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Abstract

Important algorithms and design decisions of a new code, ode15i,
for solving 0 = F (t; y(t); y0(t)) are presented. They were developed to
exploit Matlab, a popular problem solving environment (PSE). Codes
widely-used in general scienti�c computation (GSC) compute consistent
initial conditions only for restricted forms of the di�erential equations.
ode15i does this for the general problem, a task that is qualitatively
di�erent. Unlike popular codes in GSC, ode15i saves partial derivatives
because this is more e�cient in the PSE. A new representation of �xed
leading coe�cient BDFs is based on the Lagrangian form of polynomial
interpolation. Basic computations are both clear and e�cient in the PSE
when using this form. Some numerical experiments show that ode15i

is an e�ective way to solve fully implicit ODEs and DAEs of index 1 in
Matlab.
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1 Introduction

We investigate the numerical solution of a fully implicit set of �rst order di�er-
ential equations

0 = F (t; y(t); y0(t)) (1)

on an interval [t0; tf ] with suitable initial conditions at t0. Consistent initial
conditions (t0; y(t0); y

0(t0)) must satisfy the algebraic equations

0 = F (t0; y(t0); y
0(t0)) (2)

For the ordinary di�erential equations (ODEs) and di�erential{algebraic equa-
tions (DAEs) of index 1 that concern us, an initial value problem (IVP) with
smooth function F (t; y; y0) and initial conditions that satisfy (2) has a unique
solution.
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The program ode15s [17] solves di�erential equations of the form

M(t; y)y0 = f(t; y) (3)

It is an e�ective code that exploits the Matlab [13] problem solving environ-
ment (PSE). The form (3) is quite advantageous when the dependence of the
mass matrix M(t; y) on y is weak, but not when it is strong. Also, many prob-
lems arise in this form, but others have the general form (1). In this paper we
present some of the important algorithms and design decisions of a new pro-
gram, ode15i, for solving problems of the form (1). All were developed with the
goal of solving these problems conveniently and e�ciently in this widely-used
PSE.

DASSL [3] is a popular code for solving di�erential equations of the form
(1) in general scienti�c computation (GSC). We contrast the approach of this
code with the approach that we take to the e�ective solution of such problems
in Matlab. The �rst issue is the computation of consistent initial conditions.
DASSL has a rather limited capability for this. A later version called DASPK
[3] incorporates a substantial improvement in this capability [2]. Even DASPK
computes consistent initial conditions for a class of problems that is considerably
less general than (1). Wu and White [19] compute consistent initial conditions
for the same class of problems with a subroutine for this speci�c purpose called
DAEIS. It is much more 
exible than DASPK about which components of the
guesses for initial conditions can be �xed. ode15s computes consistent initial
conditions for problems of the form (3). The user cannot �x any components
of the guesses. The algorithms of all these codes make heavy use of the special
form they accept. Our aim here is to compute consistent initial conditions for
the general problem (1). We let the user �x any components of the guesses
that are allowed by the problem itself, but do not require that the user �x any
components.

Relative costs in Matlab are di�erent from those of GSC and the kinds of
problems typical of the computing environments are di�erent. After discussing
the dominant costs of an integration, we explain why we save partial derivatives
in ode15i when DASSL does not. Like DASSL we use a �xed leading coe�cient
implementation of the backward di�erentiation formulas (BDFs), but DASSL
uses a modi�ed divided di�erence representation and ode15i uses a Lagrangian
form. After developing this novel form, we argue that it is well suited to the
PSE. We further show that the Lagrangian form allows basic computations to
be done in a clear way that is e�cient in the PSE. It is also convenient for
providing capabilities like event location and output in the form of a solution
structure that are included in the design of the Matlab ODE Suite [16].

2 Consistent Initial Conditions

The popular code DASSL [3] integrates ODEs and DAEs of index 1 of the
form (1). It has a limited capability for computing consistent initial conditions.
Brown et alia [2] made a considerable improvement to this capability in a later
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version of the code called DASPK [3]. Although it can compute consistent initial
conditions for two kinds of DAEs, we give our attention to the more important
one of semi-explicit systems. Wu and White [19] also compute consistent initial
conditions for semi-explicit DAEs, but they do it in a subroutine separate from
the integrator called DAEIS. DAEIS is considerably more 
exible than DASPK
about which components of the initial conditions can be �xed. ode15s computes
consistent initial conditions for problems of the form (3). By default this solver
asks the user for y(t0) and determines automatically whether the problem is a
DAE. If it is, the code computes a consistent y0(t0). The user cannot �x any
components of the initial conditions. The algorithms of all these codes make
heavy use of the special form they accept. Our aim here is to compute consistent
initial conditions for the general problem (1). In this we allow users to �x any
components of the initial conditions allowed by the problem. This freedom is
necessary for the more general task and it is often convenient.

We begin by discussing the initialization problems solved by DASPK and
DAEIS because they provide guidance for the general case. Brown et alia [2]
consider two types of initialization problem. Initialization Problem I assumes
that the d variables y(t) of the problem (1) can be partitioned a priori into two
sets of variables, p \di�erential" variables u(t) and d � p \algebraic" variables
v(t). After a permutation of the rows, the problem must have the semi-explicit
form

0 = f(t; u(t); v(t); u0(t)) (4)

0 = g(t; u(t); v(t)) (5)

In the approach of Brown et alia, the user speci�es the p di�erential variables
u(t0). DASPK holds these values �xed and computes consistent v(t0) and u

0(t0).
The derivative v0(t0) plays no role. Wu and White allow the user to specify
algebraic variables when this is more natural and they allow derivatives to be
speci�ed. More precisely, the user speci�es p components of u(t0); v(t0); u

0(t0).
DAEIS holds these values �xed and computes the remaining components of a
set of consistent initial conditions. Brown et alia also consider an Initialization
Problem 2, which is to �nd y(t0) in the general DAE (2) when y0(t0) is given
and all its components are �xed.

Like Wu and White, we compute consistent initial conditions in a function
cic separate from the integrator. We want to solve the algebraic equations (2).
Because these equations may not have a unique solution, it is necessary to ask
the user for a guess (t0; y0; y

0
0). In addition to identifying the solution of interest,

a good guess can be critical to the success of the numerical scheme for computing
the solution. This guess is improved iteratively and we ask the user to specify up
to d components of y0 and y

0
0 that are to be held �xed during the iteration. It is

often not clear how many components can be held �xed. We do not require that
any components of the guess be �xed and recommend that users leave as many
free as possible. Correspondingly, the default is that all components are free. In
our formulation, the initial conditions are underdetermined, so a fundamental
issue is how to resolve this. Our basic principle is to retain as many components
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of the guess as possible. When there is a choice, our goal is preserve guesses for
the components that are customarily �xed when solving DAEs of less general
form.

Starting with an initial guess for (t0; y0; y
0
0), we linearize the equations (2)

about the current approximate solution and solve the linear equations for cor-
rections to the guess. In special cases this is Newton's method and convergence
is established in a similar way with assumptions usual for Newton's method.
In these cases our algorithm is not essentially di�erent from those of [2, 19].
Brown et alia supplement Newton's method with backtracking, Wu and White
use damping, and we use a trust region. To reduce the number of lineariza-
tions, we iterate twice with a chord method for each iteration with Newton's
method (Shamanskii's method [12, x5.4.3]). Rather than discuss further these
details, we explain how we resolve a fundamental di�erence between these other
algorithms and our own: For the initialization problems solved by the other
algorithms, the linear system for the correction to an iterate has a unique solu-
tion. For the general problem that we solve, the corresponding linear system is
underdetermined.

We �rst linearize (2) to obtain

F (t0; y0; y
0
0) + Fy0 �y00 + Fy �y0 = 0 (6)

Unlike DASPK, we assume that both Fy and Fy0 are available. This is an impor-
tant design issue that we discuss in x3.1. We eliminate from these equations the
components of y0 and y00 that are to be held �xed, something easily done with
the array operations of Matlab. So as not to complicate the notation unduly,
we do not indicate this explicitly in what follows. However, it is important to
keep in mind that as a consequence, the matrices of partial derivatives may not
be square. Indeed, if all the components of y0 or y

0
0 are �xed, one or the other

of the matrices is not even present.
We must be alert to the possibility that a user has �xed too many com-

ponents or �xed a component that cannot be �xed. The discussion earlier of
semi-explicit DAEs (4) shows that a user generally cannot �x more than p com-
ponents. When solving a DAE of the form (1), a user generally cannot �x all d
components of y0. This appears in the program where we try to compute y00 by
solving repeatedly

Fy0 �y00 = �F (t0; y0; y
0
0)

For a DAE, the matrix Fy0 does not have full row rank and we are generally not
able to solve the linear system. On the other hand, �xing all components of y0
is typical for ODEs and there is no di�culty then in solving the linear system
because Fy0 is non-singular for an ODE.

If Fy0 is present, we compute a QR decomposition with column pivoting,

Fy0 E = QR

With it, we �rst transform (2) to

R
�
ET �y00

�
+
�
QTFy

�
�y0 = �QTF (t0; y0; y

0
0)
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and then with some simpli�cation of the notation to

Rw0 + Sw = d (7)

The row rank of R is determined in a way usual forMatlab, namely by testing
which pivots are negligible.

For speed in the PSE it is important to use the built-in functions. The
SVD function is an attractive alternative to the QR decomposition with column
pivoting. It is slower, but provides a more robust determination of rank. On
the other hand, we believe that rank is not ambiguous in the present circum-
stances because it is a statement about the nature of the DAE. Furthermore,
we solve underdetermined systems with the backslash operator. The operator
does this computation with a QR decomposition using column pivoting. The
integrator ode15i is not intended for problems as large as those solved in GSC,
but it can solve relatively large problems if the partial derivative matrices are
sparse. Because pivoting is necessary for the rank determination, we cannot
take advantage of sparsity in the present computation. The same would be true
if we were to use an SVD. As a consequence, cic cannot compute consistent
initial conditions for problems as large those that ode15i can integrate. This is
unfortunate, but we think that it is of little practical signi�cance.

If R is of full row rank, we set w = �y0 = 0. We then solve the triangular
system Rw0 = d with the fast built-in backslash operator and compute �y00 =
Ew0. This case corresponds to computing consistent initial conditions for an
ODE. It is a case for which it is clear which components of the guess we want
to preserve.

When R does not have full row rank, we have a DAE. In this case we write
(7) in partitioned form as�

R11 R12

0 0

��
w0
1

w0
2

�
+

�
S11 S12
S21 S22

��
w1

w2

�
=

�
d1
d2

�
(8)

The components w0
2 play no role in this set of linear equations, so we are free to

set them to zero, which we do in order to compute a solution of (2) that retains
as many components of y00 as possible. We then solve the underdetermined block
of equations �

S21 S22
�
w = d2 (9)

Before actually solving the system, we compute the row rank of the system using
a QR decomposition with column pivoting, just as in the �rst reduction. If the
system does not have full row rank, the computation is terminated. If the rank
de�ciency is no greater than the number of components �xed in the guesses, it
is suggested that the user try freeing up this many components. Otherwise, it
is suggested that the DAE might have an index greater than 1. We solve (9)
with the backslash operator. It is natural to use this built-in function because
it is fast, but more important here is that it computes a basic solution. That
is, it sets as many components of w = �y0 to zero as possible, hence retains as
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many components of the guess y0 as possible. (Although this is exactly what we
prefer, we did experiment with a minimal norm solution to (9). Computing such
solutions is slower and in our limited experiments, convergence of the overall
iteration was notably worse.) Once w has been determined, we can use it and
w0
2 = 0 to solve for the components w0

1 in the �rst block of equations

R11w
0
1 = d1 � S11w1 � S12w2

using the backslash operator. This completes our solution of the underdeter-
mined system (7).

Brown et alia [2] give a simple example of (1) that is not included in the
class of problems for which they compute consistent initial conditions. In slightly
di�erent notation the example is

y01 + y02 + g(t; y1) = 0

y2 + h(t) = 0

The linearization of these equations is already in the form (8):�
1 1
0 0

��
w0
1

w0
2

�
+

�
gy1 0
0 1

��
w1

w2

�
=

�
d1
d2

�

It is easy to see from the form of these equations that if the user did not �x
any components of the guesses, our algorithm would retain the guessed value of
y02(0) and solve the linear equation for y2(0) to get �h(0). It would retain the
guessed value of y1(0) and iteratively compute a consistent value for y01(0). On
the other hand, if the user �xed y1(0), it would be eliminated from this system
and there would be no iteration in the computation of y01(0). Finally, if the user
�xed y2(0), the algorithm would use the guessed values for y1(0) and y02(0) and
compute a value for y01(0) that is consistent in the ODE. Whether the resulting
values are a consistent set of initial conditions depends on whether the user
assigned the correct value to the �xed component y2(0). The algorithm seems
to be responding in a satisfactory way to each of these tasks.

Wu and White [19] consider the semi-explicit DAE of index 1

�V

W
y01 �

j1
F

= 0

j1 + j2 � iapp = 0

Here

j1 = i01

�
2(1� y1) exp

�
0:5F

RT
(y2 � �eq;1)

�
� 2y1 exp

�
�
0:5F

RT
(y2 � �eq;1)

��

j2 = i02

�
exp

�
F

RT
(y2 � �eq;2)

�
� exp

�
�

F

RT
(y2 � �eq;2)

��

and the parameters have the values F = 96487, R = 8:314, T = 298:15, �eq;1 =
0:420, �eq;2 = 0:303, � = 3:4, W = 92:7, V = 10�5, i01 = 10�4, i02 = 10�10,
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and iapp = 10�5. Wu and White state that it is not easy to choose consistent
initial values. They estimate that y1(0) = 0:05 and y2(0) = 0:38. They observe
that these values are not consistent and many DAE solvers fail when they are
used as guesses. Table 1 of their paper presents some results for three popular
solvers, DASSL, RADAU5, and LIMEX. Their scheme requires that one of the
components be �xed. Table 1 reports a range of values for the other component
for which their algorithm produces consistent initial conditions. Our function
cic succeeds in producing consistent initial conditions without specifying a �xed
value. As it turns out, cic retains the guessed value of 0:05 for the di�erential
variable y1(0) and computes the consistent value y2(0) = 0:35024 reported by
Wu and White. Because we allow y1(0) to be �xed, we can experiment with the
guess for y2(0) as Wu and White did. Their scheme has a much bigger interval of
convergence than the other codes, namely �0:974 � y2(0) � 1:663. Our scheme
also has a much bigger interval, but not as big as that of Wu and White, namely
�0:3 � y2(0) � 0:9. However, this comparison is reversed when y2(0) is �xed
and the consistent value y1(0) = 0:15512 is computed. This case distinguishes
the algorithm of DAEIS from that of DASPK because DASPK does not allow
an algebraic variable to have �xed value. Wu and White get convergence for
0:0 � y1(0) � 1:0 and we get convergence for y1(0) = 0;�1;�2; : : : ;�10. When
applied to the same kind of problem and used in the same way, our scheme is
much like that of Wu and White, so it is not surprising that it would have
similar behavior. The important di�erence in the schemes is that ours applies
to the general problem (1) and does not require that any components of the
guess be �xed.

Computing consistent initial conditions for problems as general as (1) is
di�cult. Whether one of the algorithms succeeds depends on the initial guesses
and the components that are �xed. Di�erent algorithms can result in di�erent
initial conditions. Indeed, the example of Wu and White shows that the same
algorithm can result in di�erent initial conditions when applied in a di�erent
way. Fig. 1 of their paper shows that the solutions determined by these two
sets of initial conditions di�er considerably. It is not clear how accurately we
should compute the initial conditions and it is not easy to be sure that the
ones computed are this accurate. As a supplement to its convergence test, cic
returns the Euclidean norm of the residual of the computed initial conditions
in (2). We have preferred a separate function for the computation of consistent
initial conditions because it facilitates interaction with the user, both in securing
convergence and in deciding whether the initial conditions found are acceptable.

3 BDFs in Matlab

DASPK and ode15i di�er in important ways that are explained in this section.
We begin with a discussion of evaluating implicit formulas. In this we explain
why we chose to save partial derivatives in ode15i when DASPK does not. At
the same time we discuss a major di�erence in the designs of the two solvers.
Subsequently we discuss a �xed leading coe�cient formulation of the backward
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di�erentiation formulas. DASPK uses a modi�ed divided di�erence representa-
tion, but we have preferred a Lagrangian form. After developing this novel form,
we argue that it is well suited to the Matlab PSE. In particular, we show that
it can be implemented in a simple and e�cient way. It is well-known that BDF
codes have stability di�culties for certain kinds of problems. An improvement
found in the order selection algorithm of DASSL allows it to solve such problems
e�ectively. We have followed DASSL in this regard. An example shows that
despite other important di�erences in the algorithms of the two solvers, we were
able to obtain comparable performance from ode15i for such problems.

3.1 Implicit Formulas

In this section we study the e�cient evaluation of backward di�erentiation for-
mulas (BDFs) when solving (1). The details are simple for the backward Euler
formula (BDF1) and they show what happens with all the BDFs. On reaching
yn � y(tn), BDF1 de�nes yn+1 � y(tn + h) as the solution of

0 = F

�
tn+1; yn+1;

yn+1 � yn
h

�
(10)

These algebraic equations are solved iteratively. An iterate y
[m]
n+1 is improved by

writing the next iterate as y
[m+1]
n+1 = y

[m]
n+1 + �, approximating (10) by the linear

system of equations

F

 
tn+1; y

[m]
n+1;

y
[m]
n+1 � yn

h

!
+

�
1

h
Fy0 + Fy

�
� = 0

and solving them for the correction �. In general the iteration matrix has the
form

�

h
Fy0 + Fy (11)

where � is a constant characteristic of the formula. Forming, factoring, and stor-
ing this matrix is a very important part of the cost of integrating (1). Generally
the partial derivatives vary slowly, a fact that is key to the e�cient evaluation of
the BDFs. The partial derivatives are evaluated at most once in the computa-
tion of yn+1, making the iteration a simpli�ed Newton (chord) method instead
of a Newton method. This reduces the rate of convergence to linear, but it
reduces the number of partial derivatives and factorizations so much that it is
a bargain. Step size and order selection algorithms are biased towards constant
step size and order so that the solvers can use the same factored iteration matrix
for several steps. All the popular codes proceed as outlined. Where they di�er
is in what they do when the step size and/or order is changed, i.e., when the
coe�cient �=h of (11) is changed.

By default DASSL approximates the iteration matrix by �nite di�erences.
If it is banded, the code can use this fact to reduce greatly the storage, the cost
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of approximating the matrix, and the cost of factoring the matrix. A user can
provide a subroutine that evaluates (11) for given (t; y; y0) and �. DASSL was
designed to solve large problems. Accordingly, it tries to minimize the storage it
uses. A large reduction in storage is obtained by overwriting the iteration matrix
with its factorization. However, this means that the solver must compute new
partial derivatives whenever a new iteration matrix is formed. Often they are
unnecessary because the change in the iteration matrix is mostly due to the
change in �=h. Recognizing this, if the change in �=h is not too big, DASSL
continues to use the factorization of the old iteration matrix and compensates for
the change in the coe�cient by relaxation [4]. In x2 we assumed that both Fy and
Fy0 are available for computing consistent initial conditions. They are available
in DAEIS, which approximates them numerically. They are not available in
DASPK, which either approximates numerically the iteration matrix or asks
the user to supply a subroutine for evaluating it. Brown et alia [2] manage
to work around this for the special kinds of problems for which they compute
initial conditions, but it would clearly be better to have both partial derivatives
available.

The context and the computing environment for ode15i are quite di�erent.
For one thing, linear algebra is relatively fast. For another, the typical problem
is of only modest size, so ode15i does not aim to solve problems as big as
those solved by DASSL. Because we compute consistent initial conditions for
problems of the general form (1), we ask users for both Fy and Fy0 . As a
convenience for users, by default we approximate partial derivatives numerically.
This is relatively expensive in the PSE. To evaluate the BDFs e�ciently in
these circumstances, ode15i saves partial derivatives. When the coe�cient �=h
changes, an iteration matrix is formed using the saved partial derivatives and
the new coe�cient. It is then factored. New partial derivatives are formed only
when the rate of convergence is inadequate. We experimented with relaxation as
in DASSL, but found it to be counterproductive because the partial derivatives
are generally not current and linear algebra is fast in the PSE. Generally the
partial derivatives change slowly and forming them is su�ciently expensive in
Matlab that reusing them reduces considerably the cost of solving the IVP.
However, we show by example in x4 that this is not always the case.

By default ode15i approximates partial derivatives numerically. Optionally
the user can supply a function for evaluating Fy and Fy0 . If it returns an empty
array for a partial derivative, the solver interprets this as an instruction to
approximate that partial derivative numerically. We have made it convenient
to evaluate analytically just one partial derivative because often an analytical
expression for one is readily available. For instance, if the problem has the form
(3), the partial derivative Fy0 is just the mass matrix M(t; y).

Our approach spends storage to buy generality in the computation of consis-
tent initial conditions and e�ciency in the integration. It increases the storage
considerably, but this is not very important for the problems that ode15i aims
to solve. Besides, storage is handled di�erently for relatively large problems.
To deal with large problems, DASSL provides for banded iteration matrices.
ode15i goes much further by providing for general sparse matrices. In par-
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ticular, it uses a generalization [5] to general sparse matrices of the scheme
DASSL uses to reduce the cost of forming partial derivatives for banded ma-
trices. ode15i does not require that Fy and Fy0 have the same structure. An
equation of the form F (t; y; y0) = y0 � f(t; y) = 0 makes clear the advantages
of saving Fy0 = I as a sparse matrix and allowing a di�erent structure for
Fy = �fy.

3.2 Fixed Leading Coe�cient Formulas

We begin by deriving the BDF of order k for solving y0 = f(t; y) when the step
size is a constant h. We interpolate approximations y�n+1�j to y(tn+1 � jh) for
j = 0; 1; : : : ; k with a polynomial P (t) and then require that

P 0(tn+1) = f(tn+1; P (tn+1)) (12)

In general the Lagrangian form of a polynomialR(t) interpolating values Yn+1�j

at nodes tn+1�j for j = 0; 1; : : : ; k is

R(t) =

kX
j=0

Yn+1�j

kY
i=0

i6=j

�
t� tn+1�i

tn+1�j � tn+1�i

�
(13)

If we multiply the collocation equation (12) by h and use the representation (13)
for P (t), we obtain the BDF of order k as an implicit linear multistep formula,

kX
j=0

�j y
�
n+1�j � hf(tn+1; y

�
n+1) = 0 (14)

The local truncation error � of the formula is the amount by which a smooth so-
lution of the ODE fails to satisfy the formula. To determine it, suppose that the
polynomial interpolates solution values y(tn+1�j) rather than approximations
y�n+1�j . Then

� = hP 0(tn+1)� h f(tn+1; P (tn+1)) = h (P 0(tn+1)� y0(tn+1))

Using a standard result about the error of numerical di�erentiation [9, p. 289],
we �rst obtain

� = �h
y(k+1)(�)

(k + 1)!

kY
j=1

(tn+1 � (tn+1 � j h))

and then

� = �
1

k + 1
y(k+1)(tn+1)h

k+1 + h:o:t: (15)

where h:o:t: is \higher order terms". Put di�erently, y(t) satis�es

kX
j=0

�j y(tn+1 � jh)� hy0(tn+1) = �
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The same approach can be used for a general mesh to get a formula of the
same form with h = tn+1 � tn and coe�cients �j that depend on the relative
mesh spacing. The step size and order algorithms are biased towards holding
the step size and order constant. The di�culty with a general mesh is that
after changing the step size or order on one step, the coe�cient �0=h changes for
each of the succeeding steps until the mesh spacing is constant in the span of the
formula. The codes of Gear and Krogh cited earlier avoid these costs by a quasi-
constant step size implementation. On changing the step size from h to H , these
codes use interpolation to compute approximate solutions at tn�H; tn�2H; : : :
and then apply the constant step size formula to this new data. In this way
the e�ects of a change of step size on the iteration matrix are con�ned to a
single step. Unfortunately, this approach is not as stable as a fully variable step
size implementation. There are a few solvers that accept the cost of the more
stable implementation. A notable example is the solver that Brayton et alia [1]
develop using a Lagrangian representation of the underlying polynomial. The
�xed leading coe�cient implementation of Jackson and Sacks{Davis [10] is a
compromise. DASSL uses a �xed leading coe�cient implementation based on
a modi�ed divided di�erence representation of the underlying polynomial. We
now develop the equivalent using a Lagrangian representation.

When the step size varies, we do not have approximate solutions at the
equally spaced mesh points of the formula (14). In a �xed leading coe�cient
implementation, these approximate solutions are obtained by interpolating the
accepted numerical solutions yn+1�i � y(tn+1�i) for i = 1; : : : ; k + 1 with a
polynomial Q(t). The implicit formula (14) for yn+1 is then evaluated with
approximate solutions y�n+1�j = Q(tn+1� jh) for j = 1; : : : ; k. Just as with the
quasi-constant step size implementation, the coe�cient of yn+1 does not depend
on the mesh spacing, hence the name \�xed leading coe�cient." On the other
hand, interpolated values are formed at every step using the approximations
on the actual mesh, not just the step where the step size is changed. To work
out the local truncation error lte of this formula, suppose that Q(t) interpolates
y(tn+1�i) for i = 1; : : : ; k + 1. Then

lte =

0
@�0y(tn+1) +

kX
j=1

�j Q(tn+1 � jh)

1
A� hy0(tn+1)

= � +
kX

j=1

�j [Q(tn+1 � jh)� y(tn+1 � jh)]

The term in brackets is an interpolation error. Because we interpolate y(tn),
the �rst term is zero. For the same reason, more terms become zero as we take
more steps of constant size h. After su�ciently many steps of size h, we are
working with the constant step size formula and lte = � . A standard result
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about the error of interpolation [9, p. 190] states that

Q(tn+1 � jh)� y(tn+1 � jh) = �
y(k+1)(�j)

(k + 1)!

k+1Y
i=1

((tn+1 � jh)� tn+1�i)

= �y(k+1)(tn+1)h
k+1 rj + h:o:t

where

rj =

k+1Y
i=1

(tn+1 � jh)� tn+1�i

ih
(16)

A little manipulation then provides an expression for the local truncation error,

lte = �

2
4 1

k + 1
+

kX
j=2

�j rj

3
5 y(k+1)(tn+1)h

k+1 + h:o:t: (17)

that shows clearly the e�ect of varying the step size.

3.3 Implementation

Now we consider the e�cient implementation of �xed leading coe�cient BDFs
for the fully implicit system (1). First let us recall how the method is formulated
in terms of interpolating polynomials and then see how to apply it to the solution
of a fully implicit system. The polynomial Q(t) that interpolates yn+1�j for
j = 1; : : : ; k+1 is evaluated to obtain approximate solutions y�n+1�j at tn+1�jh
for j = 2; : : : ; k + 1. The polynomial P (t) interpolates yn+1, yn, and y�n+1�j

for j = 2; : : : ; k. If we let y0n+1 = P 0(tn+1), the collocation equation (12) that
determines yn+1 is y0n+1 = f(tn+1; yn+1). The corresponding equation for the
fully implicit system (1) is clearly

0 = F (tn+1; yn+1; y
0
n+1) (18)

This is a nonlinear algebraic equation for yn+1, which is made clear by the
relationship

y0n+1 =
�0

h
yn+1 +

�1

h
yn +

kX
j=2

�j
h
y�n+1�j (19)

that is immediate from (14).
The algebraic equations (18) are solved iteratively as described in x3.1. An

iterate y
[m+1]
n+1 is computed as a correction � to the previous iterate

y
[m+1]
n+1 = y

[m]
n+1 + �

From (19) we see that this implies the correction

y
0 [m+1]
n+1 = y

0 [m]
n+1 +

�0

h
�
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to the approximate derivative. Linearizing about the previous iterate, the cor-
rection is computed as the solution of the system of linear algebraic equations�

Fy +
�0

h
Fy0

�
� = �F (tn+1; y

[m]
n+1; y

0 [m]
n+1) (20)

It is important for the e�ciency of this process to make a good guess for yn+1.
It is natural and e�ective to use

y
[0]
n+1 = Q(tn+1); y

0[0]
n+1 = Q0(tn+1)

for this purpose. There is another reason for this choice. If we proceed as
outlined, it is not necessary actually to compute the approximations y�n+1�j nor
to use the constant coe�cient formula (14). Instead we can predict the solution
and its derivative using Q(t) and correct these values by solving (20). All we
need from the constant step formula is a little table of the values �0 for the
orders 1; : : : ; 5 used by the solver.

Evaluating an interpolating polynomial is a basic computation in ode15i:
We predict yn+1 in this way. All the solvers of the Matlab ODE Suite, and
correspondingly ode15i, provide for output at speci�c points. This is done e�-
ciently by stepping past an output point and obtaining an approximate solution
there by interpolation. The solvers also provide for locating events, a capability
that depends on interpolation. Typically solutions computed with ode15i are
studied graphically. Standard output from the Matlab solvers is a mesh and
the approximate solution on this mesh. If the mesh chosen by the solver does not
provide a smooth graph, interpolation can be used to get the additional approx-
imations needed for this purpose. All the solvers provide for output in the form
of a structure. An auxiliary function deval is used to evaluate the solution
inexpensively anywhere in the interval of integration. The solution structure
contains the information that deval needs for interpolating the solution.

We have preferred the Lagrangian form of the interpolating polynomial be-
cause it is attractive from a conceptual point of view and is well-suited to the
Matlab PSE. In this PSE array operations are relatively inexpensive. ode15i
holds the local mesh and solution on this mesh in arrays. Speci�cally, on reach-
ing tn, the mesh point tn�j is held in mesh(j+1) for j = 0; : : : ; k and the
vector yn�j is held in meshsol(:,j+1). To interpolate at each point of an ar-
ray tintrp, it is both convenient and fast to calculate each coe�cient of (13)
for all these arguments at one time using array operations. All the interpolated
values are then computed in a single multiplication of the matrix meshsol and
the matrix of coe�cients. For output in the form of a solution structure, we
just need the usual mesh and solution on the mesh plus an integer for each step
that tells deval how many points to interpolate. Other convenient aspects of
the Lagrangian form will be seen in the next section.

3.4 Stability and Order Selection

There are two main approaches to order and step size selection pioneered by
Gear's DIFSUB [7] and Krogh's DVDQ [11]. DIFSUB estimates the step size
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that might be used at several orders and selects the order with the largest step
size. This scheme is used by ode15s. DVDQ �rst selects the order and then
the step size for this order. Shampine and Gordon [15] provide details of the
approach for their Adams code that appears in Matlab as ode113. Brenan et
alia [3, p. 126] state that the strategy for selecting the order in DASSL is nearly
identical to that of [15]. There is one important di�erence. The idea of Krogh's
approach is to work with a step size and order for which successive terms in a
Taylor series expansion of the solution decrease in size. A solver tests this by
estimating the error that would occur if the current step size were used with
several di�erent orders. The innovation of DASSL is to estimate and compare
the norms of successive scaled derivatives

y(k)(tn+1)h
k (21)

The error of the formula of order k � 1 is a multiple of the norm of the scaled
derivative (21), so the order selection schemes are closely related. With one
exception, they behave much the same in practice. Brenan et alia [3, p. 127]
point out a well-known di�culty with order selection algorithms when solving
certain kinds of sti� IVPs with BDFs. If the local Jacobian has eigenvalues
that are quite close to the imaginary axis, the BDFs of low order are stable for
all step sizes h, but the higher order formulas are not. The di�culty is that
the order selection algorithm might choose an order that su�ers from a stability
restriction when a lower order would not. DASSL's order selection scheme
exploits the observation of Skelboe [18] that the instability of the higher order
BDFs for these problems is revealed in di�erences of the numerical solution.
More speci�cally, instability causes the di�erences to increase in size with the
order of the di�erence. Because of this phenomenon an order selection scheme
based on comparing scaled derivatives can recognize the advantages of a lower
order formula and lower the order to the point that a stable formula is used.

A discussion of the di�culty due to eigenvalues near the imaginary axis and
a numerical example are found in [14, p. 387]. Because ode15s uses the Gear
approach to order selection, we can see the di�culty by solving the example
problem with this code. The problem has the form y0 = Jy for a constant
matrix J . The BDFs are an option in ode15s that we use for this experiment.
The maximum order is an option and we begin with its default of 5. It is natu-
ral to supply an analytical Jacobian for this problem. With these options and
default tolerances, ode15s solves the problem with 7238 successful steps and 93
failed attempts. This solver evaluates Jacobians only when necessary and here
is successful in recognizing that once is enough. When the maximum order is
reduced to 3, the code solves the problem with 725 successful steps and no failed
attempts, again evaluating only one Jacobian. If the order selection algorithm
were performing properly, reducing the maximum order allowed would not in-
crease dramatically the e�ciency of the integration. With the same options
and a maximum order of 5, ode15i solves this problem posed as a fully implicit
system in 657 successful steps and 3 failed attempts. This code also recognizes
that one set of partial derivatives is enough. Clearly the approach to selecting
order in DASSL is much more e�ective for this problem. DASSL and ode15i
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can be compared only in a rough way. For one thing, DASSL uses an RMS
norm, which is a Euclidean norm divided by the square root of the number of
equations. It is not important that ode15i uses a maximum norm, but it is
necessary to adjust the tolerances to account for the factor of the RMS norm.
When this is done, DASSL solves the problem in 662 successful steps and 8 error
failures. In this it evaluates the partial derivatives 8 times.

The order and step size selection schemes of ode15i are nearly identical to
those of DASSL. On the other hand, the way these schemes are implemented
di�er greatly, a matter we take up now. Fornberg [6] has developed e�cient
recursions for the computation of the coe�cients of the Lagrangian form of the
interpolating polynomial (13), as well those for all derivatives up to a speci�ed
order. ode15i uses a translation of Fornberg's WEIGHTS1 program for this
computation called weights. It is important to appreciate that the solvers use
orders that range only from 1 to 5. In Lagrangian form, the coe�cients depend
only on the mesh points in the span of the formula and there are few of them, so
this computation is inexpensive. The number of equations could be large, but
we can evaluate the formulas with matrix-vector multiplications that are fast in
the PSE. After computing a tentative solution yn+1 at tn+1 using the formula of
order k, we need to compute a weighted norm of an approximation to the scaled
derivative (21). In the solver we call the new mesh point tnew and the tentative
solution there, ynew. The coe�cients for computing all derivatives through k of
the polynomial interpolating at tn+1�j for j = 0; : : : ; k are obtained by

c = weights([tnew mesh(1:k)],tnew,k);

The coe�cients for the derivative of order k are returned as c(:,k+1). Notice
that we extend temporarily the array holding the mesh points to include the
tentative mesh point tnew. We similarly extend temporarily the array hold-
ing the solution and approximate the derivative of order k by a matrix{vector
multiplication:

sderk = norm(([ynew meshsol(:,1:k)] * c(:,k+1)) .* invwt,inf)...

* absh^k;

In this we also multiply the vector of approximate derivatives by the weight
vector invwt, compute the maximum norm, and multiply the expression by the
appropriate power of the magnitude of the step size. This is an e�cient com-
putation in the PSE because array operations are fast and the built-in function
norm is fast. In a very rough way, each line of Matlab code costs the same,
so this is a clear and quite e�cient computation of this quantity. The step size
selection algorithm has a strong bias towards constant step size, so it is often
the case that the step size is constant in the span of the local mesh. Indeed,
the order selection algorithm considers raising the order only when this is true.
A small reduction in overhead can be obtained by computing in advance and
storing in the solver the coe�cients for this special, but common, situation.

An identity provides an alternative way of estimating the scaled derivative
that appears in (17). Recall that Q(t) is the polynomial interpolating yn+1�j
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for j = 1; : : : ; k + 1. Further, the predicted solution y
[0]
n+1 = Q(tn+1). Now let

S(t) be the polynomial interpolating the same values as Q(t) and the additional
value yn+1. Standard results about interpolation with divided di�erences [9,
x6.1] state �rst that

S(t) = Q(t) + [yn+1; yn; : : : ; yn�k]
k+1Y
j=1

(t� tn+1�j)

and then that

S(tn+1) = Q(tn+1) +
y(k+1)(�)

(k + 1)!

k+1Y
j=1

(tn+1 � tn+1�j)

The values of the interpolating polynomials at tn+1 and a little manipulation
�rst show that

yn+1 � y
[0]
n+1 = y(k+1)(tn+1)h

k+1
k+1Y
j=1

�
tn+1 � tn+1�j

jh

�
+ h:o:t:

and then that

y(k+1)(tn+1)h
k+1 = (yn+1 � y

[0]
n+1)

k+1Y
j=1

�
jh

tn+1 � tn+1�j

�
+ h:o:t:

The weighted maximum norm of this approximation to the scaled derivative is
computed with

sderkp1 = norm((ynew - ypred) .* invwt,inf) * ...

abs(prod((absh * [1:k+1]) ./ [tnew - mesh(1:k+1)]));

By using the fast built-in function prod and array operations, the whole com-
putation is done e�ciently in one line of code.

4 Additional Numerical Examples

The Matlab demonstration code batonode illustrates solving ODEs of the
form (3). A natural formulation of the motion of a thrown baton leads to the
ODEs

0 = y01 � y2

0 = (m1 +m2)y
0
2 �m2L siny5 y

0
6 �m2Ly

2
6 cos y5

0 = y03 � y4

0 = (m1 +m2)y
0
4 +m2L cosy5 y

0
6 �m2Ly

2
6 sin y5 + (m1 +m2)g

0 = y05 � y6

0 = �L siny5 y
0
2 + L cosy5 y

0
4 + L2 y06 + gL cosy5
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In batonode the parameters have the values m1 = 0:1;m2 = 0:1; L = 1; g =
9:81. The initial values are y0 = (0; 4; 2; 20;��=2; 2) and the interval of integra-
tion is [0; 4]. One reason we consider this IVP is that it is not sti�. Another is
that as an ODE, it represents a special case for the computation of consistent
initial conditions. With all components of the guesses for y(0) and y0(0) left
free, we would like cic to hold �xed the initial values y(0) and compute con-
sistent values for y0(0). For equations of the form (3), it is natural to supply
an analytical expression for Fy0 = M(t; y) and convenient to approximate Fy
numerically. With this, a nominal guess of y0(0) = 0, and default tolerances,
cic held �xed all components of y0 and computed y00 accurate to full precision.
These consistent initial conditions were used in our experiments.

With default tolerances ode15i solved this IVP in 75 successful steps and
31 failed attempts. In this it formed 25 partial derivatives and evaluated the
equations 379 times. With tolerances adjusted for its RMS norm, DASPK
solved the IVP in 66 successful steps and 2 failed attempts. It formed 26 partial
derivatives and evaluated the equations 259 times. As expected, ode15i had
more failed steps than DASPK because of its scheme for deciding when to form
new partial derivatives. For this IVP, saving partial derivatives was not helpful.

We also solved the baton problem with ode15s. As with the other solvers, we
used its option for specifying a consistent y00. The default methods of this solver
are the NDFs [16], but there is an option of using the BDFs like ode15i and
DASPK. We used default tolerances and the default numerical partial deriva-
tives in our experiments. When using the NDFs, this solver took 58 successful
steps and had 24 failed attempts. There were 17 partial derivatives formed and
the equations were evaluated 260 times. When using the BDFs, the code took
56 successful steps and had 23 failed attempts. There were 18 partial derivatives
formed and the equations were evaluated 269 times.

A one transistor ampli�er circuit is presented in Fig. 1.3 of E. Hairer and
G. Wanner [8] and modeled by �ve di�erential equations. The equations arise
naturally in the form (3) with a constant mass matrix

M =

0
BBBB@
�C1 C1

C1 �C1

�C2

�C3 C3

C3 �C3

1
CCCCA

Here Ck = k � 10�6 for k = 1; 2; 3. This matrix is of rank 3, so the system
is a DAE. DASPK and DAEIS do not compute consistent initial conditions for
such problems. It is easy enough to change variables to get a system in the
(permuted) semi-explicit form required by those codes, but cic and ode15s can
be applied directly to compute consistent initial conditions.

From the form of this problem we see that for any y0, a consistent y00 is
determined only up to a vector in the null space of M , i.e., up to a vector of
the form (�; �; 0; �; �) for arbitrary � and �. Hairer and Wanner work out
consistent initial conditions analytically. For the computations resulting in Fig.
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1.4 of [8], they take y0 = (0; 3; 3; 6; 0). As in the preceding example, it is
convenient when using cic and ode15i to supply Fy0 analytically and have
the program approximate Fy numerically. In the absence of other information,
we guess y00 = 0 with the aim of getting a consistent initial derivative that is
not large. With all components of the guesses left free and default tolerances,
cic held �xed all components of y0 and returned y00 = (0; 0;�500=3; 0; 0). The
program returns the Euclidean norm of the residual in (3) of the computed initial
conditions. In this case the residual was zero. When the guess was changed to
y00 = (1; 1; 1; 1; 1), cic returned y00 = (1; 1;�500=3; 1; 1). We see here the e�ects
of the algorithm holding �xed as many components of the guess as possible
and the null space of M . ode15s uses a di�erent algorithm [17] for computing
consistent initial conditions that is tailored to the form (3). It holds �xed all
components of y0 and does not ask for a guess for y00. A goal of its algorithm is
to �nd a consistent y00 that is not large. The solver does not return this vector
to the user, but the source code is available, so it is easy enough to determine
that it computed y00 = (0; 0;�500=3; 0; 0).

With options set as in computing consistent initial conditions, ode15i solved
the IVP in 3992 successful steps and 1616 failed attempts. In this it formed 115
partial derivatives and evaluated the equations 10852 times. DASPK solved the
IVP in 3142 successful steps with 1141 failed attempts. It formed 2223 partial
derivatives and evaluated the equations 18667 times. Saving partial derivatives
has reduced the number of partial derivatives formed by a factor of nearly 20.
The number of failed steps increased, but this was a small cost for saving so
many partial derivatives.

The Matlab demonstration program amp1dae solves this problem on a
shorter interval to illustrate the solution of DAEs of index 1 of the form (3)
with ode15s. The solver takes important advantage of the fact that the mass
matrix is constant. As with the other example of this section, we used the option
of supplying consistent y0(0). We also used default tolerances and the default
of approximating partial derivatives numerically. With the default NDFs, the
IVP was solved in 1326 successful steps with 471 failed attempts. In this it
formed 184 partial derivatives and evaluated the equations 4608 times. When
using the BDFs, the solution required 1749 successful steps and had 542 failed
attempts. There were 170 partial derivatives formed and the equations were
evaluated 5207 times. With either family of formulas, ode15s is signi�cantly
more e�cient than ode15i and DASPK for this particular IVP. Critical to this
is the restricted form of the di�erential equations and especially the fact that
the mass matrix is constant.

5 Conclusions

Computing consistent initial conditions for di�erential equations as general as
(1) is di�cult, but in our experience cic has performed rather well. The capabil-
ity of �xing selected components of the guesses for consistent initial conditions
can be useful. In our experience, �xing too many components and �xing the
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wrong components are not rare, so we recommend that users �x no more than
necessary. Indeed, the capability of leaving free components that other schemes
hold �xed can be quite useful.

Our experience is that ode15i and DASPK solve a problem with a compa-
rable number of successful steps because they use the same formulas and their
step size and order algorithms are nearly the same. ode15i does not form as
many partial derivatives, often not nearly as many, but it has more step failures
because that is the way that it recognizes when it needs new partial derivatives.
Basing the formulas of ode15i on the Lagrangian form of the underlying inter-
polating polynomials leads to simple expressions that are evaluated e�ciently
in Matlab. We have also found the form to be quite convenient in endowing
ode15iwith the ability to locate events and the ability to evaluate the numerical
solution e�ciently anywhere in the interval of integration.
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