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ABSTRACT Asthma is a chronic and airway-induced disease, causing the incidence of bronchus
inflammation, breathlessness, wheezing, is drastically becoming life-threatening. Even in the worst cases,
it may destroy the quality to lead. Therefore, early detection of asthma is urgently needed, and machine
learning can help identify asthma accurately. In this paper, a novel machine learning framework, namely
BOMLA (Bayesian Optimisation-based Machine Learning framework for Asthma) detector has been
proposed to detect asthma. Ten classifiers have been utilized in the BOMLA detector, where Support
Vector Classifier (SVC), Random Forest (RF), Gradient Boosting Classifier (GBC), eXtreme Gradient
Boosting (XGB), and Artificial Neural Network (ANN) are state-of-the-art classifiers. In contrast, Linear
Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QLDA), Naive Bayes (NB), Decision Tree
(DT), and K-Nearest Neighbor (KNN) are conventional popular classifiers. ADASYN algorithm has also
been employed in the BOMLA detector to eradicate the issues created due to the imbalanced dataset. It
has even been attempted to delineate how the ADASYN algorithm affects the classification performance.
The highest accuracy (ACC) and Matthews’s correlation coefficient (MCC) for an Asthma dataset provide
94.35% and 88.97%, respectively, using BOMLA detector when SVC is adapted, and it has been increased
to 96.52% and 93.04%, respectively, when ensemble technique is adapted. The one-way analysis of variance
(ANOVA) has also been performed in the 10-fold cross-validation to measure the statistical significance. A
decision support system has been built as a potential application of the proposed system to visualize the
probable outcome of the patient. Finally, it is expected that the BOMLA detector will help patients in their
early diagnosis of asthma.

INDEX TERMS Classification, Clinical and Non-clinical data, Asthma, ADASYN, ANOVA.

I. INTRODUCTION

ASTHMA is one of the chronic lung diseases that inflame
the airways and insists bronchi swell. Subsequently, it

narrows down the airways and ultimately makes a person
hard to breathe. Although asthma symptoms can vary from
person to person, common symptoms may include breath-
lessness [1], [2], wheezing, tightening the chest or chest
pain. The asthma severity can be reduced by avoiding some
common triggers such as allergies [3], smoke, tobacco, wood
fires, air pollution, cold air, dust mites, pollen, chemicals

fumes, nasal polyps, pneumonia, sinusitis, an infection like
colds and flu, the pungent odors, e.g., perfume. However, it is
not always possible to avoid these triggers. On the other hand,
people of all ages may be affected by asthma, especially
children and age-old people may develop this disease without
any permanent cure; however, adults are not out of danger.
People get into trouble talking and being active for a long
time. Consequently, it hampers their health and productivity,
especially service holders. Therefore, proper management
and detection of asthma are ultimately needed [4], [5].
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It is approximated that over 300 million people are infected
by asthma over the globe [6]. It is also forecasted that there
will be approximately 100 million asthma patients by 2025
[6]. According to the World Health Organization (WHO),
every year, the pre-mature death due to asthma is nearly
250,000. And still, now, asthma remains a poorly controlled
disease [7]. Therefore, early detection of asthma is essential,
especially in developing countries and rural areas, where a
healthy environment is a significant concern [8], [9].

Due to the overwhelming innovations in medical science
and intelligent diagnosis systems [10], a massive amount of
data is being generated. This data can be processed and used
to build a machine learning model and diagnose asthma more
efficiently and early than conventional techniques. To get a
better intuition of the mechanisms of asthma, sometimes, a
more complex model can be used [11]. This is because we
should take performance, complexity and interpretability into
consideration to test a system.

Machine learning is a general field of artificial intelligence,
which allows us to learn from available data and predicts
the unknown targets [2]. A proper prediction of asthma dis-
ease progression and early identification of asthma patients
creates the opportunity for better treatment and maintains
this disease’s stability [12]–[15]. To warn about the poor
outcomes and identify asthma patients for care management,
predictive models are widely exercised as the best method
[16]–[18]. Many researchers have done numerous researches
to identify asthma patients using different machine learning
algorithms. For evidence, Dexheimer et al. [19] attempted
to compare different classifiers and found that the expert-
based model was better than others and: Bayesian Network
(BN) achieved the highest accuracy. Prasad et al. [20] used
different machine learning algorithms to identify asthma and
found neural networks better than the others. To clinically
trace various respiratory diseases like asthma and chronic
obstructive pulmonary disease (COPD), several studies were
conducted using different artificial neural network (ANN),
machine learning techniques using different datasets with
other features [21]–[23]. In 2017, Spathis and Vlamos [24]
used some machine learning algorithm and demonstrated
that the RF algorithm is the highest performing classifier in
diagnosing COPD and asthma with 97.7% and 80.3% preci-
sion. In 2018, Yahyaoui and Yumusak [25] used an adaptive
support vector machine algorithm to diagnose asthma and
COPD with an accuracy of 98.45% for asthma and 92.63%
for COPD. This study does not incorporate sophisticated
optimization and data-balancing, improving the classification
accuracy and improving the artificial intelligence (AI) based
diagnosis system. None of the above studies built a decision
support system (DSS), which can be very beneficial for
the clinical staff and the end-users. Motivated by this, the
state-of-the-art machine learning algorithms, along with an
efficient optimization technique, have been adapted to predict
asthma and provide a methodology to design a DSS.

This study examines the factors that characterize asthma
diagnosis and its prediction using different machine learning

algorithms such as RF, DT, SVC, etc. The major contribu-
tions and pivotal topics of our proposed study are provided
as follows:

• A novel dataset has been collected for the analysis (see
Section II-A).

• It has been endeavored to design a framework based on
Machine Learning, known as BOMLA, to trace asthma
patients, where the Bayesian optimization (BO) algo-
rithm has been utilized in Section II.

• In the proposed detector, the ADASYN algorithm has
been used to exterminate the existing imbalance be-
tween the classes of the dataset. How the ADASYN al-
gorithm influences the entire framework’s performance
has also been illustrated in Section III-A.

• This paper also presents the effect of combining dif-
ferent optimized classifiers to enhance the classification
performance through ensemble technique [see Section
III-E.]

• Important features from the dataset are calculated, and
the cumulative influence of features are explained (see
Section III-F).

• The BOMLA optimizes the high-tech machine learning
framework, and comparison has also been drawn with
the conventional search algorithms, such as random
search and grid-search techniques in Section III-G.

• A DSS has been built as a potential application of the
BOMLA detector in Section IV-B.

The rest of the paper is organized as follows. The materials
and methods are illustrated in Section II. We present the
findings of the proposed study in Section III. A comparative
study with other methods is drawn in Section IV along with
an application of the proposed BOMLA detector. In the end,
some conclusions are drawn in Section V.

II. MATERIALS AND METHODS
A. DATA COLLECTION
We have selected real-world Asthma datasets through the
clinical study conducted in Khulna, Bangladesh. Since there
was no systematic research-based information on maternal
in the community, authors and trained research assistants
used a semi-structured questionnaire after an appropriate
explanation of the study’s purpose and consent obtained
from the respondents. This study was conducted according to
the Declaration of Helsinki guidelines and approved by the
“Data Acquiring Ethics Evaluation Committee (DAEEC)”
of Community respiratory centre, Khulna, Bangladesh. The
dataset contains 389 persons with nine attributes: AGE,
SPO2, PULSE (P), FEV, FEV_percent, FVC, FVC_percent,
FEV1_by_FVC, MEF2575. The explanation of the attributes
is given in Supplementary Material-I. The samples are col-
lected from patients of different ages ranging from 11 to 72.
The datasets are stored in excel format for preprocessing the
data grouped into two classes regarding whether a patient has
asthma positive or negative recorded. There were 90.49%
asthma positive and 9.61% asthma negative in the dataset.
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Therefore, there is an imbalanced nature in the dataset where
the asthma positive class is immensely higher than the asthma
negative class. This is because normally, patients with asthma
symptoms come to clinics for medical treatments and tested
as asthma positive.

To get better intuition regarding the distribution of the
entire dataset, the box plot is not enough because, when
data morphing occurs, the box plot remains the same. To get
rid of this complexity, the violin plot representation could
be the best choice to visualize the statistical distribution
of the dataset because the violin plot displays the mean,
interquartile range and outliers of the dataset, and at the same
time, the distribution of the whole dataset [26]. Besides, the
wider portion of the violin represents the more significant
probability, while the thinner part refers to the more neg-
ligible probability of the classes. In our proposed BOMLA
detector, an illustration regarding the target variable’s dis-
tribution against all the numeric variables has been given.
The violin representations of both Asthma-yes and Asthma-
no classes have been split into Male and Female [Figure
1]. The overall observation shows that SPO2 has long-tail
distribution below the first quartile, whereas FVC (%) and
MEF2575 has a long-tail above the third quartile.

1) Clinical Interpretation of Asthma and the Use of
Spirometry
Asthma inflames the air duct with variable symptoms and
patterns of the course of the disease [27]. Variability of the
airway calibres resulting in the noisy chest (wheezing) is
one of the cardinal features of asthma [27]. To diagnose
asthma, both the subjective evaluation by history and objec-
tive confirmation to establish the airflow limitation’s variable
nature is essential [28]. Subjective evaluation is done by
good clinical history and physical examination to suspect
the probable diagnosis of asthma. However, the confirmation
of variable airflow limitation, a cardinal feature of asthma
is done by Spirometry as the gold standard [29], although
other cheaper method like a peak flow meter is used as a
bedside examination tool; however, it is not the substitute
of Spirometry. Therefore, this study uses data recorded from
Spirometry. The flow chart of the diagnosis of asthma is
shown in Figure 2.

The entire working architecture of our proposed frame-
work has been clarified in Figure 3. The first step is data
collection, which has been followed by data imputation.
Data was then over-sampled using the ADAptive SYNthetic
(ADASYN) algorithm and proceeded to data scaling before
splitting them into train and test dataset. Based on the extant
literature, ten known classification algorithms, such as RF,
XGB, ANN, GBC, SVC, LDA, QLDA, NB, KNN, and DT
have been applied in this research. Additionally, the BO has
been used to tune the hyperparameters of the classification al-
gorithm. Shortly afterwards, the statistical analysis has been
performed by applying the Boxplot analysis and Analysis of
Variance (ANOVA). The performance of different classifiers
has been measured by the confusion matrix and the 10-fold

cross-validation.
Firstly, features are normalized using the z-score method.

As this is a real-world dataset, and there are several miss-
ing values, we have to impute the dataset using the KNN
imputation technique. This technique imputes the missing
values from the nearest-neighbor column using the Euclidean
distance. The MATLAB function ‘filloutliers’ has been used
to detect and fill outliers with the previous non-outlier ele-
ment. The ADASYN algorithm having K = 5 neighbors is
used to balance out the classes by generating an adequate
amount of synthetic data, which helps eradicate the over-
fitting issue [30]. The weighted distribution for the minor-
ity classes is used according to their difficulty learning to
generate synthetic data. The benefits of using ADASYN are:
(1) it reduces the biasness solving class imbalance problem,
and (2) it also fit the classification boundary adaptively to
complex examples. It uses data density distribution (r̂i) of
the ith minority class to automatically decide the number of
synthetic examples that need to be generated. In other words,
r̂i measures the characteristics of the data-dependent distri-
bution of weight for the ith minority class according to the
level of “harder- to-learn”. Unlike SMOTEBoost (Synthetic
Minority Over-sampling TEchnique Boost) and DataBoost-
IM, the ADASYN does not require a hypothesis to generate
synthetic data [30]. Appendix A provides the algorithm of
ADASYN, which describes the sample generation process
step-by-step procedure.

B. CLASSIFIERS USED IN THE FRAMEWORK

Ten classifiers have been applied in the BOMLA detector,
where LDA, QLDA, NB, KNN, and DT are popular classi-
fiers. In contrast, RF, XGB, ANN, GB, and SVC (also known
as SVM) are state-of-the-art classifiers, which, in general,
provide outperforming accuracy in many classification prob-
lems, such as COVID-19 patients classification. All the clas-
sifiers except LDA and QLDA have some hyperparameters,
which improve classification accuracy. Note that the variants
of LDA and QLDA, such as Regularized LDA, Reduced-rank
LDA have hyperparameters; however, we have not used the
variant of LDA and QLDA. The intention of adding these
two classifiers is that they are straightforward and easy to
construct. However, due to linear classifier, these two classi-
fiers do not provide excellent accuracy. We have used them to
show how the complex algorithm with hyperparameters can
outperform the linear classifiers, such as LDA and QLDA.
And these hyperparameters have been optimized to solve our
proposed optimization problem by proposing the BO-based
framework.

C. REQUIREMENT OF OPTIMIZATION

As mentioned above, all the classifiers except LDA and
QLDA have several hyperparameters that control the clas-
sification performance. A short description of the hyperpa-
rameters and their role in the proposed BOMLA detector is
given in the following paragraph. Note that only important
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Figure 1: The violin plot representation of the entire dataset.

Figure 2: Flowchart of the diagnosis of asthma and the use of spirometry.
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Figure 3: The overall workflow of the study.

hyperparameters among several controllable parameters have
been considered to tune by the BOMLA detector.

To commence, two hyperparameters have been tuned
while using RBF-SVC in the proposed framework: gamma
(γ) is the coefficient for RBF kernel and Cost (C) is the
regularization parameter. The RF and DT are tree-based
classifiers. In the case of RF, four hyperparameters have
been used: criterion is tree-specific, which is used to find
the quality of the split, max_depth represents the maximum
number of levels, max_features represent the maximum num-
ber of features used to find the best split, and n_estimators
specify the number of trees. The important hyperparameters
of DT are criterion, max_depth, max_features. Furthermore,
GBC and XGB are ensemble-based classification techniques.
In the case of GBC, four important hyperparameters have
been used: learning_rate is used to shrink the contribution
of each tree, loss refers to deviance (logistic regression),
n_estimators are the total boosting stages, max_depth repre-
sents the maximum depth of the estimators, and max_features
refer to the total features to be used for classification. There
are seven important hyperparameters of XGB have been
optimized using BOMLA, and they are: n_estimators define
the total boosting stages, max_depth represents the maximum
depth of the estimators, learning_rate is used to shrink the
contribution of each tree, Gamma refers to the minimum
loss to further split of the leaf, the minimum sum of in-
stance weight is denoted as min_child_weight, subsampling
of columns is marked as colsample_by_tree, and n_jobs
represent the number of parallel threads. Furthermore, in
ANN algorithm using MLP (Multilayer Perceptron), the neu-
rons in the ith hidden layer transforms the weighted values
to the next layer, solver, such as Stochastic Gradient De-
scent (SGD), ADAM, L-BFGS (Limited-memory Broyden-
Fletcher-Goldfarb-Shanno) algorithm is used to update the
gradient of the lost function, alpha is the regularization term,
and the learning_rate is used to schedule the weight updates.

Besides, one hyperparameter has been tuned while using
Naive Bayes (Alpha) and KNN (number_of_neighbors) clas-
sifiers. The optimal values of the hyperparameter mentioned
above can improve the classification performance, e.g., accu-
racy (ACC), error, specificity (SP), sensitivity (SE), and these
values are mainly depending on the classification data and
classification problem. The general framework of the pro-
posed BOMLA detector, comprised of the hyperparameters
mentioned above, can be written as:

argmin
p∈P

J(Clf(P );P ) (1)

where p ∈ P represents the hyperparameters of the clas-
sifiers, such as p1, p2, p3, ...pn ∈ P , and Clf characterizes
the machine learning classifiers, e.g., GBC, RF, XGB, etc.
The Eq. (1) can be described as the minimization of the cost
function J(.) by selecting the proper value of P . For an
imbalanced dataset, e.g., the dataset used in this study, the
main goal is to maximize recall (=sensitivity) without sacri-
ficing PPV (=precision) [31]. The F1Score takes both of these
measures into account and weights equally as F1Score is the
harmonic mean of recall and PPV; see Eq. (10). As our pro-
posed BOMLA works on the minimization problem, we have
used the average of K = 10 -fold cross-validation F1Score
loss (F1lossCV ) calculated from the training dataset as the
cost function, J(.) in this study, which can be expressed as:

F1lossCV =
1

K

K∑
k=1

(1− F1Scorek(Clf(P ))) (2)

In the next section, we will discuss the BO technique, on
which the BOMLA detector is built up [32].

D. BAYESIAN OPTIMIZATION
In general, the BO is a global optimization technique superior
to grid search, manual search, exhaustive search, and random
research [33]. In this study, we have used F1lossCV as
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the cost function, which is time-consuming. In that case,
BO is a suitable technique rather than other meta-heuristic
algorithms, such as Harris Hawks optimization [34], slime
mould optimization [35]. Considering these rationales, we
have used the BO technique for the proposed BOMLA detec-
tor in this study. The advantage of BO is that it can memorize
the previous evaluation and tune the hyperparameter in the
probabilistic gaussian fashion. Our proposed framework has
used the Hyperparameter Optimization toolbox (in short, Hy-
perOpt) developed by Bergstra et al. [36]. The fundamental
steps of adapting HyperOpt in the BOMLA detector are as
follows:

• Cost function minimization,
• Search Space,
• Iterations numbers and
• The search algorithm to use.

A brief explanation of the steps, as mentioned above, is
added below:

1) Step-1: Define a Cost Function

Hyperopt is a convenient open-source Python library to min-
imize the objective function. As mentioned earlier, the mean
of the 10-fold cross-validation F1Score loss, F1lossCV cal-
culated from the training dataset, is utilized as the cost
function. To illustrate, in the case of XGB, seven important
hyperparameters have been optimized using BO. The detail
of the hyperparameters has already been discussed in Section
II-C. The BO algorithm selects the optimal value of these
seven XGB hyperparameters for which the cost function
J(XGB; (XGB Hyperparameters)) provides the mini-
mum value.

2) Step-2: Search Space

Hyperopt is allowed to search over the configuration space,
and in this step, both the upper limit and the lower limits of
the hyperparameter should be predefined (for instance, [0, 1]).
In this paper, we have used several classifiers, and the upper
limit and the lower limit have been defined based on our
previous experience.

3) Step-3 and 4: Number of iteration and Choose a Search
Algorithm

The BO, generally, explores the appropriate set of parameters
using the previously gained information. In this algorithm, a
pair of variants are considered: the first relies on the Gaussian
process and another on the Tree Parzen Estimator (TPE). In
our research, the TPE algorithm is used by the HyperOpt
package to accomplish the optimization process (choosing
a search algorithm). The search algorithms are treated as
global functions, having extra keyword arguments to control
their operation and iterate 50 times. The step-wise process of
hyperparameter optimization is provided in Appendix B.

E. STATISTICAL EVALUATION OF CLASSIFICATION
MEASURES
The performance of all the classifiers are measured by dif-
ferent measurement factors, such as ACC, SE, SP, confusion
matrix, ANOVA, ROC curve, recall vs decision boundary,
and the 10-fold cross-validation.

1) Confusion Matrix
The Confusion matrix or error matrix is one of the most
useful techniques [37], which has been used to visualize
the classifiers’ overall performance [38]. The confusion ma-
trix comprises two rows and two columns representing the
number of false-negative, false-positive, true positive, true
negative, which can be shortly denoted as FN, FP, TP, TN.
The common as well as robust measures for classification,
calculated from the confusion matrix, which can be expressed
as follows [equations (3) to (11)]:

ACC(%) =
TP + TN

TP + FP + FN + TN
× 100% (3)

Error : E(%) = (1−ACC)× 100% (4)

Sensitivity : SE(%) =
TP

TP + FN
× 100% (5)

Specificity : SP (%) =
TN

TN + FP
× 100% (6)

PPV (%) =
TP

TP + FP
× 100% (7)

NPV (%) =
TN

FN + TN
× 100% (8)

MCC(%)=

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

× 100%

(9)

F1_score(%) =
2(PPV × SE)

PPV + SE
× 100% (10)

Here, PPV and NPV represent Positive Predictive Value (also
called Precision) and Negative Predictive Value, respectively.
We have also added the Kappa index to differentiate between
observed accuracy and expected accuracy, and it is defined
as:

κ =
po − pe
1− pe

= 1− 1− po
1− pe

(11)

where po and pe denote the observed agreement and the ex-
pected agreement, respectively. Another worth-noting point
is that a higher value of ACC, F1_score, SE, MCC, SP, and
Kappa index, and the lower value of error indicate a better
model.
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2) Box-plot and Analysis of Variance (ANOVA)
Box plot is a graphical delineation of groups of numerical
data according to its quartiles (or percentiles), enabling us to
get the intuition of our data better [39] through summarizing
five numbers: maximum, third quartile, median, first quartile
and minimum. The median value divides the box into two
parts, where the extreme lines represent the highest and the
lowest value, excluding outliers.

ANOVA is conceptually the most straightforward tech-
nique to determine statistical differences between the means
of multiple datasets. The procedure of ANOVA includes
estimating the effects of various experimental factors on
the experimental outcomes and how these factors interact
with each other. Afterward, the significance of the outcomes
and their effects is determined, and the F-test is used in
measurements that are distributed with equal variance for
various experimental conditions [40].

3) ROC and AUC Value
The Receiver Operating Characteristic (ROC) curve is a
graphical representation of the true positive rate (TPR) and
false-positive rate (FPR) at different threshold settings. In this
study, the ROC is considered to ascertain different classifiers’
performance under different threshold values. It also repre-
sents the relative tradeoffs between asthma and non-asthma
classes. Moreover, the Area Under ROC curve (AUC), a
metric to ascertain the accuracy, is calculated as the area
bounded by the ROC curve [41]. The higher value of AUC
indicates a better classification model.

4) Recall rate Versus decision boundary
For asthma prediction, the recall rate can be interpreted as the
number of asthma patients identified over the dataset. Recall
rate is the function of the decision boundary. In this study,
the decision threshold of 0.5 has been used to give equal
emphasis on Asthma-yes and Asthma-no classes.

5) The 10-fold cross-validation
Cross-validation (CV) is used to generalize a model and test
the whole dataset [42]. There are several CV techniques, such
as K-fold, five-times two folds etc. In this study, 10-fold CV
has been used to partition the total dataset into ten equal
subsets. Each time one fold is used to test while the other
nine folds are used in the training phase to build a model,
and this is repeated ten times to test the entire dataset. After
that, we have used the ANOVA test on each fold of the 10-
fold dataset. Note that we have used the same index for each
classifier for a fair justification in the ANOVA test.

6) Feature importance and cumulative feature importance
There could be several features in the original feature set with
zero importance (or near to zero due to rounding). We can
get rid of these unimportant features without impacting the
overall performance of the classifier. The negligible features
can be erased by feature importance, and in this study, we

have presented a feature importance graph on which the X-
axis represents the features, and the Y-axis represents the
importance of the features. On the other hand, the cumulative
feature importance is a graph that shows the contribution of
each feature to the overall importance or overall accuracy.
In this way, we can select distinguishable features that are
much lower than the primitive feature set, and it saves the
overall cost of training time and affords related to obtaining
features. To determine important features, the gain is used
for the optimal node split during training in the tree-based
classifiers such as RF, XGB, and GBC by Eq. (12) [43]:
gain =

1

2

[ (∑
i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2∑
i∈IR hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

]
− γ

(12)
where gi, hi, IL, IR, λ and γ represent the first-order gra-

dient, second-order gradient, left nodes and right nodes after
segmentation, penalty parameter and regularization param-
eter, respectively. I = IL U IR. The gain symbolizes the
information gain of each tree split. After that, the average
gain is calculated from the ratio of gain of all the trees to
the total number of splits for each feature. The final feature
importance score is calculated, generally in descending order
from the average gain.

F. ENSEMBLING (HARD VOTING AND SOFT VOTING)
The combination of different optimized classifiers is often
used to improve the classification through the ensemble
technique. In the ensemble technique, both hard voting and
soft voting schemes are used. To briefly discuss, hard voting
is the simplest version of majority voting, where the number
of each class label is enumerated and assigned to a class that
is voted by a majority of the classifiers [44]. If Cj represents
each classifier and ŷ be the class label, then the hard voting
is accomplished using the following formula:

ŷ = mode{c1(x), c2(x), c3(x).......cm(x)} (13)

For instance, if the class labels are counted as 0, 1, 1, 0, 1,
it is mostly voted because 1 occurs in most class labels.
ŷ = mode{0, 1, 1, 0, 1} = 1. One drawback of the normal
hard voting ensemble is that it can only be applied for
binary classification. In this situation, the weighted majority
vote can be alternatively chosen [45]. If wj be a weight
with classifier Cj , then the weighted majority vote can be
computed using the following formula.

ŷ = argmax
i

m∑
j=1

wjχA (Cj (x) = i) (14)

where χA represents the characteristic function, and A is the
set of class labels.

On the other hand, in soft voting, the predicted prob-
abilities, for example, scores, are summed for each class
label and predict the class having the largest probability. If
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p is the predicted probability of the classifier and w is the
corresponding weight, then the class label will be defined
using the following equation [45].

ŷ = argmax
i

m∑
j=1

wjpij (15)

III. FINDINGS
In this paper, both the ADASYN-balanced dataset and pri-
mary test data have been used to evaluate the proposed
BOMLA detector. The existing imbalance between the ma-
jority and minority classes has been erased by generat-
ing adequate simulated data. The effect of ADASYN has
also been shown in Figure 4 under Section III-A. Again,
in Section III-B under the actual test data, the balanced
ADASYN model was examined. To determine the signifi-
cance of statistical evaluation of cross-validation, ANOVA
and Box-plot appeared in Section III-C, followed by the
decision boundary vs recall rate curve. The bootstrapping and
feature importance have been discussed after that. Finally,
a comparative study regarding the performance of BOMLA
with other search techniques has been presented. Table 1
shows the optimal value of hyperparameters calculated using
the BOMLA detector and used in this study.

Table 1: The best performing classifiers with tuned hyperpa-
rameters.

Classifiers Best Hyperparameters using BOMLA
KNN n_neighbors = 5
NB alpha = 1.7024

DT
max_depth = 11
max_features = 4
criterion = ‘gini’

RF

max_depth = 20
max_features = 5
n_estimators = 29
criterion = ‘gini’

XGB

n_estimators = 250
learning_rate = 0.05
n_jobs = 4
max_depth = 14
gamma = 0.1048
colsample_by_tree = 0.9810

GBC

loss = ‘exponential’
learning_rate = 0.7136
max_features = 1
n_estimators = 9
max_depth = 14

ANN

neurons_in_hidden_layer = 42
activation = “ReLU" (Rectified Linear Unit)
solver = “L-BFGS"
alpha = 0.1731
learning_rate = “constant"

SVC

C = 2.6033
gamma = 5.5778
kernel = ‘RBF’ (Radial Basis Function)
probability = True

A. OPTIMIZATION RESULTS WITH ADASYN AND
WITHOUT ADASYN
The entire dataset, balanced by ADASYN, has been split
to get training, validation and test set. Two-third of the

Figure 4: ROC curve for Asthma with ADASYN.

total data is used for training and validation, and one-third
of the whole dataset is used for the test. Afterwards, our
proposed BOMLA algorithm has been applied to ten state-of-
the-art classifiers. The proposed BOMLA detector has been
evaluated using several metrics, followed by delineating the
effect of ADASYN in this subsection.

To initiate, Table 2 represents the effect of ADASYN,
where the upper portion provides the result of the ADASYN-
balanced asthma dataset by utilizing equations (3) to (11).
Notably, SVC yields the utmost ACC, where GBC occupies
the second-highest position in this case. Conversely, LDA
and NB show the lowermost ACC among multiple classifiers
Table 2. It is also noticeable that the SVC occupies the
highest position in the case of AUC calculation, whereas RF,
XGB, and GBC are very close to borderline [Figure 4].

The effect of ADASYN has also been clarified by evalu-
ating the optimized model using original test data exhibited
in the lower portion of Table 2. Note that without using
ADASYN, the unbalanced dataset affects the classification
performance. It is evidenced that XGB provides us with the
highest ACC of 88.37%; however, its AUC is just below
50% [Figure 5]. The higher ACC and lower AUC reveal
that the imbalanced model can show higher ACC but cannot
accurately classify asthma-yes and asthma-no classes. Be-
sides, due to the classification model’s imbalanced nature,
its TN = 0, meaning that the model cannot detect any true
negative class, and hence its specificity or true negative rate
becomes zero. It degrades the performance in the AUC and
Kappa index, consequently loses its reliability. These results
indicate that the ADASYN algorithm’s usefulness to balance
the model as a balanced model can provide better results.
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Table 2: Asthma Classification (%).

With ADASYN
Classification Algorithms ACC AUC MCC Error SE F1_score FPR Kappa PPV SP

LDA 54.35 58.40 8.79 45.65 46.96 50.70 38.26 8.70 55.10 61.74
QLDA 61.30 77.80 34.57 38.70 23.48 37.76 0.87 22.61 96.43 99.13
KNN 74.35 84.80 56.07 25.65 49.57 65.90 0.87 48.70 98.28 99.13
NB 57.39 56.20 14.89 42.61 51.30 54.63 36.52 14.78 58.42 63.48
DT 76.96 76.90 54.38 23.04 70.43 75.35 16.52 53.91 81.00 83.48
RF 90.43 97.30 81.48 9.57 84.35 89.81 3.48 80.87 96.04 96.52

XGB 90.00 96.80 80.69 10.00 83.48 89.30 3.48 80.00 96.00 96.52
GBC 92.61 97.00 85.38 7.39 89.57 92.38 4.35 85.22 95.37 95.65
ANN 88.26 91.30 77.37 11.74 80.87 87.32 4.35 76.52 94.90 95.65
SVC 94.35 99.20 88.97 5.65 98.26 94.56 9.57 88.70 91.13 90.43

Without ADASYN
LDA 87.60 55.70 3.21 12.40 99.12 93.39 100.00 1.45 88.28 0.00

QLDA 46.51 54.30 0.68 53.49 45.61 60.12 46.67 0.40 88.14 53.33
KNN 87.60 46.50 3.21 12.40 99.12 93.39 100.00 1.45 88.28 0.00
NB 87.60 51.80 3.21 12.40 99.12 93.39 100.00 1.45 88.28 0.00
DT 82.95 52.40 6.24 17.05 92.11 90.52 86.67 6.15 88.98 13.33
RF 85.27 49.80 6.49 14.73 96.49 92.05 100.00 4.90 88.00 0.00

XGB 88.37 49.10 15.02 11.63 99.12 93.78 93.33 9.28 88.98 6.67
GBC 82.17 42.80 10.67 17.83 90.35 89.96 80.00 10.66 89.57 20.00
ANN 82.95 61.30 8.69 17.05 93.86 90.68 100.00 7.40 87.70 0.00
SVC 87.60 60.60 3.21 12.40 99.12 93.39 100.00 1.45 88.28 0.00

Figure 5: ROC curve for Asthma excluding ADASYN (i.e.,
using the original imbalanced dataset).

B. EFFECT OF BALANCED MODEL ON ORIGINAL TEST
DATASET
In the previous subsection, we have used the ADASYN
algorithm to balance the dataset, and we have seen how the
balanced model helps improve classification performance.
So, what is the balanced model’s effect on enhancing the
classification task (i) when no synthetic data is used and (ii)
on the original test data only?

For the sake of providing the answer to the given question,

we have again used Bayesian-optimized models to justify its
performance on the ADASYN-balanced dataset. After that,
the ACC, SE, SP, and ROC have been enumerated, as shown
in Table 3 and Figure 6, which provide that SVC, again,
grabbed the topmost position in terms of every classification
metric. The worth-noting point should be that both the ACC
and AUC obtained from RF, XGB, GBC, and KNN are
slightly lower than SVC.

Interestingly, the results presented here represent the tra-
jectory of the upper portion of Table 2. Therefore, to culmi-
nate, the ADASYN-balanced and Bayesian-optimized model
can also help to classify the original test data only. Further-
more, the above argument can also be evidenced in Figure 7,
where we have presented the high-performing confusion ma-
trix using SVC on both Asthma-yes and Asthma-no classes.

C. 10-FOLD CROSS-VALIDATION
This paper has applied 10-fold cross-validation to test the
whole dataset [Figure 8]. The ACC of each fold has been
presented in Table 4, from where it is evidenced that LDA
yields the most petite average ACC, whereas SVC touched
the mountain point. We have also tested the statistical sig-
nificance using ANOVA, which provided the p-value as
8.75034×10−33 for the Asthma dataset with ADASYN, and
this value is statistically significant. Besides, we have added
an interactive plot of the multi-comparison test [Figure 9].

The recall rate is calculated using a certain threshold. For
instance, in Figure 10, representing the decision boundary
vs recall rate curve, and 0.5 has been taken as the decision
boundary threshold (T) for Asthma-yes class. The “Asthma-
yes” with the ADASYN dataset found QLDA having the
best results with a 0.99 Recall rate, which means that 99%
times QLDA can truly classify the “Asthma-yes” class. In
comparison, LDA showed the worst recall rate (around 0.59).
On the other hand, for the “Asthma-no” class (Figure 10),
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Table 3: Asthma classification (%) tested on original data.

Classification Algorithms ACC AUC MCC Error SE F1_score FPR Kappa PPV SP
LDA 53.49 48.80 6.82 46.51 56.14 68.09 66.67 4.65 86.49 33.33

QLDA 34.11 67.00 19.53 65.89 25.44 40.56 0.00 7.35 100.00 100.00
KNN 66.67 93.80 40.13 33.33 62.28 76.76 0.00 27.75 100.00 100.00
NB 50.39 52.70 5.85 49.61 49.12 63.64 40.00 3.64 90.32 60.00
DT 86.82 91.20 57.16 13.18 86.84 92.09 13.33 53.41 98.02 86.67
RF 93.02 98.70 75.87 6.98 92.11 95.89 0.00 73.07 100.00 100.00

XGB 93.02 98.40 73.57 6.98 92.98 95.93 6.67 71.77 99.07 93.33
GBC 97.67 99.60 90.08 2.33 97.37 98.67 0.00 89.59 100.00 100.00
ANN 94.57 97.70 80.00 5.43 93.86 96.83 0.00 78.05 100.00 100.00
SVC 100.00 100.00 100.00 0.00 100.00 100.00 0.00 100.00 100.00 100.00

Table 4: 10-fold cross-validation Accuracy.

LDA QLDA KNN NB DT RF XGB GBC ANN SVC
Fold-1 60.00 65.71 85.71 58.57 77.14 90.00 91.43 82.86 85.71 97.14
Fold-2 47.14 52.86 80.00 41.43 78.57 80.00 82.86 81.43 90.00 88.57
Fold-3 44.29 54.29 71.43 41.43 84.29 88.57 85.71 85.71 85.71 87.14
Fold-4 55.71 51.43 72.86 58.57 80.00 82.86 81.43 80.00 84.29 81.43
Fold-5 44.29 58.57 82.86 54.29 87.14 88.57 94.29 91.43 91.43 84.29
Fold-6 54.29 60.00 80.00 67.14 80.00 97.14 94.29 90.00 95.71 95.71
Fold-7 65.22 57.97 81.16 78.26 79.71 91.30 86.96 79.71 81.16 86.96
Fold-8 47.83 59.42 71.01 46.38 75.36 86.96 84.06 86.96 78.26 91.30
Fold-9 49.28 63.77 76.81 63.77 91.30 98.55 95.65 95.65 88.41 95.65
Fold-10 62.32 60.87 78.26 57.97 85.51 91.30 92.75 88.41 88.41 92.75
Average 53.04 58.49 78.01 56.78 81.90 89.53 88.94 86.22 86.91 90.10

Figure 6: ROC Analysis when the BOMLA detector is tested
on original test data. Note that a balanced model using
ADASYN has only been used during model building.

SVC displayed the highest recall rate (almost 0.97), which
means that 97% of the time we classify a non-asthma patient
that truly non-asthma, whilst QLDA displayed the worst
recall rate (approximately 0.23).

D. BOOTSTRAPPING OF THE ROC
In order to test the model’s biasness and test that the training
phase is extremely biased to the training dataset or not. We
have applied the bootstrapping N_boot = 100 on the SVC
model and found that the mean AUC of 98% reveals that the
training phase is not biased to the training dataset [Figure
11]. We have also calculated the 90% confidence interval
(CI). The most crucial point is the CI of 90% is very close
to the upper limit and lower limit of the mean AUC, which is
another indication that the training phase is rarely biased in
the training dataset.

E. EFFECT OF ENSEMBLING
The best performing classifiers, such as SVC, RF, XGB,
and GBC, have been combined through weighted hard vot-
ing and soft voting approach to enhance the classification
performance. For weighted hard voting, with the weight of
[5, 1, 1, 1] has been used for SVC, RF, XGB, GBC; and for
soft voting, with the weight of [5, 1, 1, 2] has been used for
SVC, RF, XGB, GBC, respectively. In both voting schemes,
it can be seen that we have added a higher weight of 5 to
SVC to emphasize the importance of SVC, as it individually
provides the best performance. Table 5 expresses a compar-
ison among the performance obtained from SVC, hard vot-
ing, and soft voting techniques while applied on ADASYN-
balanced dataset, unbalanced dataset, and the original test
data. It is evidenced that the ACC of weighted soft voting far
outweighs both weighted hard voting and the proposed SVC
technique. Note that the classification performance of SVC is
added from Table 2 and Table 3 to show how the ensemble
technique enhances the classification performance compared
to the best individual performance using SVC.
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Table 5: Effect of ensembling.

With ADASYN (%)
Classification Techniques ACC MCC Error SE F1_score FPR Kappa PPV SP
SVC [from Table 2] 94.35 88.97 5.65 98.26 94.56 9.57 88.70 91.13 90.43
Weighted Hard Voting 94.78 89.58 5.22 93.91 94.74 4.35 89.57 95.58 95.65
Weighted Soft Voting 96.52 93.04 3.48 96.52 96.52 3.48 93.04 96.52 96.52

Without ADASYN (%)
SVC [from Table 2] 87.60 3.21 12.40 99.12 93.39 100.00 1.45 88.28 0.00
Weighted Hard Voting 89.15 24.37 10.85 100.00 94.21 93.33 11.21 89.06 6.67
Weighted Soft Voting 89.92 35.36 10.08 99.12 94.56 80.00 28.06 90.40 20.00

With the original test data (%)
SVC [from Table 3] 100 100 0 100 100 0 100 100 100
Weighted Hard Voting 100 100 0 100 100 0 100 100 100
Weighted Soft Voting 100 100 0 100 100 0 100 100 100

Figure 12 visualizes that the AUC of the SVC is 99.2%,
while the weighted soft voting provided us with a better AUC
of 99.6%. Therefore, the ensemble technique significantly
magnifies the classification performance compared to the
traditional way of using classification algorithms.

F. FEATURES IMPORTANCE AND CUMULATIVE
FEATURE IMPORTANCE
During the visualization of the feature importance, the most
influential variables are categorized in decreasing manner (a
feature from higher importance to lower importance), which
means that the feature having the highest important value
will be presented first. Other features are presented one by
one, following their importance. The variables having higher
importance convey higher predictive power. To provide an
instance, Figure 13(a) showed the feature importance, where
it has been received that ‘FEV1_by_FVC’ got the highest
importance, ‘FVC_percent’ was second-highest, and ‘age’,
‘PULSE (P)’ were also noteworthy features. Besides, Figure
13(b) showed the cumulative feature importance for the
Asthma dataset using the RF algorithm, where it provided
nearly 60% accuracy after adding the five most important
features, and 90% importance retains, where all the features
were added cumulatively. As the same result found from
Figure 13(c) and Figure 13(d).

G. COMPARISON AMONG DIFFERENT SEARCH
TECHNIQUES
The BO technique has been implemented in our proposed
framework. Therefore, to illustrate the proposed method’s su-
periority, it is obvious to add a comparative delineation of the
BO algorithm with other hyperparameter search algorithms,
such as grid and random search. In the grid search algorithm,
the hyperparameters are evaluated on the search grid defined
by the users and assessed on each grid. Whereas in the
random search optimization algorithm, the hyperparameters
are randomly selected on the search boundaries. In Table 6,
we have compared our BO algorithm with a grid search and
random search technique. We have evaluated our algorithm
with a core i9 computer, which has 64GB RAM. It has been
evidenced that the SVC model performed better, previously
shown; therefore, this model has been used for the compar-

ison task. To compare our proposed BO algorithm, we have
used four performance indices: parameter evaluated, the time
required to complete the task, CV score, and test score. It can
be seen from Table 6 that BO takes nearly 58 seconds, which
is much lower than grid search, but six times greater than the
random search. Despite the above time consumption of the
BO technique, its CV score and test score are higher than
that of both grid and random search. Therefore, comparing
all these aspects, it can be said that BO provides us with
better results in terms of time consumption, CV score, and
test score.

The graphical representation [Figure 14] helps us compare
different search techniques. It is evidenced that the initial
ACC of the BO and random search technique were 60% and
75%, respectively. Following a couple of iterations, the ACC
of both techniques showed a steep increase. Following the
fourth iteration, the ACC of random search (82%) showed an
unflattering condition, which was almost unchanged until 46
iterations. By way of comparison, the proposed BO technique
steeply increases, grabbing the approximate ACC of 83%,
which was almost static before completing 36 iterations.
Afterwards, the ACC changed its pattern a little bit, and the
most eye-catching point is that the ACC hits the mountain
point before accomplishing 50 iterations.

IV. DISCUSSION
In this study, a new machine learning framework has
been proposed, applying different state-of-the-art classifiers,
called BOMLA, in order to detect asthma patients from their
clinical and demographic data. The proposed algorithm has
been evaluated with numerous classification metrics, namely
ACC, SE, SP, Kappa index, MCC, etc. Besides, 10-fold
CV, ANOVA, and recall vs decision boundary have been
applied to analyze the proposed model. In the end, the most
dominating features have been traced through the discussion
of feature importance and cumulative feature importance.

It can be seen that the tree-based classifiers, such as XGB,
RF, and GBC, provide about 90% ACC, while SVC delivers
the highest performance in terms of ACC, SE, AUC, etc. [see
Table 2]. Moreover, the ADASYN-balanced SVC model also
provided the foremost ACC in the ANOVA test [Table 4]
when applied to the original test data. It is conspicuous that
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Table 6: Comparison with other hyperparameter Optimization techniques.

Optimization Algorithms Number of evaluated parameters Total time to complete (sec)* CV Accuracy Test Accuracy
Grid Search 6561 571.49 0.80 0.86
Random Search 50 9.01 0.82 0.83
The BO 50 57.94 0.86 0.91
* In our proposed BO and Random search algorithm, the time required to calculate 50 iterations is presented. In Grid search, the time
required to evaluate all the parameters has been taken into account.
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Figure 7: Confusion matrix evaluated in Asthma dataset with
ADASYN (Figure 7a), without ADASYN, i.e., test data only
(Figure 7b). The first two diagonal cells of the confusion
matrix represent the total number of correctly classified Non-
Asthma and Asthma patients. In contrast, the third diagonal
cell shows the overall accuracy and misclassification rate (in
%). The third row and third column represent the overall
results in row-wise and column-wise, respectively.

Figure 8: K(k=10)-Fold Cross-Validation.

the ADASYN-balanced and optimized SVC could be the best
choice in the BOMLA detector framework to detect asthma.

As the dataset is not linearly separable (see the violin plot
shown in Figure 1), the kernel-trick used in the RBF-SVC
helps separate linearly in a high-dimensional space. Further-
more, by selecting a proper value of cost (C) using BO, an
optimal margin between asthma-yes and asthma-no class is
achieved. The optimal value ofC controls the influence of the
misclassification rate and hence, improves the classification
accuracy. On the other hand, the RBF kernel’s optimal γ
parameter using BO helps control the distance of influence of
a single training example and shapes the decision boundary.
These two factors help improve classification performance.

Regarding the ADASYN algorithm, it can be charac-
terized that ADASYN can adaptively generate a sufficient
amount of synthetic data to balance the model and improve
the classification performance [30] (lower part of Table 2).
Concerning optimization, the BO has been applied in the
BOMLA framework, which outperforms the commonly-used
machine learning hyperparameter optimization technique,
namely random search and grid search. The recent study
shows no statistically significant difference using BO, and
other meta-heuristic optimization algorithms, such as Harris
Hawk Optimization [34]. Furthermore, the meta-heuristic al-
gorithm needs a longer time to evaluate the objective function
and finish the program. Considering this, the BO is adapted
to the BOMLA detector.

From the above discussion, we can write some of the
salient features of the BOMLA detector:
• the proposed BOMLA detector can also be applied

to detect the COVID-19 patients, diabetes prediction,
hypertension patient classification etc.

• Hyperparameters can easily be tuned by using the BO
algorithm.

• The developed DSS can be helpful for the end-users and
clinical staff.

• Although ten state-of-the-art classifiers have been used
in the BOMLA detector, some other recent classifiers,
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Figure 9: Box-plot for asthma dataset with ADASYN (Figure
9a) and multi-comparison test (Figure 9b). Notably, the right
figure is a GUI tool, which helps us ascertain any classifier’s
statistical significance. In this diagram, the importance of
SVC has been analyzed only. Similarly, the significance of
other classifiers can be tested.

such as Light Gradient Boosting Machine (LightGBM),
CatBoost can also be used for the BOMLA framework.

While describing the salient features, we can also write
some of the weaknesses of this manuscript. The dataset used
in this paper is small, which needs to be validated on a larger
dataset. This is relevant to the data collection.

A. COMPARATIVE STUDY WITH BENCHMARK
Our proposed algorithm has also been compared with other
studies. Here we briefly described some state-of-the-art algo-
rithms applied for asthma detection [Table 7]. To exemplify,
Chatzimichail et al. [46], Finkelstein and Jeong [47], and
Amaral et al. [48] used SVC, along with other well-known
classifiers, where ACC obtained from [46] and [47] were
95.54% and 80%, respectively. Chatzimichail et al. [46]
used the PCA (Principal Component Analysis) method and
least square SVC; however, they did not apply the original
features in their work. They have projected the features into
Principal Components and then used them in SVC. In that
case, they have lost the original features’ performance, which
is so much crucial in this context. In contrast, we have used
the original features and showed the feature importance and
how the important features cumulatively improve the perfor-
mance to explain the machine learning algorithm. Besides,
the ensemble result (e.g., ACC, SE) presented in our study
outperform the result of [46]. Furthermore, Xu et al. [49] and
Krautenbacher et al. [50] used RF, obtaining AUC of 66%
and 81% respectively. On top of that, Luo et al. [51] and Patel
et al. [52] developed their methods with a different Boosting
algorithm, obtained with the AUC values of 76.1% and 85%
respectively, while Brasier and Ju [55] and Kuo et al. [58]
reported 94.00% and 86.60%, respectively. Therefore, it can
be decided that in terms of AUC, ACC, SE, and SP, our
proposed method outperforms the conventional techniques.
It can also be noted that, SVC classifier wins in most of the
studies [47], [48], [56], [57], [59] including our proposed
BOMLA. So, it is noticeable that optimized SVC can detect
asthma patients more accurately than other classifiers.

B. DEVELOPMENT OF A DECISION SUPPORT SYSTEM
A DSS could be beneficial to support clinical staff for screen-
ing asthma patients from clinical data. The DSS is a graphical
representation of the decision to visualize the probable state
of an asthma patient. A possible outcome of asthma patient is
presented in Figure 15, in terms of the posterior probability
calculated from SVC. A probabilistic result is more intuitive
to the clinical staff and, therefore, used in this DSS. Note that
50 patients are used from the test database for illustration
purposes. The patient is sorted in ascending order so that
patients with “Asthma-no” labelled appear first, and then
patients with “Asthma-yes” appear.

In Figure 15, 0 represents a subject with Asthma-no,
whereas 1 represents a subject with Asthma-yes. The lower
figure portrays a probabilistic outcome of the subject affected
by Asthma, where the red line defines the threshold level.
When the probability exceeds this threshold level (0.5), the
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Figure 10: Decision boundary vs. recall rate curve for asthma class (Figure 10(a)) and non-asthma class (Figure 10(b)).

Table 7: Comparison with other studies.

Other studies Classification algorithms Dataset used Sample
size

Performance indices
ACC SE SP AUC

Chatzimichail et al. [46] PCA and Least square SVC Clinical data 148 95.54% 95.45% 95.59%
Finkelstein and Jeong [47] SVC Telemonitoring data 7001 80.00% 84.00% 80.00%
Amaral et al. [48] LBNC, SVC, KNN Forced oscillation data 150 >87.00% >94.00% >95.00%
Xu et al. [49] RF Clinical data 417 66.00%

Krautenbacher et al. [50] LASSO and stochastic gradient
boosting

Clinical and genomics
data 260 81.00%

Luo et al. [51] Multiboost with decision stumps Child asthma data 310 71.80% 73.80% 71.40% 76.10%

Patel et al. [52] DT, LASSO logistic regression, RF,
and gradient boosting machines Clinical data 29392 99.10% 14.60% 85.00%

Li et al. [53] Classification Tree Clinical data 310 94.00% 68.00%
Swern et al. [54] Post hoc analyses 2-5 years patients data 689 66.80% 85.80%

Brasier and Ju [55] Multivariate Adaptive Regression
Splines (MARS) Multidimensional data 84 90.00% 88.00% 73.00% 94.00%

Lanclus et al. [56] SVC Functional CT
imaging 62 80.65% 82.35%

Wu et al. [57] SVC Clinical data 346 81.00% 62.00% 87.00%
Kuo et al. [58] DT Clinical data 107 82.40% 86.60%
Wu et al. [59] SVC Clinical data 378 93.00%
Messinger et al. [60] ANN Clinical data 128 80.00%

Proposed SVC Clinical data 389 94.35% 98.26% 90.43% 99.20%
Soft voting ensembling 96.52% 96.52% 96.52% 99.60%

subject will be considered asthma-yes, whereas the probabil-
ity lower than 0.5 will be regarded as Asthma-no. In either
way, we can point out that the probability of 0.5 is the chance
that a person is affected by Asthma.

V. CONCLUSION

This study designs and optimizes a novel machine learning
framework named BOMLA detector to detect asthma pa-
tients. The entire research has been accomplished based on
the asthma dataset collected from Khulna, Bangladesh. The
BOMLA detector’s performance is examined and assessed in
different machine learning perspectives, such as using other
performance indices, e.g., ACC, SE, kappa index, MCC, etc.,

along with ROC analysis. The balanced model’s effect using
the ADASYN algorithm has also been presented and shown
outperforming than without a balanced model. The results
show that the BOMLA detector can detect asthma efficiently,
where the highest classification accuracy by using ADASYN
provided a value of 94.35%, which has been increased to
96.52% through ensemble technique. Thus, the proposed
BOMLA detector offers a low-cost and user-friendly tool for
the early detection and classification of asthma. A potential
application, i.e., a DSS developed from this study, could
benefit the clinical staff and end-users. It can help to build
a recommender system that can easily be integrated into the
mobile application. One of the limitations of this study is the
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Figure 11: Bootstrapping of ROC using SVC with 95%
confidence interval.

Figure 12: Effect of ensembling on classification perfor-
mance.

Algorithm-1: The steps of applying ADASYN to balance the dataset

Input: The original n-dimensional unbalanced Asthma Data
Output: Balanced dataset using ADASYN algorithm

1. If nr, nj denote the total number of minority class (Mr) and
majority class (Mj ), respectively, then calculate the degree of
imbalance using d = nr/nj , where d ∈ (0, 1]

2. If d < dj (dj is the preset threshold for maximum tolerated
imbalance)
a. Calculate the number of synthetic data to be generated

for Mr using: G = (nj − nr)β, where β ∈ [0, 1]
b. Determine K for KNN for each xi ∈Mr , and calculate

the ratio ri = ζi/K, i = 1, ...., nr . Here ζi denotes the
number of KNN example belongs to Mj

c. Calculate the synthetic data for each minority xi, using
gi = r̂i ×G, where r̂ denotes the density distribution
r̂ = ri/

∑
i ri and ri ∈ [0, 1]

d. Use loop from 1 to gi, and generate the synthetic data
using si = (xu − xi)× λ, where xu is the randomly
chosen minority data for K neighbors, and λ ∈ [0, 1]

Algorithm-2: Hyperparameter optimization using BOMLA detector.

Input: Classifiers with initial hyperparameters (P ), training dataset.
Output: Classifiers with optimal hyperparameters.

1. Set the cost function J(Clf(P )) that need to minimize.
a. Calculate the K = 10 fold F1lossCV from:

F1lossCV = 1
K

∑K
k=1 (1− F1Scorek(Clf(P )))

b. Assign F1lossCV as cost function i.e.,
J(Clf(P ))← F1lossCV .

2. Define search space for each hyperparameter p1, p2, p3, ....,
pn ∈ P by defining the lower bound and upper bound value
of P including categorical parameter(s) of the classifiers.

4. Using Tree-structured Parzen Estimators (TPE), search for
optimal P for which J(.) provides the best (lowest) value.
a. On each iteration, for every hyperparameter p1, p2, p3,

.., pn ∈ P , TPE divides the observation into two sets.
b. Calculate the first set of p i.e., l(p) for which J(Clf(p))

provides the best (lowest) value.
c. Calculate the second set of p i.e., g(p) for which

J(Clf(p)) provides the worst (highest) value.
d. Calculate the expected improvement EIp = l(p)/g(p).
e. Select p that maximizes the EIp.
f. Repeat Step 4.a to 4.e for each hyper-parameter, p and

store in the Trials.
g. Go to Step 2 for the next Trials.

5. Find the optimal hyperparameters from the best Trials and
then use these hyperparameters to build an optimal classifier.

limited number of subjects, and testing on a larger dataset
would be beneficial. However, our primary objective is to
show the possibility of detecting asthma with high accuracy
using the BOMLA detector. Finally, our findings suggest that
early detection of asthma using the BOMLA detector could
be employed for real-time asthma detection.

APPENDIX A
see Algorithm 1.

APPENDIX B
see Algorithm 2.
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Figure 13: (a) Feature importance and (b) Cumulative feature importance using RF, (c) Feature importance and (d) Cumulative
feature importance using XGB.

Figure 14: Cross-validation accuracy vs iteration curve for
random search and BO.
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Figure 15: Probabilistic output for the DSS using SVC.
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