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Abstract 
 

Objectives: To clarify the high variability in Covid-19 related deaths whose origin is unclear.  

Study Design: Modeling of available data 

Methods: We used six individual- and country-specific variables to predict the number of 
population standardized Covid-19 related deaths in 44 European countries using generalized 
linear models: Percent test-standardized number of SARS-CoV-2-cases, population size, life 
expectancy, severity of governmental responses, influenza-vaccination coverage and vitamin D 
status in the elderly.  

Results: We found that flu-vaccination coverage in the elderly was the most important 
predictor, together with test-standardized cases and vitamin D status explaining approximately 
47% of the variation in Covid-19 related deaths. Higher flu vaccination coverage and low 
vitamin D status were associated with more Covid-19 related deaths. Life-expectancy, 
population size and the severity of governments’ responses to the outbreak did not emerge as 
significant predictors in multivariable modeling. The latter variable even appeared to be 
completely negligible.  

Conclusion: Adequate vitamin D levels are important, while − contrary to current opinion − 
flu-vaccination in the elderly is a putative aggravating factor of Covid-19 related deaths. 

 

Keywords: SARS-Cov2, Europe, general linear model, lethality, flu vaccination, vitamin D, 
non-pharmaceutical interventions 

 

 

  



3 
 

Introduction 
Current public opinion seems to assume that a death following the infection with 

SARS-Corona-Virus 2 (CoV2) is largely due to this virus, because of its virulence. Untreated 
Covid-19 disease may lead to severe atypical pneumonia 1,2, a cytokine storm and other 
potentially lethal sequelae 3–5. Other potential factors, such as host factors or population factors, 
are not much considered in the scientific and political discourse. We know that initially mostly 
elderly patients with a mean age above 70 years have been severely affected 6,7. However, during 
the initial phase of the CoV2 outbreak, there was a wide variation across countries and regions. 
This variation is partially shrouded by the fact that most agencies and their dashboards 
propagate unstandardized figures of cases and deaths. A publication that estimated excess death 
rates in the US during the early time of the CoV2 pandemic as compared with the same 
months of previous years reveals a wide variation from -71,9 deaths per 100.000 inhabitants in 
North Dakota to 299,1 deaths per 100.000 inhabitants in New York City, with seven states 
actually exhibiting less excess mortality than in the previous comparison years, and 12 US states 
presenting with excess mortality figures below 10 per 100.000 inhabitants 8. The same is true 
for Europe: Miles and colleagues listed excess deaths of 21% for Spain, 20% for the UK, 18% 
for Italy down to 6% for Sweden, 3% for Portugal, -1% for Germany, -3% for Denmark and -
4% for Norway 9. 

Thus, there is clearly a need to identify other drivers of mortality than the infection 
itself, or rather, to understand what might have mediated the course from infection to death 
during the initial phase of the outbreak. Are there population variables, public health variables, 
or host factors that can be identified that make this variation understandable? This was the 
guiding question of this modeling study. 

Materials & Methods 
The outcome of interest was the number of Covid-19 related deaths per 1.000.000 

inhabitants up until 30th August 2020. The following variables were used as putative predictors 
of this dependent variable which we subsequently refer to as “y” (Supplementary Table 1): (i) 
the influenza vaccination rate in the elderly; (ii) the test-standardized number of cases (in %), 
calculated as the number of cases in a country divided by the number of tests in that country × 
100; (iii) life expectancy (in years); (iv) the population size; (v) mean GRSI between 15th 
February and 15th August 2020; (vi) vitamin D status. The data sources are given in 
Supplementary Data File 1. 

Because the distribution of y followed a gamma distribution well (Figure 1), we 
calculated generalized linear models (GLMs) on a gamma-distributed variable with a log-link 
function. Since a log-transformation produced an outcome variable with an approximately 
normal distribution (Shapiro-Wilk normality test p=0.635, Figure 1), we also calculated 
standard multiple linear regression models (LRMs) on log(y). 

The final sample thus included 44 European countries of which 41 had known flu 
vaccination rates, 36 had known flu vaccination rates and GRSI values, and 31 had known flu 
vaccination rates, GRSI values and vitamin D status estimates. To utilize as many cases as 
possible for multivariable modeling 10 missing covariates were imputed with multiple 
imputation by chained equations using the R package ‘mice’ 11. A total of 100 imputation data 
sets were created. Each was used to fit the regression models, and the model parameters were 
averaged over all 100 model fits. 
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Different regression models were pre-specified according to plausible scientific 
hypothetical explanations for Covid-19 related deaths and compared using the bias-corrected 
Akaike Information criterion 12. As the simplest hypothesis, it was assumed that the number of 
standardized deaths could be predicted by the number of test-standardized cases: 

y ~ test-standardized cases (1) 

The second most-plausible simple hypothesis was that in addition to the number of 
cases, the severity of governmental responses would allow better predictions of the outcome: 

y ~ test-standardized cases + GRSI (2) 

In a third model, we related the outcome to population-specific predictors in addition 
to case numbers: 

y ~ test-standardized cases + population size + life expectancy (3) 

Alternatively, it was assumed that in addition to case numbers, the outcome mainly 
depends on the two individual factors flu vaccination and vitamin D status: 

y ~ test-standardized cases + flu vaccination rate + vitamin D status (4) 

Finally, the fifth hypothesis assumes that using all possible predictors is important to 
explain the outcome: 

  y ~ test-standardized cases + flu vaccination rate + vitamin D status + population size + 
life expectancy + GRSI (5) 

The best model was identified as the one with the smallest AICc, and all other models 
were compared to the best model by computing AICc differences △�, probabilities �� of model � 
being the best model (in the Kullback-Leibler information sense) and evidence ratios ��,� = ��/�� 

12. 

Model adequacy was measured by R2 , the proportion of variance explained by the predictors; 
for the GLMs a Kullback-Leibler divergence-based R2 measure was used 13. 

All analyses were calculated with R version 4.0.2, and statistical significance was defined 
as p-values <0.01. A detailed description of the statistics is given in Supplementary Data File 1.  

 

Results 
The results of both the GLMs (assuming a Gamma distribution for the outcome 

variable y) and the LRMs fitted to log(y) are presented in Table 1. The GLMs and LRMs yielded 
qualitatively similar results for all five hypotheses considered. Test-standardized cases alone were 
only able to explain 9-10% of the variance in y or log(y), respectively, while the full model 
(model 5) was able to explain about 51-58%. As expected, test-standardized cases were positive 
predictors of Covid-19 related deaths in all models with significant associations in models 3-5. 
As also expected, sufficient vitamin D status was associated with fewer deaths. Surprisingly, 
however, it was found that the GRSI was the least important predictor of Covid-19 related 
deaths, which did not emerge in any of the models as significant. Also surprisingly, flu 
vaccination rates were significantly and positively related to the outcome, i.e., there were more 
deaths in countries with higher flu-vaccination coverage.  

Results of comparing the different models are given in Table 2. The evidence clearly 
favored model 3 which utilized test-standardized cases, flu vaccination rates and vitamin D 
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status to predict the outcome over all other models, whereby only the full model 5 had a high 
enough probability of being a possible alternative. This shows that individual-specific factors 
were much more important than population-specific factors for predicting Covid-19-related 
deaths. Model 3 was thereby able to explain almost half of the variance in outcomes. 

In order to check if our results are dependent on the imputation of missing variables, 
we refitted a full GLM and LRM model to the original dataset with missing variables removed 
(Table 3). This model resulted in qualitatively similar results as model 5 in Table 1 and 
confirmed that the two most important predictors of standardized COVID-19 deaths were 
again influenza vaccination rates and the number of test-standardized cases, which were both 
positively associated with the outcome. Due to more uncertainty in the regression coefficient 
estimate of test-standardized cases, the flu vaccination rate now was the only statistically 
significant predictor (p<0.01) in both the GLM and LRM.  

 

Discussion 
 

Modeling Covid-19 related death rates in 44 European countries during the initial 
phase of the outbreak until August 2020, unravels some interesting findings: 

a) Unsurprisingly, test-standardized CoV2-cases predict the number of deaths. This 
variable on its own, however, explains only about 8% of the variance. 

b) Surprisingly, more important is the flu-vaccination coverage in the elderly: the 
higher this vaccination rate is, the more Covid-19 related deaths we see in a country. 
This variable on its own explains about 18-19% of the variance. 

c) We confirmed that population-wide vitamin D status may have acted protectively 
against COVID-19-related deaths during the initial phase of the outbreak.  

These findings are strengthened by the fact that two different models reach the same 
conclusions: a GLM predicting a gamma-distributed outcome variable with log-linked predictors 
and a standard multiple LRM with identity link functions of predictors on a log-transformed 
outcome variable. 

It is easy to understand that more CoV2 cases translate into more Covid-19 related 
deaths. What is unexpected is the fact that the importance of this predictor on its own is 
comparatively minor. Thus, obviously, there remains variance to be explained. Although we do 
not assume we have captured all important variables, we have captured at least some as only 
three variables were able to explain about 47% of the total variance. A reassuring finding was 
that country-wide vitamin D status was inversely associated with Covid-19 related deaths, 
consistent with clinical and epidemiological data 14–18. Most surprising and most 
counterintuitive are the two findings that there are more Covid-19 related deaths in countries 
with higher flu vaccination coverage in the elderly, and, in addition, that the severity of 
governments’ responses with non-pharmaceutical interventions was completely negligible and 
inconsistent in its effect (Table 1, models 2 and 5).  

How can this negative impact of flu vaccination rates be explained? A careful 
randomized trial of flu vaccination in children showed that children who were vaccinated 
against influenza were better protected against influenza but suffered a fourfold higher risk of 
other respiratory virus dependent diseases 19. This might have to do with unknown mechanisms 
that disturb the ecology of pathogens, known as the virus interference phenomenon. A study 
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conducted during the 2017/2018 influenza season revealed that flu vaccination was associated 
with a 36% increased odds of contracting respiratory coronavirus diseases (odds ratio 95% 
confidence interval 1.14-1.63, p<0.01), while affording specific protection against influenza and 
parainfluenza viruses 20. 

Thus, the negative impact of flu vaccination might have to do with several mechanisms: 
First, the virus interference phenomenon as shown for non-CoV2 coronaviruses 20; second, the 
fact that the immunological load on an organism that has to deal with a flu vaccine binds 
resources that cannot be mustered against a new and dangerous pathogen like CoV2. Third, it 
might also be the case that immune-enhancers in vaccines, such as aluminum derivates, which 
are potentially toxic, burden the organism and hamper natural immunity. For example, it was 
shown experimentally in chicks that aluminum can disturb vitamin D metabolism 21. 
Furthermore, it has been argued that influenza vaccines are produced in eggs and other cell-
systems that are not routinely tested against corona-viruses. Hence, corona-virus proteins from 
other corona-viruses might be present in these vaccines and induce allergic reactions against the 
novel CoV2 22. Our finding is in contrast to data from the US 23,24. However, the correlation 
between influenza vaccination and COVID-19 death rate in the US is much lower than in 
Europe 25, probably because there is little variation in influenza vaccine coverage in the US. Our 
results are derived from population level data in Europe in the elderly, which might be a 
specifically susceptible fraction of the population.  

Non-pharmaceutical interventions are widely hailed in modeling studies as having 
prevented higher incidence figures of cases and deaths 26–28. While this might be true for some 
countries and some single interventions, some authors are skeptical 29–34. Careful modeling 
studies for Germany, for instance, show that, although Germany was comparatively early to 
react – first measures were introduced on March 8 and shortly after this a full country 
lockdown was enacted – the peak of the infection and of the reproduction numbers was 
reached in nearly all 420 German districts on or around March 8 and thus none of the non-
pharmaceutical interventions could have been causally related to the reduction of cases, and 
hence deaths 35,36. The ensuing reduction of cases is a misattribution: it is not due to the 
lockdown, but obviously to the fact that the virus follows its own dynamic which needs to be 
better understood. Thus, there is independent evidence that non-pharmaceutical interventions 
are less effective than often thought. This would explain the negligible association with Covid-
19 related deaths in our analysis. 

We find it quite remarkable that only three variables help to explain roughly 47% of the 
variation in Covid-19 related deaths. Because vitamin D status was one of them, it might be 
interesting to study other variables related to health. Although vitamin D entered the best 
model number 3 with a strong regression weight of -0,48, it is not significant as a predictor. But 
it nevertheless seems to be a strong predictor, as models without it are clearly inferior. We also 
calculated a model without vitamin D which was slightly weaker in terms of model fit (AIC = 
535.8 vs. 535.0 for model 3) and less efficient in explaining variance (KL-R2

adj = 0.453 vs. KL-
R2

adj = 0.477). We would argue that, as a theoretically and numerically strong predictor, vitamin 
D improves model fit and therefore it should be part of the equation. Its lack of significance is 
likely due to the coarse grained nature of our data. 

The limitations of our approach need to be kept in mind: 

First, there might have been collinearity between the three predictors found to be 
significant in the best model. However, variance inflation factors (all <1.11) showed that there 
was no collinearity between these three variables.   
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Second, we were unable to find flu vaccination data, GRSI and vitamin D estimates for 
all countries. We tried to overcome this limitation through multiple imputation by chained 
equations, and the results were consistent with an analysis using only the cases for which every 
variable value was known. 

Third, one potential problem we cannot remedy is the notorious unreliability of data or 
differences in the definition of cases, of deaths, and in reporting standards. This can be seen in 
the fact that Belgium is a clear outlier in all analyses that decreases the fit of the model. It is well 
known that the definition of Covid-19 related deaths in Belgium is more lenient than in other 
countries. Vitamin D estimates also have several uncertainties, such as having been measured in 
rather small cohorts, in different years and during different times of the year. Whenever 
possible, we preferred vitamin D values from the literature that had been measured in elderly 
people and during winter/spring. Also, Covid-19 reporting systems might be less reliable in 
some countries compared with others. These are the limits of our data and our analyses. But 
considering the fact that the whole world, politicians and public health officials use exactly the 
same data for their decisions should allow us to use them for analysis. The fact that the 
relationship between Covid-19 related deaths and test-standardized cases is weaker than one 
would expect is exactly due to this situation and to the fact that being a case, when considering 
the number of tests in a country, has only a weak relationship with becoming a fatality. It has 
been shown that the case fatality rate is much less than previously assumed and estimated to be 
0.15% 37. In Germany the case-fatality rate has been calculated from well documented cohorts 
to be 0.12 to 0.35% 38,39. The still widely circulating higher case fatality rates are due to the fact 
that they are largely calculated using raw, absolute figures without knowledge of the real 
prevalence 40. But also standardized figures might be unreliable. Often the same person is tested 
multiple times. Thus, we likely overestimate the number of cases by some margin. This would 
mean: the true link between being a case and becoming a fatality is probably even weaker. 

Considering all these weaknesses our paper also has some strengths. First, care was 
taken to ensure that the essential requirements for linear modeling were met. Second, we pre-
specified plausible hypotheses (expressed as GLMs or LRMs) and used a robust model 
comparison framework based on Kullback-Leibler information to compare them, in this way 
automatically incorporating penalties for potential overfitting. Third, restricting the analysis to 
Europe means that we have a comparatively homogeneous sample which nevertheless has 
enough variability. While all countries issued warnings the way it was implemented differed 
widely, from suggestions and recommendations in Sweden to very strict stay-at-home orders that 
were policed in Spain, from nearly no regard in Belarus to strict political measures in Italy. 
Thus, we likely see a representative laboratory for the world, except that we do not cover any 
variance in ethnicity.  

In conclusion we see that Covid-19 related deaths are most importantly dependent on 
the flu-vaccination rate among the elderly in a country: the higher the vaccination rate, the 
higher the Covid-19 death toll, explaining about 18% of the total variation. The number of 
cases is the second, unsurprising predictor, but its relationship is weaker than one would 
assume. The third important predictor was country-wide vitamin D status in the elderly, for 
which a causal relationship appears well supported by clinical and mechanistic evidence. These 
three variables predict the variability in Covid-19 related deaths much better than the severity of 
governmental responses, population size or life expectancy. This might encourage others to look 
for other, perhaps even more important host factors that can explain why we see such a wide 
variability in cases and deaths in the initial phases of the CoV2 outbreak. 
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Figure  

 

Figure 1: Left: Observed distribution of the outcome variable “Covid-19 related deaths per 1 
million inhabitants” and a gamma distribution (rate = 0.004071, shape = 0.9044) fitted through 
maximum likelihood estimation. Right: Observed distribution of the log-transformed outcome 
variable, with a best-fit normal distribution.



Table 1: Parameters of the generalized linear models fitted to standardized deaths and and linear models fitted to the logarithm of standardized deaths 

Model 1 Generalized linear model Linear model 

Variable Regression 

coefficient 

p-value KL-R2 KL-

R2
adj. 

AICc Regression 

coefficient 

p-value R2 R2
adj. AICc 

Test-standardized cases [%] 0.102 (0.042) 0.019 0.090 0.068 561.3 0.091 

(0.042) 

0.036 0.101 0.080 140.9 

Model 2 Generalized linear model Linear model 

Variable Regression 

coefficient 

p-value KL-R2 KL-

R2
adj. 

AICc Regression 

coefficient 

p-value R2 R2
adj. AICc 

Test-standardized cases [%] 0.097 (0.042) 0.026 0.136 0.094 561.0 0.079 

(0.045) 

0.086 0.117 0.074 142.5 

GRSI 0.029 (0.020) 0.153 0.016 

(0.021) 

0.441 

           

Model 3 Generalized linear model Linear model 

Variable Regression 

coefficient 

p-value KL-R2 KL-

R2
adj. 

AICc Regression 

coefficient 

p-value R2 R2
adj. AICc 

Test-standardized cases [%] 0.166 (0.030) 3.1×10-6 0.513 0.477 535.0 0.138 

(0.037) 

0.00065 0.444 0.403 124.6 

Flu vaccination rate [%] 0.038 (0.006) 1.5×10-7 0.035 

(0.007) 

4.6×10-5 

Vitamin D status (sufficient 

vs. deficient) 

-0.482 (0.303) 0.124 -0.533 

(0.371) 

0.162 

Model 4 Generalized linear model Linear model 

Variable Regression 

coefficient 

p-value KL-R2 KL-

R2
adj. 

AICc Regression 

coefficient 

p-value R2 R2
adj. AICc 

Test-standardized cases [%] 0.148 (0.035) 0.00014 0.382 0.336 546.7 0.136 

(0.040) 

0.0016 0.311 0.259 134.2 

Population [106] 0.012 (0.005) 0.021 0.014 

(0.006) 

0.014 

Life expectancy [years] 0.165 (0.039) 0.00013 0.123 

(0.044) 

0.0084 



Model 5 Generalized linear model Linear model 

Variable Regression 

coefficient 

p-value KL-R2 KL-

R2
adj. 

AICc Regression 

coefficient 

p-value R2 R2
adj. AICc 

Test-standardized cases [%] 0.178 (0.033) 5.9×10-6 0.576 0.507 536.9 0.160 

(0.041) 

0.00049 0.512 0.433 127.4 

Flu vaccination rate [%] 0.029 (0.007) 0.00011 0.028 

(0.008) 

0.0017 

Vitamin D status (sufficient 

vs. deficient) 

-0.527 (0.305) 0.097 -0.546 

(0.402) 

0.187 

Population [106] 0.008 (0.004) 0.077 0.011 

(0.006) 

0.063 

Life expectancy [years] 0.085 (0.040) 0.072 0.066 

(0.051) 

0.207 

GRSI -0.007 (0.016) 0.676 -0.009 

(0.021) 

0.685 

 



Table 2: Comparison of the five different models specified in equations (1-5) 

  Generalized linear model Linear regression model 

Rank Model AICc △�  �� ��,� Model AICc △�  �� ��,� 

1 3 535.0 0.0 0.722 1 3 124.6 0 0.798 1 

2 5 536.9 1.93 0.276 2.62 5 127.4 2.81 0.195 4.08 

3 4 546.7 11.72 0.002 350.7 4 134.2 9.60 0.007 121.5 

4 2 561.0 26.08 <0.0000 459964 1 140.9 16.30 0.0001 3468.7 

5 1 561.3 26.35 <0.0000 527127 2 142.5 17.93 0.0002 7821.8 

Models were ranked according to increasing AICc. AICc: Bias-corrected Akaike Information Citerion; 

△�: Difference in AICc to the best model; ��: probability of model � being the Kullback-Leibler best 

model; ��,�: evidence ratio between model 3 (the best model) and model �  



Table 3 – Results of the full generalized linear models fitted to the original dataset with 
missing variables removed (intercept not reported) 

 

 Full Generalized 

linear model (N=30) 

Full linear regression 

model (N=30) 

Variables Coefficient 

Estimate 

(SE) 

p-value Coefficient 

Estimate 

(SE) 

p-value 

Test-standardized cases [%] 0.126 

(0.046) 

0.011 0.130 

(0.053) 

0.023 

Flu vaccination rate [%] 0.027 

(0.007) 

0.0010 0.024 

(0.008) 

0.0076 

Vitamin D status (sufficient vs. deficient) -0.470 

(0.293) 

0.122 -0.497 

(0.342) 

0.159 

Population [106] 0.007 

(0.005) 

0.168 0.012 

(0.006) 

0.057 

Life expectancy [years] 0.122 

(0.052) 

0.030 0.138 

(0.062) 

0.035 

GRSI 0.009 

(0.018) 

0.640 0.000 

(0.021) 

0.99 

GRSI: Government Response Stringency Index; SE: Standard error 

 


