
Comparing Control Constructs by Double-barrelled CPS ∗

Hayo Thielecke
(h.thielecke@cs.bham.ac.uk)
School of Computer Science, University of Birmingham, Birmingham B15 2TT,
United Kingdom

Abstract. We investigate call-by-value continuation-passing style transforms that
pass two continuations. Altering a single variable in the translation of λ-abstraction
gives rise to different control operators: first-class continuations; dynamic control;
and (depending on a further choice of a variable) either the return statement of C;
or Landin’s J-operator. In each case there is an associated simple typing. For those
constructs that allow upward continuations, the typing is classical, for the others
it remains intuitionistic, giving a clean distinction independent of syntactic details.
Moreover, those constructs that make the typing classical in the source of the CPS
transform break the linearity of continuation use in the target.

Keywords: Continuations, control operators, J-operator, intuitionistic and classical
logic

1. Introduction

Control operators come in bewildering variety. Sometimes the same
term is used for distinct constructs, as with catch in early Scheme
or throw in Standard ML of New Jersey, which are very unlike the
catch and throw in Lisp whose names they borrow. On the other hand,
this Lisp catch is fundamentally similar to exceptions despite their
dissimilar and much more ornate appearance.

Fortunately it is sometimes possible to glean some high-level “logi-
cal” view of a programming language construct by looking only at its
type. Recall that under the “formulae as types” correspondence, the
types of purely functional programs correspond to formulae provable
in intuitionistic logic; for example, the identity λx.x has type A → A,
which we can read as “A implies A”. As Griffin [4] discovered, this
correspondence extends to control, in that control operators for first-
class continuations can be ascribed types corresponding to formulae
which are provable only in classical, but not in intuitionistic logic, such
as Peirce’s law ((A → B) → A) → A. In that sense, the addition of
first-class continuations leads to an increase in power of the language
that is visible even at the level of the types. This gives us a fundamental
distinction between languages that have such classical types and those

∗ An earlier version appeared in the proceedings of the 3rd ACM Workshop on
Continuations [20]

c© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.1

2 Hayo Thielecke

that do not, even though they may still enjoy some form of control.
Such an approach based on typing complements comparisons based on
contextual equivalences [14, 19].

Such a comparison would be difficult unless we blot out complica-
tion. In particular, exceptions are typically tied in with other, fairly
complicated features of the language which are not relevant to control
as such: in ML with the datatype mechanism, in Java with object-
orientation. In order to simplify, we first strip down control operators to
the bare essentials of labelling and jumping, so that there are no longer
any distracting syntactic differences between them. The grammar of
our toy language is uniformly this:

M ::= x | λx.M | MM | hereM | goM.

The intended meaning of here is that it labels a “program point” or
expression without actually naming any particular label—just uttering
the demonstrative “here”, as it were. Correspondingly, go jumps to a
place specified by a here, without naming the “to” of a goto.

Despite the simplicity of the language, there is still scope for varia-
tion: not by adding bells and whistles to here and go, but by varying
the meaning of λ-abstraction. Its impact can be seen quite clearly in the
distinction between exceptions and first-class continuations. The differ-
ence between them is as much due to the meaning of λ-abstraction as
due to the control operators themselves, since λ-abstraction determines
what is statically put into a closure and what is passed dynamically.
Readers familiar with, say, Scheme implementations will perhaps not
be surprised about the impact of what becomes part of a closure. But
the point of this paper is twofold:

− small variations in the meaning of λ completely change the mean-
ing of our control operators;

− we can see these differences at an abstract, logical level, without
delving into the innards of interpreters.

Overview

We give meaning to the λ-calculus enriched with here and go by means
of continuations in Section 2, examining in Sections 3–5 how variations
on λ-abstraction determine what kind of control operations here and
go represent. For each of these variations we present a simple typing,
which agrees with the transform (Section 6). By refining the typing
of the target λ-calculus of the CPS transform with linearity, we show
that those constructs that make the typing classical in the source of

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.2

Comparing Control Constructs by Double-barrelled CPS 3

the CPS transform break the linearity of continuation use in the tar-
get (Section 7). We conclude by summarising the significance of these
typings in terms of classical and intuitionistic logic (Section 8).

The prerequisites of this paper, besides some background knowledge
in programming languages, are some familiarity with continuations (in
the form of denotational semantics or interpreters), and the most basic
facts about intuitionistic logic, as can be found in many logic textbooks
[21, 22].

2. Double-barrelled CPS transform

Our starting point is a continuation-passing style (CPS) transform,
which transforms λ-terms enriched with the here and go-operations
(the source language) into ordinary λ-calculus without control opera-
tions (the target). At first, we will read this target language as untyped
λ-calculus, before refining it with types in Sections 6 and 7.

This transform is double-barrelled in the sense that it always passes
two continuations. Hence the clauses start with λkq. . . . instead of
λk. Other than that, this CPS transform is in fact a very mild
variation on the usual call-by-value one [10] (one could just as well use
a slightly different transform, for instance one where the continuation is
the first argument to a function). As indicated by the ? , we leave one
variable, the extra continuation passed to the body of a λ-abstraction,
unspecified.

[[x]] = λkq.kx

[[λ?x.M]] = λks.k(λxrd.[[M]]r ?)
[[MN]] = λkq.[[M]](λm.[[N]](λn.mnkq)q)q

[[hereM]] = λkq.[[M]]kk

[[goM]] = λkq.[[M]]qq

The extra continuation q may be seen as a jump continuation, in
that its manipulation accounts for the labelling and jumping. This
is done symmetrically: here makes the second continuation the same
as the current one k, whereas go sets the current continuation of its
argument to the jump continuation q. The clauses for variables and
applications do not interact with the additional jump continuation: the
former ignores it, while the latter merely distributes it into the operator,
the operand and the function call.

Only in the clause for λ-abstraction do we face a design decision.
Depending on which continuation (static s, dynamic d, or the return

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.3

4 Hayo Thielecke

continuation r) we fill in for “?” in the clause for λ, there are three
different flavours of λ-abstraction.

[[λsx.M]] = λks.k(λxrd.[[M]]r s)

[[λdx.M]] = λks.k(λxrd.[[M]]r d)
[[λrx.M]] = λks.k(λxrd.[[M]]r r)

The lambdas are subscripted to distinguish them, and the box around
the last variable is meant to highlight that this is the crucial difference
between the transforms. Formally there is also a fourth possibility, the
outer continuation k, but this seems less meaningful and would not fit
into simple typing.

For all choices of λ, the operation go is always a jump to a place spec-
ified by a here. For example, for any M , the term here ((λx.M)(goN))
should be equivalent to N , as the go jumps past the M . But in more
involved examples than this, there may be different choices where go
can go to among several occurrences of here. In particular, if s is passed
as the second continuation argument to M in the transform of λx.M ,
then a go in M will refer to the here that was in scope at the point
of definition (unless there is an intervening here, just as one binding
of a variable x can shadow another). By contrast, if d is passed to M
in λx.M , then the here that is in scope at the point of definition is
forgotten; instead go in M will refer to the here that is in scope at the
point of call when λx.M is applied to an argument. In fact, depending
upon the choice of variable in the clause for λ as above, here and go
give rise to different control operations:

− first-class continuations like those given by call/cc in Scheme [5];

− dynamic control in the sense of Lisp, and typeable in a way remi-
niscent of checked exceptions;

− a return-operation, which can be refined into the J-operator in-
vented by Landin in 1965 and ancestral to call/cc [5, 7, 8, 18].

It is perhaps surprising how subtle variations in the transform give
rise to such different constructs, each of which has precedents in actual
languages. Thus it may be helpful to recall a more traditional analogue
of such a situation: consider how variations in the passing of environ-
ments can yield either static or dynamic binding (see the textbooks by
Friedman, Wand and Haynes [3, Section 5.7], or Schmidt [15, Section
8.2]). Concretely, here is a simple denotational semantics E [[−]] with en-
vironments, which we can equally read as a mathematically condensed

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.4

Comparing Control Constructs by Double-barrelled CPS 5

form of a straightforward environment-passing interpreter:

E [[x]] e = e(x)

E [[λx.M]] s = λvd.
(
E [[M]] (? [x 7→ v])

)
E [[MN]] e = (E [[M]] e) (E [[N]] e) e

Since the environment is passed along in an application MN , it is up to
the clause for λ-abstraction which environment is to be extended with
the actual argument v for the bound variable x, as indicated by ? . If
we choose the static environment s, the behaviour of variables will be
that of static binding; if we choose the dynamic environment (supplied
at the point of call), the behaviour will be that of dynamic binding. In
this example, it is the meaning of variables which differs with the choice
of environment, whereas in the double-barrelled CPS transforms, it is
the meaning of go. In a sense, we can think of the second continuation
as analogous to an environment for the single identifier go.

We examine the variations on the double-barrelled CPS transform
in turn, giving a simple type system in each case. An unusual feature
of these type judgements is that, because we have two continuations,
there are two types in the succedent on the right of the turnstile, as in

Γ ` M : A,B.

The first type on the right accounts for the case that the term returns
a value; it corresponds to the current continuation. The second type
accounts for the extra continuation used for jumping. In logical terms,
the comma on the right may be read as a disjunction. It makes a big
difference whether this disjunction is classical or intuitionistic. That is
our main criterion of comparing and contrasting the control constructs.

3. Static semantics and first-class continuations

The first choice of which continuation to pass to the body of a function
is arguably the cleanest. Passing the static continuation s gives control
the same static binding as ordinary λ-calculus variables. In the static
case, the transform is this:

[[x]] = λkq.kx

[[λsx.M]] = λks.k(λxrd.[[M]]r s)
[[MN]] = λkq.[[M]](λm.[[N]](λn.mnkq)q)q

[[hereM]] = λkq.[[M]]kk

[[goM]] = λkq.[[M]]qq

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.5

6 Hayo Thielecke

Γ, x : A, Γ′
s̀ x : A,C

Γ s̀ M : B,B

Γ s̀ hereM : B,C

Γ s̀ M : B,B

Γ s̀ goM : C,B

Γ, x : A s̀ M : B,C

Γ s̀ λsx.M : A→B,C

Γ s̀ M : A→B,C Γ s̀ N : A,C

Γ s̀ MN : B,C

Figure 1. Typing for static here and go

We type our source language with here and go as in Figure 1.
In logical terms, both here and go are a combined right weak-

ening and contraction. By themselves, weakening and contraction do
not amount to much; but it is the combination with the rule for →-
introduction that makes the calculus “classical”, in the sense that
there are terms whose types are propositions of classical, but not of
intuitionistic, minimal logic.

To see how→-introduction gives classical types, consider λ-abstracting
over go.

x : A s̀ gox : B,A

s̀ λsx.gox : A→B,A

If we read the comma as “or”, and A → B for arbitrary B as “not
A”, then this judgement asserts the classical excluded middle, “not
A or A”. From a slightly different perspective, we could say that the
A-accepting continuation, by occurring under the λ, becomes an up-
ward continuation (a continuation which is part of the result of an
expression).

We build on the classical type of λsx.gox for another canonical
example: Scheme’s call-with-current-continuation (call/cc for
short) operator [5]. It is syntactic sugar in terms of static here and go:

call/cc = λsf.(here (f (λsx.gox))).

As one would expect [4], the type of call/cc is Peirce’s law “if not A
implies A, then A”. We derive the judgement

s̀ λsf.(here (f (λsx.gox))) : ((A→B)→A)→A,C

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.6

Comparing Control Constructs by Double-barrelled CPS 7

as follows. Let Γ be the context f : (A→B)→A. Then we derive:

Γ s̀ f : (A→B)→A,A

Γ, x : A s̀ x : A,A

Γ, x : A s̀ gox : B,A

Γ s̀ λsx.gox : A→B,A

Γ s̀ (f (λsx.gox)) : A,A

Γ s̀ here (f (λsx.gox)) : A,C

s̀ λsf.(here (f (λsx.gox))) : ((A→B)→A)→A,C

As another example, let Γ be any context, and assume we have Γ s̀
M : A,B. Right exchange is derivable in that we can also derive Γ s̀
M ′ : B,A for some M ′. Concretely,

M ′ = (λsf.here (f M)) (λsx.gox)

Note that the go is outside the scope of the here.
In the typing of call/cc, a go is (at least potentially, depending

on f) exported from its enclosing here. Conversely, in the derivation
of right exchange, a go is imported into a here-construct from the
outside of its scope. What makes everything work is the static binding
of continuations. (If we were to define an operational semantics for the
static version, we would need to make sure that a λs-abstraction builds
a closure when it is evaluated.)

4. Dynamic semantics and exceptions

Next we consider the dynamic version of here and go. The word
“dynamic” is used here in the sense of dynamic binding and dynamic
control as found in many dialects of Lisp (such as Common Lisp or
Emacs Lisp). Another way of phrasing it is that with a dynamic se-
mantics, the here that is in scope at the point where a function is
called will be used, as opposed to the here that was in scope at the
point where the function was defined—the latter being used for the
static semantics.

In the dynamic case, the transform is this:

[[x]] = λkq.kx

[[λdx.M]] = λks.k(λxrd.[[M]]r d)
[[MN]] = λkq.[[M]](λm.[[N]](λn.mnkq)q)q

[[hereM]] = λkq.[[M]]kk

[[goM]] = λkq.[[M]]qq

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.7

8 Hayo Thielecke

Γ, x : A,Γ′
d̀ x : A,C

Γ d̀ M : B,B

Γ d̀ hereM : B,C

Γ d̀ M : B,B

Γ d̀ goM : C,B

Γ, x : A d̀ M : B,C

Γ d̀ λdx.M : A→B∨C, D

Γ d̀ M : A→B∨C, C Γ d̀ N : A,C

Γ d̀ MN : B,C

Figure 2. Typing for dynamic here and go

In this transform, the jump continuation q works like an exception
handler; since it is passed as an extra argument on each call, the dynam-
ically enclosing handler is chosen. Hence under the dynamic semantics,
here and go become a stripped-down version of Lisp’s catch and throw
with only a single catch tag. These catch and throw operation are
themselves a no-frills version of exceptions with only identity handlers.
We can think of here and go as a special case of these more elaborate
constructs:

hereM ≡ (catch ’tag M)
goM ≡ (throw ’tag M)

Because the additional continuation is administered dynamically,
we cannot fit it into our simple typing without annotating the function
type. So for dynamic control, we write the function type as A→B∨C.
Syntactically, this should be read as a single operator with the three
arguments in mixfix. We regard the type system as a variant of in-
tuitionistic logic in which → and ∨ always have to be introduced or
eliminated together.

This annotated arrow can be seen as an idealisation of the Java
throws clause in method definitions, in that A→B∨C could be written
as

B(A) throws C

in a more Java-like syntax. A function of type A→B∨C may throw
things of type C, so it may only be called inside a here with the
same type. Our typing for the language with dynamic here and go
is presented in Figure 2.

We do not attempt to idealise the ML way of typing exceptions
because ML uses a universal type exn for exceptions, in effect allowing
a carefully delimited area of untypedness into the language. The typing

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.8

Comparing Control Constructs by Double-barrelled CPS 9

of ML exceptions is therefore much less informative than that of checked
exceptions.

Note that here and go are still the same weakening and contraction
hybrid as in the static setting. But here their significance is a completely
different one because the →-introduction is coupled with a sort of ∨-
introduction. To see the difference, recall that in the static setting λ-
abstracting over a go reifies the jump continuation and thereby, at the
type level, gives rise to classical disjunction. This is not possible with
the version of λ that gives go the dynamic semantics. Consider the
following inference:

x : A d̀ gox : B,A

d̀ λdx.gox : A→B∨A,C

The C-accepting continuation at the point of definition is not accessible
to the go inside the λd. Instead, the go refers only to the A-accepting
continuation that will be available at the point of call. Far from the
excluded middle, the type of λdx.gox is thus “A implies A or B; or
anything”. Put differently, because of the dynamic behaviour of go, the
A-accepting continuation cannot become an upward continuation even
if the go is wrapped into a λ.

In the same vein, as a further illustration how fundamentally differ-
ent the dynamic here and go are from the static variety, we revisit the
term that, in the static setting, gave rise to call/cc with its classical
type:

λf.here (f (λx.gox)).

Now in the dynamic case, we can only derive the intuitionistic formula

((A→B∨A)→A∨A)→A∨C

as the type of this term.
Let Γ be the context f : (A→B∨A)→A∨A. Then we have:

Γ d̀ f : (A→B∨A)→A∨A,A

Γ, x : A d̀ x : A,A

Γ, x : A d̀ gox : B,A

Γ d̀ λdx.gox : A→B∨A,A

Γ d̀ (f (λdx.gox)) : A,A

Γ d̀ here (f (λdx.gox)) : A,C

d̀ λdf.here (f (λdx.gox)) : ((A→B∨A)→A∨A)→A∨C, D

The type system given by d̀ is intuitionistic in the sense that the
rules of d̀ correspond to derivations in the →,∨-fragment of intuitionis-
tic logic. For instance, the d̀-rule (simultaneous→- and ∨-introduction)

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.9

10 Hayo Thielecke

corresponds to the intuitionistic derivation (∨-introduction first, then
→-introduction, then right weakening) displayed on its right here:

Γ, A d̀ B,C

Γ d̀ A→B∨C, D

Γ, A ì B,C

Γ, A ì B ∨ C

Γ ì A → (B ∨ C)

Γ ì A → (B ∨ C), D

We could also use intuitionistic logic with a single formula on the right
by disjoining the two formulas from d̀, so that Γ d̀ A,B implies Γ ì
A ∨B:

Γ, A d̀ B,C

Γ d̀ A→B∨C, D

Γ, A ì B ∨ C

Γ ì A → (B ∨ C)

Γ ì (A → (B ∨ C)) ∨D

At the level of terms, this corresponds to an exception-passing-style
transform in which the additional disjunct may hold an “exceptional”
value, which is propagated until handled. If the type of the exceptions is
always the same, say E, the transform is given by the exception monad
()+E [9]. In our setting, however, we do not have such a fixed type E,
as the here-construct can change that type. Thus the double-barrelled
approach to exceptions taken here may correspond to a more complex
structure, such as perhaps an indexed monad.

5. Return continuation

Our last choice is passing the return continuation as the extra con-
tinuation to the body of a λ-abstraction. So the CPS transform is
this:

[[x]] = λkq.kx

[[λrx.M]] = λks.k(λxrd.[[M]]r r)
[[MN]] = λkq.[[M]](λm.[[N]](λn.mnkq)q)q

[[hereM]] = λkq.[[M]]kk

[[goM]] = λkq.[[M]]qq

This transform grants λr the additional role of a continuation binder.
The original operator for this purpose, here, is rendered redundant,
since hereM is now equivalent to (λrx.M)(λry.y) where x is not free
in M . At first sight, binding continuations seems an unusual job for a

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.10

Comparing Control Constructs by Double-barrelled CPS 11

Γ, x : A, Γ′
r̀ x : A,C

Γ r̀ M : B,B

Γ r̀ goM : C,B

Γ, x : A r̀ M : B,B

Γ r̀ λrx.M : A→B,C

Γ r̀ M : A→B,C Γ r̀ N : A,C

Γ r̀ MN : B,C

Figure 3. Typing for go as a return-operation

λ; but it becomes less so if we think of go as a return statement like
those of C or Java.

5.1. Second-class return

Because the enclosing λ determines which continuation go jumps to
with its argument, the go-operator has the same effect as a return
statement. The type of extra continuation assumed by go needs to
agree with the return type of the nearest enclosing λ:

Γ, x : A r̀ M : B,B

Γ r̀ λrx.M : A→B,C

The whole type system for the calculus with λr is in Figure 3.
The agreement between go and the enclosing λr is comparable with

the typing in C, where the expression in a return statement must have
the return type declared by the enclosing function. For instance, M
needs to have type int in the definition:

int f(){ . . . return M; . . . }

With λr, the special form go cannot be made into a first-class func-
tion. If we try to λ-abstract over gox by writing λrx.gox then go will
refer to that λr.

The failure of λr to give first-class returning can be seen logically as
follows. In order for λr to be introduced, both types on the right have
to be the same:

x : A r̀ gox : A,A

r̀ λrx.gox : A→A,C

Rather than the classical “not A or A” this asserts merely the intu-
itionistic “A implies A; or anything”.

One has a similar situation in Gnu C, which has both the return
statement and nested functions, without the ability to refer to the re-

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.11

12 Hayo Thielecke

turn address of another function. If we admit go as a first-class function,
it becomes a much more powerful form of control, Landin’s JI-operator.

5.2. The JI-operator

Keeping the meaning of λr as a continuation binder, we now consider a
control operator JI that always refers to the statically enclosing λr, but
which, unlike the special form go, is a first-class expression, so that we
can pass the return continuation to some other function f by writing
f(JI). This operator is transformed into CPS as follows:

[[JI]] = λks.k(λxrd. s x)

That is almost, but not quite, the same as if we tried to define JI as
λrx.gox:

[[JI]] = [[λrx.gox]]
= λks.k(λxrd. r x)

We can, however, define JI in terms of go if we use the static λs, that is
JI = λsx.gox, as this does not inadvertently shadow the continuation
s that we want JI to refer to.

The whole transform for the calculus with JI is this:

[[x]] = λkq.kx

[[λrx.M]] = λks.k(λxrd.[[M]]r r)
[[MN]] = λkq.[[M]](λm.[[N]](λn.mnkq)q)q

[[JI]] = λks.k(λxrd. s x)

Recall that the role of here has been taken over by λr, and we replaced
go by its first-class cousin JI.

In the transform for JI, the jump continuation is the current “dump”
in the sense of the SECD-machine. The dump in the SECD-machine
is a sort of call stack, which holds the return continuation for the
procedure whose body is currently being evaluated. Making the dump
into a first-class object was precisely how Landin invented first-class
control, embodied by the J-operator.

The typing for the language with JI is given in Figure 4. In partic-
ular, the type of JI is the classical disjunction

Γ j̀ JI : B → C,B

The operator JI by itself (without even being applied to an argument)
yields an upward continuation in that it wraps the B-accepting contin-
uation to the right of the comma into a non-returning function of type
B → C.

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.12

Comparing Control Constructs by Double-barrelled CPS 13

Γ, x : A,Γ′
j̀ x : A,C Γ j̀ JI : B → C,B

Γ, x : A j̀ M : B,B

Γ j̀ λrx.M : A→B,C

Γ j̀ M : A→B,C Γ j̀ N : A,C

Γ j̀ MN : B,C

Figure 4. Typing for JI

As an example of the type system for the calculus with the JI-
operator, we see that Reynolds’s [12, 13] definition of call/cc in terms
of JI typechecks. (Strictly speaking, Reynolds used escape, the binding-
form cousin of call/cc, but call/cc and escape are syntactic sugar
for each other.) We infer the type of call/cc ≡ λrf.((λrk.f k)(JI)) to
be:

((A→B)→A)→A)

To write the derivation, we abbreviate some contexts as follows:

Γfk ≡ f : (A→B)→A, k : (A→B)
Γf ≡ f : (A→B)→A

Then we can derive:

Γfk j̀ f : (A→B)→A,A Γfk j̀ k : (A→B), A

Γfk j̀ f k : A,A

Γf j̀ λrk.fk : (A→B)→A,A Γf j̀ JI : A→B,A

Γf j̀ (λrk.f k)(JI) : A,A

j̀ λrf.((λrk.f k)(JI)) : ((A→B)→A)→A), C

Because JI has such evident logical meaning as classical disjunction,
we have considered it as basic. Landin [7] took another operator, called
J, as primitive, while JI was derived as the special case of J applied
to the identity combinator:

J I = J (λx.x)

This explains the name “JI”, as “J” stands for “jump” and I for
“identity”. We were able to start with JI, since (as noted by Landin)
the J-operator is syntactic sugar for JI by virtue of:

J = (λrr.λrf.λrx.r(fx)) (JI).

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.13

14 Hayo Thielecke

To accommodate J in our typing, we use this definition in terms of JI
to derive the following type for J:

j̀ J : (A→B)→ (A→ C), B

Let Γ be the context x : A, r : B → C, f : A→B. We derive:

Γ j̀ r : B → C,C

Γ j̀ f : A→B,C Γ j̀ x : A,C

Γ j̀ fx : B,C

Γ j̀ r(fx) : C,C

r : B → C, f : A→B j̀ λrx.r(fx) : A→ C,A→ C

r : B → C j̀ λrf.λrx.r(fx) : (A→B)→ (A→ C), (A→B)→ (A→ C)

j̀ λrr.λrf.λrx.r(fx) : (B → C)→ (A→B)→ (A→ C), B

j̀ (λrr.λrf.λrx.r(fx)) (JI) : (A→B)→ (A→ C), B

This type reflects the behaviour of the J-operator in the SECD-
machine. When J is evaluated, it captures the B-accepting current
dump continuation; it can then be applied to a function of type A→B.
This function is composed with the captured dump, yielding a non-
returning function of type A → C, for arbitrary C. By analogy with
call-with-current-continuation, we may read the J-operator as
“compose-with-current-dump” [18].

The logical significance, if any, of the extra function types in the
general J seems unclear. There is a curious, though vague, resemblance
to exception handlers in dynamic control, since they too are functions
only to be applied on jumping. This feature of J may be historical,
as it arose in a context where greater emphasis was given to attaching
dumps to functions than to dumps as first-class continuations in their
own right.

6. Type preservation

The typings agree with the transforms in that they are preserved in the
usual way for CPS transforms: we have a “double-negation” transform
for types, contexts and judgements. The only slight complication is in
typing the dynamic continuation in those transforms that ignore it.

We assume some given answer type A for continuations. The func-
tion type of the form A→B∨C for the dynamic semantics is translated
as follows:

[[A→B∨C]] = [[A]]→ ([[B]]→ A)→ ([[C]]→ A)→ A

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.14

Comparing Control Constructs by Double-barrelled CPS 15

Each call expects not only the B-accepting return continuation, but also
the C-accepting continuation determined by the here that encloses the
call.

Because we have not varied the transform of application, functions
defined with λs and λr are also passed this dynamic continuation, even
though they ignore it:

[[λsx.M]] = λks.k(λxrd.[[M]]r s)
[[λrx.M]] = λks.k(λxrd.[[M]]r r)

In both of these cases, the dynamic jump continuation d is fed to each
function call, but never needed. Each function definition must expect
this argument to be of certain type. Because different calls of the same
function may have dynamically enclosing here operators with different
types, the type ascribed to d should be polymorphic.

The function type of the form A→B is transformed so as to accept
this unwanted argument polymorphically:

[[A→B]] = [[A]]→ ([[B]]→ A)→∀β.β → A

That is, a function of type A → B accepts an argument of type A, a
B-accepting return continuation, and the continuation determined by
the here dynamically enclosing the call.

We will use Curry-style polymorphism in our target language for
the CPS transform. (“Curry-style” means that there are no type ab-
stractions and applications in the terms, so that we do not have to
add anything to the CPS transforms from Section 2). It is given by the
following two rules:

Γ ` M : ∀α.A

Γ ` M : A[α 7→ B]

Γ ` M : A

Γ ` M : ∀α.A
α not free in Γ

For all the transforms we have preservation of the respective typing:
if Γ `? M : A,B in the source, then in the target of the CPS transform
we have

[[Γ]] ` [[M]] : ([[A]]→ A)→ ([[B]]→ A)→ A.

The proof is a straightforward induction over the derivation; we sketch
some representative cases below.

As a typical example, consider how the classical axiom of excluded
middle

j̀ JI : A→B,A

is translated to an intuitionistic proof [[JI]] = λks.k(λxrd.sx) of the
formula

(([[A]]→ ([[B]]→ A)→∀β.β → A)→ A) → ([[A]]→ A)→ A

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.15

16 Hayo Thielecke

in the target.

6.1. The dynamic continuation

We show the type preservation in some more detail for the rule for
λ-abstraction in the dynamic case:

Γ, x : A d̀ M : B,C

Γ d̀ λdx.M : A→B∨C, D

By the induction hypothesis, we conclude from Γ, x : A d̀ M : B,C
that

[[Γ]], x : [[A]] ` [[M]] : ([[B]]→ A)→ ([[C]]→ A)→ A

By weakening we also have

[[Γ]], k, s, x, k′, d ` [[M]] : ([[B]]→ A)→ ([[C]]→ A)→ A

Hence

[[Γ]], k : [[A→B∨C]]→ A, s : [[D]]→ A ` λxk′d.[[M]]k′d : [[A→B∨C]].

Thus

[[Γ]] ` [[λdx.M]] : ([[A→B∨C]]→ A)→ ([[D]]→ A)→ A

as required.

6.2. Ignoring the dynamic continuation polymorphically

For those transforms that ignore the dynamic jump continuation, we
need to introduce polymorphism in the case of λ-abstraction. Consider
the static λ-abstraction:

Γ, x : A s̀ M : B,C

Γ s̀ λsx.M : A→B,C

By the induction hypothesis, we have

[[Γ]], x : [[A]] ` [[M]] : ([[B]]→ A)→ ([[C]]→ A)→ A

Hence

[[Γ]], k : [[A→B]]→ A, s : [[C]]→ A ` λxk′d.[[M]]k′s : [[A→B]].

Thus [[Γ]] ` [[λsx.M]] : ([[A→B]]→ A)→ ([[C]]→ A)→ A, as required.

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.16

Comparing Control Constructs by Double-barrelled CPS 17

While λ-abstraction abstracts over a type variable, application in-
stantiates it. Consider the rule

Γ s̀ M : A→B,C Γ s̀ N : A,C

Γ s̀ MN : B,C

By the induction hypothesis, we assume

[[Γ]] ` [[M]] : ([[A→B]]→ A)→ ([[C]]→ A)→ A
[[Γ]] ` [[N]] : ([[A]]→ A)→ ([[C]]→ A)→ A

We have to show that

[[Γ]] ` [[MN]] : ([[B]])→ A)→ ([[C]]→ A)→ A

where
[[MN]] = λkq.[[M]](λm.[[N]](λn.mnkq)q)q

The crucial step is to instantiate the type of the ignored dynamic jump
continuation argument to that of q:

[[Γ]],m, n, k, q ` mnk : ∀β.β → A

[[Γ]],m, n, k, q ` mnk : ([[C]]→ A)→ A [[Γ]],m, n, k, q ` q : [[C]]→ A

[[Γ]],m, n, k, q ` mnkq : A

7. Double-barrelled CPS and linearly used continuations

In a companion paper [1] we have shown that a wide variety of control
constructs use continuations linearly. That paper also uses some double-
barrelled CPS transforms for the sake of simplicity—some similar to
the ones used here, others very different. We refer the reader to it for
details and further motivation on linearly used continuations. In this
section, we only sketch the connection between linear and non-linear
continuation use on the one hand and the contrast between classical
and intuitionistic typing for control on the other.

To formalise linear use of continuations, we refine the target lan-
guage of our CPS transforms with linear functions in Figure 5 (for
details of this typing, we refer the reader to the companion paper [1]).
This type system uses both a linear and an intuitionistic zone. The
former will in fact only contain continuations, as it is their usage that
we want to restrict.

To bring out the similarity with the CPS transforms in the previ-
ous section, it is convenient to introduce a pattern-matching syntax

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.17

18 Hayo Thielecke

Γ, x : A; ` x : A Γ;x : P ` x : P

Γ;∆, x : P ` M : Q

Γ;∆ ` δx.M : P (Q

Γ;∆1 ` M : P (Q Γ;∆2 ` N : P

Γ;∆1,∆2 ` M N : Q

Γ, x : A;∆ ` M : P

Γ;∆ ` λx.M : A → P

Γ;∆ ` M : A → P Γ; ` N : A

Γ;∆ ` M N : P

Γ;∆ ` M : P Γ;∆ ` N : Q

Γ;∆ ` 〈M,N〉 : P&Q

Γ;∆ ` M : P1&P2

Γ;∆ ` πi M : Pi

Γ;∆ ` M : A

Γ;∆ ` M : ∀α.A
α /∈ Γ;∆

Γ;∆ ` M : ∀α.A

Γ;∆ ` M : A[α 7→ B]

Figure 5. Target language with linear typing

δ〈x1, x2〉.M as syntactic sugar for δp.M [x 7→ π1 p][x2 7→ π2 p]. With
this notation, we write a double-barrelled CPS transform that uses both
continuation arguments together linearly:

[[x]] = δ〈k, q〉.kx

[[λdx.M]] = δ〈k, s〉.k(λx.δ〈r, d〉.[[M]] 〈r, d〉)
[[λrx.M]] = δ〈k, s〉.k(λx.δ〈r, d〉.[[M]] 〈r, r〉)

[[MN]] = δ〈k, q〉.[[M]] 〈λm.[[N]] 〈λn.(mn) 〈k, q〉, q〉, q〉
[[hereM]] = δ〈k, q〉.[[M]] 〈k, k〉

[[goM]] = δ〈k, q〉.[[M]] 〈q, q〉

It is tempting to call this double-barrel, one-shot continuation passing;
but one needs to bear in mind that there is one shot for both barrels
combined.

This transform works for the dynamic, exception-like semantics from
Section 4 and for the return-operation from Section 5. The function
types need to be refined as follows with linear typing:

[[A→B∨C]] = [[A]]→ (([[B]] → A)&([[C]] → A)) (A
[[A → B]] = [[A]]→∀β.(([[B]] → A)&β) (A

By contrast, the static λ as in Section 3 does not allow this linear
typing. The following fails because of ill-typed sharing between operator

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.18

Comparing Control Constructs by Double-barrelled CPS 19

and operand:

6` [[λsx.M]] = δ〈k, s〉.k(λx.δ〈r, d〉.[[M]] 〈r, s〉)

This becomes clearer if we unsugar the δ〈k, s〉 binding into that of a
continuation pair p, where k = π1 p and s = π2 p:

6` [[λsx.M]] = δp.(π1 p)(λx.δp′.[[M]] 〈(π1 p′), (π2 p)〉)

The JI-operator fails for the same reason:

6` [[JI]] = δ〈k, s〉.k(λx.δ〈r, d〉.sx)

Those constructs that have an intuitionistic typing at the source
admit a typing on the target that restricts the use of continuation to
be linear. Those rules whose addition causes the source language typing
to become classical break this linearity of continuation use, forcing the
target language typing to become intuitionistic (no longer restricted to
linearity) in the use of continuations. In sum, the source and target
typings of our four little languages are as follows:

Construct Source language Use of continuations in target

Static here/go Classical Intuitionistic
Dynamic here/go Intuitionistic Linear
return-operation Intuitionistic Linear

JI-operator Classical Intuitionistic

8. Conclusions

As logical systems, the typings of the four control operations we have
considered may seem a little eccentric, with two succedents that can
only be manipulated in a slightly roundabout way. But they are suffi-
cient for our purposes here, which is to illustrate the correspondence of
first-class continuations with classical logic and weaker control opera-
tion with intuitionistic logic, and the central role of the arrow type in
this dichotomy.

Recall the following fact from proof theory (see for example the
textbooks by Troelstra and Schwichtenberg [21, Exercise 3.2.1A on page
67] or Troelstra and van Dalen [22, Exercise 10.7.6 on page 568]).

Suppose one starts from a presentation of intuitionistic logic with
sequents of the form Γ ` ∆. If a rule like the following is added that

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.19

20 Hayo Thielecke

allows →-introduction even if there are multiple succedents, the logic
becomes classical.

Γ, A ` B,∆

Γ ` A→B,∆

In continuation terms, the significance of this rule is that the function
closure of type A→B may contain any of the continuations that appear
in ∆; to use the jargon, these continuations become “reified”. The fact
that the logic becomes classical means that once we can have continua-
tions in function closures, we gain first-class continuations and thereby
the same power as call/cc. We have this form of rule for static here
and go; though not for JI, since JI as the excluded middle is already
blatantly classical by itself.

But the logic remains intuitionistic if the→-introduction is restricted.
The rule for this case typically admits only a single formula on the right:

Γ, A ` B

Γ ` A→B,∆

Considered as a restriction on control operators, this rule prohibits λ-
abstraction for terms that contain free continuation variables. There
are clearly other possibilities how we can prevent assumptions from ∆
to become hidden (in that they can be used in the derivation of A→B
without showing up in this type itself). We could require these assump-
tions to remain explicit in the arrow type, by making ∆ a singleton that
either coincides with the B on the right of the arrow, or is added to it:

Γ, A r̀ B,B

Γ r̀ A→B,C

Γ, A d̀ B,C

Γ d̀ A→B∨C, D

These are the rules for →-introduction in connection with the return-
operation, and dynamic here and go, respectively. Neither of which
gives rise to first-class continuations, corresponding to the fact that
with these restrictions on →-introduction the logics remain intuition-
istic.

When the double-barrelled typing is intuitionistic, we can read the
comma on the right as an intuitionistic disjunction in the sense that
the term produces a result of either the one or the other type, rather
like the disjunctive property in intuitionistic logic [21, Theorem 4.2.3].
Moreover, on the level of the target of the CPS transform, this means
that the two continuations are joined by an & and are jointly used
linearly, so that we can never use both.

The distinction between static and dynamic control in logical terms
appears to be new, as is the logical explanation of Landin’s JI-operator.

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.20

Comparing Control Constructs by Double-barrelled CPS 21

It would be natural to add an empty type ⊥, whose logical meaning
is falsity. Then Γ `? M : A,⊥ in the double-barrelled systems would
correspond to ordinary judgements Γ ` M : A for intuitionistic or
classical logic. At the top level, one could restrict to such judgements
of the form Γ `? M : A,⊥. Moreover, for the annotated function types,
we could then express that a function cannot raise exceptions if it has
a type of the form A→B∨⊥.

Related work

Following Griffin [4], there has been a great deal of work on classi-
cal types for control operators, mainly on call/cc or minor variants
thereof. A similar CPS transform for dynamic control (exceptions) has
been used by Kim, Yi and Danvy [6], albeit for a very different purpose.
Felleisen describes the J-operator by way of a CPS transform, but since
his transform is not double-barrelled, J means something different in
each λ-abstraction [2]. Variants of the here and go operators are even
older than the notion of continuation itself: the operations valof and
resultis from cpl later appeared in Strachey and Wadsworth’s report
on continuations [16, 17]. These operators led to the modern return in
C. As we have shown here, they lead to much else besides if combined
with different flavours of λ.

Acknowledgements

Thanks to Peter O’Hearn, Olivier Danvy and the anonymous referees.

References

1. J. Berdine, P. W. O’Hearn, U. Reddy, and H. Thielecke. Linearly used contin-
uations. In A. Sabry, editor, Proceedings of the 3rd ACM SIGPLAN Workshop
on Continuations, Indiana University Technical Report No 545, pages 47–54,
2001.

2. M. Felleisen. Reflections on Landin’s J operator: a partly historical note.
Computer Languages, 12(3/4):197–207, 1987.

3. D. P. Friedman, M. Wand, and C. T. Haynes. Essentials of Programming
Languages. MIT Press, 1992.

4. T. G. Griffin. A formulae-as-types notion of control. In Proc. 17th ACM Sym-
posium on Principles of Programming Languages, pages 47–58, San Francisco,
CA USA, 1990.

5. R. Kelsey, W. Clinger, and J. Rees, editors. Revised5 report on the algorithmic
language Scheme. Higher-Order and Symbolic Computation, 11(1):7–105, 1998.

6. J. Kim, K. Yi, and O. Danvy. Assessing the overhead of ML exceptions by
selective CPS transformation. In The 1998 ACM SIGPLAN Workshop on ML,
pages 103–114, 1998.

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.21

22 Hayo Thielecke

7. P. J. Landin. A generalization of jumps and labels. Report, UNIVAC Systems
Programming Research, Aug. 1965.

8. P. J. Landin. A generalization of jumps and labels. Higher-Order and Symbolic
Computation, 11(2), 1998. Reprint of [7].

9. E. Moggi. Computational lambda calculus and monads. In Proceedings, Fourth
Annual Symposium on Logic in Computer Science, pages 14–23, 1989.

10. G. D. Plotkin. Call-by-name, call-by-value, and the λ-calculus. Theoretical
Computer Science, 1(2):125–159, 1975.

11. J. C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Proceedings of the 25th ACM National Conference, pages 717–740.
ACM, Aug. 1972.

12. J. C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998. Reprint
of a conference paper [11].

13. J. C. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic
Computation, 11(4):355–361, 1998.

14. J. G. Riecke and H. Thielecke. Typed exceptions and continuations can-
not macro-express each other. In J. Wiedermann, P. van Emde Boas, and
M. Nielsen, editors, Proceedings 26th International Colloquium on Automata,
Languages and Programming (ICALP), volume 1644 of LNCS, pages 635–644.
Springer Verlag, 1999.

15. D. A. Schmidt. Denotational Semantics. Allyn and Bacon, Boston, 1986.
16. C. Strachey and C. P. Wadsworth. Continuations: A mathematical semantics

for handling full jumps. Monograph PRG-11, Oxford University Computing
Laboratory, Programming Research Group, Oxford, UK, 1974.

17. C. Strachey and C. P. Wadsworth. Continuations: A mathematical semantics
for handling full jumps. Higher-Order and Symbolic Computation, 13(1/2):135–
152, April 2000. Reprint of a technical report [16].

18. H. Thielecke. An introduction to Landin’s “A generalization of jumps and
labels”. Higher-Order and Symbolic Computation, 11(2):117–124, 1998.

19. H. Thielecke. On exceptions versus continuations in the presence of state. In
G. Smolka, editor, Programming Languages and Systems, 9th European Sym-
posium on Programming, ESOP 2000, number 1782 in LNCS, pages 397–411.
Springer Verlag, 2000.

20. H. Thielecke. Comparing control constructs by typing double-barrelled CPS
transforms. In A. Sabry, editor, Proceedings of the 3rd ACM SIGPLAN Work-
shop on Continuations, Indiana University Technical Report No 545, pages
17–25, 2001.

21. A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
University Press, 2001.

22. A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, volume 2.
North Holland, 1988.

HOSC-double-barrel.tex; 30/07/2002; 17:37; p.22

