the highest uplift rate during
Pliocene–Quaternary times (Gîrbacea and Frisch, 1998). A further impor-
tant geodynamic element of this region is the Vrancea zone, where a sub-
vertical seismically fast velocity slab has been detected (Oncescu et al.,
1984). It exhibits the largest present-day strain concentration in conti-
nental Europe (Wenzel et al., 1999). Frequent earthquakes imply that
this is still an active tectonic area, although themechanism of the vertical
slab formation and its geodynamic history is still unclear and highly
debated. Possible scenarios involve the latest stage of subduction with
ongoing slab-detachment (Martin et al., 2006; Sperner et al., 2001;
Wortel and Spakman, 2000), delamination and roll-back of the litho-
spheric mantle (Chalot-Prat and Gîrbacea, 2000; Gîrbacea and Frisch,
1998) and removal of the lithospheric mantle as well as part of the
lower crust beneath the overthickened collision zone (Fillerup et al.,
2010; Koulakov et al., 2010). The Perşani volcanic field is underlain by
relatively thick continental crust (35–40 km), whereas the thickness of
the whole lithosphere is interpreted to be either thick (around
120 km; Dérerova et al., 2006; Horváth et al., 2006) or relatively thin
(60–80 km; Martin et al., 2006; Seghedi et al., 2011). Popa et al.
(2012) recorded subcrustal seismicity beneath the Perşani area and,
using seismic tomography modeling, suggested that a low-velocity
anomaly could be inferred at the crust–mantle boundary. This vertical
low-velocity column could be interpreted as a magma ascent path or a
set ofmagma reservoirs andwould suggest that this areamight be reju-
venated in the future and the possibility of further basaltic volcanic
activity cannot be unambiguously excluded. The volcanic activity here
occurred in a number of pulses between 1.2 Ma and 0.6 Ma (Panaiotu
et al., 2004, 2013) and formed several volcanic centers (maars, scoria
cones and lava flows) in a 22 km long and 8 km wide area (Seghedi
and Szakács, 1994).
Please cite this article as: Harangi, S., et al., Origin of basalticmagmas of Per
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3. Samples and analytical techniques

Downes et al. (1995) investigated a set of basalts covering most of
the eruptive centers in the Perşani volcanic field. For this study, we
collected samples from additional localities to complete the data set
and selected samples for more detailed, mineral-scale investigation.
The concept behind the sample selectionwas to cover the temporal dis-
tribution of volcanic activity and to choose the freshest rocks, trying to
avoid thosewhich show eithermoderate to pervasive alteration or con-
tain abundant xenocrysts.

The oldest volcanic phase (1220 ka; Panaiotu et al., 2013) is repre-
sented by samples from the Racoş volcano and Hegheş scoria cone.
We collected samples from the columnar jointed basalt outcrop at the
entrance of the Racoş quarry and scoriaceous bombs from the proximal
deposit of the nearby Hegheş scoria cone. The younger lava body
(800 ka; Panaiotu et al., 2013) of the Bârc quarry is thought to be related
to the activity of the La Gruiu scoria cone, which is considered to be the
youngest volcano in this area (Seghedi and Szakács, 1994). No Ar–Ar
dating is available for these volcanoclastic rocks, but previous K/Ar
data indicate a younger age (524 ka; Panaiotu et al., 2004).We collected
scoriaceous blocks and bombs from the scoria cone tomake a petrologic
comparison of the two volcanic products. New Ar–Ar dating (Panaiotu
et al., 2013) suggests that the youngest volcanic phase occurred at
680 ka and is represented by basalts from the Mateiaş volcano. We
collected fresh basalt samples from the platy-jointed lava breaching
the phreatomagmatic unit.

Textural characterization of the mineral phases was performed
by combined microscopic and back-scattered electron (BSE) images
(prepared by AMRAY 1830 I/T6 SEM at the Department of Petrology
and Geochemistry, Eötvös University) followed by determination of
their composition using CAMECA SX100 electron microprobe equipped
with four WDS and one EDS at the University of Vienna, Department
of Lithospheric Research (Austria). The operating conditions were as
follows: 15 kV accelerating voltage, 20 nA beam current, 20 s counting
time on peak position, focused beam diameter and PAP correction
procedure for data reduction. Pyroxenes and oxides were analyzed
with a focused 1 μm beam, whereas all feldspar and glass analyses
were carried out with an expanded 5 μm beam diameter, minimizing
the loss of Na and K. Calibration was based on the following standards:
quartz (Si), corundum (Al) albite (Na), olivine (Mg), almandine (Fe),
wollastonite (Ca), rutile (Ti), spessartine (Mn), orthoclase (K),
Mg-chromite (Cr) and Ni-oxide (Ni).

Major and trace element compositions of the bulk rocks were ana-
lyzed at the ACME Labs (Canada; http://www.acmelab.com/). Major
and minor elements were determined by ICP-emission spectrometry,
whereas trace elements were analyzed by ICP-MS following a lithium
borate fusion and dilute acid digestion. Duplicate sample analysis and
internal standards were used to check the reliability of the results.
One of our samples from Racoş was collected from the same outcrop
as that by Downes et al. (1995) and this allows checking the consistency
of the two data sets. The major and trace element data of the two
samples agree within 10–15% deviation that is well below the ana-
lytical error.

4. Petrography and geochemistry

All basaltic samples are olivine-phyric, with 5–20% phenocryst con-
tent (Fig. 2). Minor clinopyroxene phenocrysts occur only in the Racoş
samples. The groundmass comprises plagioclase, clinopyroxene, olivine,
Fe–Ti oxides (mostly Ti-magnetite, ilmenite occurs in the Racoş andBârc
lava) and occasionally volcanic glass. The Racoş and Bârc lavas contain a
small amount of nepheline. The scoria samples (Hegheş, Gruiu) are var-
iously vesiculated (up to 40 vol.%) and oxidized (particularly theHegheş
scoriae). In these samples olivines are partially iddingsitized. The olivine
phenocrysts (300–1250 μm)are usually euhedral to subhedral, whereas
skeletal crystals are found mostly in the Hegheş scoriae. A few olivine
şani volcanic field, Romania: A combinedwhole rock andmineral scale

http://www.acmelab.com/
http://dx.doi.org/10.1016/j.lithos.2013.08.025
Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"centres"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"modelling"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"centres"

Original text:
Inserted Text
"centres"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"sec"

Original text:
Inserted Text
"analysed"

Original text:
Inserted Text
"analysed"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"-"

Original text:
Inserted Text
"vol%"

Original text:
Inserted Text
"-"



U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

Fig. 2. Textural characterization of the studied samples (BSE images). Note the euhedral to subhedral olivine phenocrysts with spinel inclusions. A. Racoş; B. Mateiaş; C. La Gruiu; D. Bârc.

Fig. 3. Compositional variation of olivines. UMX = olivines from ultramafic xenoliths found in the Perşani basalts (Vaselli et al., 1995).

4 S. Harangi et al. / Lithos xxx (2013) xxx–xxx

Please cite this article as: Harangi, S., et al., Origin of basalticmagmas of Perşani volcanic field, Romania: A combinedwhole rock andmineral scale
investigation, Lithos (2013), http://dx.doi.org/10.1016/j.lithos.2013.08.025

http://dx.doi.org/10.1016/j.lithos.2013.08.025


T

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

Table 1t1:1

t1:2 Representative compositions of the studied olivine crystals.

t1:3 Rac1 Rac2 Barc GRU-1 gru2 MAT 7a

t1:4 ol1c ol1r ol1c ol1r ol_gm2 ol7c ol7r gm_ol1 ol_6c ol_6r ol1 c ol1 r ol13 c ol13 r

t1:5 SiO2 40.27 37.02 40.34 40.11 39.89 39.95 36.40 36.23 40.08 38.16 39.97 39.12 39.62 37.33
t1:6 Cr2O3 0.02 0.00 0.03 0.01 0.02 n.a. n.a. n.a. 0.02 0.00 0.02 0.02 0.05 0.00
t1:7 FeOtot 12.17 27.46 9.84 13.33 13.79 13.71 28.59 31.11 13.27 23.46 14.74 17.93 16.03 25.73
t1:8 MnO 0.21 0.71 0.18 0.25 0.29 0.24 0.70 0.80 0.20 0.60 0.25 0.35 0.30 0.64
t1:9 NiO 0.24 0.06 0.27 0.14 0.12 0.21 0.06 0.05 0.24 0.06 0.19 0.17 0.25 0.09
t1:10 MgO 46.80 33.83 48.80 45.78 45.70 45.25 32.61 29.95 46.05 37.33 44.41 41.36 42.93 34.76
t1:11 CaO 0.21 0.40 0.17 0.21 0.26 0.22 0.46 0.48 0.20 0.50 0.27 0.36 0.24 0.34
t1:12 Total 99.91 99.48 99.63 99.83 100.07 99.59 98.82 98.62 100.07 100.11 99.83 99.30 99.40 98.89
t1:13 Fo (mol%) 87.27 68.71 89.84 85.96 85.52 85.47 67.02 63.18 86.08 73.93 84.30 80.44 82.68 70.66

t1:14 FeOtot = total amount of iron; ol = olivine; n.a. = not analyzed; Rac1 = Hegheş scoria sample; Rac2 = Racoş lava rock sample; Barc = Bârc lava rock sample; GRU-1 = Gruiu lava
t1:15 rock sample; Gru2 = Gruiu scoria sample; MAT 7a = Mateiaş lava rock sample; ol = olivine; c = olivine core; r = olivine rim; gm = groundmass olivine.

t2:1

t2:2

t2:3

t2:4

t2:5

t2:6

t2:7

t2:8

t2:9

t2:10

t2:11

t2:12

t2:13

t2:14

t2:15

t2:16

t2:17

t2:18

t2:19
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megacrysts (defined here as larger than 2000 μm that well exceeds the
usual phenocryst size) were observed in the Racoş and Bârc lavas. The
phenocrystic olivines have usually homogeneous composition, diffuse
normal zoning can be observed only at the outermost margins. Spinel
inclusions in olivines are common in all samples. The spinels are 5
to 30 μm in size, vary from euhedral octahedra to anhedral grains, and
occur both in the core and the margin of the olivine crystals. They
have homogeneous compositions as checked by high magnification
BSE images.

The olivine phenocrysts have dominantly 84–90 mol% forsterite
content with CaO concentration exceeding 0.15 wt.% (Fig. 3; Table 1).
They are compositionally clearly different from the olivines found in
ultramafic xenoliths (Vaselli et al., 1995). Less magnesian compositions
were measured only at the outer few tens of micron rim of the olivine
phenocrysts, mostly in lava samples, whereas olivines in the scoriae
have a more restricted Fo-rich (Fo = 87–90 mol%) composition. The
Fo component of themargins of the olivines decreases to 60 mol%, how-
ever, keeping a linear trend with CaO and MnO contents. Olivines from
the youngest scoria cone (La Gruiu) form a slightly different trend in the
Fo vs. CaO plot (Fig. 3). In contrast, no difference can be observed in the
trends shown by the Fo vs. MnO diagram (Fig. 3). The Ca concentration
of the most magnesian olivines (Fo N 84 mol%) is relatively low
(b2000 ppm), consistent with the low CaO and FeO contents of the
host rocks (CaO = 9–10 wt.%; Fe2O3

tot = 9–10 wt.%).
Clinopyroxene phenocrysts are found only in the Racoş and Bârc

samples, where they have similar compositions (Table 2). They are
ferroan-diopside with Mg-number (Mg2+ / (Mg2+ + Fe2+)) ranging
from 0.87 to 0.92, with Cr2O3 content of 0.15–0.55 wt.%. The Al2O3 con-
centration varies between 3.5 and 8.5 wt.%. The Ti/Al ratio is between
0.125 and 0.25 (Fig. 4).
U
N
C
O

Table 2
Representative analyses of the studied chromian spinels.

Rac1 Rac2 Barc

sp2_in_ol1 sp1_in_ol6_1 sp_in_ol2 sp1_in_ol7 sp_in_ol

SiO2 0.13 0.08 0.09 0.15 0.22
TiO2 0.93 0.72 0.73 0.76 1.02
Al2O3 30.93 26.42 26.92 29.96 34.73
Cr2O3 28.80 35.04 31.49 31.51 20.74
Fe2O3 7.79 5.90 9.89 8.55 8.73
FeO 16.02 19.50 15.60 9.91 19.83
MnO 0.15 0.33 0.30 0.38 0.28
MgO 13.78 10.87 13.33 17.48 11.40
NiO 0.18 0.12 0.17 0.13 0.14
Total 98.71 98.97 98.52 98.84 97.07
Mg# 0.61 0.50 0.60 0.76 0.51
Fe2+/(Fe2+ + Mg) 0.39 0.50 0.40 0.24 0.49
Cr# 38.45 47.08 43.97 41.37 28.61

Fe2O3 is calculated on the basis of stoichiometry; Mg# = Mg / (Mg + Fe2+); Cr# = 100 ∗ Cr
rock sample; Barc = Bârc lava rock sample; GRU-1 = Gruiu lava rock sample; Gru2 = Gruiu
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Spinel inclusions in olivine phenocrysts are chromian spinels
(Cr2O3 = 18–35 wt.%, Al2O3 = 23–40 wt.%). Most have TiO2 content
ranging from 0.5 to 1.0 wt.%, suggesting that they are magmatic spinels
and formed from less differentiated magma. Spinels from the Mateiaş
basalt show, however, distinct compositional features, such as slightly
higher TiO2 (0.9–1.2 wt.%) and significantly lower Mg-number (0.3–0.4,
whereas the spinels from the other samples are between 0.5 and 0.7)
consistent with derivation from more evolved magma (Roeder et al.,
2003). This is also supported by their relatively higher Fe3+ content
(Fig. 5) and the lower Fo component (b80 mol%) of their host olivines.
The less differentiated spinels form two compositional groups, a Cr-rich
group with Cr-number (Cr3+ / (Cr3+ + Al3+)) of 0.38–0.45 (Cr2O3 =
28–35 wt.%) and a Cr-poor group with Cr-number of 0.23–0.32
(Cr2O3 = 18–23 wt.%; Table 3.). Remarkably, they represent the older
(Cr-rich spinels in Racoş and Hegheş) and the younger (Cr-poor spinels
in Bârc and La Gruiu) basalt groups, respectively (Fig. 5).

Bulk rock compositions of the studied samples show fairly similar
characters (Table 4.). They are all silica-undersaturated (S.I. is between
−17 and −8, where S.I. is defined by Fitton et al., 1991) trachybasalts
(hawaiite) with relatively high Mg-number (Fe2+ is calculated assum-
ing Fe2O3/FeO = 0.2) ranging from 0.67 to 0.73. The SiO2 content is in
a narrow range (47–49 wt.%); however, it shows a strong negative cor-
relation with total iron. Concentrations of Ni, Cr and other compatible
elements are high, consistent with the high Mg-number of the Perşani
basalts. The normalized rare earth element (REE) patterns are light
REE-enriched and smooth (Fig. 6). The (La/Yb)N is in the range of
10–13, which is relatively low compared with other alkali basalts in
the Pannonian Basin (Ali and Ntaflos, 2011; Ali et al., 2013; Dobosi
et al., 1995; Embey-Isztin et al., 1993; Harangi et al., 1995). The primi-
tive mantle normalized trace element patterns (Fig. 6) are also fairly
GRU-1 gru2 MAT 7a

5 sp_in_ol10 sp1 sp_6 sp in ol5 sp in ol10 sp in ol3 sp in ol6

0.13 0.70 0.24 0.13 0.15 0.08 0.07
0.79 1.70 0.96 0.87 0.96 1.17 0.86

39.73 29.90 39.17 38.50 36.12 23.45 24.07
19.39 21.14 19.87 20.32 19.81 21.26 23.01
7.63 13.17 7.77 8.24 10.08 18.94 17.33

15.06 18.91 14.78 14.43 16.24 25.48 24.40
0.16 0.27 0.16 0.16 0.26 0.45 0.41

15.10 12.47 15.47 15.45 13.85 6.34 6.96
0.22 0.15 0.26 0.19 0.15 0.09 0.10

98.20 98.41 98.66 98.29 97.61 97.25 97.20
0.64 0.54 0.65 0.66 0.60 0.31 0.34
0.36 0.46 0.35 0.34 0.40 0.69 0.66

24.67 32.17 25.39 26.15 26.90 37.81 39.08

/ (Cr + Al); sp = spinel; ol = olivine; Rac1 = Hegheş scoria sample; Rac2 = Racoş lava
scoria sample; MAT 7a = Mateiaş lava rock sample.
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Table 3 t3:1

t3:2Representative compositions of the studied clinopyroxenes.

t3:3Rac1 Rac2 Barc GRU-1

t3:4cpx4c cpx4r cpx_fen1c cpx_gm2 cpx_gm2 cpx_gm2 cpx_3c cpx_3r

t3:5SiO2 47.23 45.63 50.30 48.42 46.32 48.07 46.45 45.42
t3:6TiO2 1.72 2.92 1.12 1.52 2.80 1.92 2.21 2.83
t3:7Al2O3 7.05 6.92 3.91 6.41 6.82 5.37 7.95 7.88
t3:8Cr2O3 0.30 0.00 0.15 0.34 0.02 0.44 0.62 0.00
t3:9Fe2O3 4.54 5.03 2.55 2.84 3.65 2.33 4.13 4.38
t3:10FeO 2.11 4.00 3.45 3.30 4.48 4.21 2.44 4.14
t3:11MnO 0.12 0.14 0.15 0.13 0.15 0.16 0.13 0.19
t3:12MgO 13.62 12.22 15.63 14.09 12.24 14.13 13.12 11.71
t3:13CaO 23.05 22.44 22.30 22.82 22.64 22.06 22.80 22.61
t3:14Na2O 0.42 0.54 0.24 0.32 0.53 0.30 0.50 0.57
t3:15Total 100.14 99.85 99.81 100.19 99.64 98.99 100.36 99.73
t3:16Mg# 0.80 0.72 0.83 0.81 0.74 0.80 0.79 0.72
t3:17En 40.37 36.78 44.69 41.62 37.15 42.03 39.72 35.91
t3:18Wo 49.13 48.56 45.84 48.45 49.39 47.18 49.60 49.85
t3:19Fs 10.50 14.65 9.47 9.93 13.47 10.79 10.68 14.24

t3:20Fe2O3 is calculated on the basis of stoichiometry; Mg# = Mg / (Mg + Fetot); cpx =
t3:21clinopyroxene microphenocryst; cpx_fen = clinopyroxene phenocryst; cpx_gm =
t3:22groundmass clinopyroxene; Rac1 = Hegheş scoria sample; Rac2 = Racoş lava rock
t3:23sample; Barc = Bârc lava rock sample; GRU-1 = Gruiu lava rock sample.

Fig. 4. Al vs. Ti diagram for the clinopyroxene microphenocrysts. The Ti/Al ratio suggests
crystallization at relatively high-pressure.

6 S. Harangi et al. / Lithos xxx (2013) xxx–xxx
similar. They show features of the Group 2 basalts in the Pannonian
Basin as defined by Harangi and Lenkey (2007), i.e. they are less
enriched in the incompatible trace elements than the Group 1 basalts
and do not have a negative K-anomaly. The youngest Mateiaş basalt
differs from the other samples in having a slightly higher trace element
content. Overall, the trace element patterns of the Perşani basalts are
typical of the intraplate alkaline basalts worldwide.
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5. Discussion

The Perşani basalts were formed by intermittent eruptions in a time
span from 1.2 Ma to 600–700 ka, according to new 40Ar/39Ar dating
(Panaiotu et al., 2013). In order to constrain the origin of the magmas,
it is necessary to consider the following observations. The volcanism
occurred in a restricted area (ca. 180 km2) and certainly had a tectonic
control. Volcanic eruptions produced low-volume basaltic lavas and
pyroclastic rocks. The volcanic activity took place partly coevally with
high-K calc-alkalic magmatism in the southern Harghita (Seghedi
U
N
C
O

R
R 349

350

351

Fig. 5. Compositional characteristics of spinels inclusions in olivine phenocrysts based on
the Cr–Fe3+–Al diagram. The Perşani spinels form two compositionally coherent groups
and fall into the MORB spinel field as defined by Roeder et al. (2001). OIB spinel field is
denoted based on the composition of the spinels from Hawaii after Roeder et al. (2003).
The arrows show fractionation trends of spinels. The three grayfields defined by the spinel
composition data from several alkaline basalt localities from the Carpathian–Pannonian
region (Harangi, 2012; Jankovics et al., 2012, 2013). Symbols are explained in Fig. 3.
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et al., 2011). The Perşani volcanic field is located 40 km from the
Ciomadul volcano, the youngest one (the last eruptions occurred at
about 30 ka; Harangi et al., 2010) in the area and about 100 km from
the seismically active Vrancea zone, where a deep vertical slab is in-
ferred. Recent geophysical studies indicate the presence of a low-
velocity anomaly at lower crustal levels both beneath the Perşani area
and theCiomadul volcano (Popa et al., 2012),while deep seismicmodels
imply a low-velocity anomaly in the upper mantle down to 110 km
(Martin et al., 2006) or to 400 km (Ren et al., 2012). Ultramafic and
mafic xenoliths occur frequently in the volcanic products (Vaselli et al.,
1995). In the next section, we will discuss the origin of the magmas in
the following structure: first the role of possible crustal contamination
and crystal fractionation is evaluated, followed by constraining the con-
ditions of melt generation (degree of melting, melting pressure and
temperature). This is followed by characterization of themantle sources
and how these changed with time. The magma ascent rate is estimated
based on theCa-profile in xenocrystic olivine andfinally, all the informa-
tion is integrated to imply the geodynamic situation.
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5.1. The role of fractional crystallization

The Perşani basalts have relatively high Mg-number (0.67–0.73),
high Ni (150–220 ppm) and Cr (250–500 ppm) contents, indicating
near-primary compositions and therefore showing onlyminimal crystal
fractionation. They often contain abundant mantle xenoliths and these
features all imply a fast magma ascent. Trace element ratios such as
Nb/Th (5–10) and Nb/La (1–1.5) are typical of mantle-derived melts
and higher than the continental crust (Rudnick and Fountain, 1995).
Thus, we can conclude that crustal contamination did not significantly
modify the magma composition.

In general, olivine and spinel are liquidus phases during crystallization
of alkaline silica-undersaturated mafic magmas (Roeder et al., 2006),
although as Smith et al. (2008) pointed out, early-stage crystallization
of clinopyroxene should be also considered even if it cannot be observed
as a phenocryst. Early crystallization of clinopyroxene modifies not only
the melt composition, but can also influence the composition of co-
existing evolving phases, such as olivine and spinel. In the Perşani basalts
olivine is the principal phenocryst phase and commonly contains spinel
inclusions. Clinopyroxenes occur only in the microphenocryst assem-
blage. This can usually be interpreted that olivine and spinel crystallized
first as liquidus phases, followed by formation of minor clinopyroxene
şani volcanic field, Romania: A combinedwhole rock andmineral scale
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Table 4t4:1

t4:2 Bulk rock compositions of the alkaline basalts from Perşani Mts.

t4:3 Rac 1 Barc Gru 1 Gru 2 Mat

t4:4 SiO2 46.87 46.63 46.68 46.08 46.72
t4:5 TiO2 1.55 1.77 1.78 1.75 1.73
t4:6 Al2O3 15.8 15.95 16.02 16.07 15.61
t4:7 Cr2O3 0.06 0.05 0.04 0.04 0.06
t4:8 Fe2O3 9.57 10.12 9.55 9.86 9.69
t4:9 MnO 0.16 0.17 0.16 0.17 0.16
t4:10 MgO 9.68 9.22 8.64 8.82 9.66
t4:11 CaO 9.85 9.44 9.35 9.28 9.41
t4:12 Na2O 3.79 3.91 3.24 3.46 4.05
t4:13 K2O 1.63 1.91 1.93 2.02 2.03
t4:14 NiO 0.03 0.02 0.2 0.2 0.03
t4:15 P2O5 0.39 0.48 0.5 0.52 0.56
t4:16 LOI 0.2 0 1.7 1.5 0
t4:17 Total 99.58 99.67 99.79 99.77 99.71
t4:18 mg# 69 66.7 66.6 66.3 68.7
t4:19 Ce 60.9 63.9 59.3 60.7 102
t4:20 Pr 6.96 7.59 6.85 7.03 n.a.
t4:21 Nd 28.2 34 27.8 28.8 39
t4:22 Sm 5.18 6.04 5.12 5.22 n.a.
t4:23 Eu 1.58 1.86 1.66 1.75 n.a.
t4:24 Gd 4.26 5.14 4.79 4.98 n.a.
t4:25 Tb 0.6 0.7 0.74 0.76 n.a.
t4:26 Dy 3.91 4.35 3.98 4.08 n.a.
t4:27 Ho 0.75 0.83 0.77 0.76 n.a.
t4:28 Er 2.05 2.26 2.16 2.16 n.a.
t4:29 Tm 0.29 0.34 0.29 0.29 n.a.
t4:30 Yb 1.97 2.21 1.75 1.83 n.a.
t4:31 Lu 0.28 0.31 0.28 0.28 n.a.
t4:32 TOT/C b0.02 b0.02 b0.02 b0.02 n.a.
t4:33 Pb 2.2 3.6 8.1 5.2 8.3
t4:34 Ni 172.8 153.6 154 169 n.a.
t4:35 Mo 3.7 3.7 2.8 2.9 n.a.
t4:36 Cu 36 44 38.6 34 54
t4:37 Zn 38 60 75 72 77
t4:38 TOT/S b0.02 b0.02 b0.02 b0.02 n.a.
t4:39 As 0.5 0.7 2.1 2.3 n.a.
t4:40 Cd b0.1 b0.1 b0.1 0.1 n.a.
t4:41 Sb b0.1 b0.1 b0.1 b0.1 n.a.
t4:42 Bi b0.1 b0.1 b0.1 b0.1 n.a.
t4:43 Ag b0.1 b0.1 b0.1 b0.1 n.a.
t4:44 Au b0.5 b0.5 1.1 b0.5 n.a.
t4:45 Hg b0.01 b0.01 b0.01 b0.01 n.a.
t4:46 Tl b0.1 b0.1 b0.1 b0.1 n.a.
t4:47 Se b0.5 b0.5 b0.5 b0.5 n.a.
t4:48 Sc 27 26 23 23 22
t4:49 Ba 685 758 735 726 1013
t4:50 Be 2 2 1 1 n.a.
t4:51 Co 44.1 41.1 38 39.8 n.a.
t4:52 Cs 1 1 0.8 0.9 n.a.
t4:53 Ga 17.9 17.9 18.2 17.2 n.a.
t4:54 Hf 3.7 4.5 4.2 4.4 4.4
t4:55 Nb 37.6 51.8 47.3 48.8 52.6
t4:56 Rb 37.9 43.1 39.4 39.5 51.5
t4:57 Sn 1 2 1 2 n.a.
t4:58 Sr 813.6 775 771 820.4 863
t4:59 Ta 2.4 3.1 2.9 2.9 3.79
t4:60 Th 5.6 6 5 5.5 9.4
t4:61 U 1.7 1.7 1.2 1.5 n.a.
t4:62 V 199 194 188 195 206
t4:63 W 0.8 0.8 0.6 0.7 n.a.
t4:64 Zr 154.8 185.3 174.3 181 209
t4:65 Y 21.6 23.8 20.8 22 23.5
t4:66 La 32.3 32.8 31.9 31.7 53

t4:67 Major elements are in wt.%; minor and trace elements are in ppm; Mg# = Mg /
t4:68 (Mg + Fe2+), where Mg and Fe2+ are cation fractions; LOI = loss of ignition;
t4:69 n.a. = not analyzed; Rac1 = Hegheş scoria sample; Barc = Bârc lava rock sample;
t4:70 Gru 1 = Gruiu lava rock sample; Gru2 = Gruiu scoria sample; Mat = Mateiaş lava
t4:71 rock sample fromQ4 Downes et al. (1995) paper.
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en route to the surface. Nevertheless, the Ca deficiency (Herzberg, 2011;
Herzberg and Asimow, 2008) in the olivines and the bulk rocks might
indicate that high-pressure clinopyroxene crystallization could have
also occurred.
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Using themathematical formulation proposed by Smith et al. (2008),
the minimum pressure of clinopyroxene fractionation can be estimated.
We got pressure values of 1.3–1.6 GPa, which correspond to depths of
45–55 km. In contrast, the clinopyroxene–liquid thermobarometer of
Putirka et al. (1996) yields a significantly lower pressure (0.8–1.2 GPa)
for clinopyroxene crystallization at a temperature of about 1250 °C.
For the most magnesian olivines, however, we got a higher crystalliza-
tion temperature (1300–1350 °C) using the olivine–liquid FeO/MgO
distribution (Roeder and Emslie (1970), the olivine–liquid CaO/MgO
relationship (Jurewicz and Watson, 1988) and the calculation scheme
provided by Putirka et al. (2007) and Putirka (2008). In this calculation
the bulk rock compositions were used as liquid compositions and from
each sample the most magnesian olivines (crystal cores) were chosen.
The selected olivine–liquid composition pairs fulfill the equilibrium
criteria based on the Rhodes diagram (Rhodes et al., 1979). In conclu-
sion, the estimated crystallization temperatures suggest that olivine
crystallization occurred prior to formation of clinopyroxenes. The lack
of early-stage clinopyroxene crystallization is inferred also from other
observations. The Sc content, which is sensitive to clinopyroxene frac-
tionation, is high in the Perşani basalts (Sc = 22–28 ppm), the highest
among the basalts in the Pannonian basin. Furthermore, the Cr-number
of spinels is constant alongwith various Fo content of coexisting olivines
that can be explained by crystallization of only olivine and spinel during
the early stage of the magma evolution (Arai, 1994; Smith and Leeman,
2005). Thus, high pressure clinopyroxene crystallization could not be
responsible for the relatively low Ca content of the Perşani olivines and
bulk rocks.

The crystallization history of the Perşani mafic magmas can be sum-
marized as follows. Magnesian olivines crystallized along with spinels
as liquidus phases at 1300–1350 °C, presumably in the upper mantle.
The primitive character of the spinel inclusions in olivine is indicated
also by their low Ti and Fe3+ content. This is similar to spinels in the
Cascades basalts (Smith and Leeman, 2005), but is in contrast to the
more evolved spinel compositions found in the basalts of Paricutin
(Bannister et al., 1998) and southwest Japan (Shukuno and Arai,
1999). The rapidly increasing Ca content of the olivines with decreasing
Fo content suggests polybaric compositional evolution (Stormer,
1973). Olivine and spinel fractionation was followed by crystalliza-
tion of clinopyroxene that took place at about 1250 °C temperature
and at deep crustal levels (at 0.8–1.2 GPa; i.e. 25–40 km depth), con-
sistent with their Ti/Al ratio (0.125–0.25; Fig. 4) and AlVI/AlIV ratios
(N0.25). The low-pressure mineral assemblage (plagioclase, Fe–Ti
oxides, nepheline) was formed at or near the surface.

5.2. Conditions of magma generation

The composition of the eruptedmagma aswell as somekeyminerals
such as olivine and spinels depends upon the conditions of magma
generation (Herzberg, 2011; Kamenetsky et al., 2001; Niu et al., 2011;
Roeder et al., 2001; Sobolev et al., 2007). The Perşani basalts with
their near-primitive bulk composition, along with the compositional
features of the liquidus minerals (olivine and spinel), provide an excel-
lent opportunity to have a deep insight into this process and constrain
the temperature, pressure (depth) and degree of melting. Reconstruc-
tion of these parameters has an important inference on the geodynamic
environment of the basaltic volcanism.

Alkaline silica-undersaturated mafic magmas can be generated
by low-degree of melting either in the upwelling asthenosphere
(Bradshaw et al., 1993; Niu et al., 2011; Wang et al., 2002) or by
melting of metasomatic, usually amphibole-rich, veins in the litho-
sphere (Beccaluva et al., 2007; Bianchini et al., 2008; Fitton et al.,
1988; Pilet et al., 2008; Valentine and Perry, 2007). In the first case,
upward movement of mantle rock is required (decompressional
melting), whereas in the second case either significant thinning of
the lithosphere or a thermal perturbation is necessary. Delamination
and recycling of the metasomatized lithosphere into the convecting
şani volcanic field, Romania: A combinedwhole rock andmineral scale
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Fig. 6. Chondrite normalized rare-earth element and primitive mantle normalized trace element patterns of the Perşani basalts. Symbols are explained in Fig. 3.
Data for normalization are from McDonough and Sun (1995).
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mantle could be another scenario to produce alkaline mafic magma
(Lustrino, 2005). Amphibole megacrysts are occasionally found in
the Perşani basalts and they have similar Sr–Nd isotopic composition
as the host rocks (Downes et al., 1995). This suggests a genetic rela-
tionship and could be consistent with the metasomatized litho-
spheric origin of the Perşani mafic magmas.

Constraining the mineralogical assemblage of the mantle source of
the Perşani magmas using trace element modeling, it is possible to
test whether amphibole had a role in melt generation. Trace element
ratios of Zr/Nb and La/Y were chosen, because their values are not
dependant on early-stage crystal fractionation and are sensitive on the
presence of spinel, garnet and amphibole in the mantle source. The re-
sult of the model calculations is shown in Fig. 7, along with the data of
the Perşani basalts. Residual garnet in the source primarily influences
the La/Y ratio of the generatedmagma, whereas amphibole mostly con-
trols the Zr/Nb ratio. The Perşani basalts plot between the garnet- and
spinel-lherzolite model lines and do not fit with the model of melting
U
N
C
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R
R
E
C 475

476
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Fig. 7. Trace element modeling for the melt generation beneath the Perşani area.
Model parameters: non-modal equilibriumpartialmelting processwith the following source
rocks: spinel-lherzolite–olivine (57%), orthopyroxene (25.5%), clinopyroxene (15%), spinel
(2.5%); garnet-lherzolite–olivine (60.1%), orthopyroxene (18.9%), clinopyroxene (13.7%),
garnet (7.3%); amphibole-bearing spinel-lherzolite–olivine (56%), orthopyroxene (22%),
clinopyroxene (10%), spinel (2%), amphibole (10%); amphibole-bearing garnet-lherzolite–
olivine (60.1%), orthopyroxene (18.9%), clinopyroxene (11%), garnet (6%) and amphibole
(4%). Melting modes: ol1.21opx8.06cpx76.37sp14.36, ol1.3opx8.7cpx36gt54, ol1opx8cpx30sp10am51,
ol1opx1cpx15gt25am58, respectively. Source rock composition: La and Nb — 4 × primitive
mantle values (2.59 and 2.63 ppm, respectively), Zr — 2 × primitive mantle values
(21 ppm) and Y — 1.5 × primitive mantle values (6.45 ppm). Symbols are explained in
Fig. 3.
Distribution coefficients are from Kostopoulos and James (1992), while for amphiboles
from McKenzie and O'Nions (1991).
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of amphibole in the source is the lack of any correlation between K and
other incompatible trace elements. The primitive mantle normalized
trace element patterns (Fig. 6) do not show a negative K-anomaly,
which could indicate a residual K-bearing phase duringmantle melting.
Total consumption of amphibole can account for this feature, but in this
case it would require a more potassic composition along with enrich-
ment in other elements. Furthermore, the composition of spinels in
the Perşani basalts differs from that of spinels found in the ultramafic
xenoliths (Vaselli et al., 1995; Szabó Á., unpublished MSc thesis, 2013)
and therefore implies a source region different from the lithospheric
mantle beneath Perşani. The trace element modeling is consistent
with magma generation in the presence of both garnet and spinel.
Klemme (2004) conducted high pressure and high temperature experi-
ments and showed that coexistence of garnet and spinel in mantle peri-
dotite could be in a larger depth range in the case of a Cr-bearing system.
In summary, we can infer that the alkaline basaltic magmas which fed
the Perşani volcanism could have been formed in the sublithospheric
mantle in the spinel-garnet stability field. In the next paragraphs we at-
tempt to constrain the pressure and temperature conditions of melting.

Formation of the primary basaltic magmas during decompression of
upwelling mantle material occurs in a depth range controlled by the
Fig. 8. Determination of melting pressure based on the calculated primarymagma composi-
tions of the Perşani basalts using the ol′–ne′–qtz′ plot of Hirose and Kushiro (1993). ol′ =
ol + 0.75opx; ne′ = ne + 0.6ab; qtz′ = qtz + 0.4ab + 0.25opx, where ol, opx, ne, ab
and qtz are CIPW normative mineral components. Symbols are explained in Fig. 3.
Melting pressure lines are after Sakuyama et al. (2009).

şani volcanic field, Romania: A combinedwhole rock andmineral scale
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mantle solidus and the mantle potential temperature (initial melting
depth) and the thickness of the lithosphere (final melting depth;
Langmuir et al., 1992; Niu et al., 2011). In the estimation of melting
depth and temperature, first the primary magma compositions have
to be calculated correcting for even theminor amount of fractional crys-
tallization. For this, an appropriate amount of olivine was added to the
bulk rock data using the method of Herzberg and Asimow (2008). An
acceptable result was achieved after correction of 5–12% olivine crystal-
lization. The modeled primary magma composition depends, however,
also on the estimation of the Fe2O3 content of themagma. Conventional
analytical techniques give the total iron as total Fe2O3 and an assump-
tion is necessary to divide this into FeO and Fe2O3. Herzberg and
Asimow (2008) suggested that Fe2+/Fetot around 0.9 could give a reli-
able result, however, many ocean island basalts (OIB) aremore oxidized
and an adjustment based on the relative amount of Fe2O3 and TiO2 could
yieldmore appropriate data. Fixing the Fe2O3/TiO2 ratio to 1, less olivine
correction (1–7%) is necessary to achieve the primarymagma composi-
tion of the Perşani basalts. However, increasing the Fe2O3 value leads
to a decrease of theMgO content of the primarymagma and as a conse-
quence a decrease of themantle potential temperature (by about 50 °C)
andminor increase ofmelt fractions. In contrast, it does not significantly
affect the melting pressure estimate.

The initial andfinalmelting pressureswere calculatedusingdifferent
techniques. Experiments conducted by Takahashi and Kushiro (1983)
and Hirose and Kushiro (1993) on anhydrous peridotite show that the
most pressure-sensitive major oxides are SiO2 and FeO, whereas CaO
and Al2O3 depend mainly on the degree of partial melting and the com-
position of the source rock. Scarrow and Cox (1995) formulated this
relationship, providing a simple equation for the apparent pressure of
melt segregation. Wang et al. (2002) revised this equation using a
more extended experimental data set and got a third-order polynomial
fit between SiO2 and themelting pressure. This equation yields a slightly
higher pressure than that of Scarrow and Cox (1995). For the Perşani
primary magma composition, we got 2.2–2.7 GPa pressure using the
equation of Wang et al. (2002). This corresponds to a depth of
75–90 km (calculated based on 40 km crust with 2.85 g/cm3 and an
underlying mantle with 3.25 g/cm3 average density values). A similar
pressure range (1.9–2.6 GPa) was obtained using the ol′–ne′–qtz′ nor-
mative diagram (Fig. 8) of Hirose and Kushiro (1993). The melting
pressure lines in this plot were refined by an extended experimental
data set by Sakuyama et al. (2009).

Langmuir et al. (1992) used experimental data and numerical model
to constrain the depth and extent of mantle melting for mid-ocean
ridge basalts. This is based on the FeO and Na2O content of the primary
magmas, as FeO indicates the depth of melting, whereas Na2O is
U
N
C
O

Fig. 9. Comparison of the composition of the Perşani olivines with literature dat
MORB, Iceland and Hawaii olivine fields are after Sobolev et al. (2007).
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sensitive to the degree of melting. Wang et al. (2002) extended this
technique to continental basalts and outlined a mantle melting profile
across the Basin and Range, SW USA. The FeO content does not change
significantly during crystal fractionation in high MgO (N8 wt.%) basalts
and its total value depends on the pressure and temperature of initial
melting. Thus the total FeO content of the calculated primary magma
composition can be used to infer the initial melting pressure. During
adiabatic upwelling of the mantle, the extent of melting increases
untilmagmageneration ceases, i.e. at thefinal pressure. During this pro-
cess, FeO does not change greatly (up to about 0.5 wt.%), whereas Na2O
decreases significantly. We adopted the methodology described in
Langmuir et al. (1992) and Wang et al. (2002) and got 2.0–2.5 GPa ini-
tial melting pressure that drops to 1.8–2.0 GPa during decompression
melting. This corresponds to a melting column between 61–68 km
and 68–83 km.

To further constrain themelting conditions of the Perşani basalts,we
also used the geothermobarometric calculation provided by Lee et al.
(2009). This formulation requires peridotitemelting. The obtained pres-
sure values (1.8–2.5 GPa) are consistent with the above results, where-
as we got 1350–1420 °C for themelting temperature. This temperature
range fits perfectly that provided by the PRIMELT2 software of Herzberg
and Asimow (2008; Tp = 1380–1420 °C using Fe2+/Fetot around 0.9 for
calculation the primary magma composition). This calculated mantle
potential temperature is the lowest obtained for alkaline basalts of the
Pannonian Basin. This result implies melting at normal mantle potential
temperature beneath Perşani. Thus,melting of the lower lithosphere be-
neath this area does not seem to be feasible, since there is no indication
of a thermal anomaly necessary for this and composition of the basalts
does not show derivation from a metasomatized mantle source, which
is capable of melting without decompression. Melting could have
occurred in the upwelling asthenosphere and, considering the obtained
melting pressure range, this place the lithosphere–asthenosphere
boundary not deeper than 60 km. This is consistent with the geophysi-
cal result of Martin et al. (2006) and is in contrast to the thick litho-
sphere interpretations (Dérerova et al., 2006; Horváth et al., 2006).
5.3. Mantle source characteristics

In the previous section, we concluded that the Perşanimagmas orig-
inated at 60–85 km by decompressional partial melting of upwelling
asthenospheric mantle material. The pressure, temperature and degree
ofmelting closely influenced the composition of theprimarymelt; how-
ever, another important controlling factor is mantle compositional var-
iation. This influences not only the bulk magma composition, but also
a and the Herzberg (2011) modeling result. Symbols are explained in Fig. 3.

şani volcanic field, Romania: A combinedwhole rock andmineral scale
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Fig. 10. Spinel Cr-number (Cr / (Cr + Al)) vs. olivine Fo (mol%) content for the coexistent
spinel–olivine pairs of the Perşani basalts compared with the olivine–spinel mantle array
(OSMA;Arai, 1994) and the spinels found in the ultramafic xenoliths (denoted as UMX) in
the Perşani basalts (Vaselli et al., 1995). The subhorizontal trends indicate olivine fraction-
ation, whereas the distinct Cr-numbers of the spinels imply two, slightly different source
region of the mafic magmas. The large arrows correspond to the olivine–spinel trends
shown by the basalts from the Carpathian–Pannonian region (Harangi, 2012; Jankovics
et al., 2012, 2013). Symbols are explained in Fig. 3.
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provides a fingerprint in the mineral chemical data. Olivine and spinel
compositions are particularly sensitive to mantle source features.

The Perşani basalts and their olivine phenocrysts are characterized
by relatively low Ca (Fig. 9A). Herzberg and Asimow (2008) and
Herzberg (2011) suggested that this feature implies that pyroxenite
could also have been present in the mantle source region, assuming
that no high-pressure clinopyroxene fractionation occurred. Although
we excluded that early stage clinopyroxene crystallization depleted
the Ca content of the Perşani magma and, as a result, caused low Ca
also in the olivine phenocrysts, this feature cannot be explained even
by pyroxenitemelting. The olivines in the Perşani basalts have relatively
low Ni and high Mn (Fig. 9B; resulting in low Fe/Mn ratio) concentra-
tions that is just the opposite of what was required in the case of pyrox-
enite melting (Sobolev et al., 2007). In fact, the geochemical features of
the Perşani olivines resemble the olivines fromMORB and from Iceland
basalts and this implies peridotitic source of the magmas. Furthermore,
Niu et al. (2011) questioned whether the “pyroxenite-signature” pro-
posed by Sobolev et al. (2007) exists at all and suggested that this can
be equally explained by the lid-effect, i.e. by variations in lithospheric
thickness. Magmas generated under a thin lithosphere could crystallize
olivines with relatively low Ni and high Mn and corresponding low
Ni/Mg, low Ni/(Mg/Fe) and high Mn/Fe and high Ca/Fe ratios. All of
these features characterize the Perşani olivines except for the high
Ca/Fe ratio (in fact, they have low Ca and therefore a low Ca/Fe ratio).
This interpretation, i.e. melt generation under a thin lithosphere is
consistent with the geobarometric results described above. Thus, the
Perşani magmas could have originated dominantly from a peridotitic
mantle source, although it is still unresolved what caused the Ca defi-
ciency in the host rock and in the most magnesian olivines.

A further constraint on the mantle source characteristics can be
given using the compositions of spinel inclusions in magnesian olivine
phenocrysts, which are ubiquitous in the Perşani basalts. Composition
of spinels carries important petrogenetic information as pointed out
by many authors (Arai, 1994; Dick and Bullen, 1984; Kamenetsky
et al., 2001; Roeder et al., 2003; Smith and Leeman, 2005). As discussed
above, the low Ti and Fe3+ content of spinels in the Perşani olivines im-
plies that they could have been formed during the early stage of magma
evolution. These spinels are enclosed by olivines with Fo content rang-
ing from 84 to 89 mol%. In contrast to this limited compositional varia-
tion of olivines, the Mg-number of the spinels shows a relatively large
range from0.32 to 0.78. TheMg-number of the spinels depends, however,
not only on the composition of the melt, but also on the substitution of
other elements (Fe–Cr for Mg–Al) and on possible re-equilibration at
lower temperature (Kamenetsky et al., 2001). Kamenetsky et al. (2001)
showed that subaerial lavas contain spinel inclusions with relatively
lower Mg-number (by up to 10 mol%) due to the slower cooling rate
comparedwith spinels in quenchedMORBs. Thus, the relatively large var-
iation in the Mg-number of the Perşani spinels could be explained by the
cooling rate effect (in fact, our samples represent both lavas and scoria).

In contrast to theMg and Fe, the abundances of Al, Cr and Ti in spinel
vary much less during post-entrapment re-equilibration and preserve
the original character (Kamenetsky et al., 2001). The Cr-number of spinel
is a useful indicator of the degree of depletion of themantle source (Dick
and Bullen, 1984) and this fingerprint is preserved even in spinels crys-
tallized from mafic magmas (Arai, 1994). The Cr-number of the Perşani
spinels is in the range from 0.23 to 0.45, however, two distinct groups
can be recognized (Figs. 5 and 10). These two groups correspond with
the samples of the older (Racoş) and younger (Bârc, Gruiu) eruptive
phases, respectively. Basalts formed during the first volcanic phase
have spinels with higher Cr-number (0.38–0.45) than the younger
phase magmas (0.23–0.32). In the spinel Cr-number vs. olivine Fo-
content diagram (Fig. 10; Arai, 1994), the two spinel groups form a line-
ar, sub-horizontal array with decreasing olivine Fo-content. Spinel inclu-
sions enclosed by themost magnesian olivines fall just at the edge of the
olivine–spinel mantle array and differ from spinels found in the ultra-
mafic xenoliths in Perşani (Vaselli et al., 1995; Szabó Á., unpublished
Please cite this article as: Harangi, S., et al., Origin of basalticmagmas of Per
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MSc thesis, 2013). The spinel Cr-numbers suggest that the younger
phase magmas were generated from a more fertile peridotite source
than those of the older phase. Nevertheless, all spinels are relatively
Al-rich and resemble those found in MORBs (Fig. 5; Roeder, 1994;
Roeder et al., 2001), similar to the MORB-character of the olivine com-
positions (Fig. 9).

Remarkably, these two coherent groups of Al-rich spinels in the
Perşani basalts are recognized also in other basalt occurrences of the
Carpathian–Pannonian region (Fig. 10; Harangi, 2012). They were de-
scribed in spinels found even in single basaltic rocks (Füzes scoria
cone; Jankovics et al., 2012). An additional spinel compositional group
with even higher Cr-number (0.55–0.65), similar to spinel found in
Hawaii (Roeder et al., 2003), are found mostly at the western and
northern part of the Pannonian basin. Thus, it appears that the compo-
sitional variation of early-stage spinel in alkaline basalts of the
Carpathian–Pannonian region suggests three compositionally distinct
domains in the sublithospheric upper mantle beneath this region.

In summary, compositional features of the most magnesian olivines
and their spinel inclusions in the Perşani basalts are similar to those
found inMORB and indicate a slightly depletedmantle source. However,
spinel compositions suggest that two distinct mantle domains were
involved in magma generation. This can be recognized also in the bulk
rockmajor and trace element data and indicates a change in themantle
source of the basaltic magmas during the evolution of the Perşani volca-
nic field. Younger basaltic magmas were generated by lower degrees
of melting (Fig. 7), from a deeper (Fig. 8) and compositionally slightly
different mantle source (Figs. 10 and 13).
E
D5.4. Estimation of the magma ascent rate

Oncemagmahas segregated from themelting column, it starts to as-
cend due to buoyancy. The primitive nature of the Perşani basalts indi-
cates that the magmas could not have paused too long at any depth in
the lithosphere. A fast magma ascent is inferred also from the abun-
dance of ultramafic and mafic xenoliths in some basalts (Vaselli et al.,
1995). There is a number of possible ways to calculate the magma as-
cent rate (a summary is given by Jankovics et al., 2013), herewe applied
şani volcanic field, Romania: A combinedwhole rock andmineral scale
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the time-dependant Ca-diffusion in olivine technique as described by
Kil and Wendlandt (2004).

Following the incorporation of foreign crystals (either as xenocrysts
or crystals in xenoliths) in a melt, complex reactions take place at the
crystal margin. Diffusion of minor and trace elements could modify
the chemical profile of the mineral and develop a sharp increase of
certain elements at the contact with the melt (Costa et al., 2008). In
olivines, Ca has a diffusion coefficient that allows a relatively rapid
change in the Ca concentration at the outermost rim of the enclosed
crystals during relatively short time. The elevated Ca content at the
rim of xenocrystic magnesian olivines is attributed to the temperature
increase in host basaltic melt and their transport to the surface
(Köhler and Brey, 1990). Lasaga (1998) formulated an equation based
on the one-dimensional model for Ca-diffusion: T1/2 = (X1/2)2 / 2D,
where T1/2 is the time necessary to reach half of the equilibration con-
centration of Ca in olivine at a distance X1/2 from the rim. The diffusion
coefficient (D) for Ca in olivine is 3.18 ∗ 10−12 cm2/s at 1200 °C and
f(O2) = 10−8 bar (Jurewicz andWatson, 1988; Köhler and Brey, 1990).

We have found rare olivine megacrysts (xenocrysts) in the Perşani
basalts where the outermost margin shows an abrupt compositional
change. They have a homogeneous inner core compositionwith Fo con-
tent of 91 mol% (Racoş) and 88.1 mol% (Bârc), and clearly differ from
the composition of the olivine phenocrysts in the rocks. The CaO con-
centration of the interior is also stable at 0.16 wt.% and 0.12 wt.%,
respectively. The high-resolution olivine profiles show two segments
of increasing CaO at the outermost margin (Fig. 11). The first one is
characterized by a slow increase along about 200 μm length followed
by an abrupt change in the last 40 μm of the crystal. This two-stage Ca
variation was recognized also in the olivine profiles of the Rio Grande
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Fig. 11. CaO profile along an olivine xenocryst from the Racoş basalt and the calculation of the d
the Bârc samples. Microscopic and BSE images of the olivine megacryst from the Racoş basalt w
stages can be distinguished: the 1.16–1.25 years could correspond to the heating of the lithos
elapsed while the mafic magma crossed the continental crust, i.e. imply the magma ascent rate
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basalts by Kil and Wendlandt (2004) and they interpreted it two
heating stages. For the Perşani olivines, we calculated 1.2–1.3 years
(Fig. 11) for the first heating phase that might have occurred when
the lower lithosphere experienced an increase of temperature provided
by fresh uprisingmagma. The secondheating stage lasted only 4–5 days
(Fig. 11) and this could correspond to the time elapsed between incor-
poration of the olivine grains into hot magma and the eruption, i.e. the
transport time from the depth to the surface. This magma ascent rate
value is very similar to what Jankovics et al. (2013) obtained for the
Bondoró basalts in the central Pannonian Basin and what Mattsson
(2012) calculated for the ascent of melilitic magma in Tanzania. All of
these results suggest that mafic magmas can penetrate the continental
crust within a short time, i.e. for a few days. From the point of view of
natural hazards, this leaves only limited time for recognition and prep-
aration for a volcanic eruption.

5.5. Geodynamic implications

Our main conclusions about the origin of the Perşani magmas are
that they are derived from a heterogeneous mantle source (mostly var-
iously depleted peridotitic MORB-source mantle material) at normal
mantle potential temperature in a melting column from 83 to 60 km
depth. An important point is the localized and low-volume flux nature
of the volcanism with eruption centers that were clearly controlled by
the local crustal tectonic conditions, i.e. southwest–northeast trending
normal faults.

The Perşani volcanic field is located about 100 km from the seismi-
cally active Vrancea zone, where a near-vertical descending slab in the
mantle causes intermediate depth earthquakes (Wenzel et al., 1999).
E
D

uration of heating events based onmethod of Kil andWendlandt (2004) for the Racoş and
ith the profile and the analyzed points shown in the diagram are in the left. Two heating
pheric mantle by the uprising mafic magma, whereas the 3.6–4.8 days could be the time
.
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Fig. 12. Conceptual model for the origin of the volcanism in the Perşani Volcanic Field
(PVF) and the Ciomadul (CIO) modifying the figure published by Seghedi et al. (2011).
Local ruptures in the lower lithosphere could have formed due to the suction of the
downgoing lithospheric slab beneath the nearby Vrancea Zone. Melt generation in the
60–95 kmdepth range can be explained by the upwelling asthenosphericmantlematerial
into this voids.
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Although this area is one of themost thoroughly investigated regions
of eastern-central Europe, the geodynamic situation is still unclear
(Ismail-Zadeh et al., 2012). The conventional explanation is that
the final stage of subduction, which started in the Miocene, is going
on beneath Vrancea, where the descending slab is just about breaking
off (Martin et al., 2006; Sperner et al., 2001; Wortel and Spakman,
2000). Gîrbacea and Frisch (1998) accepting the initial Miocene sub-
duction, but suggested a large scale delamination and roll-back of the
detached lower lithosphere from northwest towards Vrancea. Chalot-
Prat and Gîrbacea (2000) placed this scenario in the context of the
Quaternary volcanism in Perşani and Ciomadul (South Harghita) and
suggested upwelling of hot asthenosphere, filling the void left by the
delaminated lithospheric material. However, this delamination model
requires a relatively large magma production in a more extended area
and a temporal southeastward shift of the volcanism, neither of them
is observed. Instead a localized and low-flux magma production rate
occurred in the Perşani volcanic field. In the seismic tomography
model provided by Martin et al. (2006), a low-velocity anomaly in a
depth range of 70–110 km can be seen northweastward from the
Vrancea zone, just about beneath the Perşani area. Our petrogenetic
result (i.e., melting in 60–90 km depth) appears to fit well with this
geophysical model and strongly argues against the proposal of Fillerup
et al. (2010), who suggested a relatively large scale (N100 km wide)
lithospheric delamination, but involving also the dense lower crustal
material. This scenario, i.e. asthenospheric upwelling beneath a 40 km
continental crust as shown by their figure 3, would result in a more in-
tense andpresumably even silicicmagmatism. Furthermore, the presence
of peridotite xenoliths in the Perşani basalts (Vaselli et al., 1995) clearly
implies that lithospheric mantle material exists beneath this area.

The seismic tomographic images of Popa et al. (2012) do not show a
laterally continuous low-velocity anomaly in the sublithosphericmantle
but rather a local one surrounded by higher velocity mantle material.
The strongest low-velocity anomaly is between 25 and 45 km depth,
i.e. in the lower crustal and crust–mantle boundary zones, and this can
be followed down to 100 km depth. The seismic model of Popa et al.
(2012) is consistent with our petrologic and petrogenetic results, i.e.
localized asthenosphericmantle upwelling beneath the Perşani volcanic
field. The reason for this might not be a large-scale lithospheric material
delamination, but rather a far-field effect of the descending “cold mate-
rial” beneath the Vrancea zone and reactivation of former tectonic lines.
Seghedi et al. (2011) suggested a tear in the lower plate between the
Moesian block and the European–Scythian plate, perpendicular to the
strike of the orogen, along the Trotuş fault system that allowed the
asthenosphere to flow around and into the tear. Stretching in the litho-
sphere caused by the downgoing slab beneath Vrancea and/or upwell-
ing toroidal asthenospheric flow could initiate irregular thinning and
formation of a narrow rupture at the base of the lithosphere northwest
of the Vrancea zone. Upwelling of asthenospheric material into this
narrow rupture (Fig. 12) could lead to partial melting and basaltic
volcanism. Many alkali basalt volcanic fields close to orogenic areas
show this localized, low-volume flux feature (e.g., Mediterranean re-
gion; Beccaluva et al., 2011; Jeju island volcanic field in Korea; Brenna
et al., 2012; the Auckland volcanic field, New Zealand, Bebbington and
Cronin, 2011) and this could imply the importance of the local tectonic
structure and reactivation due to the far-field effect of the nearby,
often near-vertical descending slab.

The geodynamic situation in the SE Carpathians appears to be still ca-
pable of further, but presumably still low-volume flux, volcanic activity
(Szakács and Seghedi, 2013). The relative frequent earthquakes
(Mw = 6.5 earthquakes each 10 years and Mw N 7 each 50 years;
Cloetingh et al., 2004) in the Vrancea zone suggest the active descent
of the cold material into the mantle causing a large concentration of
strain (Wenzel et al., 1999). Recent seismic tomographic images (Popa
et al., 2012) show vertically extended low velocity zones beneath
Perşani that the authors attributed to possible magma accumulation.
The extensional stress-field in this area and episodic reactivation of the
Please cite this article as: Harangi, S., et al., Origin of basalticmagmas of Per
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normal faults (Gîrbacea et al., 1998) could have a primary role in con-
trolling the rapid ascent of mafic magma batches. High-resolution geo-
physical investigations could help to refine the upper mantle structure
beneath this complex area, whereas more detailed 40Ar/39Ar dating
could help to constrain the temporal evolution of the volcanic activity.

Coexistence of alkaline basaltic and calc-alkaline volcanic rocks occurs
in many places in the Mediterranean (Beccaluva et al., 2011; Harangi
et al., 2006; Lustrino et al., 2011;Wilson andBianchini, 1999). In addition,
alkaline basalts and other silica-undersaturatedmafic rocks can be found
also in central and western Europe without associated calc-alkaline
volcanic products (Lustrino and Wilson, 2007; Wilson and Downes,
1991). The composition of the alkaline basalts is consistent with deriva-
tion mostly from upwelling asthenopheric mantle as indicated by their
low La/Nb ratio (b1; Fig. 13). A few alkaline basaltic volcanic fields in
orogenic areas (e.g., Turkey, Etna-Hyblean, some volcanic fields in the
Carpathian–Pannonian region) were fed by mafic magmas with similar
composition as found in central and western Europe (Fig. 13). This
means that themantle source affected by subduction-relatedmetasoma-
tism was replaced effectively by OIB-type mantle domain (Beccaluva
et al., 2011; Lustrino et al., 2011). In some cases (e.g., the Betic area,
Sardinia, Veneto, Ustica island), including the Perşani area, the composi-
tion of the alkaline basalts differ slightly from the other regions and are
characterized by lower La/Ba ratio and larger variation of La/Nb values.
In these areas, it appears that the change in the mantle source was not
so effective and the alkaline basaltic magmas were generated from a
more heterogeneous mantle.

6. Conclusions

Combined bulk rock and mineral-scale investigations of the Perşani
basalts in the southeast Carpathians led to the following main conclu-
sions regarding the origin of the basaltic magmas:

(1) The studied mafic volcanic rocks (alkali basalts and silica-
undersaturated hawaiites) have bulk rock compositions close to
primary magmas. During magma evolution, olivine and spinel
crystallized first as liquidus phases at 1300–1350 °C, followed
by clinopyroxenes at about 1250 °C and 0.8–1.2 GPa.

(2) Trace element ratios and major element compositions of the bulk
rocks suggest melt generation in an upwelling asthenospheric
mantle at normal mantle potential temperature (1350–1420 °C;
the lowest in the Pannonian Basin) in amelting columnwith initial
şani volcanic field, Romania: A combinedwhole rock andmineral scale
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Fig. 13. La/Nb vs. La/Ba ratio diagrams (after Harangi, 2001b) for the alkali basalts found in the Mediterranean region and its surroundings. The compositional fields of the alkaline basalt
areas from the Pannonian basin are from Embey-Isztin et al. (1993), Dobosi et al. (1995), Harangi et al. (1995), Tschegg et al. (2010), Ali and Ntaflos (2011), Jankovics et al. (2012) and Ali
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Reference data from the Mediterranean and the surrounding areas are from the database compiled by Lustrino and Wilson (2007).
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melting depth of 85–90 km and final melting depth of about
60 km. This implies no thermal anomaly in the sublithospheric
mantle and a relatively thin lithosphere beneath the Perşani area.

(3) The mantle source could be slightly heterogeneous, but is domi-
nantly MORB-source, variously depleted peridotite, as shown by
the composition of the olivines and spinels. Spinel Cr-number sug-
gests twomain coherent peridotite compositional groups that also
characterize the whole sublithospheric mantle beneath the
Pannonian basin. These two spinel groups correspond to the
older and younger volcanic products, i.e. a change in the mantle
source region can be invoked during the volcanic activity. This
is detected also in themajor and trace element data of the basalts.
The younger basaltic magmas were generated by lower degree of
melting, from a deeper and compositionally slightly different
mantle source compared to the older ones. The mantle source
character of the Perşanimagmas is similar tomany other alkaline
basalt volcanic fields in the Mediterranean close to orogenic
areas.

(4) The alkaline basalt magmas could penetrate the continental crust
rapidly, within only 4–5 days, following about 1.3 years of heating
of the lower lithosphere by the uprisingmagma. This ascent rate is
consistent with the recent calculations for other localities in intra-
continental setting (e.g., Tanzania, Mattsson, 2012 and central
Pannonian basin, Jankovics et al., 2013).

(5) The alkaline basaltic volcanism in the Perşani volcanic field could
be attributed to the formation of a narrow rupture in the lower
lithosphere beneath this area, possibly as a far-field effect of the
dripping of the dense continental lithospheric material beneath
the Vrancea zone. A large-scale (N100 km wide) delamination
of lithospheric material beneath this region is not consistent with
the localized low-volume flux volcanism. Upper crustal exten-
sional stress-field with reactivation of normal faults at the south-
eastern margin of the Transylvanian basin could enhance the
rapid ascent of themafic magmas. The present geodynamic situa-
tionmight be capable of leading to further volcanic activity in this
area.
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