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Abstract This paper presents an experimental evaluation of
different line extraction algorithms applied to 2D laser scans
for indoor environments. Six popular algorithms in mobile
robotics and computer vision are selected and tested. Real
scan data collected from two office environments by us-
ing different platforms are used in the experiments in or-
der to evaluate the algorithms. Several comparison criteria
are proposed and discussed to highlight the advantages and
drawbacks of each algorithm, including speed, complexity,
correctness and precision. The results of the algorithms are
compared with ground truth using standard statistical meth-
ods. An extended case study is performed to further evaluate
the algorithms in a SLAM application.
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1 Introduction

It is important for a mobile robot to be able to autonomously
navigate and localize itself in a known or unknown en-
vironment. A precise position estimation always serves as
the heart in any navigation systems, such as localization,
map building or path planning. It is well known that pure
dead-reckoning methods, e.g. odometry, are prone to errors
that grow unbounded over time (Iyengar and Elfes 1991).
The problem gives rise to a variety of solutions using dif-
ferent exteroceptive sensors (sonar, infrared, laser, vision,
etc.). Among different types of sensors, 2D laser range find-
ers are becoming increasingly popular in mobile robotics.
For example, laser scanners have been used in localiza-
tion (Cox 1991; Jensfelt and Christensen 1998), dynamic
map building (Lu and Milios 1994; Gutmann et al. 1998;
Castellanos and Tardós 1996; Tomatis et al. 2003) or feature
tracking (e.g. for collision avoidance) (Pears 2000). There
are many advantages of laser scanners compared to other
sensors: they provide dense and more accurate range mea-
surements, they have high sampling rates, high angular res-
olution, good range distance and resolution.

One primary issue is how to accurately match sensed data
against information in a priori map or information that has
been continuously collected. There are two common match-
ing techniques that have been used in mobile robotics: point-
based matching and feature-based matching. The early work
of Cox (1991) uses range data to help the robot localizing it-
self in a small polygonal environment. He proposes a match-
ing algorithm between point images and target models in
a priori map using an iterative least-squares minimization
method. Another work done by Lu and Milios (1994) ad-
dresses the problem of self-localization in an unknown envi-
ronment, not necessarily polygonal. The proposed approach
is to approximate the alignment of two consecutive scans
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and then iteratively improve the alignment by defining and
minimizing some distance between the scans.

Instead of working directly with raw measurement points,
feature-based matching first transforms the raw scans into
geometric features. The extracted features are then used for
matching in the next step. This approach has been stud-
ied and employed intensively in recent research on fea-
ture extraction, feature tracking, robot localization, dynamic
map building, etc. (Crowley 1985; Leonard et al. 1992;
Castellanos and Tardós 1996; Gutmann and Schlegel 1996;
Jensfelt and Christensen 1998; Schröter et al. 2002; Brun-
skill and Roy 2005). Being more compact, they require
much less memory and still provide rich and accurate infor-
mation. Algorithms based on parameterized geometric fea-
tures are therefore more efficient compared to point-based
algorithms.

Among many geometric primitives, line segments are the
simplest ones. It is easy to describe most office environment
using line segments. Many algorithms have been proposed
for mobile robotics using line features extracted from 2D
range data. Castellanos and Tardós (1996) propose a line
segmentation method inspired from an algorithm in com-
puter vision, used with a priori map as an approach to ro-
bot localization. Vandorpe et al. (1996) introduce a dynamic
map building algorithm based on geometrical features, e.g.
lines and circles, using a laser scanner. Arras and Siegwart
(1997) use a 2D scan segmentation method based on line re-
gression in map-based localization. Jensfelt and Christensen
(1998) present a technique for acquisition and tracking of
the pose of a mobile robot in an office environment with
a laser scanner by extracting orthogonal lines (walls). Pfis-
ter et al. (2003) suggest a line extraction algorithm using
weighted line fitting for line-based map building. Finally,
Brunskill and Roy (2005) propose an incremental proba-
bilistic technique to extract segments for solving the SLAM
problem.

Many work has been done on line extraction. However,
there is a lack of comprehensive comparisons of the so far
proposed algorithms. Selecting the best method to extract
lines from scan data is the first task for anyone who is go-
ing to build a line-based navigation system using 2D laser
scanners. In terms of speed, one would prefer the fastest al-
gorithm for his real time application. In terms of quality, bad
line extraction can seriously lead the system to divergence in
line-based SLAM. Implementation complexity is also one of
the main aspects to take into account.

The work done by Gutmann and Schlegel (1996) gives
a brief comparison of three algorithms which are relatively
out of date compared to ones found in recent research. More-
over, the uncertainty modeling of the used parameters is not
introduced in their paper. Borges and Aldon (2004) present
an extended version of split-and-merge and compare their
method with a generic split-and-merge algorithm and a line

tracking (incremental) algorithm. Sack and Burgard (2004)
perform a comparison of three selected algorithms on range
data. However, in both papers the evaluation results are in-
directly observed and interpreted from the map built by the
mapping process. A direct comparison of the extracted lines
by the selected algorithms using probabilistic analysis is still
missing.

This paper presents a throughout evaluation of six line
extraction algorithms applied to laser range scans. This
work is an extension of the one described in (Nguyen et
al. 2005). The six selected algorithms are the most com-
monly used in mobile robotics and computer vision. Sev-
eral comparison criteria are proposed and discussed, includ-
ing speed, complexity, correctness and precision. The ex-
periments are performed on two datasets collected from the
Autonomous Systems Laboratory—EPFL, Switzerland and
the Intel Jones Farms Campus, Oregon with the environment
size of 80 m × 50 m and 40 m × 40 m, respectively. The re-
sults of the algorithms are compared with ground truth using
standard statistical methods. One case study is performed to
evaluate the maps obtained from a SLAM application when
using different line extraction algorithms. Finally, the con-
clusions are presented.

2 Problem statement

A range scan describes a 2D slice of the environment. Points
of a range scan are specified in polar coordinate system
(ρi, θi) whose origin is the location of the sensor (or the ro-
bot location offset by the mounting distance). It is common
to assume that the noise on range measurement follows a
Gaussian distribution with zero mean and variance σ 2

ρi
. We

neglect the small angular uncertainty for the ease of com-
puting the covariance matrix of line parameters (see Arras
and Siegwart 1997 for more derivation detail). Note that in
this work, we focus on the performance of the algorithms.
We do not consider systematic errors as they mainly depend
on a specific hardware and testing environment (Diosi and
Kleeman 2003a, 2003b).

We choose the polar form to represent a line model:

x cosα + y sinα = r

where −π < α ≤ π is the angle between the x axis and the
normal of the line; r ≥ 0 is the perpendicular distance of
the line to the origin; (x, y) is the Cartesian coordinates of a
point on the line.

The covariance matrix of line parameters is:

cov(r,α) =
[

σ 2
r σrα

σrα σ 2
α

]
.

There are three main problems in line extraction in an
unknown environment (Forsyth and Ponce 2003). They are:
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• How many lines are there?
• Which points belong to which line?
• Given the points that belong to a line, how to estimate the

line model parameters?

In implementing the algorithms, we try to use as many
common routines as possible, so that the experimental re-
sults reflect mainly the differences of the algorithmic con-
cepts. Particularly for the third problem, we use a common
fitting method, called total-least-squares, for all the algo-
rithms since it has been used extensively in the literature
(Arras and Siegwart 1997; Jensfelt and Christensen 1998;
Einsele 1997; Lu and Milios 1994; Siadat et al. 1997).
Hence, the algorithms differ only in solving the first two
problems. Regarding the parameter settings, we define 2 sets
of parameters. The first set consists of parameters of input
data (e.g. number of points per scan), the sensor model (e.g.
sensor uncertainties), desired output (e.g. minimal length of
a line segment, maximal uncertainty) and parameters for the
common routines (e.g. clustering, merging functions). These
parameters are set to the same values for all the algorithms.
The second set consists of specific parameter values for in-
dividual algorithm procedure. These parameters are chosen
individually for each algorithm based on experimental tun-
ning so that the best performance is obtained among several
runs.

Notice that with high frequency of the up-to-date laser
range finders (up to 75 Hz for a SICK LMS 200), we assume
that the scans are obtained in batches (half or full scanning
cycle). We make also the assumption that the effect of the
robot motion on individual scan points (in one batch) is neg-
ligible. This however holds only when the robot translation
and rotation speeds are small, e.g. few meters per second.
For outdoor navigation, one might have to revise this as-
sumption.

3 Selected algorithms and related work

This section briefly presents the concepts of the six selected
line extraction algorithms. Our selection is based on their
performance and popularity in both mobile robotics and
computer vision. Only basic versions of the algorithms are
summarized even though the details may vary in different
implementations and applications. Interested reader should
refer to the indicated references for more details. Our imple-
mentation follows closely the pseudo-code described below
when not stated otherwise.

3.1 Split-and-merge algorithm

Split-and-Merge is probably the most popular line extraction
algorithm which originates from computer vision in 1974
by Pavlidis and Horowitz (1974). It has been studied and

used in many robotic research (Castellanos and Tardós 1996;
Einsele 1997; Siadat et al. 1997; Borges and Aldon 2004;
Zhang and Ghosh 2000).

Algorithm 1: Split-and-Merge

1 Initial: set s1 consists of N points. Put s1 in a list L
2 Fit a line to the next set si in L
3 Detect point P with maximum distance dP to the line
4 If dP is less than a threshold, continue (go to 2)
5 Otherwise, split si at P into si1 and si2, replace si in L

by si1 and si2, continue (go to 2)
6 When all sets (segments) in L have been checked, merge

collinear segments.

In the implementation, we make a small modification to
line 3 so that we search for a splitting position where two
adjacent points P1 and P2 are at the same side to the line
and both have distances to the line greater than the thresh-
old (if only 1 such point is found, it is ignored as a noisy
point). Intuitively, we should split at a point that has locally
maximal distance to the line. Notice that in line 2, we use a
least-squares method for line fitting.

One can implement the algorithm differently so that a
line is constructed simply by connecting the first and the
last points. In this case, the algorithm is called Iterative-
End-Point-Fit as in (Duda and Hart 1973; Siadat et al. 1997;
Borges and Aldon 2004; Zhang and Ghosh 2000).

3.2 Incremental algorithm

Simplicity is the main advantage of this algorithm. It has
been used in many applications (Forsyth and Ponce 2003;
Vandorpe et al. 1996; Taylor and Probert 1996) and is also
known as Line-Tracking (Siadat et al. 1997).

Algorithm 2: Incremental

1 Start by the first 2 points, construct a line
2 Add the next point to the current line model
3 Recompute the line parameters
4 If it satisfies a condition, continue (go to 2)
5 Otherwise, put back the last point, recompute the line pa-

rameters, return the line
6 Continue with the next 2 points, go to 2

In the implementation, we add 5 measurement points at
each step (line 2) to speed up the incremental process. When
the line does not satisfy a predefined line condition (vari-
ances of line parameters are less than some thresholds), the
last 5 points are put back and the algorithm is switched back
to the normal mode (adding one measurement point at a
time). Again, we use a total-least-squares method for line
fitting (line 3, 5).

The incremental scheme has been used in the algorithms
proposed in (Adams and Kerstens 1998) and (Pears 2000),
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however they use the EKF to estimate the parameters of
extracted lines which is equivalent to using the total-least-
squares fitting in this paper.

3.3 Hough transform algorithm

Hough Transform tends to be most successfully applied to
line finding in intensity images (Forsyth and Ponce 2003). It
has been brought in to robotics for extracting line from scan
images (Forsberg et al. 1995; Jensfelt and Christensen 1998;
Iocchi and Nardi 2002; Pfister et al. 2003).

Algorithm 3: Hough-Transform

1 Initial: A set of N points
2 Initialize the accumulator array
3 Construct values for the array
4 Choose the element with max. votes Vmax

5 If Vmax is less than a threshold, terminate
6 Otherwise, determine the inliers
7 Fit a line through the inliers and store the line
8 Remove the inliers from the set, goto 2

There are some drawbacks with Hough Transform:

• It is usually difficult to choose an appropriate grid size for
the accumulator array.

• Basic Hough Transform algorithm does not take noise and
uncertainty into account when estimating the line parame-
ters.

In this implementation, we use a resolution of 1 cm and
0.4° as the grid size of range and angle, respectively. To
overcome the second problem, we use a total-least-squares
method for line fitting (line 7).

Several variants of the Hough Transform have been pro-
posed in order to improve the performance of line extrac-
tion, such as randomized Hough Transform (Xu et al. 1990),
range-weighted Hough Transform (Forsberg et al. 1995),
Log-Hough Transform (Alempijevic 2004).

3.4 Line regression algorithm

This algorithm has been proposed in (Arras and Siegwart
1997) for map-based localization. The key idea is inspired
from the Hough Transform algorithm so that the algorithm
first transforms the line extraction problem into a search
problem in model space (line parameter domain) and then
applies the Agglomerative Hierarchical Clustering (AHC)
algorithm to construct adjacent line segments. One draw-
back of this algorithm is that it is quite complex to imple-
ment.

Algorithm 4: Line-Regression

1 Initialize sliding window size Nf

2 Fit a line to every Nf consecutive points (a window)
3 Compute a line fidelity array, each is the sum of Maha-

lanobis distances between every 3 adjacent windows
4 Construct line segments by scanning the fidelity array for

consecutive elements having values less than a threshold,
using an AHC algorithm

5 Merge overlapped line segments and recompute line pa-
rameters for each segment

The optimal sliding window size Nf depends on environ-
ment and has great influence on the algorithm performance.
For our benchmark, Nf = 7 is used. A total-least-squares
fitting method is used in line 2.

3.5 RANSAC algorithm

RANSAC—Random Sample Consensus (Fischler and Bolles
1981) is an algorithm for robust fitting of models in the pres-
ence of data outliers. The main advantage of RANSAC is that
it is a generic segmentation method and can be used with
many types of features once we have the feature model. It
is also simple to implement. This algorithm is very popular
in computer vision to extract features (Forsyth and Ponce
2003). Again, the same fitting method is used in line 4, 7.

Algorithm 5: RANSAC

1 Initial: A set of N points
2 repeat
3 Choose a sample of 2 points uniformly at random
4 Fit a line through the 2 points
5 Compute the distances of other points to the line
6 Construct the inlier set
7 If there are enough inliers, recompute the line parame-

ters, store the line, remove the inliers from the set
8 until Max.N.Iterations reached or too few points left

3.6 EM algorithm

This algorithm, Expectation-Maximization (EM), is a prob-
abilistic method and commonly used in missing variable
problems. EM has been used as a line extraction tool in
computer vision (Forsyth and Ponce 2003) and robotics
(Liu et al. 2001; Pfister et al. 2003; Sack and Burgard
2004).

There are some drawbacks of EM algorithm:

• It can be trapped in local minima
• It is difficult to choose good initial values
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Algorithm 6: EM

1 Initial: A set of N points
2 repeat
3 Randomly generate parameters for a line
4 Initialize weights for remaining points
5 repeat
6 E-Step: Compute the weights of the points from the

line model
7 M-Step: Recompute the line model parameters
8 until Max.N.Steps reached or convergence
9 until Max.N.Trials reached or found a line

10 If found, store the line, remove the inliers, go to 2
11 Otherwise, terminate

3.7 Extra details

As already mentioned, we use the same total-least-squares
method to compute the line parameters of a line and their
covariance matrix once we have a set of inliers determined
by the algorithms. This technique overcomes the well known
bias problem of least-squares method where it tends to put
more weight on noisy, outlying points (Forsyth and Ponce
2003). For details of the total-least-squares method, please
refer to (Arras and Siegwart 1997).

We implement a simple clustering algorithm for filtering
out largely noised measurement points and also coarsely di-
viding a raw scan into sub groups (clusters) of scan points.
The algorithm works similarly to the Successive Edge
Following—SEF algorithm (Siadat et al. 1997). Briefly, it
scans the raw scan points in sequence coming from the sen-
sors for big jumps in radial differences between consecutive
points. If a radial difference is greater than a threshold, the
algorithm breaks the scan sequence at this point into two sub
groups. Thus, the scan is segmented into clusters of con-
tiguous points. Clusters having too few number of points
are removed. To be safe and to avoid over segmentation, we
use very conservative values for the thresholds. One can im-
prove this clustering algorithm by considering the case of
over segmentation when a line segment contains one noisy
point in the middle (e.g. due to noise or occlusions). In this
case, the two split segments can be merged afterward (de-
scribed in the following paragraph). However the risk is that
if one or both of the sub segments are too small, they could
be removed before reaching the merging step. Fortunately,
this problem rarely occurs in our experiments.

Due to occlusions, a line may be observed and extracted
as several segments. Localization algorithms usually use
line parameters (r,α) in position estimation (Vandorpe et al.
1996; Arras and Siegwart 1997). Thus, it might be a good
idea to merge collinear line segments into one line segment.
It results in a longer, hence more reliable segment, reducing
the number of lines to process and still containing the same

Fig. 1 The ground map of the Autonomous System Laboratory (ASL)
with a size of 80 m × 50 m. This map contains only main building
parts (e.g. walls, doors, windows) and stationary office furniture (e.g.
cupboards, tables)

information. Therefore, we implement a merging routine
that is applied at the output of each algorithm, after segments
have been extracted. The routine uses a standard statisti-
cal method, called Chi-Square test (Snedecor and Cochran
1989), to compute the Mahalanobis distance between each
pair of line segments based on the already computed covari-
ance matrices of line parameters. If two line segments have
a statistical distance less than a threshold, they are merged.
The new line parameters are recomputed from the raw scan
points that constitute the two segments.

4 Experimental comparison

4.1 The experiment setup

To evaluate the performance of the algorithms, we select
two laser scan datasets taken from two different environ-
ments: the hallway of the Autonomous Systems Laboratory
(ASL)—EPFL, Switzerland and a part of the Intel Jones
Farms Campus, Oregon. The second dataset is obtained
from the Radish repository (Howard and Roy 2003).

The ground map of the ASL hallway is shown in Fig. 1.
The environment is polygonal with a map size of 80 m ×
50 m. The hallway contains many walls, doors and cup-
boards that are good targets for line extraction. There are
also table legs, chair legs and glass windows. For collecting
the ASL dataset, we use the mobile base of the robot RoboX
(Siegwart et al. 2003) which is equipped with two laser sen-
sors (see Fig. 2). The robot is running a real-time operating
system (RTAI Linux) with an embedded obstacle avoidance
system and a remote control module via wireless network.
We let the robot navigate through the environment while the
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Fig. 2 a The mobile base of the RoboX. The two SICK sensors are
placed back-to-back (one is hidden in the figure). b A laser range finder
SICK LMS291-S05

Fig. 3 The ASL hallway map obtained by using the odometry alone
and the selected 100 raw scans. The red triangles represent the robot
positions at which the scans are taken

direction and speed are being remotely controlled. The ex-
periment is carried out during the working hours so that the
robot observes people regularly walking nearby.

The laser sensors are two laser range finders SICK-LMS
291-S05. Each sensor has a maximum measurement range
of 80 m, a range resolution of 10 mm and a statistical error
standard deviation of 10 mm at normal reflectivity condi-
tion. Each sensor is able to scan an angle of 0°–180° with
selectable angular resolutions of 0.25°, 0.50° or 1.00°. The
maximum sampling frequency is 75 Hz. For technical speci-
fication detail, please refer to the Technical Information LMS
200/291. SICK, Inc. The combination of two SICK laser
scanners enables the robot to scan a full 360°. In our exper-
iment, we use a maximum scan range of 7.0 m, an angular
resolution of 0.5◦ and a sampling rate of 3 Hz.

During the whole experiment, the robot makes 5122 ob-
servation steps. The benchmarking dataset consists of 100
scans selected every 50 observation steps. The hallway map
accumulated by those 100 scans are shown in Fig. 3. Two

Fig. 4 Two samples from the selected raw scans of the ASL hallway.
Generally, the scans are quite noisy due to the clutter and dynamics of
the environment. Notice that in the first figure, short segments from the
cupboards and several human legs are observed; in the second figure,
the wall is observed as a broken line because of the occlusions of table
legs

samples of the selected scans are shown in Fig. 4 to demon-
strate the environment shape and surroundings.

In the second experiment, the scan data are taken in the
Intel Jones Farms Campus, Oregon. The ground map is
shown in Fig. 5. The environment is a typical office struc-
ture which has a map size of 40 m × 40 m. Again, we select
100 scans for our benchmark set among 8030 original scans
(one scan is selected every 80 observation steps). Two sam-
ples of the selected scans are shown in Fig. 6. The robot
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Fig. 5 The map of a part of the Intel Jones Farms Campus in Hillsboro,
Oregon (source: the Radish repository http://radish.sourceforge.net/)

platform for this dataset was a Pioneer2DX (odometry) with
a SICK LMS 200 (laser range finder). The SICK has a range
resolution of 10 mm and a statistical error standard deviation
of 5 mm at normal reflectivity condition. In this dataset, the
maximum range is set to 7.0 m and the angular resolution
to 1◦. Thus, one SICK sensor gives 181 measurement points
for each scan.

4.2 The algorithm implementation

The algorithms are programmed in C. The benchmarks are
performed on a computer with one CPU PentiumIV-3.4 GHz
and 2 GB of memory.

Choosing parameter values is an important task since al-
gorithm performances are very sensitive to the values used.
As already said above, we divide the parameters into two
groups: one group of common parameters and one group
of algorithm specific parameters. The common parameter
group consists of parameters of input data, the sensor model,
desired output and parameters for the common routines.
These parameters are set to the same values for all the algo-
rithms. The second set consists of specific parameter values
for individual algorithm procedure. These parameters are
chosen individually for each algorithm based on experimen-
tal tunning so that the best performance is obtained among
several runs. Certainly to have a fair comparison, we want to
use as many common parameters as possible. The following
common parameters and their values are chosen according
to the sensor hardware and the environment (the numbers in
parentheses are used for the second dataset):

• MinNumPoints = 9 (7): Minimum number of scan points
for a line segment.

Fig. 6 Two samples from the selected raw scans of the Intel laboratory.
Generally, the scans are clean and well-defined because of the good
arrangement and good reflectivity of the surroundings. It makes line
extraction easier

• MinLength = 0.4 m: Minimum physical length of an line
segment.

• σr = 0.015 m (0.01 m): Standard deviation of range mea-
surement uncertainty.

• InlierThreshold = 0.01 m: Maximum distance from a
scan point to a line that the point is considered inlier to
the line.

• ValidGate = 2.77: The threshold used in the merging rou-
tine (which corresponds to the 75% confidence interval).
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Table 1 Experimental results of the ASL-hallway dataset

Algorithm Complexity Speed N.Lines Correctness Precision

TruePos FalsePos σ�r σ�α

[Hz] [%] [%] [cm] [deg]

Split-Merge + Clustering N × logN 1780 614 83.9 7.2 1.76 0.69

Incremental S × N2 469 536 76.0 3.7 1.68 0.64

Incremental + Clustering 772 549 77.6 4.0 1.70 0.74

Line Regression N × Nf 457 565 75.3 9.6 1.75 0.68

LR + Clustering 502 556 75.6 7.7 1.75 0.72

RANSAC S × N × N.Trials 20 725 76.0 28.8 1.60 0.69

RANSAC + Clustering 91 523 70.0 9.2 1.24 0.57

Hough Transform S × N × NC + S × NR × NC 6.6 368 84.1 36.0 1.55 0.68

HT + Clustering 7.6 463 80.6 12.5 1.51 0.67

EM S × N1 × N2 × N 0.2 893 74.4 43.4 1.86 0.83

EM + Clustering 0.2 646 77.5 18.6 1.46 0.72

The value MinNumPoints is used for the reason that the
hallways in two cases are quite narrow, thus extracted line
segments tend to have highly concentrated points. For the
second dataset, since the angular resolution used is bigger
(1◦), this value is set to 7 as we have less scan points. We
choose a quite big value for MinLength (0.4 m) to get rid
of spurious scan points observed from moving people, e.g.
human legs. The standard deviation of range measurement
uncertainty is set to be

σr = σsensor + 0.005 m

where the addition 0.005 m accounts for the reflectivity
differences of surrounding objects. The parameter
InlierThreshold is used in all the algorithms, mainly to de-
cide where to start/stop a line segment and to determine the
inliers of a line. The value of 0.01 m is experimentally se-
lected since it gives the near-best performance for all the
algorithms.

To determine the correctness and precision of the lines
extracted by each algorithm, we define a set of “true lines”
that contains manually extracted line segments of the se-
lected scans. The values MinNumPoints and MinLength are
taken into account during the manual extraction. All the true
lines have the same statistical uncertainty:

σT
r = 0.03 m, σ T

α = 0.03 rad.

For the total of 100 selected scans, there are 679 true lines
(≈7 lines/scan) and 412 true lines (≈4 lines/scan) for the
first and second dataset, respectively. The extracted lines by
the algorithms are then compared with the true lines to find
the matched pairs using the Chi-Square test with a matching
valid gate MatchValidGate = 2.77 (75% confidence inter-
val).

4.3 The experimental results

In order to analyze the experimental results, four quantity
measures are evaluated: complexity, speed, correctness and
precision. The benchmark results are shown in Table 1 and
Table 2. There are 11 algorithm candidates in which 6 of
them are the selected algorithms combined with our simple
clustering algorithm (shown as “+ Clustering”). The other 5
candidates are the basic versions of the corresponding algo-
rithms. The terminology used in the tables is as follows (the
values used are in parentheses):

• N : Number of points in an input scans (722 or 181)
• S: Number of line segments extracted by an algorithm
• Nf : Sliding window size for Line-Regression (7)
• N.Trials: Number of trials for RANSAC (1000)
• NR, NC: Number of rows, columns respectively for the

HT accumulator array (NR = 671, NC = 901 for resolu-
tion rres = 1 cm, αres = 0.4◦)

• N1,N2: Number of trials and convergence iterations, re-
spectively, for EM (N1 = 50, N2 = 200).

The common routines, e.g. clustering, total-least-squares
line fitting and line merging, all have a complexity of N .

The correctness measures are defined as follows:

TruePos = N.Matches

N.TrueLines

FalsePos = N.LineExByAlgo − N.Matches

N.LineExByAlgo

where N.LineExByAlgo is the number of lines extracted
by an algorithm, N.Matches is the number of matches and
N.TrueLines is the number of true lines.
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Table 2 Experimental results of the Intel-Laboratory dataset

Algorithm Complexity Speed N.Lines Correctness Precision

TruePos FalsePos σ�r σ�α

[Hz] [%] [%] [cm] [deg]

Split-Merge + Clustering N × logN 7353 379 90.8 1.3 0.69 0.31

Incremental S × N2 2538 366 87.6 1.4 0.85 0.32

Incremental + Clustering 3322 368 88.1 1.4 0.72 0.31

Line Regression N × Nf 1751 329 77.4 3.0 0.68 0.37

LR + Clustering 1879 326 77.4 2.1 0.69 0.37

RANSAC S × N × N.Trials 328 278 64.1 1.9 0.79 0.42

RANSAC + Clustering 470 265 63.1 1.9 0.51 0.30

Hough Transform S × N × NC + S × NR × NC 27.3 471 86.9 24.0 1.10 0.5

HT + Clustering 22.2 435 87.1 17.5 0.78 0.37

EM S × N1 × N2 × N 0.8 341 73.1 11.7 1.16 0.60

EM + Clustering 1.1 325 74.8 5.2 0.67 0.36

To determine the precision, we define the following two
sets of errors on line parameters:

{�r : �ri = ri − rT
i , i = 1, . . . , n},

{�α : �αi = αi − αT
i , i = 1, . . . , n}

where n is the number of matched pairs, rT
i , αT

i are line
parameters of a true line, ri , αi are line parameters of the
corresponding matched line (extracted by an algorithm).
Here we make an assumption that the error distributions are
Gaussian. The variances of the two distributions are com-
puted as follows:

�r = 1

n

∑
�ri, σ 2

�r = 1

n − 1

∑
(�ri − �r)2,

�α = 1

n

∑
�αi, σ 2

�α = 1

n − 1

∑
(�αi − �α)2

where n is approximately 400–600. (Notice that we use 1
n−1

instead of 1
n

for unbiased variances.)
For nondeterministic RANSAC-based and EM-based al-

gorithm, the values shown are the average after 10 runs.
The results of the first benchmark are shown in Table 1.

As seen in column 3, the first 5 algorithms, which are based
on Split-and-Merge, Incremental and Line-Regression, per-
form much faster than the others. This is mainly because
these 5 algorithms are based on deterministic methods and
especially, they make use of the sequencing characteristic of
the raw scan points. Split-and-Merge algorithm, being in the
class of divide-and-conquer algorithms, takes the lead. The
performance of 1780 Hz affirms with the algorithm com-
plexity as being the fastest. Notice that with the clustering
algorithm, Incremental performs at almost double speed.

In term of correctness, the Incremental-based algorithms
seem to perform best since they have very low number of

false positives, which is very important for SLAM. Being
better in TruePos, Split-and-Merge+Clustering could be the
best choice for localization with a priori map. Again, the
algorithms based on RANSAC and EM perform poorly as
they result in very high FalsePos. This can be explained by
the fact that, since the algorithms do not use the sequencing
property of the scan points, they often try to fit lines falsely
across the scan map. This could be reduced by increasing
the minimum number of points per line segment. However,
short segments maybe left out.

In spite of bad speed and correctness, algorithms based
on RANSAC, HT and EM+Clustering produce relatively
more precise lines. One of the reasons is that these algo-
rithms tend to include good inliers only, rather than to max-
imize number of points following the scan sequence as in
other algorithms. For instance, with RANSAC, if more iter-
ations are performed, the fitted line is getting closer to the
stable position (local minimum), or in HT a badly noised in-
lier of a line may put its vote into an adjacent grid cell (of the
cell representing the line) and thus does not get included in
the set of scan points forming the line. Hence, the extracted
line model parameters are not affected by the noise of bad
inliers.

Table 2 shows the results of the second benchmark. The
first observation is that in general, the algorithms perform
better in term of correctness and precision. This is because
the scans are cleaner compared with the first dataset. The
algorithm speeds are much better in this case by the fact that
there are only 181 scan points per batch scan.

In term of individual algorithm performance, the Split-
and-Merge shows as the lead in most of the comparison
criteria. Following is the Incremental (both versions) with
only about 3% less of TruePos and about 0.1% more of
FalsePos. The algorithms HT, HT+Clustering and EM again
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generate quite high values of FalsePos as in the first bench-
mark. However, the EM+Clustering in contrast performs
quite well with TruePos = 74% and FalsePos = 5.2%. This
can be explained that the objects are quite well-defined (see
Fig. 6) so that the clustering algorithm is better in dividing
the raw scan points into groups where each represents an
individual line segment. In addition, the second dataset con-
tains much less noise than the first one and it is important for
the EM+Clustering to meet quickly the convergence condi-
tion.

In summary, the algorithms are tested with two datasets
which are taken from the two environments having differ-
ent structures, shapes and degrees of clutter. The compari-
son results are however consistent in terms of performance
of individual algorithm. Note that in the first dataset (taken
in the ASL hallway), while conducting the data collection,
there were people walking around as they appeared in the
raw scan pictures. However, they are mostly removed by
the condition of minimal length of extracted line segments.
Only few segments are actually extracted from human and
they are classified as false positives. Due to this problem, the
minimal length of an extracted line segment is set to 40 cm.

5 Case study: SLAM application

In this Case Study, we apply the different line extraction al-
gorithms in a SLAM application on a real robot. The perfor-
mance of the algorithms will be indirectly evaluated by com-
paring the results obtained from the SLAM application. We
select the OrthoSLAM algorithm (see (Nguyen et al. 2006)
for detail) as the core algorithm to perform SLAM where
the observation inputs are the extracted lines from the line
extraction algorithms.

The Orthogonal SLAM (OrthoSLAM) is developed as a
light lightweight and real-time consistent SLAM algorithm.
The target of this algorithm is minimum systems embedded
on simple robots. It is shown (in (Nguyen et al. 2006)) that
using known techniques, it is possible to robustly and pre-
cisely perform SLAM in indoor, office-like environments by
using line features and taking a simple assumption about the
shape of the environment: the Orthogonality. It comes from
the fact that in most indoor engineered environments, major
structures, like walls, windows, cupboards, etc., can be rep-
resented by sets of lines which are parallel or perpendicular
to each other. For reconstruction of the desired map, it is
sufficient to extract and maintain those major lines. In fact,
ignoring other lines (arbitrary oriented or non-orthogonal
lines) not only does not lead to loss of valuable information,
but also brings us amazing robustness on the robot orienta-
tion and filter out many dynamic objects.

By using the assumption, only observed orthogonal lines
are selected so that it is able to represent line segment fea-

Fig. 7 The Biba robot used to perform the OrthoSLAM algorithm

tures using just one parameter. In fact we perform the map-
ping based on this constraint and in a simplified framework,
rather than applying it as extra observation afterward. This is
an important advantage which leads to the removal of non-
linearities in the observation model and rather precise and
consistent mapping. Furthermore, if an extracted line seg-
ment is not precisely orthogonal, it will be corrected “arti-
ficially” by the OrthoSLAM. Therefore, the OrthoSLAM al-
gorithm is quite robust so that small, limited error on the
extracted lines do not have strong effects on the results.

For the experiments, we use the Biba robot which has
similar hardware configuration as the RoboX. The combina-
tion of 2 laser scanners enables the robot to scan a full 360◦.
We use a maximum scan range of 7.0 m, an angular resolu-
tion of 0.5◦ and a sampling rate of 4 Hz. We choose again
our laboratory hallway which is a typical office environment
having many line features as the testing zone. The average
speed of the robot is about 30 cm/s excluding the time that
it is stationary.

The robot navigates the hallway in approximately 45
minutes and performs 3643 observation steps. A sample
map of raw scan points obtained using pure odometry in-
formation is plotted in Fig. 8. Notice that the resulting map
is corrupted by the odometry drift. The drift is also differ-
ent from the one obtained when using the RoboX because
the robots have different odometry hardware. The odometry
error cumulates so that when the robot arrives to the other
end of the hallway, it has been totally lost by approximately
20 m from the true position.
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Fig. 8 The map built (blue dotted curves) by using raw scan points
and pure odometry information is corrupted by the odometry drift. The
ground truth (including office rooms) is shown in red dotted lines

The OrthoSLAM algorithm, using different line extrac-
tion algorithm each time, is performed on a laptop with a
PentiumM-600 MHz using the logged data. The line extrac-
tion algorithms use the same parameters as for the previous
experiments with RoboX. The summary of results is shown
in Table 3. The first thing to notice is that the OrthoSLAM
works with most of the line extraction algorithms, except for
the three algorithms using RANSAC, Hough Transform and
EM. The maps built using those three algorithms can not be
used to recognize main features of the environments (cup-
boards, walls). For demonstration purpose, two maps ob-
tained using the algorithms Split-and-Merge and RANSAC
are shown in Figs. 9(b) and 9(c), respectively.

In term of computational speed, the results are consis-
tent with the last results where the Split-and-Merge is the
fastest algorithm: the OrthoSLAM can perform at 50 Hz
which is approximately 10 times faster than the data acqui-
sition speed.

In term of precision, the maps built by different line ex-
traction algorithms (combined with the OrthoSLAM) are
compared with the groundtruth which is obtained by hand
measurement. Specifically, map size and absolute locations
of the three main walls are used in the evaluation (see
Fig. 9(a) for the selected main walls). We define the error
on the map size:

�dx = |mT
x − mx |, �dx = |mT

y − my |

where mT
x ,mT

y and mx,my are the dimensions in the x, y

directions of the true and estimated map, respectively. We
define the error on the absolute location:

�r1
y = |T r1

y − r1
y |, r1

y = 1

5

5∑
i=1

i r1
y ,

�r2
x = |T r2

x − r2
x |, r2

x = 1

3

3∑
i=1

i r2
x ,

�r3
y = |T r3

y − r3
y |, r3

y = 1

3

3∑
i=1

i r3
y

where x, y indicate the direction of the line components i r

and T indicates the true value. Because of the orthogonality
assumption, only the y direction is considered for the ref-
erence horizontal walls 1 and 3 and only the x direction is
considered for the reference vertical wall 2. Because walls
are usually extracted as several broken line segments (oc-
cluded by cupboards, doors), we select only the five major
extracted line segments for the reference wall 1 and three
major extracted line segments for the reference lines 2 and
3 to compute the mean value of the line parameters.

From Table 3, the results obtained by using the algo-
rithms Split-and-Merge, Incremental, Incremental+
Clustering are consistently acceptable where the precision
of the obtained map size is approximately 10 cm. The er-
rors on the estimate of reference line 3 are quite large (for
all algorithms). There are two reasons. First, there is a slope
on the floor when the robot starts observing the line fea-
tures belonging to the reference line 3. This causes a shift
on the y direction. The problem of non-horizontal floor is
not considered in the OrthoSLAM algorithm. Second, one
side of the last part of the hallway (parallel to the reference
line 3) is glass window where laser beams are not very well
reflected. Thus, during this area the robot often observes
only one horizontal wall. As a result, the OrthoSLAM dis-
cards the observation since it needs at least two horizontal
(or vertical) lines in each observation.

The error in x direction of the map size when using the
algorithm Line Regression is quite large. This is because
of several false data association. The performance improves
when it is used with Clustering algorithm. Still, the absolute
location error increases as the robot departs further from the
starting position.

The performance of the OrthoSLAM using the line ex-
traction algorithms based on the Hough Transform, RANSAC
and EM is quite poor compared to that when using the other
algorithms. One sample of resulting map using the RANSAC
is shown in Fig. 9(c) where one can not recognize the main
walls, objects in the hallway. Similar results are obtained
when using the algorithms Hough Transform and EM (the
results are not included in the table). When coupled with the
Clustering algorithm, their performance is improved signif-
icantly. However, since this group of line extraction algo-
rithms do not use the ordering of scan points, lines are often
not correctly extracted (see Table 1). Some extracted lines
are crossing the map, leading to false data association.

Thus, we can state that the outcome of the case study
with OrthoSLAM correlates with the outcome of the line



108 Auton Robot (2007) 23: 97–111

Table 3 Case Study: Result Summary

Algorithm Number lines Speed Obtained map size Map size error Abs. location error

�dx �dy �r1
y �r2

y �r3
y

[Hz] [m] × [m] [cm] [cm] [cm] [cm] [cm]

Split-Merge + Clustering 276 50 73.58 × 44.89 6 8 6 4 13

Incremental 244 37 73.55 × 45.09 3 8 9 12 16

Incremental + Clustering 235 40 73.53 × 44.94 1 3 9 9 8

Line Regression 261 40 73.09 × 45.03 43 6 6 24 37

Line Regression + Clustering 262 38 73.48 × 44.97 4 1 7 17 58

RANSAC 291 – – – – – – –

RANSAC + Clustering 255 16 73.48 × 45.02 4 5 89 70 32

Hough Transform 279 – – – – – – –

Hough Transform + Clustering 292 2 73.33 × 45.08 19 11 45 70 26

EM 287 – – – – – – –

EM + Clustering 346 0.2 73.34 × 44.79 18 21 23 65 116

Groundtruth – – 73.52 × 44.97 – – – –

Fig. 9 a The 3 reference lines along the three main walls for absolute location evaluation. b, c The maps built by using the OrthoSLAM algorithm
combined with the line extraction algorithms Split-and-Merge and RANSAC, respectively. The estimated segments (pink solid lines), the odometry
trajectory (red curve), the estimated robot trajectory (blue curve in middle of the hallway) and the ground truth (cyan dotted lines). The map in (b),
obtained using Split-and-Merge, shows correctly main features. The map in (c), obtained using RANSAC, is not recognizable
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extraction experiments. Clustering as well as correctness
have a direct impact on the map estimation. Because Or-
thoSLAM makes use of the orthogonality assumption, cor-
rectness is more important than precision. The line extrac-
tion algorithms RANSAC, Hough Transform and EM are out-
performed by the other algorithms even though their preci-
sion is higher.

6 Conclusions

This paper has presented an experimental evaluation of the
six line extraction algorithms using 2D laser scanner which
are commonly used for feature extraction in mobile robot-
ics and computer vision. The basic versions of the algo-
rithms are implemented and tested with two datasets taken
from two office environments which have different struc-
tures, shapes and degrees of clutter. Line segments extracted
by the algorithms are compared with the manually extracted
lines using standard statistical methods. Several comparison
criteria are proposed and used to discuss in details their ad-
vantages and drawbacks. Additionally, the line extraction
algorithms are tested in the OrthoSLAM application and
the results obtained individually are compared. We believe
this is important, particularly in mobile robotics, that tech-
niques or algorithms should be tested and verified their per-
formance in real life application before we can make the fi-
nal choice. The comparison result with the OrthoSLAM has
been shown to agree with the findings in the first part, thus
again verify the conclusions.

Overall, the experimental results show that the two al-
gorithms Split-and-Merge and Incremental have best perfor-
mance because of their superior speed and correctness. For
real-time applications, Split-and-Merge is clearly the best
choice by its superior speed. It is also the first choice for
localization problems with a priori map, where FalsePos is
not very important. However, a right choice highly depends
on the applications and implementation details as the case
study showed, where correctness is favored over precision.

The first released version of the implementation is ac-
cessible to public at http://www.asl.ethz.ch/people/tnguyen/.
The ASL dataset can also be downloaded from the same lo-
cation for comparison purposes. Interested user can send in-
quiries to viet.nguyen@mavt.ethz.ch.
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