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Abstract

Niching methods have been developed to maintain the population diversity, to inves-
tigate many peaks in parallel and to reduce the effect of genetic drift. We present the
first rigorous runtime analyses of restricted tournament selection (RTS), embedded in a
(µ+1) EA, and analyse its effectiveness at finding both optima of the bimodal function
TWOMAX. In RTS, an offspring competes against the closest individual, with respect to
some distance measure, amongst w (window size) population members (chosen uni-
formly at random with replacement), to encourage competition within the same niche.
We prove that RTS finds both optima on TWOMAX efficiently if the window size w is
large enough. However, if w is too small, RTS fails to find both optima even in expo-
nential time, with high probability. We further consider a variant of RTS selecting indi-
viduals for the tournament without replacement. It yields a more diverse tournament
and is more effective at preventing one niche from taking over the other. However,
this comes at the expense of a slower progress towards optima when a niche collapses
to a single individual. Our theoretical results are accompanied by experimental stud-
ies that shed light on parameters not covered by the theoretical results and support a
conjectured lower runtime bound.
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1 Introduction

One of the major challenges when using Evolutionary Algorithms (EAs) is to maintain
the diversity in the population in order to prevent premature convergence. One way of
maintaining diversity is to use niching methods, which are based on the mechanics of
natural ecosystems (Shir, 2012). Niches can be viewed as subspaces in the environment
that can support different types of life. A specie is defined as a group of individuals
with similar features, capable of interbreeding among themselves, but unable to breed
with individuals outside their group. Species can be defined as similar individuals of a
specific niche in terms of similarity metrics. In evolutionary algorithms the term niche
is used for the search space domain, and species for the set of individuals with similar
characteristics.

Niching methods have been developed to reduce the effect of genetic drift result-
ing from the selection operator in standard EAs, to maintain the population diversity,
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and to allow the EA to investigate many peaks simultaneously, thus avoiding getting
trapped in local optima before the fitness landscape is explored properly (Sareni and
Krahenbuhl, 1998). This is often done by modifying the selection process of individuals,
taking into account not only the value of the fitness function but also the distribution of
individuals in the space of genotypes or phenotypes (Glibovets and Gulayeva, 2013).
Many niching techniques have been introduced to solve problems where it is necessary
to identify multiple optima (multimodal problems), either local or global optima. The
main goal for these techniques is to form and maintain multiple, diverse, final solu-
tions for an exponential to infinite time period with respect to population size, whether

these solutions are of identical fitness or of varying fitness (Shir, 2012; Črepinšek et al.,
2013; Glibovets and Gulayeva, 2013; Squillero and Tonda, 2016). Given such a variety
of mechanisms to choose from, it is often not clear which mechanism is the best choice
for a particular problem.

Most of the analyses and comparisons made between niching methods used em-
pirical investigations on benchmark functions (Sareni and Krahenbuhl, 1998; Singh and
Deb, 2006). Theoretical runtime analyses have been performed that rigorously quantify
the expected time needed to find one or several global optima (Friedrich et al., 2009;
Oliveto et al., 2019; Covantes Osuna and Sudholt, 2019, 2020). One example where
theoretical results are used to inform the choice of the EA parameters’ values in an
empirical performance study of EAs with diversity mechanisms can be found in Cov-
antes Osuna and Sudholt (2018a). Both approaches are important to understand how
these mechanisms impact the performance of EAs and whether and how they enhance
the search for good individuals. These different approaches can help to explain when
a niching mechanism should be used, which niching mechanism works best, and how
to set parameters.

Previous theoretical studies (Friedrich et al., 2009; Oliveto et al., 2019; Covantes Os-
una and Sudholt, 2019, 2020) compared the expected running time of different di-
versity mechanisms when embedded in a simple baseline EA, the (µ+1) EA. All
mechanisms were considered on the well-known bimodal function TWOMAX(x) :=
max {n−∑n

i=1 xi,
∑n

i=1 xi}. TWOMAX consists of two different symmetric slopes (or
branches) ZEROMAX and ONEMAX with 0n and 1n as global optima, respectively, and
the goal is to evolve a population that contains both optima1.

TWOMAX was chosen because it is simply structured, hence facilitating a theoret-
ical analysis, and it is hard for EAs to find both optima as they have the maximum
possible Hamming distance. The results allowed for a fair comparison across a wide
range of diversity mechanisms, revealing that some mechanisms like fitness diversity
or avoiding genotype duplicates and probabilistic crowding perform badly, while other
mechanisms like fitness sharing, clearing or deterministic crowding perform surpris-
ingly well (see Table 1 and Section 2).

We contribute to this line of work by studying the performance of the crowd-
ing mechanism called restricted tournament selection (RTS). This mechanism is a well-
known technique as covered in tutorials and surveys for diversity-preserving mecha-

nisms (Shir, 2012; Črepinšek et al., 2013; Glibovets and Gulayeva, 2013; Squillero and

1In Friedrich et al. (2009) an additional fitness value for 1n was added to distinguish between a local op-
timum 0n and a unique global optimum. There the goal was to find the global optimum, and all approaches
had a baseline probability of 1/2 of climbing up the right branch by chance. We use the same approach
as Oliveto et al. (2019); Covantes Osuna and Sudholt (2019), and consider the original definition of TWOMAX

and the goal of finding both global optima. The discussion and presentation of previous work from Friedrich
et al. (2009) is adapted to our setting. We refer to Sudholt (2020) for details.
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Tonda, 2016) and compared in empirical investigations (Sareni and Krahenbuhl, 1998;
Singh and Deb, 2006; Covantes Osuna and Sudholt, 2018a).

Restricted tournament selection is a modification of the classical tournament selec-
tion for multimodal optimisation that exhibits niching capabilities. For each offspring,
RTS sets up a tournament of w (window size) individuals, chosen uniformly at random
with replacement2 from the population. The offspring competes against the closest in-
dividual with respect to some distance measure from the tournament and the best indi-
vidual is selected for the next generation. This form of tournament restricts an entering
individual from competing with others too different from it (Harik, 1995). RTS has
been analysed empirically for the classical comparison between crowding mechanisms
for multimodal optimisation as a replacement strategy (Qu and Suganthan, 2010; Sareni
and Krahenbuhl, 1998; Singh and Deb, 2006). Recent applications for engineering prob-
lems with multimodal domains include facility layout design (Garcı́a-Hernández et al.,
2015) and the design of product lines (Tsafarakis, 2016) with reported better results
compared to the other variants without RTS.

However, we are lacking a good understanding of when and why it performs well
and how it compares to diversity mechanisms analysed previously. Our contribution is
to provide a rigorous theoretical runtime analysis accompanied by experimental stud-
ies for this mechanism in the context of the (µ+1) EA on TWOMAX, to rigorously assess
its performance in comparison to other diversity mechanisms. In addition, our goal is
to provide insights into the working principles of this mechanism to narrow the gap
between theory and practice, and to enhance our understanding of its strengths and
weaknesses.

1.1 Our contribution

For the (µ+1) EA with RTS, we show in Section 3 that the mechanism succeeds in find-
ing both optima of TWOMAX in the same way as deterministic crowding, provided
that the window size w is chosen large enough, in time O(µn logn) with high proba-
bility (Section 3.1). We also show that, if the window size is too small, then it cannot
prevent one branch taking over the other, leading to exponential running times with
high probability (Section 3.2).

We further consider a variant of RTS, where the tournament chooses individuals
without replacement. This simple change tends to make the tournament more diverse.
We investigate its effect on the performance of the (µ+1) EA in Section 4. We show that
the positive result for RTS with replacement holds for its variant without replacement
for a weaker condition w ≥ µ (Section 4.1). For small window sizes, the situation is less
clear as the previous analysis for RTS with replacement breaks down. We show that
RTS without replacement will find both optima with certainty once two subpopulations
have evolved whose best fitness is above a certain threshold value. This means that
takeover cannot happen during the final stages of a run where both branches are being
explored. However, during early stages of a run, takeover can still happen under rare
conditions.

We also find that, surprisingly, in runs where both optima are found, RTS without
replacement seems to take significantly more time. This is because typically a popula-

2We believe that the original definition of RTS picks individuals with replacement, that is, it is possible
to select multiple copies of one individual, ending up with fewer than w different genotypes. The exact im-
plementation was not explained in Harik (1995), however most calculations in Harik (1995) assume selection
with replacement. Oddly enough, from all cited papers here, where RTS has been analysed or used, only
Garcı́a-Martı́nez et al. (2012) make explicit mention of the selection policy used to select the w individuals
(uniformly at random with replacement). We consider a variant without replacement in Section 4.
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tion will evolve until only a single individual remains on one branch, and this individ-
ual takes time Θ((µ2/w) · n logn) to evolve a global optimum, under certain assump-
tions (see Section 4.2). This is by a factor of order µ/w larger than the upper bound of
O(µn logn) for RTS with replacement from Section 3.1.

Our theoretical results are accompanied by experimental studies that match the
theoretical results and also shed light on parameters not covered by the theoretical re-
sults. We performed experiments for RTS with replacement and its variant without
replacement in order to observe different aspects of the algorithms such as their ability
to find both optima on TWOMAX (Sections 5.1 and 5.2). We further support the conjec-
tured lower bound of Ω

(

(µ2/w) · n logn
)

for small values of w by measuring the time
needed for RTS without replacement to find both optima on TWOMAX (Section 5.2.1).
Finally, we assess when takeover is more likely to happen and which variant is more
resilient to takeover (Section 5.3).

This article significantly extends a preliminary conference paper (Covantes Osuna
and Sudholt, 2018b) that contained preliminary theoretical results for the original RTS
(selecting the tournament with replacement) and preliminary experimental results. In
this manuscript, the negative result for RTS with small w in Covantes Osuna and Sud-
holt (2018b) has been improved.

2 Previous Work and Preliminaries

There has been a line of work comparing various diversity mechanisms on TWOMAX in
the context of the simple (µ+1) EA (see Algorithm 1). The (µ+1) EA starts with a popu-
lation of size µ created uniformly at random and generates one offspring via mutation;
the resulting offspring competes with an individual selected uniformly at random from
the subpopulation with worst fitness and the best individual replaces the worst (in case
of ties, the offspring is preferred). Table 1 summarises all known results, including our
contributions (shown in bold) and conditions involving population size µ and specific
parameters of each diversity mechanism explained below. Results from Friedrich et al.
(2009) are adapted to our definition of TWOMAX; see Sudholt (2020) for details.

Algorithm 1 (µ+1) EA

1: Initialise P with µ individuals chosen uniformly at random
2: while optimum not found do
3: Choose x ∈ P uniformly at random
4: Create y by flipping each bit in x independently with probability 1/n.
5: Choose z ∈ P uniformly at random from all individuals with worst fitness in P .
6: if f(y) ≥ f(z) then P = P \ {z} ∪ {y} end if
7: end while

The notion of success in previously studied mechanisms was being able to find
both optima in (expected) time O(µn logn). To put this time bound in context, it is
easy to see that the simple (1+1) EA finds one optimum of TWOMAX in expected time
Θ(n logn). The time bound O(µn logn) includes an additional factor of µ to account
for the overhead of evolving µ individuals instead of one. This overhead is necessary
for mechanisms like deterministic crowding as used in Friedrich et al. (2009), which
essentially evolves µ independent lineages of (1+1) EAs (Friedrich et al., 2009).

Table 1 shows that not all mechanisms succeed in finding both optima on TWO-
MAX in (expected) time O(µn logn). Friedrich et al. (2009) showed that the plain
(µ+1) EA and the simple mechanisms like avoiding genotype or fitness duplicates are not
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Runtime Analysis of RTS for Bimodal Optimisation

Table 1: Overview of runtime analyses for the (µ+1) EA with diversity mechanisms
on TWOMAX, showing the probability of finding both optima within (expected) time
O(µn logn). Results derived in this paper are shown in bold.

Diversity Mechanism Success prob. Conditions

Plain (µ+1) EA 1 o(1) µ = o(n/ logn)

No Duplicates 1

Genotype o(1) µ = o(
√
n)

Fitness o(1) µ = poly(n)

Deterministic Crowding 1 1− 2−µ+1 all µ

Fitness Sharing (σ = n/2)
Population-based 1 1 µ ≥ 2
Individual-based 2 1 µ ≥ 3

Clearing (σ = n/2) 3 1 µ ≥ κn2

Probabilistic Crowding 4 2−Ω(n) all µ

Probabilistic Crowding with Scaling 4

General bases α 2−Ω(n/α) all α ≥ 1
Very large α 1− 2−µ+1 α ≥ (1+Ω(1))en

Generalised Crowding 4

General scaling factors φ 2−Ω(φn) all φ ≤ 1

Very small φ 1− 2−µ+1 φ ≤ 1−Ω(1)
e2n

RTS with replacement

Small window size w (Theorem 5) o(1) µ = o
(

n1/w
)

Large window size w (Theorem 3) 1 − 2−µ′
+3 w ≥ 2.5µ lnn

RTS without replacement

Large window size w (Theorem 6) 1 − 2−µ′
+3 w ≥ µ

1 Friedrich et al. (2009).
2 Oliveto et al. (2019).
3 Covantes Osuna and Sudholt (2019).
4 Covantes Osuna and Sudholt (2020).

able to prevent the extinction of one branch, ending with the population converging
to one optimum, with high probability. Deterministic crowding with a sufficiently large
population is able to reach both optima with probability 1 − 2−µ+1 in expected time
O(µn logn). This probability converges to 1 exponentially fast in µ; for instance, a small
population size of µ = 10 already gives a success probability of ≈0.998 and for µ = 30
it grows to ≈0.9999999981. A population-based fitness sharing approach, constructing the
best possible new population amongst parents and offspring, with µ ≥ 2 and a sharing
radius of σ = n/2 is able to find both optima in expected runtime O(µn logn). The
drawback of this approach is that all possible size µ subsets of this union of size µ + λ
(where λ is the offspring population size) need to be examined. This is prohibitive for
large µ and λ.

Oliveto et al. (2019) studied the original fitness sharing approach and showed that a
population size µ = 2 is not sufficient to find both optima in polynomial time; the suc-
cess probability is only 1/2−Ω(1). However, with µ ≥ 3 fitness sharing again finds both
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optima in expected time O(µn logn). Covantes Osuna and Sudholt (2019) analysed
the clearing mechanism and showed that it can optimise all functions of unitation—
function defined over the number of 1-bits contained in a string—in expected time
O(µn logn) when the distance function and parameters like the clearing radius σ, the
niche capacity κ (how many winners a niche can support) and µ are chosen appropri-
ately. In the case of large niches, that is, with a clearing radius of σ = n/2, it is able to
find both optima in expected time O(µn logn).

Finally, Covantes Osuna and Sudholt (2020) analysed probabilistic crowding (Meng-
sheol and Goldberg, 1999) (extending preliminary results from Covantes Osuna and
Sudholt (2018b), which are not included in this manuscript) and showed that it requires
exponential time with overwhelming probability on TWOMAX and general classes of
functions with bounded gradients. They showed that probabilistic crowding is un-
able to evolve solutions that are significantly closer to any global optimum than those
found by random search, even when given exponential time 2Ω(n) for all population
sizes. Probabilistic crowding requires exponential time even when applying exponen-
tial scaling to TWOMAX: for every constant base α, and even values up to α = O

(

n1−ε
)

,

on the function αTWOMAX(x), the selection pressure is still too low, leading to an expo-
nential time 2Ω(n/α) with overwhelming probability. Only when α = Ω(n), the selec-
tion pressure becomes large enough to enable hill climbing. In this case, probabilistic
crowding with scaling is as successful on TWOMAX as deterministic crowding.

Generalised crowding (Galán and Mengshoel, 2010) is a variant that generalises
both deterministic and probabilistic crowding through the choice of a parameter called
scaling factor φ ∈ [0, 1] that diminishes the impact of the inferior search point. With
φ = 1 we have probabilistic crowding and φ = 0 yields deterministic crowding. Co-
vantes Osuna and Sudholt (2020) showed that if φ = Ω

(

n−1+ε
)

, for a constant ε > 0,
then this gives exponential time with overwhelming probability on all functions with
bounded gradients. But if φ = O(1/n), generalised crowding behaves similarly to de-
terministic crowding and becomes effective on TWOMAX.

The above works did not consider crossover as recombining individuals from dif-
ferent branches is likely to create poor offspring. We therefore consider a (µ+1) EA
using mutation only and we introduce RTS into the definition of the (µ+1) EA. In RTS
a new offspring competes with the closest element with respect to some distance mea-
sure from w (window size) members selected uniformly at random, with replacement,
from the population, and the better individual from this competition is selected. The
(µ+1) EA with RTS (Algorithm 2) is defined similarly as the plain (µ+1) EA (see Algo-
rithm 1), the (µ+1) EA with deterministic crowding in Friedrich et al. (2009) and the
(µ+1) EA with probabilistic crowding in Covantes Osuna and Sudholt (2018b) to facili-
tate comparisons between all the algorithms and all available results.

In Algorithm 2 an individual x is selected uniformly at random as a parent and a
new individual y is created in the mutation step. Since we are not considering crossover
and only one individual is created,w individuals are selected uniformly at random with
replacement and stored in a temporary population P ∗. Then in Line 6 an individual z
is selected from population P ∗ with the minimum distance from y (ties are broken
uniformly at random), and if the individual y has a fitness at least as good as z, y
replaces z.

As distance functions d(·, ·) we consider genotypic or Hamming distance, defined
as the number of bits that have different values in x and y: d(x, y) := H(x, y) :=
∑n−1

i=0 |xi−yi|, and phenotypic distances as in Friedrich et al. (2009); Oliveto et al. (2019);
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Algorithm 2 (µ+1) EA with restricted tournament selection

1: Initialise P with µ individuals chosen uniformly at random
2: while stopping criterion not met do
3: Choose x ∈ P uniformly at random
4: Create y by flipping bits in x independently with probability 1/n.
5: Select w individuals uniformly at random, with replacement, from P and store

them in P ∗.
6: Choose z ∈ P ∗ with the minimum distance to y.
7: if f(y) ≥ f(z) then P = P \ {z} ∪ {y} end if
8: end while

Covantes Osuna and Sudholt (2019) based on the number of ones: d(x, y) := | |x|1−|y|1 |
where |x|1 and |y|1 denote the number of 1-bits in individual x and y, respectively.

2.1 Notation

Our notion of time is defined as the number of function evaluations before the (µ+1) EA
achieves a stated goal such as finding a global optimum or finding both optima of TWO-
MAX. Since the (µ+1) EA is initialised with µ individuals, and subsequently generates
one offspring in each generation, the number of function evaluations is equal to µ plus
the number of generations needed to achieve the set goal. The additional term of µ is
only relevant for unreasonably large population sizes and is being tacitly ignored when
it is absorbed in a runtime bound (such as O(µn logn)) anyway.

We say that a function f is exponential if f = 2Ω(nε) for a positive constant ε > 0.
A function f is exponentially small if and only if 1/f is exponential. An event A occurs
with overwhelming probability if 1− Pr(A) is exponentially small.

2.2 Drift Theorems

Our analysis will make heavy use of a technique called drift analysis. In a nutshell, the
progress of the algorithm is measured by a potential function such as the Hamming dis-
tance to an optimum where a potential of 0 indicates that an optimum has been found.
The drift is then defined as the expected change of this potential in one generation.

The following multiplicative drift theorem gives an upper bound on the expected
time until the potential reaches 0 and an optimum has been found. It requires that the
drift is at least proportional to its current state. It also gives a tail bound showing that
the probability of exceeding this time is very small.

Theorem 1 (Multiplicative drift theorem with tail bounds, adapted from Doerr and
Goldberg, 2013). Let {Xt}t≥0 be a sequence of random variables taking values in some set S.
Let g : S → {0} ∪ R≥1 and assume that gmax := max{g(x) | x ∈ S} exists. Let T :=
min{t ≥ 0 : g(Xt) = 0}. If there exists δ > 0 such that

E[g(Xt+1) | g(Xt)] ≤ (1 − δ)g(Xt)

then E[T ] ≤ (1 + ln gmax)/δ and for every c > 0, Pr(T > (ln gmax + c)/δ) ≤ e−c.

3 Runtime Guarantees for Restricted Tournament Selection

We first provide runtime guarantees for restricted tournament selection, showing un-
der which conditions and parameter settings RTS is efficient and inefficient, respec-
tively.

Evolutionary Computation Volume x, Number x 7
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3.1 Large Window Sizes Are Effective

We start off by proving that the time bound of O(µn logn), used as measure of success
in all previous runtime analyses of diversity mechanisms (cf. Table 1), applies to many
variants of the (µ+1) EA. It assumes that the (µ+1) EA never decreases the best fitness
on a considered branch of TWOMAX; we will show in the proof of Theorem 3 that
this assumption is met with high probability in the context of RTS with large window
sizes. We also use this time bound to explain why O(µn logn) constitutes a natural
benchmark in the context of the (µ+1) EA enhanced with diversity mechanisms and to
choose a sensible stopping criterion for our experimental analysis.

Lemma 2. Consider one branch of TWOMAX and a (µ+1) EA with a replacement selection
where the best fitness of all individuals on this branch never decreases and an offspring im-
proving the current best fitness of its branch is always accepted3. If the (µ+1) EA is initialised
with at least one individual on the branch then the optimum of the branch is found within time
µ+ 2eµn lnn with probability 1− 1/n and in expectation.

Proof. We apply the multiplicative drift theorem with tail bounds (Doerr and Goldberg,
2010) (see Theorem 1) to random variables Xt that describe the Hamming distance of
the closest individual to the targeted optimum. Note that X0 ≤ n/2 as we start with an
individual on the considered branch and the optimum has been found once Xt = 0.

The probability of selecting an individual with Hamming distance Xt is at least
1/µ. In order to create a better individual, it is sufficient that one of the Xt differing
bits is flipped and the other bits remain unchanged. Owing to our assumptions, such a
better offspring will always survive. Each bit has a probability of being mutated of 1/n
and the remaining bits remain unchanged with probability (1− 1/n)n−1 ≥ 1/e. Hence,
the probability of creating an individual with a smaller Hamming distance is bounded
as follows:

Pr(Xt+1 < Xt | Xt) ≥
1

µ
· Xt

n
·
(

1− 1

n

)n−1

≥ Xt

µen
.

This implies

E[Xt+1 | Xt] ≤
(

1− 1

eµn

)

Xt.

Applying Theorem 1 with δ = 1
eµn , gmax = n, and starting with an individual with

Hamming distance < n/2 to the optimum, yields that the time till the optimum is
found is at most eµn · (ln(n/2) + lnn) ≤ 2eµn lnn with probability at most 1/n and in
expectation. Adding a term of µ for the initial population completes the proof.

Now we state the main result of this section, a positive result for RTS when the
window size w is large. The following analysis shows that, if w is chosen very large
(even larger than the population size µ), the (µ+1) EA with RTS behaves almost like the
(µ+1) EA with deterministic crowding.

Theorem 3. If µ = o(
√
n/ logn) and w ≥ 2.5µ lnn then the (µ+1) EA with restricted

tournament selection using genotypic or phenotypic distance finds both optima on TWOMAX

in time O(µn logn) with probability at least 1− 2−µ′+3, where µ′ := min(µ, logn).

3Compared to Lemma 3.3 in Covantes Osuna and Sudholt (2018b), the statement about offspring was
added for clarification; it was implicitly assumed and used in Covantes Osuna and Sudholt (2018b). It is
necessary as a branch might take longer to reach the optimum if better offspring are rejected; we will show
later on, in Section 4.3, that this is the case for small window sizes w. In Theorem 3.1 of Covantes Osuna and
Sudholt (2018b), the assumption was implicitly proven to hold for restricted tournament selection with large
window sizes (w ≥ 2.5µ lnn).
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Note that, for small population sizes µ ≤ logn, the probability 1− 2−µ′+3 is close to
the success probability 1− 2−µ+1 for deterministic crowding (see Table 1 and Friedrich

et al., 2009), apart from a constant factor in front of the 2−µ′

term. For both, the success
rate converges to 1 very quickly for increasing population sizes. For larger population
sizes, µ > log n, the probability bound for restricted tournament selection is capped at
1−2− logn+3 = 1−8/n as there is always a small probability of an unexpected takeover
occurring.

In order to prove Theorem 3, we first analyse the probability of initialising a pop-
ulation such that there are individuals on each branch with a safety gap of σ to the
border between branches. This safety gap will be used to exclude the possibility that
the best individual on one branch creates offspring on the opposite branch.

Lemma 4. Consider the population of the (µ+1) EA on TWOMAX and for some µ and σ. The
probability of having at least one initial search point with at most n/2− σ ones and one search
point with at least n/2 + σ ones is at least

1− 2

(

1 + 2σ ·
√

2/n

2

)µ

≥ 1− 2−µ+1 (1 + o(1))

where the inequality holds if σµ = o(
√
n).

Proof. By Doerr (2020, Equation 1.4.17), the following inequalities hold for any binomial
coefficient:

(

n

k

)

≤
(

n

⌊n/2⌋

)

≤ 2n ·
√

2/n.

Hence, for a random variable with binomial distribution Bin(n, 1/2), for all z ∈ [0, n]
we have

Pr(X = z) ≤ Pr(X = ⌊n/2⌋) ≤ 2−n ·
(

n

⌊n/2⌋

)

≤
√

2/n.

So the probability that an individual x is initialised inside the safety gap is at most

pσ := Pr(n/2− σ < |x|1 < n/2 + σ) ≤ 2σ ·
√

2/n.

Now let us define the probability that an individual x is initialised on the outer regions
with |x|1 ≤ n/2 − σ ones (0n branch) or |x|1 ≤ n/2 + σ ones (1n branch) as p0 and p1,
respectively. Note that both p0 and p1 are symmetric, and p0 + p1 := 1 − pσ , and by
rewriting we obtain p0 := 1−pσ

2 (the same for p1) with its complement being 1− 1−pσ

2 =
1+pσ

2 .
So the probability of having no individual with at most n/2− σ ones is (1− p1)

µ =
(

1+pσ

2

)µ
, and the same holds for having no individual with at least n/2+σ ones. Hence

the probability of being initialised as stated in the statement of the lemma is at least

1− 2

(

1 + pσ
2

)µ

= 1− 2−µ+1 · (1 + pσ)
µ.

Plugging in pσ and using the inequality 1 + x ≤ ex as well as σµ = o(
√
n) we simplify

the last term as

(1 + pσ)
µ ≤ e2σµ

√
2/n =

1

e−o(1)
≤ 1

1− o(1)
= 1 + o(1),

and by plugging all together we have 1− 2−µ+1(1 + o(1)).
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Using Lemmas 2 and 4, we can now prove Theorem 3.

Proof of Theorem 3. We first apply Lemma 4 with σ := logn, noting that the assump-
tion σµ = o(

√
n) holds true since we assume µ = o(

√
n/ logn). According to

Lemma 4, with probability 1 − 2−µ+1(1 + o(1)) the initial population contains at least
one search point with at most n/2 − logn ones and at least one search point with at
least n/2 + logn ones. We assume in the following that this has happened. Using
k! ≥ (k/e)k = kΩ(k), the probability of mutation flipping at least logn bits is at most
1/(logn)! = (logn)−Ω(logn) = n−Ω(log logn). Taking the union bound over O(µn logn)
steps still gives a superpolynomially small error probability. In the following, we work
under the assumption that mutation never flips more than logn bits.

We call two search points close if their genotypic distance is at most logn. Owing
to our assumption on mutations, every newly created offspring is close to its parent.
Note that on TWOMAX the phenotypic distance of any two search points is bounded
from above by the genotypic distance, hence close search points also have a phenotypic
distance of at most logn. Note that, whenever the tournament contains a search point
that is close to the new offspring, either the offspring or a close search point will be re-
moved. If this always happens, the best individual on any branch cannot be eliminated
by an offspring on the opposite branch; recall that initially, the best search points on the
two branches have phenotypic distance at least 2 logn, and this phenotypic distance in-
creases if the best fitness on any branch improves. When genotypic distances are being
used, the genotypic distance is always at least 2 logn.

Since each offspring has at least one close search point (its parent), the probability
that the tournament does not contain any close search point is at most (1 − 1/µ)w ≤
e−w/µ. Using w ≥ 2.5µ lnn, this is at most e−2.5 lnn = 1/n2.5. So long as the best
individual on any branch does not get replaced by any individuals on the opposite
branch, the conditions of Lemma 2 are met. In particular, the assumption made in
Lemma 2, that offspring improving the current best fitness of any branch are always
accepted, holds true. Applying Lemma 2 to both branches, by the union bound the
probability of both optima being found in time 2eµn lnn is at least 1− 2/n. The proba-
bility that in this time a tournament occurs that does not involve a close search point is
O(µn logn) · 1/n2.5 = o(1/n) as µ = o(

√
n/ logn).

All failure probabilities sum up to (assuming n large enough)

2

n
+ o

(

1

n

)

+ 2−µ+1(1 + o(1)) +
O(µn logn)

n−O(log log n)
≤ 4

n
+ 2−µ+2 ≤ 2−µ′+3

where the last inequality follows as 2−µ ≤ 2−µ′

and 1/n ≤ 2−µ′

.

In Theorem 3 we chose w so large that every tournament included the offspring’s
parent with high probability. Then the (µ+1) EA behaves like the (µ+1) EA with deter-
ministic crowding (Friedrich et al., 2009), leading to similar success probabilities (see
Table 1).

A success probability around 1− 2−µ+1 is best possible for many diversity mecha-
nisms as with probability 2−µ+1 the whole population is initialised on one branch only
(for odd n), and then it is likely that only one optimum is reached. Methods like fitness
sharing and clearing obtain success probabilities of 1 by more aggressive methods that
can force individuals to travel from one branch to the other by accepting worse search
points along the way. The performance of restricted tournament selection (and that
of deterministic crowding) is hence best possible amongst all mechanisms that do not
allow worse search points to enter the population.
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Runtime Analysis of RTS for Bimodal Optimisation

The condition w ≥ 2.5µ lnn is chosen to ensure that the conditions of Lemma 2
are met with high probability in one generation, and throughout O(µn log n) genera-
tions. This condition is quite crude as it also means that in any fixed generation, the
tournament will contain all individuals from the population with high probability. We
believe that the algorithm also maintains niches on the two different branches with a
much smaller choice of w as it is sufficient to have any close individual from the off-
spring’s branch in the population to make sure that the offspring only competes against
individuals from the same branch. We will investigate this experimentally in Section 5.

3.2 Small Window Sizes Can Fail

We now turn our attention to small w. If the w is small in comparison to µ, the pos-
sibility emerges that the tournament only contains individuals that are far from the
offspring. In that case even the closest individual in the tournament will be dissimilar
to the offspring, resulting in a competition between individuals from different “niches”
(i. e., sets of similar individuals). The following theorem and its proof show that this
may result in one branch taking over the other branch, even when the branch to get ex-
tinct is very close to a global optimum. The resulting expected runtime is exponential.

Theorem 5. The probability that the (µ+1) EA with restricted tournament selection with
w ≥ 3 and either genotypic or phenotypic distances finds both optima on TWOMAX in time

nn−1 is at most 1 − exp
(

− 2.28µw−1

n−1

)

+ O(1/n) = O
(

µw−1/n
)

. If µ ≤ n1/(w−1) then the

expected time for finding both optima is Ω(nn).

For w = 2 the probability is at most 1 − exp
(

− 2µHµ

n

)

+ O(1/n) = O((µ log µ)/n),

where Hµ refers to the µ-th harmonic number.

Theorem 5 shows an improvement over the preliminary version of this paper (Co-
vantes Osuna and Sudholt, 2018b), which gave a weaker probability bound of O(µw/n).

Note that the probability of finding both optima in nn−1 generations is o(1) if, for
instance, w = O(1) and µ grows slower than the polynomial n1/(w−1). It also holds if
w ≤ c(lnn)/ ln lnn for some constant 0 < c < 1 and µ = O(logn) as then n1/(w−1) =
e(lnn)/(w−1) ≥ e(ln lnn)/c = (lnn)1/c = ω(logn), which shows µw−1/n = o(1). The
probability bound of O

(

µw−1/n
)

becomes trivial if w ≥ logµ(n)+1 = log(n)/ log(w)+1
as then µw−1/n ≥ 1.

Proof of Theorem 5. We assume µ ≤ n as otherwise all claimed probability bounds
are larger than 1 for large enough n. The analysis follows the proof of Theorem 1
in Friedrich et al. (2009). We assume that the initial population contains at most one
global optimum as the probability of both optima being found during initialisation is
at most µ · 2−n ≤ n · 2−n, which can be easily subsumed in the terms of O(1/n) in the
claimed probability bounds.

We consider the first point of time at which the first optimum is being found. With-
out loss of generality, let us assume that this is 0n. Then we show that with high proba-
bility copies of 0n take over the population before the other optimum 1n is found. The
following arguments work for all populations that contain 0n but not 1n; this includes
the most promising population where all µ − 1 remaining individuals are Hamming
neighbours of 1n.

Let i be the number of copies of the 0n individuals in the population, then a good
event Gi (good in a sense of leading towards extinction as we are aiming at a negative
result) is to increase this number from i to i + 1. For this it is just necessary to create

copies of one of the i individuals. For n ≥ 2 we have Pr(Gi) ≥ i
µ ·
(

1− 1
n

)n ·
(

µ−i
µ

)w
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since it suffices to select one out of i individuals and to create a copy of the selected
individual, and to select w times individuals from the remaining µ− i individuals. On
the other hand, a bad event Bi is to create an 1n individual in one generation. This
probability is clearly bounded by

Pr(Bi) ≤
µ− i

µ
· 1
n

(

1− 1

n

)n−1

+ n−n

as the probability to mutate 0n into 1n is n−n and for the remaining µ − i individuals

the chance of creating 1n is at most 1/n · (1− 1/n)n−1. We deal with the term n−n

separately: the probability of such a jump happening in nn−1 steps is still at most 1/n,
which can be subsumed in the O(1/n) term from the claimed failure probability. Hence
we ignore this term in the following. Note that the quotient of both probability bounds
is

Pr(Bi)

Pr(Gi)
≤

µ−i
µ · 1

n

(

1− 1
n

)n−1

i
µ ·
(

1− 1
n

)n ·
(

µ−i
µ

)w =
1

n− 1
· µw

i(µ− i)w−1
.

Together, the probability that the good event Gi happens before the bad event Bi is

Pr(Gi | Gi ∪Bi) =
Pr(Gi)

Pr(Gi ∪Bi)
≥ 1− Pr(Bi)

Pr(Gi) + Pr(Bi)
≥ exp(−Pr(Bi)/Pr(Gi))

where the last step follows from the well-known inequality 1 + x
1−x ≥ ex for all x < 1

applied to x := −Pr(Bi)/Pr(Gi).
The probability that the copies of 0n take over the population before 1n is found is

therefore at least

µ−1
∏

i=1

Pr(Gi | Gi ∪Bi) ≥
µ−1
∏

i=1

exp

(

−Pr(Bi)

Pr(Gi)

)

= exp

(

−
µ−1
∑

i=1

Pr(Bi)

Pr(Gi)

)

≥ exp

(

− µw

n− 1

µ−1
∑

i=1

1

i (µ− i)w−1

)

. (1)

For w = 2 the last sum simplifies to

µ−1
∑

i=1

1

i(µ− i)
=

µ−1
∑

i=1

(

1

iµ
+

1

µ(µ− i)

)

=
2Hµ−1

µ

and the probability that takeover happens is at least

exp

(

− µw

n− 1
· 2Hµ−1

µ

)

≥ exp

(

−2µHµ

n

)

where the inequality holds since w = 2 and (µ − 1)/(n − 1) ≤ µ/n, which in turn
is implied by µ ≤ n. Along with the error term of O(1/n), this yields the claimed
probability bound for w = 2.

For w ≥ 3 we note that the summands in (1) are non-increasing with w. So the
worst case is having the smallest possible value, w = 3. Note that

1

i(µ− i)2
=

µ− i

iµ(µ− i)2
+

i

iµ(µ− i)2
=

1

iµ(µ− i)
+

1

µ(µ− i)2
=

1

µ

(

1

i(µ− i)
+

1

(µ− i)2

)

.
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Thus

µ−1
∑

i=1

1

i(µ− i)2
=

1

µ

(

µ−1
∑

i=1

1

i(µ− i)
+

µ−1
∑

i=1

1

(µ− i)2

)

=
1

µ

(

2Hµ−1

µ
+

µ−1
∑

i=1

1

(µ− i)2

)

=
2Hµ−1

µ2
+

1

µ

µ−1
∑

i=1

1

i2
.

Since
∑µ−1

i=1 1/i2 ≤ ∑∞

i=1 1/i
2 = π2/6 ≈ 1.645, the above approaches 1.645/µ as µ

grows. The function is 2/µ for µ = 2, 2.25/µ for µ = 3, and at most 2.28/µ for µ ≥ 4,
with the constant factor decreasing with increasing µ for µ ∈ [4,∞). Hence the function
is bounded by 2.28/µ for all µ ∈ N.

Together we have

µ
∏

i=1

Pr(Gi | Gi ∪Bi) ≥ exp

(

− µw

n− 1
· 2.28

µ

)

= exp

(

−2.28µw−1

n− 1

)

≥ 1−O
(

µw−1/n
)

.

Once the population consists only of copies of 0n, a mutation has to flip all n bits
to find the 1n optimum. This event has probability n−n and, by the union bound,
the probability of this happening in a phase consisting of nn−1 generations is at most
1
n = O

(

µw−1/n
)

. The sum of all failure probabilities is O
(

µw−1/n
)

, which proves the
first claim. For the second claim, observe that the conditional expected runtime is nn

once the population has collapsed to copies of 0n individuals. Using µ ≤ n1/(w−1) this

situation occurs with probability at least exp
(

− 2.28n
n−1

)

− O(1/n) = Ω(1). Hence the

unconditional expected runtime is Ω(nn).

4 Runtime Guarantees for RTS without Replacement

In this section we now discuss what happens if RTS is modified to select w individu-
als without replacement, that is, w different individuals are being selected. We call this a
modification as we believe the original RTS selects with replacement (this is not men-
tioned explicitly, but it follows from the mathematical formulae in Harik (1995)). Se-
lecting without replacement makes as much sense as selecting with replacement, and it
is very plausible that many practical implementations have used one or the other vari-
ant. Selecting without replacement leads to a more diverse tournament and we expect
a stronger effect, compared to selecting with replacement, when the same window size
is used. Note that if w = µ then the whole population is selected for the tournament
and thus a closest individual in the population is selected to compete against the off-
spring. We define the algorithm for w > µ as well, for consistency with experiments
for RTS with replacement (that use values for w larger than µ), even though there is
no difference to w = µ. If w > µ we select the whole population and w − µ copies of
arbitrary individuals; the effect is the same as for µ = w.

4.1 Large Window Sizes Still Work

The positive result mentioned in Section 3.1 still applies for this variant of RTS. The
main difference to Theorem 3 is that, assuming the algorithm never flips at least log n
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bits, if w ≥ µ the (µ+1) EA always selects at least one close search point for the tour-
nament (as opposed to a probability of at least 1 − 1/n2.5). We thus obtain the same
result as Theorem 3 for the weaker condition w ≥ µ. Note that this condition implies
that the whole population is contained in the tournament, and so the offspring always
competes against the closest individual from the population.

Theorem 6. If µ = o(
√
n/ logn) and w ≥ µ the (µ+1) EA with restricted tournament selec-

tion selecting w individuals without replacement, using genotypic or phenotypic distance, finds

both optima on TWOMAX in time O(µn logn) with probability at least 1− 2−µ′+3, where
µ′ := min(µ, log n).

4.2 On Takeover with Small Window Sizes

Unlike our positive result that works for both selection policies, the negative result
(Theorem 5) is no longer applicable for RTS without replacement. Recall that for the
negative result we rely on an extreme case where the algorithm has found the first op-
timum 0n and then this optimum takes over the whole population before the opposite
optimum 1n is found. Consider the situation where there is just one individual x left
(a Hamming neighbour of 1n) before copies of 0n take over and the new offspring y
is another copy of 0n. Theorem 5 then relied on individual x being selected w times
for the tournament in order to complete the takeover as then x is the closest individual
to y. When using RTS without replacement, this event is impossible for w ≥ 2 as the
tournament is guaranteed to contain a copy of 0n, which then competes against the
new offspring y. Hence, in this case, the subpopulation on the branch towards 1n will
never become extinct and will eventually reach 1n.

In fact, the following lemma shows that if the (µ+1) EA using RTS without replace-
ment and phenotypic distances is able to maintain subpopulations on both branches
until both subpopulations have evolved to a fitness larger than 2n/3, extinction be-
comes impossible and it is certain that both optima will be found eventually. For geno-
typic distances a similar statement holds when all individuals have passed a (higher)
fitness threshold of 3n/4.

Lemma 7. Consider the (µ+1) EA using restricted tournament selection without replacement
and w ≥ 2. If phenotypic distances are used, once a population is reached that has subpopu-
lations on both branches whose best fitness is larger than 2n/3, no subpopulation will become
extinct. If genotypic distances are used, once a population is reached that has subpopulations on
both branches whose worst fitness is larger than 3n/4, no subpopulation will become extinct.

Proof. A subpopulation can only become extinct if it only contains a single individual.
We hereinafter call this individual x and observe that by assumption f(x) > 2n/3.
Without loss of generality, we assume that x is on the 1-branch, thus |x|1 > 2n/3. The
following events are necessary for extinction: an offspring y of fitness f(y) ≥ f(x) is
created on the opposite branch to x (i. e., |y|1 < n/3), the single individual x is chosen
for the tournament, and x is the closest search point to the offspring y. Only then will x
be removed from the population.

We show that these conditions are impossible. The phenotypic distance between x
and the offspring y is larger than n/3. Since w ≥ 2, the tournament must also contain
an individual x′ from the 0-branch. If f(x′) < f(y) then x′ is phenotypically closer to y
than x. Otherwise, since 0 ≤ |x′|1 ≤ |y|1 < n/3, the phenotypic distance between x′

and the offspring y is less than n/3, hence x cannot be the closest search point to the
offspring y. Consequently, x cannot be replaced by an offspring on the opposite branch.
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With genotypic distances the same arguments apply. Assume that |x|1 > 3n/4 and
f(y) ≥ f(x), i. e., |y|1 < n/4. Then the genotypic distance between every individual x′

from the 0-branch and the offspring y is less than n/2 as by assumption |x′|1 < n/4 and
thus both y and x′ have Hamming distance less than n/4 to 0n, whereas the genotypic
distance between x and the offspring y is larger than n/2.

In scenarios where the fitness thresholds from Lemma 7 are not reached, takeover
of one branch may still happen. Imagine a population where an offspring y is created
on one branch and the tournament contains an individual z from the opposite branch
with f(z) < f(y). If the tournament only contains other search points whose distance
to y is larger than the distance between z and y, z will be removed from the population.
If such steps happen repeatedly, the subpopulation on z’s branch may become extinct.
Note, however, that if the size of said subpopulation is less than w, the tournament
must contain individuals from y’s branch that have a large distance from y.

Figure 1 sketches a population described above. The population is divided into
two species. On the 1-branch there is only one individual (orange point in Figure 1 or
individual z) and on the 0-branch there are µ−1 individuals and the offspring (red point
in Figure 1 or individual y), which has a better fitness than z. The parent individuals
on the 0-branch contain a subset P ′ of individuals whose distance to y is larger than
the distance between z and y. In this case, if the tournament consists of z and w − 1
individuals from P ′ then z is the closest individual to y and y replaces z.

#onesn/2

0

n

n/2 n

z
y

P ′

Figure 1: Sketch of f = TWOMAX with a population where takeover may happen for
the (µ+1) EA with RTS selecting without replacement, using phenotypic distances. The
offspring (y, red) replaces the single individual (z, orange) if the tournament contains
z and w− 1 individuals from P ′ as then z is the one closest individual from the tourna-
ment as indicated by the dotted lines.

Note that the scenario exemplified in Figure 1 is impossible under the conditions
from Lemma 7 as there z would have a much higher fitness and the niche P ′ with the
mentioned properties cannot exist. It is also highly unlikely for such a population to
emerge in the (µ+1) EA without any diversity mechanisms as the subpopulations on
both branches tend to have similar fitness values. When using RTS, however, it is pos-
sible for different niches like P ′, and niches with significantly worse fitness, to emerge.
We will further investigate the likelihood of takeover in the experimental analysis (Sec-
tion 5).
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4.3 RTS with Small Window Sizes Slows Down Evolution

As mentioned in previous sections, RTS without replacement is proven to be effective
for smaller values of w. But this comes at a price as the time to reach both optima can
increase significantly. In a scenario where there is just one individual x on one branch,
this “lone” individual will need to climb up its branch until it reaches its respective
optimum. Assume we have a generation where x was selected as a parent and has
produced a better offspring on the same branch. Further assume that x and its offspring
have a worse fitness than all individuals on the opposite branch. Then the only way
that the subpopulation of x can evolve is if x is selected in the tournament. In this case,
x will compete against its (fitter) offspring and will be removed from the population.
In other words, x has to be removed to allow its offspring to survive. This means that x
will need to be selected twice in one generation: as parent and in the replacement
selection. Also note that the new subpopulation will consist of just one individual,
hence the algorithm may be in the same situation for a long period of time.

We make this precise in the following lemma which shows that the evolution on a
branch with only a single individual proceeds as in a lazy4 (slowed-down) (1+1) EA. In
addition to assuming a branch with a single individual x, we assume that all individ-
uals on the opposite branch will have a fitness that is larger than the fitness of x by an
amount that is at least logarithmic.

Definition 8. Define the p-lazy (1+1) EA as an algorithm that independently in each iteration
idles with probability p and otherwise (that is, with probability 1 − p) performs one step of the
(1+1) EA.

The following lemma assumes without loss of generality that the lone individ-
ual resides on the 1-branch. A symmetric statement holds when the roles of the two
branches are swapped.

Lemma 9. Consider the (µ+1) EA using restricted tournament selection without replacement,
window size w ≤ µ and genotypic or phenotypic distance. Suppose that the population Pt at
time t contains a single individual x on the 1-branch with fitness at least n/2 + logn and that
all other individuals in Pt are on the 0-branch and have a fitness of at least f(x) + logn. Then,
with probability 1− n−ω(1), the subpopulation on the 1-branch in the (µ+1) EA will evolve as
in one step of the (w/µ2)-lazy (1+1) EA with current search point x on ONEMAX.

Proof. If any of the search points on the 0-branch is selected as parent, at least log n
bits have to flip to create a search point on the 1-branch of fitness at least f(x). This has
probability n−ω(1) and it is a necessary condition for the subpopulation on the 1-branch
to change (as a worse individual on the 1-branch will be removed regardless of the
outcome of the tournament).

If x is selected as parent, at least logn bits have to flip to create a search point that
is on the 0-branch or at least as good as the worst individual on the 0-branch. This,
again, has probability n−ω(1). If this does not happen, the offspring y can only survive
if the tournament contains x and f(y) ≥ f(x). In this case, y replaces x. The probability
for the tournament containing x is w/µ (there are

(

µ
w

)

ways of choosing w individuals

without replacement and
(

µ−1
w−1

)

ways of choosing x and w − 1 other individuals from

the remaining µ−1 individuals; together, this yields a probability of
(

µ−1
w−1

)

/
(

µ
w

)

= w/µ.).
Along with a probability of 1/µ for selecting x as parent, the probability of y replacing
x in case f(y) ≥ f(x) is w/µ2.

4In Markov chain theory, a Markov chain is called lazy if there is a fixed probability (e. g., 1/2) of remaining
in the same state (Levin et al., 2009).
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Runtime Analysis of RTS for Bimodal Optimisation

Lemma 9 (along with the well-known fact that the (1+1) EA requires Θ(n logn)
time on ONEMAX) suggests that, under appropriate conditions, a lower bound of
Ω
(

(µ2/w) · n logn
)

applies for the (µ+1) EA with RTS with replacement on TWOMAX.
However, to formally prove such a bound, we would need to show that the assump-
tions of the lemma have a good chance to be satisfied during an appropriate time pe-
riod.

In preliminary experiments we observed that, for w = 2 and across a range of val-
ues for µ, a lone individual emerged in almost all runs. Furthermore, in those cases
the individuals on the opposite branch evolved faster, and the time to find both optima
was determined by the time the lone individual evolved its respective optimum. We do
not have a formal proof that the larger subpopulation evolves faster, though. And it is
not clear whether a lone individual typically develops for larger values of w. We there-
fore resort to experiments in Section 5 to investigate this matter further and to check
for which values of w our conjectured lower bound of Ω

(

(µ2/w) · n logn
)

is supported.

5 Experimental Analysis

We provide an experimental analysis as well in order to see how closely the theory
matches the empirical performance for a reasonable problem size, and to investigate
a wider range of parameters, where the theoretical results are not applicable. We are
interested in the impact of the window size w and the selection policy (with or without
replacement) on the success rate of the (µ+1) EA with RTS.

Another interesting question is to compare RTS with and without replacement in
its resilience to takeover. We argued in Section 4 that the RTS without replacement is
more resilient to takeover, compared to its variant with replacement, but at the expense
of an increased runtime for finding both optima. We also argued that there are scenarios
where takeover may happen when no replacement is used, so we would like to know
for how long RTS is able to delay takeover and when it is more likely that takeover
happens for both selection policies.

We consider exponentially increasing population sizes µ ∈ {2, 4, 8, . . . , 1024} for a
problem size n = 100 and for 100 runs. Based on our theoretical analysis we define
the following outcomes and stopping criterion for each run. Success, the population
contains both 0n and 1n in the population. And failure, once the run has reached a max-
imum number of generations and the population does not contain both optima. This
maximum is initially set to 10µn lnn as motivated by Lemma 2, with a more gener-
ous leading constant that leaves plenty of time for most diversity mechanisms to find
both optima in case no takeover happens. The same time bound was also used in Co-
vantes Osuna and Sudholt (2018a), an empirical comparison of a range of diversity
mechanisms. In Section 5.2 we will consider a larger time budget to reflect our con-
jecture that RTS without replacement requires more time by a factor of order µ2/w, for
appropriate values of w.

For both RTS variants, we tested window sizes w ∈ {1, 2, 4, 8, . . . , 1024}, however
we only plot results up to w = 128 as the results for large w were very similar. In the
particular case where w > µ and the tournament is selected without replacement, the
algorithm uses the whole population in the tournament.

5.1 Experiments for a Time Budget of 10µn lnn

In Figures 2a and 2b we show the results for the (µ+1) EA with the original RTS, select-
ing w individuals with replacement. For small values of w and µ the algorithm is not
able to maintain individuals on both branches of TWOMAX for a long period of time,
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as predicted by Theorem 5. It is only when the population size is set to µ = 1024 and
w = 1 that the algorithm is able to maintain individuals on both branches before the
takeover happens. When setting, for example, w ≥ 8 and µ ≥ 32, the algorithm was
able to find both optima with both genotypic and phenotypic distances. It is possible to
observe a trade-off between w and µ: a larger w allows for a smaller population size µ
to be used. Such a trade-off was also indicated by the probability bound O

(

µw−1/n
)

from Theorem 5.
Our experiments show that RTS works well for much smaller window sizes than

those required in Theorem 3. For instance, for µ = 32 Theorem 3 results a window
size of w ≥ 369, whereas Figure 2d shows that w ≥ 8 seems sufficient to be effective.
Note that the method seems to behave fairly similarly with respect to both distance
functions.

RTS with replacement
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RTS without replacement

2 4 8 16 32 64 128 256 5121024

0

20

40

60

80

100

µ (logscale)

(c) Genotypic

2 4 8 16 32 64 128 256 5121024

0

20

40

60

80

100

µ (logscale)

w = 1
w = 2
w = 4
w = 8
w = 16
w = 32
w = 64
w = 128

(d) Phenotypic

Figure 2: The number of successful runs measured among 100 runs at the time both
optima were found on TWOMAX or t = 10µn lnn generations have been reached for
n = 100 with the (µ+1) EA with restricted tournament selection with and without re-
placement for µ ∈ {2, 4, 8, . . . , 1024},w ∈ {1, 2, 4, 8, . . . , 128}, genotypic and phenotypic
distance.

Now, Figures 2c and 2d illustrate the performance of RTS without replacement.
While all curves for RTS with replacement and w ≥ 8 in Figure 2c were monotonically
increasing, the success rate for w = 2 without replacement in Figure 2d is clearly not
monotonic. For population sizes µ ∈ {2, 4, 8} the success rate does increase, but once
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Runtime Analysis of RTS for Bimodal Optimisation

the population size increases to µ = 16 or µ = 32, the success rate drops steeply. Finally,
the success rate starts going up again when µ ≥ 64.

From our theoretical considerations and observing individual runs, the reason for
this drop in the success rate seems to be due to the scenarios described in Section 4.3.
During the runs, if there is a subpopulation of individuals with better fitness than the
individuals on the opposite branch of TWOMAX, the better subpopulation starts taking
over until there is just one individual x in the worse subpopulation. With w = 2 and
using selection without replacement, in order for an improving mutation y of x to be
accepted, the tournament must contain x, assuming all individuals in the better sub-
population have a higher fitness than y. Hence, for the worse subpopulation of one
individual to progress, the single individual must be selected as parent and also be
selected for the tournament as deleting x is the only way for its offspring to survive.
Compared to a setting with large window sizes (Theorems 3 and 6), this indicates an
additional factor of µ/w in the expected time for the worst subpopulation to reach its
optimum (cf. Lemma 9). Hence the drop in success rates seems to be caused by the time
budget not being large enough to allow a single individual on one branch to evolve into
its respective optimum (we will investigate this further in the following by increasing
the time budget). This behaviour only occurs for intermediate population sizes µ as for
small µ the difference between factors of µ and µ2/w is not significant enough (recall
that we have chosen a generous leading constant of 10 in the time bound 10µn lnn).
For large µ, the algorithm is efficient, albeit less efficient than for larger values of the
window size w.

5.2 An Increased Time Budget of 100max(1, µ/w)µn lnn

Since we hypothesise that RTS without replacement requires more time to achieve pos-
itive results (see the theoretical results from Section 4.3, particularly Lemma 9), we per-
formed the same experiments but increasing the time bound by an additional factor of
max(1, µ/w), where the maximum is used to accommodate values of w > µ that show
identical behaviour to w = µ. We also increased the leading constant from 10 to 100 to
ensure that success or failure does happen in the given time, resulting in an enhanced
time budget of 100max(1, µ/w)µn lnn. Our experiments will confirm that this budget
was sufficient in all runs.

In the case of RTS with replacement with the new time bound (Figures 3a and 3b),
there are no major changes compared to the previous results shown in Figures 2a and
2b. This suggests that the original time budget is sufficient for the algorithm to arrive at
the defined outcomes (success or failure). The major difference is shown with respect
to RTS without replacement with the new time budget (Figures 3c and 3d) compared
to the same algorithm with the original time budget (Figures 2c and 2d). As can be
observed the performance shown in Figures 3c and 3d show that RTS without replace-
ment has a better performance for small values w ≥ 2 and µ ≥ 16 when given a larger
time budget.

These results support our hypothesis that RTS without replacement has a better
success rate than its variant with replacement for much smaller w and µ, but that
this comes at the expense of a higher runtime as explained in Section 4.3. In this case
takeover is not possible for w = 2, but as can be seen from Figures 3c and 3d, evolv-
ing a single individual through the whole branch takes more time, which explains the
sudden drop in the performance shown in Figures 2c and 2d. This aligns with our
hypothesis that the number of evaluations increases by a factor of µ2/w to find both
optima on TWOMAX. Finally, aside from the extreme case where w = 2, the algorithm

Evolutionary Computation Volume x, Number x 19

10.1162/evco_a_00292https:    doi.org/
2021 

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco_a_00292/1905661/evco_a_00292.pdf by guest on 23 April 2021



E. Covantes Osuna and D. Sudholt

RTS with replacement

2 4 8 16 32 64 128 256 5121024

0

20

40

60

80

100

µ (logscale)

(a) Genotypic

2 4 8 16 32 64 128 256 5121024

0

20

40

60

80

100

µ (logscale)

w = 1
w = 2
w = 4
w = 8
w = 16
w = 32
w = 64
w = 128

(b) Phenotypic

RTS without replacement

2 4 8 16 32 64 128 256 5121024

0

20

40

60

80

100

µ (logscale)

(c) Genotypic

2 4 8 16 32 64 128 256 5121024

0

20

40

60

80

100

µ (logscale)

w = 1
w = 2
w = 4
w = 8
w = 16
w = 32
w = 64
w = 128

(d) Phenotypic

Figure 3: The number of successful runs measured among 100 runs at the time both
optima were found on TWOMAX or t = 100max(1, µ/w)µn lnn generations have been
reached for n = 100 with the (µ+1) EA with restricted tournament selection with and
without replacement and µ ∈ {2, 4, 8, . . . , 1024}, w ∈ {1, 2, 4, 8, . . . , 128}, genotypic and
phenotypic distance.

seems to behave similarly with both time budgets, achieving good results when w ≥ 8
and µ ≥ 8 and achieving 100% success rate when w ≥ 8 and µ ≥ 32. The choice
w = 4 gives mixed results as for both time budgets the success rate for RTS without
replacement and genotypic distance is not monotonic in µ.

5.2.1 Slow Down in the Performance of RTS Without Replacement on TWOMAX

Now we look more closely into the slow down in the performance of RTS without
replacement due to the appearance of the lone individual. We performed new experi-
ments where we removed the time budget of generations, and we defined as the only
stopping criterion either finding both optima, or that the population consists of copies
of one optimum and with w − 1 individuals with fitness n− 1.

The reason for this slightly different stopping criterion is due to the selection with-
out replacement of RTS. When the population has collapsed into one branch of TWO-
MAX, and the population has reached the optimum, once there are w − 1 individuals
in the population with fitness n − 1, we claim that the algorithm is no longer able to
replace the w−1 individuals with fitness n−1. Imagine that another copy of the present
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Runtime Analysis of RTS for Bimodal Optimisation

optimum is created. Since there are only w − 1 non-optimal individuals, any tourna-
ment of size w must contain an optimum that is identical to the offspring. Then the
new offspring will automatically compete with a global optimum since it is the closest
individual in the tournament. In this sense, unless the opposite optimum is created by
mutation, only replacements amongst optimal individuals are possible and the w − 1
individuals with fitness n − 1 will remain untouched. The algorithm will idle forever
since it is not possible for all µ individuals to reach a fitness value of n. So once the
algorithm reaches this “stagnation” scenario the run is stopped since there is no way to
introduce new changes in the population.

In Figure 4 we show how much time is needed by reporting the average number
of generations achieved using the stopping criterion defined previously for the case of
RTS without replacement with genotypic distance. An extra feature in this experimen-
tal setting is that we have introduced an additional curve for w = µ in order to observe
whether the average runtime grows with µ2/w. Together with Figure 4, we provide in
Table 2 the mean and standard deviation of generations required for the same experi-
mental setting as Figure 4, and the number of times the lone individual scenario came
up among the 100 runs of the RTS without replacement.
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Figure 4: Average number of generations until either both optima of TWOMAX are
found or the population consists of copies of the optimum and with w − 1 individuals
with fitness n−1 among 100 runs for n = 100 with the (µ+1) EA with restricted tourna-
ment selection without replacement for µ ∈ {2, 4, 8, . . . , 1024}, w ∈ {2, 4, 8, . . . , 128, µ}
and genotypic distance. The right-hand side shows a close-up view of the plot on the
left-hand side (indicated by the dashed lines), without the curve for w = 2.

First of all, from the raw data we observed that the increased time budget of
t := 100max(1, µ/w)µn lnn was never reached, hence it seems to be large enough,
and effectively the RTS without replacement needs more time to find both optima on
TWOMAX. From Figure 4, when w = 2, we can observe that the average runtime imme-
diately increases as soon as the population size increases. Note that in Table 2 for w = 2
lone individuals appear frequently. This supports our hypothesis from Section 4.3 that
due to the lone individual appearance during the run, there is an increase in the mean
of generations needed to find their respective optimum. The mean increases when in-
creasing the population size µ and the standard deviation increases in line with the
mean. In most runs, the algorithm is idling as the lone individual needs to be selected
for both selection for reproduction and selection for the tournament.
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Table 2: Mean and std of generations required to either find both optima of TWOMAX or
the population consists of copies of the optimum and with w−1 individuals with fitness
n − 1, and the number of lone individual appearances among 100 runs for n = 100
with the (µ+1) EA with restricted tournament selection without replacement for µ ∈
{2, 4, 8, . . . , 1024}, w ∈ {2, 4, 8, . . . , 128, µ} and genotypic distance.

µ
w

2 4 8 16 32 64 128 µ

2
mean 2.22E+03 2.20E+03 2.07E+03 2.16E+03 2.22E+03 2.23E+03 2.20E+03 2.18E+03

std 6.31E+02 6.18E+02 5.71E+02 6.36E+02 6.45E+02 6.40E+02 5.36E+02 5.90E+02
lone 55 52 55 52 52 50 47 60

4
mean 6.84E+03 4.07E+03 4.12E+03 4.15E+03 4.20E+03 4.21E+03 4.06E+03 4.28E+03

std 1.96E+03 9.05E+02 9.12E+02 1.12E+03 1.03E+03 8.09E+02 9.08E+02 9.81E+02
lone 88 64 68 60 57 71 65 66

8
mean 2.35E+04 5.28E+03 7.15E+03 7.00E+03 7.08E+03 7.17E+03 6.95E+03 6.90E+03

std 6.23E+03 3.11E+03 1.39E+03 1.65E+03 1.49E+03 1.35E+03 1.32E+03 1.65E+03
lone 97 44 10 6 6 8 14 7

16
mean 9.02E+04 1.13E+04 6.50E+03 1.22E+04 1.19E+04 1.20E+04 1.20E+04 1.19E+04

std 2.58E+04 1.09E+04 7.29E+03 1.57E+03 1.65E+03 1.61E+03 1.84E+03 1.69E+03
lone 100 21 4 0 1 0 0 0

32
mean 3.67E+05 1.89E+04 7.62E+03 1.06E+04 2.13E+04 2.13E+04 2.08E+04 2.14E+04

std 1.10E+05 3.39E+04 1.12E+03 1.53E+03 2.39E+03 2.38E+03 2.27E+03 2.36E+03
lone 100 7 1 0 0 0 0 0

64
mean 1.37E+06 7.50E+04 1.16E+04 1.41E+04 1.93E+04 3.95E+04 3.88E+04 3.84E+04

std 4.14E+05 5.98E+05 2.39E+03 1.71E+03 2.51E+03 4.03E+03 4.43E+03 3.97E+03
lone 100 1 0 0 0 0 0 0

128
mean 5.10E+06 2.05E+04 1.83E+04 2.11E+04 2.66E+04 3.51E+04 6.95E+04 7.12E+04

std 1.95E+06 5.42E+03 1.44E+03 1.94E+03 2.44E+03 3.71E+03 6.70E+03 6.01E+03
lone 96 0 0 0 0 0 0 0

256
mean 1.68E+07 3.05E+04 3.07E+04 3.42E+04 4.05E+04 4.93E+04 6.60E+04 1.32E+05

std 8.79E+06 4.99E+03 2.05E+03 2.41E+03 3.48E+03 3.59E+03 6.58E+03 1.01E+04
lone 88 0 0 0 0 0 0 0

512
mean 4.81E+07 5.35E+04 5.54E+04 5.97E+04 6.68E+04 7.74E+04 9.34E+04 2.46E+05

std 3.89E+07 5.26E+03 3.15E+03 3.98E+03 4.82E+03 5.51E+03 7.22E+03 1.80E+04
lone 70 0 0 0 0 0 0 0

1024
mean 1.24E+08 9.90E+04 1.00E+05 1.06E+05 1.15E+05 1.27E+05 1.46E+05 4.65E+05

std 1.42E+08 8.76E+03 5.56E+03 5.64E+03 6.86E+03 8.32E+03 1.00E+04 3.64E+04
lone 50 0 0 0 0 0 0 0

In the case of 4 ≤ w ≤ µ we can observe an improvement in the performance of the
algorithm. The chances of spending time idling for a significant replacement decrease
since we are allowing more individuals to participate in the tournament. From both,
Figure 4 and Table 2, for w = 4 we still can see some of this idling behaviour with
fewer appearances of the lone individual as the population size increases. However,
the means and standard deviations are generally smaller than for w = 2. For the case of
8 ≤ w ≤ 128 the algorithm seems to be much faster than predicted by our conjectured
bound Ω

(

(µ2/w) · n logn
)

. A plausible explanation drawn from Table 2 is that for w ≥ 8
the chances of lone individuals emerging are much lower than for w ∈ {2, 4}.

Finally, for the case of w = µ there is a slow down towards the optimum because
the whole population is part of the tournament, and only replacements can be done
with individuals close to each other, which translates into small jumps and more time
needed to move towards the optimum. In this case the effect of RTS vanishes and the
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Runtime Analysis of RTS for Bimodal Optimisation

size of the population is the only factor in the growth of the time, something that we
were expecting from the term µ2/w in our conjectured bound of Ω

(

(µ2/w) · n logn
)

.

It seems that our conjectured bound of Ω
(

(µ2/w) · n logn
)

only applies to very
small values of w due to the appearance of the lone individual and the necessity of
specific selections in one step. For the case of large values of w = µ, the RTS effect van-
ishes and we end up with an algorithm similar to deterministic crowding in which the
only main factor on the runtime is the population size. For intermediate values of w, it
seems that a more relaxed time bound can be applied since unwanted replacements are
more difficult (more individuals participate in the tournament) and specific selections
for replacement are not needed (large jumps in the same branch are possible) but this
may need more detailed conditions or arguments related to the population dynamics
and distribution on the population.

5.3 Progress on the Inferior Niche

The main goal of any niching mechanism is to avoid (or at least delay) that the fittest
individuals take over the less fit individuals, which ultimately leads to a loss of diver-
sity. From the previous theoretical and empirical analysis we can observe that RTS is
able to delay takeover depending on the selection scheme, and the parameters w and µ.
We know that RTS with replacement, for small values of w and µ, is not able to main-
tain individuals on both branches of TWOMAX for a long period of time. For the case
of RTS without replacement we know that takeover it is more difficult to happen, the
algorithm is more resilient to takeover, but as we mentioned in Section 4.2, takeover is
still possible.

So, when exactly is takeover more likely to happen? When exactly during the
process does a subpopulation become extinct? When and under what situations does
extinction happen? These are the kind of questions we aim to answer in this section.
In order to observe when takeover is more likely to happen with both variants of RTS,
we have designed the following experimental analysis. We recorded the fitness of the
best individuals reached on both branches of TWOMAX, and then take the minimum
fitness value of those two individuals. This yields the maximum fitness reached by
the subpopulation that becomes extinct (if applicable), or the optimal fitness if both
optima were reached. These results are shown in Figure 5. We define the specifics of
the experimental setup in its caption.

For w = 1, both variants of RTS do not show major differences. The major dif-
ference in the performance starts when w ≥ 2 for all populations sizes. RTS without
replacement is able to avoid the extinction of one subpopulation for smaller population
sizes than its variant with replacement, i. e., while RTS without replacement is able to
maintain individuals with fitness values up to 65 for small population sizes (µ = 2) and
small window sizes (w ≥ 2), its variant with replacement requires greater window sizes
(w ≥ 8) for the same population size to achieve similar results. In general, both RTS
variants have a better performance for large µ and for large w, which allows more indi-
viduals to participate in the tournaments. The main difference between both RTS vari-
ants is that RTS with replacement is not able to maintain populations on both branches
of TWOMAX for a long time after initialisation for small µ and w. Takeover happens
when the individuals have a fitness of around 50, which indicates that takeover hap-
pens close to initialisation. This makes sense since individuals on different branches
may look similar to each other and with small w, unwanted replacements may happen.

RTS without replacement is more resistant to extinction after initialisation for small
µ and w, but requires more fitness evaluations. This can be observed simply from the
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Figure 5: Average (pointed line) and Standard Deviation (shaded area) of minimum
fitness reached between the best individual X found from the 0n branch the best indi-
vidual Y found from the 1n branch (min(X,Y )) measured among 100 runs at the time
both optima were found on TWOMAX, the population has collapsed into one optimum
on TWOMAX (the population consists of copies of just 0n or 1n) with no time budget
for n = 100 with the (µ+1) EA with restricted tournament selection with and without
replacement for µ ∈ {2, 4, 8, . . . , 1024}, w ∈ {1, 2, 4, 8, . . . , 128} and genotypic distance.

results on Figure 5 but specifically if we compare them with w ≥ 2 and µ ≥ 2, RTS
without replacement is able to reach fitness values above 65 compared to its variant
with replacement.

6 Conclusion

We theoretically and empirically examined the behaviour of restricted tournament se-
lection, embedded into a simple (µ+1) EA, on the bimodal function TWOMAX, where
the goal is to find both optima. We rigorously proved that the performance of RTS
varies a lot with the window size w. If w is large enough, w ≥ 2.5µ lnn, then RTS be-
haves similarly to deterministic crowding. The probability of finding both optima in
time O(µn logn) is close to 1 − 2−µ+1, hence converging to 1 very quickly as µ grows.
For small µ and w, if µ ≤ n1/(w−1) (and w ≥ 3) then RTS likely fails to find both optima
of TWOMAX. This even holds when the (µ+1) EA is allowed to start with the most
promising population that does not yet contain both optima.

When selecting individuals for the tournament without replacement, the tourna-
ment becomes more diverse. While the positive result for the original RTS easily trans-
fers with the more lax condition w ≥ µ, the population dynamics in the case of small w
become more complicated. Experiments suggest that for small values of w typically one
niche collapses to a single individual, and we proved that under certain conditions the
algorithm is very slow at climbing up said branch. We conjecture a lower time bound
of Ω

(

(µ2/w) · n logn
)

for small values of w, where it is common for a single “lone” in-
dividual to evolve. This lower bound is by a factor of µ/w larger than the upper time
bound for RTS with large w (Theorems 3 and 6). Experiments support this conjecture
as for n = 100 the runtime increases drastically when w is very small. Table 2 showed
that the average runtime is high when lone individuals emerged, and lone individuals
typically emerged for very small w and small µ.
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Runtime Analysis of RTS for Bimodal Optimisation

Our theoretical results cover small and large values for the window size w. It is still
an open problem to theoretically analyse the population dynamics for both RTS vari-
ants for intermediate values for w. Our experiments indicate that RTS with and without
replacement can optimise TWOMAX for smaller w than those required in Theorems 3
and 6. Showing refined upper bounds for smaller values of w that make this rigorous
remains an open problem. Likewise, showing improved lower bounds for larger val-
ues of w than those given in Theorem 5, or proving the conjectured lower bound of
Ω((µ2/w)n logn) for RTS without replacement remain open problems. Note that prov-
ing lower bounds for population-based algorithms is a notoriously hard challenge even
in the absence of diversity mechanisms, which may require new methods to be devel-
oped (see, e. g. Sutton and Witt (2019); Oliveto et al. (2020) for recent approaches in this
direction).
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