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ABSTRACT One of the problems encountered in the design and implementation of a serial production line 

(SPL) is the buffer size between the machine tools. The buffer size of the SPL has an important impact on 

the productivity of the whole production system. The machine tools’ characteristics including their uptimes 

and downtimes and the process parameters are the main factors that affect the decision regarding the buffer 

size, and thus the productivity of the SPL. Due to the dynamic nature of this problem, it is complex to find 

the optimal buffer size in SPL. Thus, in this paper, an Efficient Prediction Model (EPM) is developed using 

Artificial Neural Network (ANN). The purpose of the developed EPM is to find the buffer size between each 

succeeding pair of machine tools in SPL at any given uptimes and downtimes of machine tools. An 

optimization model based on genetic algorithms (GA) is used to generate the learning data for the prediction 

model to find the optimal or near optimal buffer size of the bay of each machine tool in SPL. The proposed 

approach integrates the optimization and prediction methodologies to evaluate, and predict the optimal buffer 

sizes for maximum productivity. Including uptime and downtime parameters enable the proposed method to 

be used to improve the design of running SPL as well as to design a new SPL. Numerical examples for five 

and fifteen machine tools were conducted independently in this research and the results show the ability of 

the proposed method to determine the optimal buffer sizes in a reasonable amount of time. In particular, the 

results of case studies show that the developed model accurately predict the optimal buffer size, especially 

for the case of five machines and even for a higher number of machine tools yet with acceptable but less 

accuracy. Finally, the performance of the proposed approach was compared with some results of the state of 

the art methods reported in the literature. The comparison shows the superiority of the present approach to 

identify buffer sizes for higher throughput under the same uptimes and downtimes.  

INDEX TERMS Flexible manufacturing system; serial production line; optimization; prediction model; 

buffer size; productivity 

NOTATION 

Abbreviations     Descriptions 

N            Number of buffers in the main   

                       production line 

Bi Buffer size in front of the machine tool i+1 

F(i)  Fitness of individual i 

P_size Population size (number of individuals in 

population) 

S Number of individuals selected by 

applying elitist strategy 

IND(i) Individual i 

POP(i) Population i 

CP  Crossover point 

Cr   Crossover rate 

Mr  Mutation rate 

pi  uptime parameters of machine i 

ri  downtime parameters of machine i 

 
I. INTRODUCTION 

A serial production flow/transfer line is a system in which 

machine tools are placed in series with buffers of in-process 

parts between them [1]. Serial production line (SPL) is a 
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common form of mass production systems in modern plants. 

In order to design an efficient production system, the size of 

buffers in the bay of machine tools in SPL should be 

optimized. The main purpose for maintaining buffers in the 

production line is to carry out a series of operations more 

independently [2]. Increasing the independence of operations 

reduces the effect of interruption triggered by events such as 

machine failure. Furthermore, it absorbs the production 

variability caused by stochasticity of machine tools and/or 

due to differences in their capacity, processing time or 

throughput of different stages in the production line. 

However, the addition of buffers results in extra capital 

investment, space, and inventory [3]. Therefore, it is vital to 

choose buffer sizes efficiently. In production systems, the 

uptimes and downtimes parameters of the machine tool has 

an important impact on the buffer size on the bay of each 

machine tools in SPL. The machine tool uptime refers to the 

amount of time that the machine tool is working and 

available, while downtime refers to the amount of time that 

the machine tool is not operating or unavailable. Changing 

the uptimes and downtimes parameters affects the 

production rate (throughput) of the production system. The 

flexibility and production rate of the production system can 

be improved with a well-optimized production line [4]. 

Therefore, identifying the optimal buffer size has been a 

serious challenge in manufacturing industries, and there is a 

need for an effective and efficient methodology that can 

determine optimal buffer sizes at different levels of uptimes 

and downtimes parameters of the machine tools of the 

production system. Moreover, this determination of buffer 

size needs to be reached in a relatively short time. In this 

work, it is assumed that the machine tools and manufacturing 

processes have already been selected and the uptimes and 

downtimes parameters of all machine tools are well defined. 

Thus, the only decision variable is to optimize the buffer size 

at these uptimes and downtimes to improve the production 

rate of the system. 

As previously emphasized, the selection of suitable buffer 

sizes for any production line has been a critical task because 

it greatly affects the throughput of the system. In this context, 

a significant amount of research has been carried out to 

address the buffer size problem. For example, Bulgak and 

Sanders [5], implemented simulated annealing (SA) 

technique to determine optimal buffer sizes for a system 

comprising both automated inspection as well as assembly 

lines. Bulgak [6], also optimized the allocation of inter-stage 

buffers to optimize the overall production rate of the system. 

In particular, a simulation model based on ANN and GA had 

been proposed to deal with the optimization of buffer 

allocation in split-and-merge assembly systems. Similarly, a 

group of researchers developed a meta-heuristic approach 

based on Tabu search algorithm to determine buffer location 

and sizes for a given manufacturing line [7]. Furthermore, 

Tsadiras et al. [8], presented the prediction capabilities of 

ANN in production systems and explained how they can be 

trained to obtain better and quick results. Nahas et al. [9], 

utilized a GA algorithm to maximize the production rate by 

simultaneously selecting buffers and machines in 

assembly/disassembly manufacturing networks. They 

reported that efficient machines and large buffers elevate the 

average production rate of the system; however, this requires 

huge financial investment. Therefore, they formulated a 

design model based on combinatorial optimization for 

assembly/disassembly networks and used buffers and 

machines as decision variables in the problem. Moreover, 

Papadopoulos and Vidalis [10], proposed a heuristic 

algorithm to deal with the buffer allocation problem in 

unreliable and/or unbalanced production lines. For 

production systems including a supporting line, researchers 

utilized GA to develop a decision support system deciding 

buffer size for a flexible transfer line with bypass lines [11]. 

In addition, Qudeiri et al. [12], used genetic algorithms to 

optimize the buffer size and workstation capacity of serial 

parallel production lines. The results were presented in 

which a flexible production system with sub-lines was 

modeled and they included the buffer size in the model as 

well [13]. Hasama et al. [14], used the dynamic programming 

approach to optimize the buffer size allocation for an 

assembly line. A numerical approach has been applied to 

design the buffer in an automated transfer line to alleviate the 

effect of breakdown on the line efficiency [15]. Several 

studies utilized simulation techniques to deal with SPL 

optimization problem [16-18].  

Buffer sizes in asynchronous assembly system were 

studied using a combination of ANN and simulated 

annealing [19]. The buffer allocation problem has also been 

investigated for optimal solutions by applying artificial 

intelligence (AI), GA, and ANN [2]. Zandieh et al. [20], 

presented an integrated simulation and meta-heuristic 

algorithm method to study the buffer allocation problem. 

Furthermore, Han and Park [21] presented an analytical 

method to optimize buffer allocation for maximum 

throughput in a serial production line involving 

workstations, buffers, and quality inspection machines. 

However, it was found time consuming especially when the 

system becomes complex. Similarly, Usubamatov et al. [22], 

proposed an analytical approach to compute the productivity 

of an automated line comprising both parallel and serial 

machines with buffer storages.  

Shao et al. [23], proposed a novel method for solving line 

balancing and buffer allocation problems at the same time. 

Production rate was calculated using a simulation procedure. 

In particular, non-dominated Sorting Genetic Algorithm-II 

(NSGA-II) and Multi-Objective Particle Swarm 

Optimization (MOPSO) were applied to a real case study, 

and total cost for machine tools and buffer capacity were 

optimized. Results reported good efficacy of the proposed 

method. Kang and Ju [24], studied SPL from preventive 

maintenance perspective and with finite buffer size. In this 

research study, Markov decision models were utilized to 
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obtain optimal maintenance policy with a single buffer 

system between two machines. The model effectiveness was 

shown with the help of numerical examples. Ouzineb et al. 

[25], investigated the problem of buffer size and inspection 

station locations in unreliable production lines. The aim was 

to optimize the buffer size, number and location of inspection 

stations, fulfilling customer demand with minimal total cost. 

An exact mathematical method was presented to solve this 

complex problem. It was reported that the developed method 

was capable to solve the problem instances with up to 30 

machines tools, which was previously not solved. Dolgui et 

al. [26], studied a multicriterial optimization problem for 

volumes of buffers in a production line. Evolutionary 

algorithms namely SIBEA (Simple Indicator-Based 

Evolutionary Algorithm), and SEMO (Simple Evolutionary 

Multi-objective Optimizer) were implemented to solve the 

problem. Results showed that problems with larger 

dimension were solved efficiently by the proposed method. 

In another research study, simulation based optimization 

approach was utilized for optimization of buffer level, and 

processing time simultaneously [27]. A real world problem 

was modeled using simulation, and then design of 

experiments were used for obtaining the mathematical model 

of this bi-objective problem. The mathematical model was 

optimized using multi-objective GA. Liberopoulos [28] 

investigated a production line that operates on Echelon 

buffer policy. They modeled the system as a queuing 

network, and further divided each segment into sub-systems 

with 2 machines and their buffer. Each sub-system was 

solved using Markov chain. Results showed that the 

developed method provided accurate results. Xi et al. [29] 

presented a multi-objective optimization problem for a 

unbalanced series-parallel production lines. The objective 

was to optimize machine types, number of parallel machines, 

and buffer capacities for obtaining desired throughput rate 

and cycle time. The developed method was based on 

decomposing and coordination, in which a large production 

line was decomposed into several small lines, and small lines 

were optimized separately, then through coordination 

process a unified result was obtained. The developed method 

was compared against SA and NSGA-II, and the results 

showed better efficiency of the developed method.  

Weiss et al. [30] conducted a comprehensive literature 

review on the buffer allocation problem in production lines. 

The review highlighted the future research directions in this 

field. Kose and Kilincci [31] investigated the problem of 

buffer allocation in open serial production lines. The 

investigation considered two conflicting objectives, 

maximizing the average system production rate and 

minimizing total buffer size. Elitist NSGA-II, and a special 

version of a multi-objective SA were utilized to optimize the 

stated objectives. Discrete event simulation was employed to 

estimate the performance measures for the production 

systems. The results revealed that the developed 

methodology had a substantial potential to minimize the total 

buffer space. Koyuncuoğlu and Leyla [32], presented a 

comparative study for solving the buffer allocation problem. 

Two algorithms under consideration were combat GA and 

Big Bang-Big Crunch algorithm. The objective was to 

maximize the throughput of the line under the total buffer 

size constraint for unreliable production lines. The results 

concluded that the Big Bang-Big Crunch algorithm provided 

better results than combat GA. Demir and Koyuncuoğlu [33] 

proposed a variable neighborhood search approach for the 

buffer allocation problem in a serial production line. The 

proposed VNS-based solution approach was found highly 

effective in finding good-quality solutions, according to the 

results reported. 

The previous studies attempted to optimize the buffer size 

in a relatively long processing time. Moreover, none of the 

aforementioned studies solved this problem through the 

integration of optimization and prediction based on the 

uptimes and downtimes parameters as proposed in this work. 

In this context, this methodology aims to optimize buffer 

size, thereby maximizing the throughput of the given SPL 

under specified assumptions and constraints including the 

uptimes and downtimes of the machine tools in SPL. The 

proposed approach can solve the problem in a relatively short 

time to enable the management to take quick decisions 

regarding the selection of buffer sizes in the production line. 

Thus, the proposed method will enable generation of new 

sets of buffer sizes that achieve the maximum productivity in 

relatively short time. In addition to the serial production line, 

the proposed method can be applied to complex production 

lines such as production lines with rework path and hybrid 

serial-parallel production systems, etc. Following this 

introduction, the remainder of the paper is organized as 

follows. Section II present the model of the serial production 

line. The resolution approach for optimal SPL is discussed in 

Section III. Section IV presents numerical verification 

results. The paper is concluded in section V. 

 
II. MODEL OF THE SERIAL PRODUCTION LINE   

The structure of SPL studied in this paper is shown in Figure 

1. 

 Input parts Output parts

M1
B1

M2 Mn-1 Mn
B2 Bn-1

 

FIGURE 1.  Structure of SPL containing n machine tools through which the parts are processed in series. 
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The main assumptions pertaining the SPL components are 

given below,  

1. The SPL consists of n machine tools (M1, M2, …., Mn) 

and n-1 buffers (B1, B2, …., Bn-1). The machine tools are 

arranged serially and each buffer separating each 

consecutive pair of machine tools.  

2. Each machine tool Mi, i = 1, 2, …, n, has two states: up 

and down. When up, the machine is capable of 

producing with the rate 1 part per unit of time (cycle); 

when the machine is down, no production takes place. 

3. The uptime and the downtime of each machine Mi, i = 

1, 2, …, n, are random variables distributed 

exponentially with parameters pi and ri, respectively. 

Please note that 1/pi and 1/ri are the uptime values of 

machine i.  

4. Each buffer Bi, i = 1, 2, …, n, is characterized by its 

capacity, 0 ≤ 𝑁𝑖 < ∞. 

5. Machine tool Mi is starved at time t if buffer Bi-1 is 

empty at time t. The first machine tool in SPL, M1 is 

never starved. 

6. Machine tool Mi is blocked at time t if Bi is full at time 

t. The last machine tool in SPL, Mn is never blocked. 

A. THROUGHPUT EVALUATION OF SPL 

Recently, the design, implementation, and parameter 

identification and optimization of SPL have been reported in 

a number of research studies such as [34-38]. Among others, 

Sun et al. [36] studied production lines characterized by the 

Bernoulli serial line model and developed algorithms to 

identify model parameters to fit the system throughput. 

Furthermore, Yan et al. [38] proposed an improved 

aggregation method to improve the prediction accuracy of 

traditional aggregation method for the Bernoulli serial 

production lines with unreliable machines and finite buffers. 

There are many approximation approaches used to evaluate 

the SPL based on aggregation and decomposition. This paper 

follows the aggregation procedure presented in [39] to 

evaluate the SPL at given uptimes and downtimes 

parameters and buffer sizes for all machine tools in the SPL. 

This aggregation procedure is described below. Consider the 

serial production line with M machines shown in Figure 1 

defined by assumptions 1 to 6.  
The first two machine tools (M1 and M2) are aggregated 

into a single machine, 𝑀2
𝑓
, with the following uptime and 

downtime parameters: 

 

𝑝2
𝑓
= 𝑝2 + 𝑟2𝑄(𝑝1, 𝑟1, 𝑝2, 𝑟2, 𝑁1)       (1) 

𝑟2
𝑓
= 𝑟2 − 𝑟2𝑄(𝑝1, 𝑟1, 𝑝2, 𝑟2, 𝑁1)        (2) 

where 𝑄(𝑝1, 𝑟1, 𝑝2, 𝑟2, 𝑁1) is the probability that the 

machine tool M2 is starved and is defined as given in Eq. (3) 

follows [39]: 

 

 

𝑄(𝑝𝑎 , 𝑟𝑎 , 𝑝𝑏 , 𝑟𝑏 , 𝑁) =

{
 
 

 
 

(1−𝑒𝑎)(1−∅)

1−∅𝑒−𝛽𝑁
,                                                     𝑖𝑓 

𝑝𝑎

𝑟𝑎
≠

𝑝𝑏

𝑟𝑏
𝑝𝑎(𝑝𝑎+𝑝𝑏)(𝑟𝑎+𝑟𝑏)

(𝑝𝑎+𝑟𝑎)[(𝑝𝑎+𝑝𝑏)(𝑟𝑎+𝑟𝑏)+𝑝𝑏𝑟𝑎(𝑝𝑎+𝑝𝑏+𝑟𝑎+𝑟𝑏)𝑁]
,

                                                                                           𝑖𝑓 
𝑝𝑎

𝑟𝑎
=

𝑝𝑏

𝑟𝑏
 

                             (3) 

and 

𝑒𝑖 =
𝑟𝑖

𝑝𝑖 + 𝑟𝑖
, 𝑖 = 𝑎, 𝑏, 

  ∅ =
𝑒𝑎(1−𝑒𝑏)

𝑒𝑏(1−𝑒𝑎)
,                                                                  (4) 

𝛽 =
𝑒𝑎(𝑝𝑎 + 𝑝𝑏+𝑟𝑎 + 𝑟𝑏)(𝑝𝑎𝑟𝑏 − 𝑝𝑏𝑟𝑎)

(𝑝𝑎 + 𝑝𝑏)(𝑟𝑎 + 𝑟𝑏)
 

Next, aggregation in forward direction (forward 

aggregation); the resulted equivalent machine tool, 𝑀2
𝑓
 

defined by 𝑝2
𝑓
 and 𝑟2

𝑓
 is aggregated with M3 to result in 𝑀3

𝑓
 

defined by 𝑝3
𝑓
 and 𝑟3

𝑓
, with the parameters defined as above, 

and so on until all n machine tools are aggregated in a single 

one, 𝑀𝑛
𝑓
 defined by 𝑝𝑛

𝑓
 and 𝑟𝑛

𝑓
. Then, in the backward 

aggregation, the last machine, Mn, is aggregated with 𝑀𝑛−1
𝑓

 

to result in 𝑀𝑛−1
𝑏  defined by 𝑝𝑛−1

𝑏  and 𝑟𝑛−1
𝑏  and so on until 

all machine tools are again aggregated in a single machine, 

𝑀1
𝑏 defined by 𝑝1

𝑏 and 𝑟1
𝑏 . The procedure is repeated until the 

following criteria is satisfied: 

𝑟𝑛
𝑓

𝑝𝑛
𝑓 =

𝑟1
𝑏

𝑝1
𝑏                       (5) 

Formally, this process is represented as follows: 

 

𝑟𝑖
𝑓(𝑠 + 1) = 𝑟𝑖 − 𝑟𝑖𝑄(𝑝𝑖−1

𝑓 (𝑠 + 1), 𝑟𝑖−1
𝑓 (𝑠 + 1), 𝑝𝑖

𝑏(𝑠 + 1), 𝑟𝑖
𝑏(𝑠 + 1), 𝑁𝑖−1), 𝑖 = 2,… , 𝑛 
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𝑝𝑖
𝑓(𝑠 + 1) = 𝑝𝑖 + 𝑟𝑖𝑄(𝑝𝑖−1

𝑓 (𝑠 + 1), 𝑟𝑖−1
𝑓 (𝑠 + 1), 𝑝𝑖

𝑏(𝑠 + 1), 𝑟𝑖
𝑏(𝑠 + 1), 𝑁𝑖−1), 𝑖 = 2,… , 𝑛                   (6) 

𝑟𝑖
𝑏(𝑠 + 1) = 𝑟𝑖 − 𝑟𝑖𝑄(𝑝𝑖+1

𝑏 (𝑠 + 1), 𝑟𝑖+1
𝑏 (𝑠 + 1), 𝑝𝑖

𝑓(𝑠), 𝑟𝑖
𝑓(𝑠), 𝑁𝑖), 𝑖 = 1,… , 𝑛 − 1           

𝑝𝑖
𝑏(𝑠 + 1) = 𝑝𝑖 + 𝑟𝑖𝑄(𝑝𝑖+1

𝑏 (𝑠 + 1), 𝑟𝑖+1
𝑏 (𝑠 + 1), 𝑝𝑖

𝑓(𝑠), 𝑟𝑖
𝑓(𝑠), 𝑁𝑖), 𝑖 = 1,… , 𝑛 − 1         

with the following initial conditions: 

 

𝑝𝑖
𝑓(0) =  𝑝𝑖 ,    𝑟𝑖

𝑓(0) = 𝑟𝑖 ,       ∀ 𝑖 = 2,… , 𝑛 − 1, 
and boundary conditions: 

𝑝1
𝑓(𝑠) =  𝑝1,       𝑟1

𝑓(𝑠) = 𝑟1,  
𝑝𝑛
𝑏(𝑠) =  𝑝𝑛 ,       𝑟𝑛

𝑏(𝑠) = 𝑟𝑛 ,  
∀ 𝑠 = 0, 1, 2, …   

where function 𝑄(𝑝𝑎, 𝑟𝑎 , 𝑝𝑏 , 𝑟𝑏 , 𝑁) is defined in Eq. (3). 

Finally, production rate for the defined SPL can be 

approximated as follows: 

𝑃𝑅(𝑝1, 𝑟1, … , 𝑝𝑛 , 𝑟𝑛 , 𝑁1, … , 𝑁𝑛−1) =  
𝑟𝑛
𝑓

𝑝𝑛
𝑓
+𝑟𝑛

𝑓 =
𝑟1
𝑏

𝑝1
𝑏+𝑟1

𝑏.       (7) 

This aggregation procedure is described in the appendix. 

The SPL evolution procedure can be summarize graphically 

as shown in Figure 2. 

 

FIGURE 2.  SPL evaluation procedure. 

III. RESOLUTION APPROCH FOR OPTIMAL SPL 

To find the optimal design for SPL, this study utilizes GA to 

develop an optimization model, the fitness function for GA 

used the evaluation method for SPL discussed in section 2. 

The proposed optimization model identifies the buffer size 

that achieve the highest production rate at any given uptime 

(pi) and the downtime (ri) parameters. Then, and based on the 

optimization module this study develops a prediction module 

to predict the buffer size of the SPL for any given pi and ri ∀ 

i=1,…, n-1, where n is the number of machine tools in the 

SPL. The proposed prediction model can reduce the 

computational time for the determination of buffer sizes at a 

given pi and ri. The optimization module can be used again 

in this stage to validate that the predicted buffer sizes leads 

to the highest production rate. 

A. OTIMIZATION MODEL 

In this research, GA is utilized to obtain the optimal or near 

optimal buffer size. GA is one of the well-known meta-

heuristic optimization methods, which finds the optimal or 

near optimal solution based on natural selection and genetics 

principles. GA begins with an initial population including 

arbitrarily selected solutions known as individuals, where 

each individual is defined by a group of variables known as 

Genes. Then determining the fitness of all individuals in the 

initial population. This is followed by the selection of the 

fittest individuals allows them to pass their genes to the next 

generation. These iterations are repeated to obtain the 

optimal or near optimal result of the problem. The solution 

of the highest fitness becomes the candidate solution to the 

given problem. Figure 3 shows the outline of GA.  

The first step to implement the GA approach is to define 

the structure of an individual and encode the individual’s 

elements. In this research, the individual is defined as a set 

with n-1 elements, where n is the number of machine tools 

in SPL. Each of these elements represents one buffer. The 

individual is defined as follows. 
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FIGURE 3.  GA work flow. 

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 =  [𝑁1,  𝑁2, … , 𝑁𝑛−1]             (8) 

where 𝑁1 is the buffer size in front of the bay of SPL’s 

machine tool number i+1. The expression matrix is not 

limited, and it can be defined by any number of elements. 

Thus, it can deal with production systems having any number 

of machine tools.  

In Figure 3, I refers to the number of individuals selected 

based on the crossover operation, in each crossover 

operation, two individuals are generated and sent to the next 

population. J refers to the number of individuals selected 

based on mutation operation, in each mutation operation, one 

individual is generated and sent to next population. S refers 

to the number of individuals of the next population, and these 

individuals selected based on elitist strategy (best individuals 

in current population). The detailed GA is introduced in the 

following steps. 

Step 1: Calculate 𝐹(𝑖) ∀ 𝑖 = 1, 2,⋯𝑁  for current 

population.  

Step 2: Send s individuals to next population, 𝐼𝑁𝐷(𝑖 ) ∀𝑖 =
1 → 𝑠 by applying elitist strategy. 

Step3: Calculate PR (i) ∀ 𝑖 ∈ 𝑃𝑂𝑃( 𝑐𝑢𝑟𝑟𝑒𝑛𝑡), 𝑖 =
(1,⋯ ,𝑁) as follows: 

𝑃𝑅(𝑖) =
𝐹(𝑖)2

∑ 𝐹(𝑖)2
𝑁
𝑖=1

               (9) 

Step 4: Calculate 𝐴(𝑖) ∀ 𝑖 = 1, 2,⋯𝑁 by using Eq. (10): 

 𝐴(𝑖) = ∑ 𝑃𝑅(𝑖)𝑖
𝑗=1 =∑ (

𝐹(𝑖)2

∑ 𝐹(𝑖)2
𝑃_𝑠𝑖𝑧𝑒
𝑖=1

)

𝑖

𝑗=1

           (10) 

Step 5: Calculate Period(𝑖) ∀ 𝑖 = 1, 2,⋯ 𝐼𝑁𝐷 as follows: 

𝑃𝑒𝑟𝑖𝑜𝑑(0) = [0, 𝐴(1)] 
     𝑃𝑒𝑟𝑖𝑜𝑑(𝑖) = [𝐴(𝑖 − 1), 𝐴(𝑖)], ∀ 𝑖 = 1, 2,⋯ 𝐼𝑁𝐷       

(11) 

Step 6: Carry out crossover operation as follows: 

Step 6.1: Select two numbers between 0 and A(N) as 

follows: 

 𝑁1 ← 𝑅𝑎𝑛𝑑𝑜𝑚 [0,⋯ , 𝐴(𝑁)]𝑎𝑛𝑑                    

     𝑁2 ← 𝑅𝑎𝑛𝑑𝑜𝑚 [0,⋯ , 𝐴(𝑁)]                     (12) 

𝐼𝑓 𝑁1𝑎𝑛𝑑 𝑁2 ∈ 𝑃(𝑖), ∀𝑖 = 1, 2,⋯ ,𝑁𝐼 𝑇ℎ𝑒𝑛, 𝑟𝑒𝑠𝑒𝑙𝑒𝑐𝑡 𝑁2 

Step 6.2: Find 𝐼𝑁𝐷(𝑖 ) ∈ 𝑃𝑒𝑟𝑖𝑜𝑑(𝑖) ⊂ 𝑁1 𝑎𝑛𝑑 

𝐼𝑁𝐷(𝑗 ) ∈ 𝑃𝑒𝑟𝑖𝑜𝑑(𝑗) ⊂ 𝑁2 , ∀ 𝑖, 𝑗 = 1, 2,⋯ 𝐼𝑁𝐷          (13) 

Step 6.3: Select crossover point, CP, as follows: 

𝐶𝑃 ← 𝑅𝑎𝑛𝑑𝑜𝑚 [1,⋯ , 𝑖, … , 𝑂 − 1]             (14) 

Step 6.4: Exchange the genes after and before CP between 

individuals N1 and N2. 

Step 6.5: Send the generated individuals to the next 

population. 

Step 7: Redefine the two selected periods as follows: 

𝑃𝑒𝑟𝑖𝑜𝑑(𝑖) = [𝐴(𝑖 − 1), 𝐴(𝑖) − 𝑛] 𝑓𝑜𝑟 𝑃𝑒𝑟𝑖𝑜𝑑(𝑖) ⊂
𝑁1 𝑎𝑛𝑑𝑃𝑒𝑟𝑖𝑜𝑑(𝑗) = [𝐴(𝑗 − 1), 𝐴(𝑗) −

𝑛] 𝑓𝑜𝑟 𝑃𝑒𝑟𝑖𝑜𝑑(𝑗) ⊂ 𝑁2  (15) 

Step 8: Carry out mutation operation as follows. 

Step 8.1: Select a number as follows: 

𝑁𝑢𝑚 ← 𝑅𝑎𝑛𝑑𝑜𝑚 [0,⋯ , 𝐴(𝑁)]              (16) 

Step 8.2: Find 𝐼𝑁𝐷(𝑖 ) ∈ 𝑃𝑂𝑃(𝑖) ⊂ 𝑁𝑢𝑚  
Step 8.3: Select two genes from the selected individual as 

follows. 

𝑎, 𝑏 ← 𝑅𝑎𝑛𝑑𝑜𝑚 [1,⋯ ,𝑁𝐼]              (17) 

Step 8.4: Swap the values of the two selected genes. 

Step 8.5: Send the generated individual to the next 

population. 

Step 9: Redefine the endpoint of the selected period by a 

constant value n as follows: 

𝑃𝑒𝑟𝑖𝑜𝑑(𝑖) = [𝐴(𝑖 − 1), 𝐴(𝑖) − 𝑛] 𝑓𝑜𝑟 𝑃𝑒𝑟𝑖𝑜𝑑(𝑖) ⊂ 𝑁𝑢𝑚   
(18) 

Step 10: Repeat steps 6 to 9 to generate N – s individuals of 

the new population based on Cr and Mr.  
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Step 11: Repeat step 1 to step 10. Repeat step 11 until 
the fitness becomes constant. Set the individual of this 
fitness as the optimal individual. 

Using the optimization model many sets of uptimes and 

down times parameters and their optimal corresponding 

buffer size can be generated. The Optimization toolbox in 

MATLAB R2019a is used to perform the optimization based 

on the GA. 

B. PREDICTION MODEL 

As formerly stated, the goal of the prediction model is to 

predict the optimal buffer size on the bay of each machine 

tools at any set of uptime and downtimes. Nevertheless, the 

prediction model can reduce the computational time for the 

buffer sizes determination. An artificial neural network 

(ANN) technique is utilized to develop the prediction model. 

ANN consists of an interconnection of simulated neurons 

with weights. It has the capability to acquire knowledge 

about the connections between inputs and outputs (cf. Figure 

4) and to generalize those connections to previously unseen 

data. The ANN transfers a known input pattern to an output 

pattern by adjusting the association weight. In this research, 

the ANN model uses the data generated by optimization 

model considering the uptimes and downtimes parameters 

and the optimal buffer sizes associated with the highest 

throughput corresponding to each set of the uptimes and 

downtimes parameters to train the prediction model. The 

prediction model then will be used to predict the buffer size 

in a production system at any set of uptimes and downtimes. 

Input layer

Hidden layers

Output layer

 

FIGURE 3.  The structure of the ANN 

 

The algorithm at this stage is carried out using the 

following steps: 

Step 1: construct the ANN model. 

Step 2: train the ANN with some of the buffer sizes resulted 

by optimization model. 

Step 3: validate the ANN by the rest of the buffer sizes data. 

The neural network toolbox in MATLAB R2019a is used 

to build the ANN model. The three layers of neural network 

are developed with a sigmoid activation function between 

the layers given in Eq. 19. 

𝑓(𝑣) =
1

1+𝑒−𝑣
             (19) 

C. INTEGRATION OF OPTIMIZATION AND PREDICTION 
MODELS 

The optimal design of production system can be achieved by 

integrating the optimization model and the prediction model 

discussed in previous sections. The optimization model is 

used to generate enough data to learn the prediction model. 

These sets of data include different levels of uptimes and 

down times for all machine tools in SPL and the 

corresponding optimal buffer sizes that achieve the highest 

production rate of that SPL. After that, these data (uptimes 

and downtimes and corresponding buffer sizes) are fed to the 

prediction ANN model, by this way the prediction model can 

be used to predict the optimal buffer sizes at any input values 

of uptimes and downtimes of machine tools. Finally, the 

predicted buffer sizes are sent again to the optimization 

model to validate that the highest production rate is achieved 

at these predicted buffer sizes. Figure 5 shows the date flow 

and interaction between the optimization model and 

prediction model.  

 

FIGURE 5. Integration of the optimization and prediction models. 

 

The interaction between the GA based optimization model 

and the prediction ANN model is repeated to obtain the 

optimal or near optimal buffer size. This combination can be 

used to find the optimal design of the SPL during the 

development of the production system and support the 

decision of production system developer engineers regarding 

the selection of machine tools to achieve the goal of the 

production system. Furthermore, the proposed methodology 

can be applied to improve the production rate of a running 

production system, in order to address changes of uptimes 

and downtimes of machine tools in the production system.  

V. NUMERICAL VERIFICATION RESULTS 

A. SMALL PRODUCTION LINE: 5 MACHINE TOOLS  

In this section, the proposed method is applied for two 

examples of small production lines, each with 5 machine 

tools with the uptimes and downtimes parameters are given 

in Table I. It is worth empathizing that the uptime and 

downtime parameters for the first case are identified based 

on unbiased random basis, while partially biased random 

procedure is followed for the second example to only ensure 

the uptime parameters (pi) are always smaller than 0.5 that 
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will results in large uptimes. At the same time the downtime 

parameters (ri) are always kept larger than 0.5, which results 

in small downtimes. The difference between both examples 

is intended to demonstrate the feasibility of the proposed 

approach to predict optimal buffer sizes in two different 

scenarios, in which the second case expect to give a higher 

productivity due to the partially pre-controlled values of the 

uptime and downtime parameters. The maximum buffer 

capacity to be allocated on the bay of each machine tools is 

20. 

 
TABLE I 

UPTIMES AND DOWNTIMES PARAMETERS FOR TWO DIFFERENT SPLS OF 5 

MACHINE TOOLS 

Example 
No. 

Machine 
tool 

Uptime parameter 
(pi) 

Downtime parameter 
(ri) 

#1 

1 0.8147 0.9058 

2 0.6551 0.1626 

3 0.1656 0.6020 

4 0.3377 0.9001 

5 0.6225 0.5870 

#2 

1 0.0568 0.9432 
2 0.1378 0.8623 

3 0.0871 0.9129 
4 0.1062 0.8938 

5 0.0225 0.9775 

 

Initially, the proposed GA randomly generated 100 sets of 

uptimes and downtimes for the five machine tools. Then, the 

proposed optimization model identifies corresponding sets 

of optimal buffers considering the randomly generated 

uptimes and downtimes parameters.  

It is worth stating that the GA parameters are determined 

based on the guidelines presented in [40]  and after some trial 

and error, the selected GA parameters are chosen as follows: 

population size of 100 individuals, crossover rate of 0.8, and 

mutation rate of 0.05. Figure 6 exhibits the Pareto front for 

the two competing objectives, productivity rate and total 

buffer size, described in this work, determined by the GA 

based optimization model.  

FIGURE 6.  Pareto front of optimal values for optimization model of 
SPL with 5 machine tools. 

 

The generated data including the uptimes and downtimes 

parameters and the optimal buffers are fed into the prediction 

model as learning and testing data. The input layer consists 

of 10 input neurons (uptime and downtime for each of the 

five machine tools). By trial and error fifty neurons’ hidden 

layers are used which minimized the training error. The 

output are the four buffer sizes of the SPL.  

The Levenberg-Marquardt optimization algorithm was 

used as a training function for the proposed ANN, which is 

well known as the fastest backpropagation algorithm in the 

Matlab toolbox, and is highly commended as a first-choice 

supervised algorithm. Among the input uptimes and 

downtimes groups and their corresponding buffer sizes 

obtained from optimization model, 80% of the data are used 

as the training group and 20% for testing. Then the ANN is 

applied to find the relationships between the inputs (uptimes 

and downtimes) and the outputs (buffer sizes). Figure 7 

shows a plot regression for the proposed prediction model. 

 

FIGURE 7.  Regression analyses of outputs from the ANN for SPL of 5 
machine tools during (a) the training phase and (b) the entire process 
(training and testing). 

 

The optimal buffer sizes of the SPL at given uptimes and 

downtimes parameters resulted from the proposed 

integration of optimization and prediction models are given 

in the Table 2. However, in order to validate the results, the 

GA model was used to identify the optimal buffer sizes for 

the five machines considering the same uptimes and 

downtimes parameters. The obtained values for buffer sizes 

in both cases, using the ANN predictor and using the GA 

optimization model, were used to calculate associated 

productivity rates and all the results are presented in Table II 

for comparison purpose. From the results, it not so difficult 

to see that the prediction of buffer sizes using the two 

different methods are close and the final productivity rates 

are very similar. Besides, the results of the presented 

examples demonstrate the ability of the proposed approach 

to optimize the buffer sizes for different scenarios of uptimes 

and downtimes; one with unbiased random selection while 

the second deals with partially biased random selection of 

the uptimes and downtimes. 
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TABLE II  OPTIMAL BUFFER SIZE FOR SPL OF 5 MACHINE TOOLS. 

B. LARGE PRODUCTION LINE: 15 MACHINE TOOLS  

The proposed method is also applied for two examples of 

large production lines with 15 machine tools each. The 

uptimes and downtimes parameters selected for both 

examples are listed in Table III. Similar to the two examples 

presented in Table II for the small production lines of 5 

machine tools, the first example of the large production line 

is given uptime and downtime parameters based on an 

unbiased random procedure, while the random selection of 

the uptime and downtime parameters for the second example 

is considered partially biased. In particular, in the second 

example the uptime parameters are restricted to values less 

than 0.5 and the downtime parameters are limited to values 

larger than 0.5. Again, this aims to show the ability of the 

proposed approach to optimize large production lines with 

different ranges of characteristics (uptime and downtime 

parameters). The maximum buffer capacity that is to be 

allocated on the bay of each machine tools is 20. 
TABLE III 

UPTIMES AND DOWNTIMES PARAMETERS FOR LARGE SPL OF 15 MACHINE 

TOOLS. 

Example 

No. 

Machine 

tool 

Uptime parameter 

(pi) 

Downtime parameter 

(ri) 

#1 

1 0.6238 0.1178 

2 0.7659 0.0304 

3 0.7484 0.867 
4 0.008 0.2367 

5 0.3403 0.3516 

6 0.1619 0.0418 
7 0.4812 0.5469 

8 0.9892 0.9848 

9 0.8293 0.2122 
10 0.4962 0.7812 

11 0.7573 0.4944 

12 0.2806 0.1529 
13 0.6775 0.0824 

14 0.217 0.8693 

15 0.9504 0.1473 

#2 

1 0.1097 0.8903 

2 0.0330 0.7032 

3 0.0800 0.6592 

4 0.1300 0.9562 

5 0.1450 0.8550 

6 0.1320 0.8680 

7 0.1961 0.8039 
8 0.1420 0.8580 

9 0.0010 0.7900 

10 0.0336 0.9664 
11 0.0850 0.8750 

12 0.0385 0.9619 

13 0.0170 0.8261 
14 0.3360 0.8013 

15 0.1897 0.8103 

 

Similar to the previous small production line numerical 

example, the optimization model is applied to find the buffer 

sizes corresponding to many sets of uptimes and downtimes 

parameters. The GA parameters are similar to those mentioned 

in small production line numerical example. Figure 8 shows 

the Pareto front for the two competing objectives, productivity 

rate and total buffer size, determined by the GA based 

optimization model for the large production line. 

 

FIGURE 8.  Pareto front of optimal values for optimization model of SPL 
with 5 machine tools. 

The input layer consists of 30 inputs neurons (uptime and 

downtime for each of the fifteen machine tools). The output 

are the buffer sizes of the large SPL. Fifty neurons’ hidden 

layers are used which minimized the training error. Similar to 

the ANN model for the small SPL, the Levenberg-Marquardt 

optimization algorithm was used as a training function for the 

proposed NN. Then the ANN is applied to find the 

relationships between the inputs and the outputs. ANN used 

15% of data for both testing and validation. Figure 9 shows a 

plot regression for the proposed prediction model of SPL with 

15 machine tools, during the training phase only (Fig. 9a) and 

the entire process (training and testing in Fig. 9b). 

 

FIGURE 9.  Regression analyses of outputs from the ANN for large SPL 
of 15 machine tools during (a) the training phase and (b) the entire 
process (training and testing). 

Example No. pi ri Ni (GA & ANN) Ni (GA only) 
Productivity (GA 

& ANN) 

Productivity 

(GA) 

#1 
0.8147, 0.6551, 0.1656, 

0.3377, 0.6225 
0.90586, 0.1626, 0.6020, 

0.9001, 0.5870 
8, 6,3, 6 7, 6, 2, 3 0.1979 0.1986 

#2 0.0568, 0.1378, 0.0871, 

0.1062, 0.0225 

0.9432, 0.8623, 0.9129, 

0.8938, 0.9775 

10, 13, 11, 3 8, 10, 11, 7 0.8601 0.8581 
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Finally, the optimal buffer sizes of the SPL at given uptimes 

and downtimes parameters resulted from the proposed 

integration of optimization and prediction models for the large 

SPL of 15 machine tools are given in the Table 4. In addition, 

the optimal buffer sizes obtained using the GA only for the 

same uptimes and downtimes are also listed in Table IV. It is 

not so difficult to see that the proposed approach (GA and 

ANN) successfully identified buffer sizes very close to the 

values determined using the ANN only in both cases; with 

unbiased random selection of the uptimes and downtimes and 

when these values were partially restricted. 

 

TABLE IV 

OPTIMAL BUFFER SIZE AT GIVEN UPTIMES AND DOWNTIMES PARAMETERS FOR LARGE SPL OF 15 MACHINE TOOLS. 

 

In the above two examples, it is found that the run time are 

80 and 211 seconds for 5 and 15 machine tools respectively, 

when the codes were run on a computer system with an 

Intel(R) Core (TM) i7processor. The run time in all cases was 

quite small. In the presented numerical examples, the 

proposed model found the optimal or near optimal solutions 

for the buffer size for both short and large serial production 

lines. It found that the proposed model can solve the buffer 

size problem in a short time.  

Finally, the performance of the proposed approach was 

compared with the state-of-the-art method for the prediction 

of optimal or near optimal buffer sizes for short, medium and 

quite large serial production lines. In particular, the results for 

production lines with 7, 8, 9 and 11 machine tools, with the 

uptimes and downtimes parameters previously reported in 

[41] were used as a reference for comparison with the 

proposed method in this research work. 

The results are listed in Table VI. The maximum buffer 

capacity to be allocated on the bay of each machine tools is 20. 

TABLE VI 

COMPARISON OF OPTIMAL BUFFER SIZE AT GIVEN UPTIMES AND 

DOWNTIMES PARAMETERS FOR SPL OF 7, 8, 9 AND 11 MACHINE TOOLS.  

N
o
 o

f 
m

a
ch

in
es

 

pi ri Results of the 

proposed method 

Results from the 

literature [41] 

Ni 

 

Productivity  Ni Productivity 

 

 

 

7 

0.06 

0.07 

0.03 

0.02 

0.08 

0.06 

0.04 

0.75 

0.74 

0.88 

0.86 

0.81 

0.8 

0.85 

5 

3 

2 

3 

4 

2 

 
 

 

 
0.8733 

2  

3  

3 

4  

2 

 3 

 
 

 

 
0.8664  

 

 

 

8 

0.01 

0.01 

0.02 

0.03 

0.02 

0.01 

0.01 

0.02 

0.6 

0.6 

0.55 

0.6 

0.55 

0.6 

0.6 

0.6 

1 

3 

7 

5 

3 

1 

1 

 

 

 
 

0.9128 

3 

3  

3 

2 

2 

3 

3 

 

 

 
 

0.9126 

 

 

 

9 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

3 

3 

5 

2 

6 

3 

2 

2 

 

 

 
 

0.7786 

3 

3  

3 

3 

3 

3 

3 

3 

 

 

 
 

0.7609 

 

 

 

11 

0.2 

0.22 

0.25 

0.1 

0.15 

0.17 

0.23 

0.24 

  0.2 

  0.18 

  0.14 

0.83 

0.86 

0.85 

0.94 

0.93 

0.95 

0.86 

0.84 

0.9 

 0.95 

 0.87 

1 

2 

2 

2 

3 

2 

4 

 4 

 1 

 2 

 
 

 

 

0.6304 

2 

2  

3 

2 

2 

3 

3 

2 

3 

3 

 
 

 

 

0.6266 

Looking at the comparison between the results of the 

proposed approach and the results reported in the literature 

under the same conditions of uptimes and downtimes, one can 

clearly conclude that the approach presented in the papers 

successfully optimized the buffer sizes that lead to a higher 

Example No. pi ri Ni (GA & ANN) Ni (GA only) 
Productivity 

(GA & ANN) 

Productivity 

(GA) 

#1 

0.6238, 0.7659, 0.7484, 
0.008, 0.3403, 0.1619, 

0.4812, 0.9892, 0.8293, 

0.4962, 0.7573, 0.2806, 
0.6775, 0.2170, 0.9504    

0.1178, 0.0304, 0.8670, 
0.2367, 0.3516, 0.0418, 

0.5469, 0.9848, 0.2122, 

0.7812, 0.4944, 0.1529, 
0.0824, 0.8693, 0.1473 

3, 3, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1 

4, 3, 2, 1, 1, 1, 1, 
2, 1, 1, 1, 1, 1, 1 

0.0318 0.0346 

#2 0.1097, 0.0330, 0.0800, 

0.1300, 0.1450, 0.1320, 
0.1961, 0.1420, 0.0010, 

0.0336, 0.0850, 0.0385, 

0.0170, 0.3360, 0.1897 

0.8903, 0.7032, 0.6592, 

0.9562, 0.8550, 0.8680, 
0.8039, 0.8580, 0.7900, 

0.9664, 0.8750, 0.9619, 

0.8261, 0.8013, 0.8103    

2, 2, 2, 2, 2, 4, 2, 

2, 2, 2, 2, 2, 5, 11 

1, 2, 5, 3, 1, 1, 3, 

5, 4, 2, 2, 3, 1, 3 

0.7018 0.6700 
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throughput of the SPL when compared with the results 

presented in [41], under the same characteristics. 

VI. CONCLUSION 

This paper has reported on the development of an efficient 

prediction model to support the manufacturing engineer’s 

decision during the design of any new SPL under specified 

assumptions and constraints including the uptimes and 

downtimes of the machine tools. The propose model also can 

be used to improve the design of running SPL. This study 

integrates the GA based optimization model and ANN based 

prediction models. The proposed model solves the buffer 

allocation problem SPL consisting of M machines and M −1 

buffers. The results of case studies showed that the developed 

model accurately predict the optimal buffer size, especially for 

the case of five machines and even for higher number of 

machine tools, the results were acceptable. The proposed 

model is quite fast; it can solve the buffer size problem in a 

short time to enable a quick decision regarding the selection of 

buffer sizes in the production line. The run time in all cases 

was quite small.  

The performance of the proposed approach was compared 

with the state-of-the-art method for the prediction of optimal 

or near optimal buffer sizes for short, medium and large 

serial production lines. The results have demonstrated that 

approach presented in the papers successfully optimized the 

buffer sizes which led to a higher throughput of the SPL 

when compared with the results presented in the literature, 

under the same characteristics. 

A further investigation to improve the accuracy of the 

proposed model, especially for large SPL, might include other 

optimization tools. An extension of the work presented in this 

paper would be the study of other structures of production 

system such as production system with rework paths, split and 

merge production systems, assembly production systems, etc.   
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