
pression was undetectable. There has been

some disagreement about the timing of ex-

pression of Myf5 and MyoD in the branchial

arches, depending on the method of detec-

tion, but the earliest reported expression of

these genes in this region is E9.25 and

E9.5, respectively (22–24 ). By E9.5, Myf5

and capsulin were expressed in the same

cell population within the first branchial

arch, and by E10.5, Myf5, capsulin, and

MyoR were coexpressed in these cells of

wild-type embryos (Fig. 3A). In contrast,

Myf5 was not expressed in first branchial

arch precursors of MyoR�/�capsulin�/�

double mutants at E9.5 or E11.5 (Fig. 3B).

There was also no evidence for expression

of Myf5, MyoD, or myogenin at E15.5 in the

region of affected facial muscles (Fig. 3C),

whereas these genes were expressed in oth-

er developing head and trunk muscles.

To determine the fate of first arch mus-

cle precursors that failed to activate expres-

sion of Myf5 and MyoD, we performed

TUNEL (terminal deoxynucleotidyl trans-

ferase-mediated dUTP nick-end labeling)

on histological sections of double-mutant

embryos at E10.5, when cells marked by

expression of capsulin-lacZ were disap-

pearing. As shown in Fig. 4, TUNEL-

positive cells were observed among the

lacZ-positive muscle precursors of double

mutants, but not of MyoR�/�capsulin�/�

embryos. We conclude that these cells,

which fail to initiate the normal program

for muscle development in the double mu-

tant, undergo apoptosis with resulting ab-

lation of muscles of mastication. Similar

observations have been made in muscle

precursor cells in the limb buds of mice

lacking MyoD and myf5 (25).

The absence of specific head muscle cells,

as well as markers of the corresponding myo-

genic lineages, in MyoR�/�capsulin�/� mu-

tants resembles the effect of MyoD�/�Myf5�/�

double mutations on all skeletal muscles (2) and

is distinct from the phenotype of Myf5�/�

Pax3�/� mutants, which exhibit a specific de-

ficiency of trunk skeletal muscles (7 ). This

phenotype also differs from that of myoge-

nin mutant mice, in which myoblasts ex-

press myogenic bHLH genes, but are un-

able to differentiate (3, 4 ). These findings

demonstrate that MyoR and capsulin redun-

dantly regulate an initial step in the specifi-

cation of a specific subset of facial skeletal

muscle lineages and that, in the absence of

these factors, myogenic bHLH genes are not

switched on, and cells from these lineages

undergo programmed cell death. There may

also be a modest effect on migration of pre-

cursors, as is seen in Lbx1 mutant mice (21).

MyoR and capsulin act as transcriptional

repressors in transfection assays (12, 20).

Whether they act to repress an inhibitor of

myogenesis or have a transcriptional-

activating function during development of

facial muscle remains to be determined.

The phenotype of MyoR�/�capsulin�/�

mutant mice reveals a previously unantici-

pated complexity in the development of

head skeletal muscles, and these findings

identify MyoR and capsulin as unique tran-

scriptional regulators for the development

of specific head muscles.
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Genetic Structure

of Human Populations
Noah A. Rosenberg,1* Jonathan K. Pritchard,2 James L. Weber,3

Howard M. Cann,4 Kenneth K. Kidd,5 Lev A. Zhivotovsky,6

Marcus W. Feldman7

We studied human population structure using genotypes at 377 autosomal
microsatellite loci in 1056 individuals from 52 populations. Within-population
differences among individuals account for 93 to 95% of genetic variation;
differences among major groups constitute only 3 to 5%. Nevertheless, without
using prior information about the origins of individuals, we identified six main
genetic clusters, five of which correspond to major geographic regions, and
subclusters that often correspond to individual populations. General agreement
of genetic and predefined populations suggests that self-reported ancestry can
facilitate assessments of epidemiological risks but does not obviate the need
to use genetic information in genetic association studies.

Most studies of human variation begin by

sampling from predefined “populations.”

These populations are usually defined on the

basis of culture or geography and might not

reflect underlying genetic relationships (1).

Because knowledge about genetic structure

of modern human populations can aid in in-

ference of human evolutionary history, we

used the HGDP-CEPH Human Genome Di-

versity Cell Line Panel (2, 3) to test the

correspondence of predefined groups with

those inferred from individual multilocus ge-

notypes (supporting online text).

The average proportion of genetic differ-

ences between individuals from different hu-

man populations only slightly exceeds that

between unrelated individuals from a single

population (4–9). That is, the within-popula-

tion component of genetic variation, estimat-

ed here as 93 to 95% (Table 1), accounts for

most of human genetic diversity. Perhaps as a

result of differences in sampling schemes

(10), our estimate is higher than previous

estimates from studies of comparable geo-

graphic coverage (4–6, 9), one of which also

used microsatellite markers (6). This overall

similarity of human populations is also evi-

dent in the geographically widespread nature

of most alleles (fig. S1). Of 4199 alleles

present more than once in the sample, 46.7%

appeared in all major regions represented:

Africa, Europe, the Middle East, Central/
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South Asia, East Asia, Oceania, and America.

Only 7.4% of these 4199 alleles were exclu-

sive to one region; region-specific alleles

were usually rare, with a median relative

frequency of 1.0% in their region of occur-

rence (11).

Despite small among-population variance

components and the rarity of “private” al-

leles, analysis of multilocus genotypes allows

inference of genetic ancestry without relying

on information about sampling locations of

individuals (12–14). We applied a model-

based clustering algorithm that, loosely

speaking, identifies subgroups that have dis-

tinctive allele frequencies. This procedure,

implemented in the computer program struc-

ture (14), places individuals into K clusters,

where K is chosen in advance but can be

varied across independent runs of the algo-

rithm. Individuals can have membership in

multiple clusters, with membership coeffi-

cients summing to 1 across clusters.

In the worldwide sample, individuals

from the same predefined population nearly

always shared similar membership coeffi-

cients in inferred clusters (Fig. 1). At K � 2

the clusters were anchored by Africa and

America, regions separated by a relatively

large genetic distance (table S1). Each in-

crease in K split one of the clusters obtained

with the previous value. At K � 5, clusters

corresponded largely to major geographic re-

gions. However, the next cluster at K � 6 did

not match a major region but consisted large-

ly of individuals of the isolated Kalash group,

who speak an Indo-European language and

live in northwest Pakistan (Fig. 1 and table

S2). In several populations, individuals had

partial membership in multiple clusters, with

similar membership coefficients for most in-

dividuals. These populations might reflect

continuous gradations in allele frequencies

across regions or admixture of neighboring

groups. Unlike other populations from Paki-

stan, Kalash showed no membership in East

Asia at K � 5, consistent with their suggested

European or Middle Eastern origin (15).

In America and Oceania, regions with low

heterozygosity (table S3), inferred clusters

corresponded closely to predefined popula-

tions (Fig. 2). These regions had the largest

among-population variance components, and

they required the fewest loci to obtain the

clusters observed with the full data. Inferred

clusters for Africa and the Middle East were

also consistent across runs but did not all

correspond to predefined groups. For the oth-

er samples, among-population variance com-

ponents were below 2%, and independent

structure runs were less consistent. For K �

3, similarity coefficients for pairs of runs
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Table 1. Analysis of molecular variance (AMOVA). Eurasia, which encompasses Europe, the Middle East,
and Central/South Asia, is treated as one region in the five-region AMOVA but is subdivided in the
seven-region design. The World-B97 sample mimics a previous study (6).

Sample
Number
of

regions

Number
of

populations

Variance components and 95% confidence intervals (%)

Within populations
Among

populations
within regions

Among
regions

World 1 52 94.6 (94.3, 94.8) 5.4 (5.2, 5.7)
World 5 52 93.2 (92.9, 93.5) 2.5 (2.4, 2.6) 4.3 (4.0, 4.7)
World 7 52 94.1 (93.8, 94.3) 2.4 (2.3, 2.5) 3.6 (3.3, 3.9)
World-B97 5 14 89.8 (89.3, 90.2) 5.0 (4.8, 5.3) 5.2 (4.7, 5.7)
Africa 1 6 96.9 (96.7, 97.1) 3.1 (2.9, 3.3)
Eurasia 1 21 98.5 (98.4, 98.6) 1.5 (1.4, 1.6)
Eurasia 3 21 98.3 (98.2, 98.4) 1.2 (1.1, 1.3) 0.5 (0.4, 0.6)
Europe 1 8 99.3 (99.1, 99.4) 0.7 (0.6, 0.9)
Middle East 1 4 98.7 (98.6, 98.8) 1.3 (1.2, 1.4)
Central/South Asia 1 9 98.6 (98.5, 98.8) 1.4 (1.2, 1.5)

East Asia 1 18 98.7 (98.6, 98.9) 1.3 (1.1, 1.4)
Oceania 1 2 93.6 (92.8, 94.3) 6.4 (5.7, 7.2)
America 1 5 88.4 (87.7, 89.0) 11.6 (11.0, 12.3)

Fig. 1. Estimated population structure. Each individual is represented by a
thin vertical line, which is partitioned into K colored segments that represent
the individual’s estimated membership fractions in K clusters. Black lines
separate individuals of different populations. Populations are labeled below
the figure, with their regional affiliations above it. Ten structure runs at each

K produced nearly identical individual membership coefficients, having pair-
wise similarity coefficients above 0.97, with the exceptions of comparisons
involving four runs at K� 3 that separated East Asia instead of Eurasia, and
one run at K � 6 that separated Karitiana instead of Kalash. The figure
shown for a given K is based on the highest probability run at that K.
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were typically moderate (0.1 to 0.85), rather

than large (0.85 to 1.0). However, various

patterns were observed across runs.

In East Asia, Yakut, whose language is

Altaic, and Japanese, whose language is often

classified as Altaic, were usually identified as

distinctive. Other speakers of Altaic languag-

es, including Daur, Hezhen, Mongola, Oro-

qen, and Xibo, all from northern China,

shared a greater degree of membership with

Japanese and Yakut than with more southerly

groups from other language families, such as

Cambodian, Dai, Han, Miao, Naxi, She, Tu-

jia, and Yi. However, Tu, who speak an

Altaic language and live in north-central Chi-

na, largely grouped with the southern popu-

lations. Lahu, who speak a Sino-Tibetan lan-

guage and were the least heterozygous pop-

ulation in the region, frequently separated

despite their proximity with other groups

sampled from southern China (16).

Eurasia frequently separated into its com-

ponent regions, along with Kalash. Adygei,

from the Caucasus, shared membership in

Europe and Central/South Asia. Within Cen-

tral/South Asia, Burusho of northern Paki-

stan, a linguistic isolate, largely separated

from other groups, although less clearly than

the genetic isolate, Kalash. Perhaps as a result

of shared Mongol ancestry (15, 16), Hazara

of Pakistan and Uygur of northwestern Chi-

na, whose languages are Indo-European and

Altaic, respectively, clustered together. For

Balochi, Makrani, Pathan, and Sindhi, all of

whose languages are Indo-European, and less

so for Dravidian-speaking Brahui, multiple

clusters were found, with individuals from

many populations having membership in

each cluster.

Europe, with the smallest among-popula-

tion variance component (0.7%), was the

most difficult region in which to detect pop-

ulation structure. The highest-likelihood run

for K � 3 found no structure; in other runs,

Basque and Sardinian were identified as dis-

tinctive. Russians variously grouped with

Adygei and Orcadians; Russian-Orcadian

similarity might derive from shared Viking

contributions (17). French, Italians, and Tus-

cans showed mixed membership in clusters

that contained other populations.

Because genetic drift occurs rapidly in

small populations, particularly in those that

are also isolated, these groups quickly accu-

Fig. 2. Estimated population structure for regions. For America, Oceania,
Africa, and the Middle East, solutions were consistent across 10 runs (all
similarity coefficients above 0.97, 0.93, 0.97, and 0.86, respectively,
except those involving one run with Africa that assigned many Biaka
individuals partial membership with San). Values of K shown for these
samples are the highest values for which this was true, and the highest

probability runs are shown. For remaining regions, solutions were more
variable across runs, and the highest probability runs for various values of
K are displayed. Graphs for America, Oceania, Africa, and the Middle East
display median similarity coefficients between runs based on the full
data and runs based on subsets of the data. Correspondence of colors
across figures for different regions is not meaningful.
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mulate distinctive allele frequencies. Thus,

structure efficiently detects isolated and rel-

atively homogeneous groups, even if the

times since their divergences or exchanges

with other groups are short (18). This phe-

nomenon may explain the inferred distinc-

tiveness of groups with low heterozygosity,

such as Lahu and American groups, and those

that are small and isolated, such as Kalash.

Groups with larger sample sizes are also

more easily separated; thus, the difficulty of

clustering in East Asia was exacerbated by

small sample sizes. Because sampling was

population based, the sample likely produced

clusters that were more distinct than would

have been found in a sample with random

worldwide representation. However, world-

level boundaries between major clusters

mostly corresponded to major physical barri-

ers (oceans, Himalayas, Sahara).

The amount of among-group variation af-

fects the number of loci required to produce

clusters similar to those obtained with the full

data. For the Middle East, with an among-

population variance component of 1.3%,

nearly all the loci were required to achieve a

similarity of 0.8 to the clustering on the basis

of full data, and use of more loci would likely

produce more consistent clustering. For Oce-

ania and Africa, only �200 loci were needed;

for the world sample, �150 were needed (fig.

S2), and �100 were sufficient for America.

Fewer loci would probably suffice for larger

samples (18); conversely, accuracy decreased

considerably when only half the sample was

used (Fig. 2). The number of loci required

would also decrease if extremely informative

markers, such as those with particularly high

heterozygosity (table S4), were genotyped

(18). The loci here form a panel intended for

use primarily in individuals of European de-

scent (19). Although 10 of the loci had het-

erozygosity less than 0.5 in East Asia, none

had similarly low European heterozygosities;

thus, inference of subclusters using “random”

markers might be more difficult than ob-

served here, especially in Europe. However,

the effect of excluding markers with low

European heterozygosity is likely minimal,

because generally high microsatellite het-

erozygosities ensure that relatively few loci

are discarded on these grounds (20). The fact

that regional heterozygosities here (table S3)

follow the same relative order as and have

nearly equal values to those of loci that were

ascertained in a geographically diverse panel

(12) provides further evidence that the ascer-

tainment effect on heterozygosity estimates

and on statistics derived from these estimates,

such as genetic variance components (21), is

small.

Genetic clusters often corresponded close-

ly to predefined regional or population

groups or to collections of geographically and

linguistically similar populations. Among ex-

ceptions, linguistic similarity did not provide

a general explanation for genetic groupings

of populations that were relatively distant

geographically, such as Hazara and Uygur or

Tu and populations from southern China. Our

finer clustering results compared with other

multilocus studies derive from our use of

more data. General correspondence between

regional affiliation and genetic ancestry has

been reported (12–14), with clearer corre-

spondence in studies that used more loci (13)

than in those that used fewer loci (9, 22); we

have further identified correspondence be-

tween genetic structure and population affil-

iation in regions with among-population vari-

ance components larger than 2 to 3%.

The structure of human populations is rel-

evant in various epidemiological contexts. As

a result of variation in frequencies of both

genetic and nongenetic risk factors, rates of

disease and of such phenotypes as adverse

drug response vary across populations (22,

23). Further, information about a patient’s

population of origin might provide health-

care practitioners with information about risk

when direct causes of disease are unknown

(23). Recent articles have considered whether

it is preferable to use self-reported population

ancestry or genetically inferred ancestry in

such situations (22–25). We have found that

predefined labels were highly informative

about membership in genetic clusters, even

for intermediate populations, in which most

individuals had similar membership coeffi-

cients across clusters. Sizable variation in

ancestry within predefined populations was

detected only rarely, such as among geo-

graphically proximate Middle Eastern

groups.

Thus, for many applications in epidemiol-

ogy, as well as for assessing individual dis-

ease risks, self-reported population ancestry

likely provides a suitable proxy for genetic

ancestry. Self-reported ancestry can be ob-

tained less intrusively than genetic ancestry,

and if self-reported ancestry subdivides a ge-

netic cluster into multiple groups, it may

provide useful information about unknown

environmental risk factors (23, 25). One ex-

ception to these general comments may arise

in recently admixed populations, in which

genetic ancestry varies substantially among

individuals; this variation might correlate

with risk as a result of genetic or cultural

factors (24). In some contexts, however, use

of genetic clusters is more appropriate than

use of self-reported ancestry. In genetic case-

control association studies, false positives

can be obtained if disease risk is correlated

with genetic ancestry (24, 26). Basing anal-

yses on self-reported ancestry reduces the

proportion of false positives considerably

(25). However, association studies are usual-

ly analyzed by significance testing, in which

slight differences in genetic ancestry between

cases and controls can produce statistically

significant false-positive associations in large

samples. Thus, errors incurred by using self-

reported rather than genetic ancestry might

cause serious problems in large studies that

will be required for identifying susceptibility

loci with small effects (26). Genetic cluster-

ing is also more appropriate for some types of

population genetic studies, because unrecog-

nized genetic structure can produce false pos-

itives in statistical tests for population growth

or natural selection (27).

The challenge of genetic studies of human

history is to use the small amount of genetic

differentiation among populations to infer the

history of human migrations. Because most

alleles are widespread, genetic differences

among human populations derive mainly

from gradations in allele frequencies rather

than from distinctive “diagnostic” genotypes.

Indeed, it was only in the accumulation of

small allele-frequency differences across

many loci that population structure was iden-

tified. Patterns of modern human population

structure discussed here can be used to guide

construction of historical models of migration

and admixture that will be useful in inferen-

tial studies of human genetic history.
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NPAS2: A Gas-Responsive

Transcription Factor
Elhadji M. Dioum,1 Jared Rutter,2 Jason R. Tuckerman,1 Gonzalo

Gonzalez,1 Marie-Alda Gilles-Gonzalez,1* Steven L. McKnight2*

Neuronal PAS domain protein 2 (NPAS2) is a mammalian transcription factor that
binds DNA as an obligate dimeric partner of BMAL1 and is implicated in the
regulation of circadian rhythm. Here we show that both PAS domains of NPAS2
bind heme as a prosthetic group and that the heme status controls DNA binding
in vitro. NPAS2-BMAL1 heterodimers, existing in either the apo (heme-free) or
holo (heme-loaded) state, bound DNA avidly under favorably reducing ratios
of the reduced and oxidized forms of nicotinamide adenine dinucleotide phos-
phate. Low micromolar concentrations of carbon monoxide inhibited the DNA
binding activity of holo-NPAS2 but not that of apo-NPAS2. Upon exposure to
carbon monoxide, inactive BMAL1 homodimers were formed at the expense of
NPAS2-BMAL1 heterodimers. These results indicate that the heterodimeriza-
tion of NPAS2, and presumably the expression of its target genes, are regulated
by a gas through the heme-based sensor described here.

PAS domains are independently folding mod-

ules of �130 amino acids that detect diverse

environmental signals, including oxygen, light,

voltage, redox potential, and many small aro-

matic molecules (1–7). Although these domains

have modest sequence similarity, they share

strikingly similar three-dimensional folds (8–

12). Two groups of bacterial proteins—the

FixL proteins of Rhizobia and the PDEA1

phosphodiesterases of Acetobacter—use heme

bound within a PAS domain to sense oxygen

(13). In FixL, binding of oxygen to the heme

controls a kinase domain that phosphorylates a

cognate transcription factor. In PDEA1, the

heme-binding domain controls a phosphodies-

terase domain that regulates the abundance of a

cyclic nucleotide second messenger. A seren-

dipitous discovery of apparent heme binding

during the purification of NPAS2, a mammali-

an bHLH (basic helix-loop-helix)–PAS tran-

scription factor, stimulated us to investigate

whether NPAS2 might represent yet another

heme-based mode of signal transduction by

PAS domains.

Overexpression of a fragment of NPAS2

containing its bHLH DNA binding domain

and both PAS domains in bacteria yielded

amber-colored cells. The absorption spectra

of liquid cultures containing those cells re-

vealed a correlation between NPAS2 expres-

sion and heme protein absorption (Fig. 1A).

Obvious peaks of absorption for the intact

living cells were observed at 426 nm (Soret

or gamma) and 561 nm (alpha). Upon cen-

trifugation of a cell lysate, the bulk of over-

expressed NPAS2 was recovered as an insol-

uble red suspension. The apoprotein resulting

from solubilization of the material by dena-

turation and renaturation was easily reconsti-

tuted with free hemin (14, 15). The absorp-

tion peaks for the reconstituted proteins also

occurred at 426 nm and 561 nm, with a lower

extinction peak becoming detectable at 530

nm (beta) (Fig. 1B). To examine the stability

and stoichiometry of the heme, we exposed

this reconstituted material to a fivefold molar

excess of His64
3 Tyr, Val68

3 Phe apo-

myoglobin (apo-H64Y/V68F) (16). As indi-

cated by the similar rates of apo-H64Y/V68F

reconstitution with heme abstracted from ei-

ther NPAS2 or Bradyrhizobium japonicum

FixL, the heme stability of the two proteins

was comparable (Fig. 1C). The final absorp-

tion value for the apo-H64Y/V68F treated

with NPAS2 showed that NPAS2 had rough-
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Fig. 1. Heme content and stability of holo-
NPAS2. (A) Production of heme protein in
whole E. coli cells after the induction of TG1
cells not expressing recombinant genes (thin
gray line) or expressing the NPAS2 truncated
recombinant forms bHLH–PAS-A–PAS-B (thick
black line), bHLH–PAS-A (thin black line), or
PAS-B (thick gray line). NPAS2 fragments,
placed downstream from a tac promoter in a
pUC19-derived expression vector, were ex-
pressed after 5 hours of isopropyl-�-D-thioga-
lactopyranoside induction in E. coli strain TG1.
The absorption spectra of 10-fold concentrated
cultures of intact cells were collected with an
ATI Unicam UV-4 UV/Vis spectrophotometer
(Spectronic Instruments Inc., Rochester, NY)
containing a turbid-sample accessory. (B) Ab-
sorption spectra of the deoxy (FeII) forms of
purified bHLH–PAS-A–PAS-B (thick black line),
bHLH–PAS-A (thin black line), and PAS-B (gray
line). Deoxy species were prepared by reducing
the protein with dilute dithionite in an anaer-
obic glove box and rapidly transferring it, by gel
filtration, to 0.10 M sodium phosphate (pH 7.5)
and 5 mM dithiothreitol (DTT). (C) Extraction
of heme from reconstituted holo-bHLH–PAS-
A–PAS-B (squares) or from B. japonicum FixL
protein (circles) by a fivefold molar excess of
apo-H64Y/V68F sperm whale myoglobin at pH
6.5 and 25°C (16).
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